Chapter 2
MOTION IN A STRAIGHT LINE
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MOTION IN A STRAIGHT LINE

20). Let the distance of a moving point P from a fixed point be O at
any time 7. Let its distance similarly at time 7 + /At be x4+ AAx, so that
PO = Ax.

. . _ PQ .
The velocity of P at time ¢ = Limit, when At = 0, of N = Limit,
Ax  dx
hen At =0, of — = —.
when 0 ~ =
dx

Hence the velocity v = e
Let the velocity of the moving point at time 7 + At be v+ Av.

Then the acceleration of P at time ¢t = Limit, when A\t = 0, of
Av dv  d*x

At dt dr?
21. Motion in a straight line with constant acceleration f
Let x be the distance of the moving point at time ¢ from a fixed

point in the straight line.

d’x
Th — = (1
: : dx
Hence, on integration v=— = fr+A ..(2),

dt
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where A is an arbitrary constant.

Integrating again, we have

1
x:Eft2+Az+B ..(3),

where B is an arbitrary constant.
d
Again, on multiplying (1) by 2d—);, and integrating with respect to

t, we have

V2 = <@)2:2fx—|—c (4)
= .. (4),

where C is an arbitrary constant.

These three equations contain the solution of all questions on mo-
tion in a straight line with constant acceleration. The arbitrary con-
stants A, B, C are determined from the initial conditions.

Suppose for example that the particle started at a distance a from a
fixed point O on the straight line with velocity u in a direction away
from O, and suppose that the time ¢ is reckoned from the instant of
projection.

We then have that when r+ = 0, then v = u and x = a. Hence the
equations (2), (3), and (4) give

u=A, a=B5B, and u’ =C+H2fa.
Hence we havev:u—i—ft,x—a:ut—i—%ft2 and v = u?> +2f(x—a),

the three standard equations of Elementary Dynamics.

22. A particle moves in a straight line OA starting from rest at A
and moving with an acceleration which is always directed towards

O and varies as the distance from O; to find the motion.
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Let x be the distance OP of the particle from at any time #; and let
the acceleration at this distance be Lix.

The equation of motion is then

d*x
2
[We have a negative sign on the right-hand side because pr) is the

acceleration in the direction of x increasing, i.e. in the direction OP;

whilst tx is the acceleration towards O, i.e. in the direction PO.]
— |
A P P A

d
Multiplying by 2d—j and integrating, we have
dx 2 2
— | =— C.
( dt) ux=+

d
If OA be a, then d—); —= 0 when x = a, so that 0 = —pua> + C, and

(%)2 = u(a® —x%)

dx
Z:—\/ﬁ a’? —x? ..(2).

[The negative sign is put on the right-hand side because the velocity

is clearly negative so long as OP is positive and P is moving towards
0.]

Hence, on integration,

dx X
t\/ﬁz—/\/ﬁ:COS 5+C1,

where 0= cos™! 4 +Ci, i.e. C; =0,
a
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if the time be measured from the instant when the particle was at A.

X = cos+/Ut ..(3).

When the particle arrives at O, x is zero; and then, by (2), the ve-
locity = —a./u. The particle thus passes through O and immediately
the acceleration alters its direction and tends to diminish the veloc-
ity; also the velocity is destroyed on the left-hand side of O as rapidly
as it was produced on the right-hand side; hence the particle comes
to rest at a point A’ such that OA and OA’ are equal. It then retraces
its path, passes through O, and again is instantaneously at rest at A.
The whole motion of the particle is thus an oscillation from A to A’
and back, continually repeated over and over again.

The time from A to O is obtained bj%f putting x equal to zero in (3).
This gives cos(,/it) =0, i.e. t = m

The time from A to A’ and back again, i.e. the time of a complete
oscillation, 18 four times this, and therefore = _7r.

This result is independent of the distance a, i.e. is independent of
the distance from the centre at which the particle started. It depends

solely on the quantity u which is equal to the acceleration at unit

distance from the centre.

23. Motion of the kind investigated in the previous article is called

Simple Harmonic Motion.
T
The time, —u, for a complete oscillation is called the Periodic
Time of the motion, and the distance, OA or OA’, to which the par-

ticle vibrates on either side of the centre of the motion is called the
Amplitude of its motion.
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The Frequency is the number of complete oscillations that the
1 VU

particle makes in a second, and hence = — = :
Periodic time 21

24. The equation of motion when the particle is on the left-hand side
of O is

d2
d_t;C = acceleration in the direction P’A = 4.P'O = u(—x) = —ux.
Hence the same equation that holds on the right hand of O holds
on the left hand also.
As in Art. 22 it is easily seen that the most general solution of this

equation is

x = a cos[\/ut + €] ..(1),
which contains two arbitrary constants a and €.
d
This gives d—): = —a,/U sin (\/ut+¢€) ..(2).

2T
(1) and (2) both repeat when ¢ is increased by —, since the sine

and cosine of an angle always have the same value when the angle
1s increased by 27.

Using the standard expression (1) for the displacement in a sim-
ple harmonic motion, the quantity € is called the Epoch, the angle
VUE + € is called the Argument, whilst the Phase of the motion
is the time that has elapsed since the particle was at its maximum
distance in the positive direction. Clearly x is a maximum at time #

where /L) + € = 0.
_ JHt+E
vE

Hence the phase attimet =t —#y =1t +
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Motion of the kind considered in this article, in which the time of
falling to a given point is the same whatever be the distance through

which the particle falls, is called Tautochronous.

25. In Art. 22 if the particle, instead of being at rest initially, be

projected from A with velocity V in the positive direction, we have

VZ:—,uaz—l—C.
dx ? 2 2 2 2 2 2 o) V2
Hence r =V +u(a®—x°) = u(b*—x*), where b*=a +I
p (1),
d—f:\/ﬁvbz—xz andt\/_:—cos_lz—i—cl,
where 0 = —cos ™! g +Cj.
ot u:—cos_lg—cos_lg .(2).

V2
From (1), the velocity vanishes when x=b=4/a*+ e

and then, from (2),
a 1 _ a
1/ = cos ! o l.e., 1 = ——COS 1—2.
‘LL Cl2 + i
u
The particle then retraces its path, and the motion is the same as in
Art. 22 with b substituted for a.

26. Compounding of two simple harmonic motions of the same
period and in the same straight line

The most general displacements of this kind are given by
acos(nt + €) and beos(nt 4 €'), so that
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x =acos(nt+€)+bcos(nt + €)

= cos nt(acos€+bcose’) —sinnt(asine + bsine’)

Let acos€+bcose’ =AcosE and asine+bsine =Asin E

(1),

so that

asin€ + bsinég’
acos€+bcose’

A= \/a2+b2+2abcos(8 —¢’) and tankE =

Then x =acos(nt+E),

so that the composition of the two given motions gives a similar
motion of the same period whose amplitude and epoch are known.

If we draw OA (= a) at an angle € to a fixed line, and OB (=
b) at an angle € and complete the parallelogram OACB then by
equations (1) we see that OC represents A and that it is inclined at
an angle E to the fixed line. The line representing the resultant of the
two given motions is therefore the geometrical resultant of the lines
representing the two component motions.

So with more than two such motions of the same period.

27. We cannot compound two simple harmonic motions of different
periods.

The case when the periods are nearly but not quite equal, is of
some considerable importance.

In this case we have
x =acos(nt+¢&)+bcos(n't +¢€'), wheren' —nis small, = A say.

Then x=acos(nt+¢€)+bcos[nt+¢€], wheree = Ar+¢'.
By the last article
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x=Acos(nt+E) (1),
where A% =a’+b*+2abcos(e —€]) )
=a®+b>+2abcos(e — & — (n' —n)t] B
asine+bsing;  asine +bsin[e' + (n' —n)t]
acos€+bcose; acos€-+bcos[e' + (0 —n)t]

-(3).

The quantities A and E are now not constant, but they vary slowly

and tankE =

with the time, since n’ — n is very small.

The greatest value of A is when € — €’ — (' —n)t = any even mul-
tiple of 7 and then its value is a + b.

The least value of A is when € — &’ — (n’ — n)r = any odd multiple
of 7 and then its value is a — b.

At any given time therefore the motion may be taken to be a sim-
ple harmonic motion of the same approximate period as either of
the given component motions, but with its amplitude A and epoch

E gradually changing from definite minimum to definite maximum
27

n'—n
[The Student who is acquainted with the theory of Sound may

values, the periodic times of these changes being,

compare the phenomenon of Beats.]

28. EX. 1. Show that the resultant of two simple harmonic vibrations
in the same direction and of equal periodic time, the amplitude of
one being twice that of the other and its phase a quarter of a period

in advance, is a simple harmonic vibration of amplitude v/5 times

tan~ 12
that of the first and whose phase is in advance of the first by an

of a period.

EX. 2. A particle is oscillating in a straight line about a centre

of force O, towards which when at a distance r the force is m.n’r,
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. : s : av3
and a i1s the amplitude of the oscillation; when at a distance —\/_

from O, the particle receives a blow in the direction of motion which
generates a velocity na. If this velocity be away from O, show that
the new amplitude is aV/3.

EX. 3. A particle P, of mass m, moves in a straight line Ox under a
force mu (distance) directed towards a point A which moves in the

straight line Ox with constant acceleration a. Show that the motion

o . . 27 : :
of P is simple harmonic, of period —, about a moving centre which

: : a :
1s always at a distance — behind A.

u
EX. 4. An elastic string without weight, of which the unstretched
length is / and the modulus of elasticity is the weight of n ozs., is

suspended by one end, and a mass of m ozs. is attached to the other;
show that the time of a vertical oscillation is 27 Zil

EX. 5. One end of an elastic string, whose modulugs of elasticity is
A and whose unstretched length is q, is fixed to a point on a smooth
horizontal table and the other end is tied to a particle of mass m
which is lying on the table. The particle is pulled to a distance where

the extension of the string is b and then let go; show that the time of

e 2a am
a complete oscillation is 2 <7r + ?) T

EX. 6. An endless cord consists of two portions, of lengths 2/
and 2/’ respectively, knotted together, their masses per unit of length
being m and m?'. It is placed in stable equilibrium over a small smooth
peg and then slightly displaced. Show that the time of a complete
ml +m'l'

oscillation 1s 27 .
(m—m')g
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EX. 7. Assuming that the earth attracts points inside it with a force
which varies as the distance from its centre, show that, if a straight
frictionless airless tunnel be made from one point of the earth’s sur-
face to any other point, a train would traverse the tunnel in slightly
less than three-quarters of an hour. (Assume the earth to be a homo-
geneous sphere of radius 6400 km.)

29. Motion when the motion is in a straight line and the acceleration
is proportional to the distance from a fixed point O in the straight

line and is always away from O.

Here the equation of motion is prol ..(1).

Suppose the velocity of the particle to be zero at a distance a from

O at time zero.

The integral of (1) is
d 2
<d—);) = ux>+A, where 0= ua’>+A
dx
a n(x*—a?) --(2),

the positive sign being taken in the right-hand member since the
velocity is positive in this case.
dx
ot :/—:10 x+Vx2—a?+B,
where 0 =log[a|+ B
V2 — 2
i E=log YA

a
2_ 2 —

x4+ Vx2—a?2 =qeVE,
= qe 'VH

2

a
x+Vx2—a?

LX— VX

Hence, by addition,
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:g t\/ﬁ g _l‘\/H
x=ze +2e ..(3).

As t increases, it follows from (3) that x continually increases, and
then from (2) that the velocity continually increases also.

Hence the particle would continually move along the positive di-
rection of the axis of x and with continually increasing velocity.

Equation (3) may be written in the form

x = acosh(\/ut),

and then (2) gives
v = a/usinh(y/ut).

30. In the previous article suppose that the particle were initially pro-

d
jected fowards the origin O with velocity V; then we should have d—);

equal to —V when x = a; and equation (2) would be more compli-

cated. We may however take the most general solution of (1) in the

form
x = CeVH 4 Do VH ..(4),
where C and D are any constants.
d
Since, when t = 0, we have x = a and d—); = —V, this gives

a=C+D, and -V =,/uC—./uD.

1 |% 1 %4
Hence C=—-(a—— ) and D = — a+—>.
2( \/ﬁ) 2( Vi

oo (4) gives x= % (a N %) " % <a+ %) eﬂi(S)

— a cosh(y/fit) % sinh(/Ti?) (6).
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In this case the particle will arrive at the origin O when

1 %4 1 V
O==la—— e\/ﬁt+—<a+—>e\/ﬁt,
(o) ez e g
ezﬂt:V%—a\/ﬁ
V—a/u
1 1OgVJra\/ﬁ
2y TV—a/u

In the particular case when V = a,/LL, this value of 7 is infinity.

i.e. when

i.e. when ¢

If therefore the particle were projected at distance a towards the
origin with the velocity a,/u, it would not arrive at the origin until
after an infinite time.

Also, putting V = a./fl in (5), we have x = ae VH,

d
and v = d—j = —a/e VH,

The particle would therefore always be travelling towards O with
a continually decreasing velocity, but would take an infinite time to
get there.

31. A particle moves in a straight line OA with an acceleration which
is always directed towards O and varies inversely as the square of
its distance from O; if initially the particle were at rest at A, find the
motion.
P’ P
| | ——A
0

A’

Let OP be x, and let the acceleration of the particle when at P be

% in the direction PO. The equation of motion is therefore
X

d2
d_t;C = acceleration along OP = — )% (1),
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d2
Multiplying both sides by 2d—t§ and integrating, we have

dx\*> 2
() -ee
dt X

2
where 0 = il + C, from the initial conditions.

a
dx\? 11

Subtracting, (_x) =2U (— — —) )
dt X a

dx a—x
o— = —/2 (2
o V22U (2),

ax
the negative sign being prefixed because the motion of P is towards

O, i.e. in the direction of x decreasing.

12 /
Hence —u.t:—/ x dx.
a a—x

To integrate the right-hand side, put x = acos’ 6, and we have

>
Vo /Zﬁe 2acosOsin 6 dGza/(1+00829)d9

:a(9+%sin29) +C; =acos™! \/E+ Vax—x2+Cj,
a

where 0 =acos !'(1)4+0+Cy, i.e. C; =0

Lo |4 ) -1 X
ot 2#[ ax — x>+ acos a] ..(3).

Equation (2) gives the velocity at any point P of the path, and (3)
gives the time from the commencement of the motion.

The velocity on arriving at the origin O is found, by putting x =0
in (2), to be infinite.
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Also the corresponding time, from (3),

a _10 77:613/2
= ﬂ[acos ]_5@

The equation of motion (1) will not hold after the particle has passed
through O; but it is clear that then the acceleration, being opposite to
the direction of the velocity, will destroy the velocity, and the latter
will be diminished at the same rate as it was produced on the positive
side of O. The particle will therefore, by symmetry, come to rest at
a point A’ such that AO and OA’ are equal. It will then return, pass
again through O and come to rest at A.

The tg}gl time of the oscillation = four times the time from A to O
a

V2
32. By the consideration of Dimensions only we can show that the
3/2
. a .. .
time -« ——. For the only quantities that can appear in the answer

=27

are a and . Let then the time be a” u4.

Since (di tu B is an acceleration, whose dimensions are [L|[T ]
istance

the dimensions of y are [L]*[T]~2; hence the dimensions of a”u? are
[L]P+34 [T]~24. Since this is a time, we have p+3g =0and —2¢g = 1.

1 3 : : a’/?
. gq=—=and p=—-. Hence the required time o< —.
2 2 VI
33. As an illustration of Art. 31 let us consider the motion of a parti-
cle let fall towards the earth (assumed at rest) from a point outside it.
It is shown in treatises on Attractions that the attraction on a particle
outside the earth (assumed to be a homogeneous sphere), varies in-

versely as the square of its distance from the centre. The acceleration

-2

b
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of a particle outside the earth at distance x may therefore be taken to

be %
X
If a be the radius of the earth this quantity at the earth’s surface is
equal to g, and hence % =g. le U= gaz.
a

For a point P outside the earth the equation of motion is therefore

If the particle started from rest at a distance b from the centre of

<%>2@f(i—é> -(2),

and hence the square of the velocity on reaching the surface of the

the earth, this gives

earth
da
_9 (1——) (3).
ga 5 (3)

Let us now assume that there is a hole going down to the earth’s
centre just sufficient to admit of the passing of the particle.

On a particle inside the earth the attraction can be shown to vary
directly as the distance from the centre, so that the acceleration at

distance x from its centre is U;x,, where Ua = its value at the earth’s

surface = g.
The equation of motion of the particle when inside the earth there-
d*x g
foreis — = —=x
dr? a’

A\ 2
and therefore (d—);) = —§x2 +C7.

a
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Now when x = a, the square of the velocity is given by (3), since

there was no instantaneous change of velocity at the earth’s surface.

2¢a (1 . 9) - 821,
b a

dx\ > g - 2a
(&) =53]

On reaching the centre of the earth the square of the velocity is

2a

therefore ga (3 — ?>

34. EX. 1. A particle falls towards the earth from infinity; show
that its velocity on reaching the earth is the same as it would have
acquired in falling with constant acceleration g through a distance

equal to the earth’s radius.

EX. 2. Show that the velocity with which a body falling from infin-
ity reaches the surface of the earth (assumed to be a homogeneous
sphere of radius 6400 km) is about 11.25 km per second.

In the case of the sun show that it is about 610 km per second,
the radius of the sun being 708,000 km and the distance of the earth
from it 149,000,000 km.

EX. 3. If the earth’s attraction vary inversely as the square of the
distance from its centre, and g be its magnitude at the surface, the

time of falling from a height 4 above the surface to the surface is

ath \E ]

where a is the radius of the earth and the resistance of the air is

a+h
2g

neglected.
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If 4 be small compared with a, show that this result is approxi-

|2h [ 5h]
mately /| — |14+—-—].
g 6 a

35. It is clear that equations (2) and (3) of Art. 31 cannot be true
after the particle has passed O; for on giving x negative values these
equations give impossible values for v and ¢.

When the particle is at P/, to the left of O, the acceleration is
L,, i.e. ﬂ, towards the right. Now j means the acceleration
OP'2 x? dr?
towards the positive direction of x. Hence, when P’ is on the left of
O, the equation of motion is

d’x
bl
giving a different solution from (2) and (3).

The general case can be easily considered. Let the acceleration be

(distance)” towards O. The equation of motion when the particle

is on the right hand of O is clearly

d*x "
W =—U.X".
When P’ is on the left of O, the equation is
dzx . . . . ! A\ 1 n
i acceleration in direction OA = u(P'0)" = u(—x)".

These two equations are the same if
—ux'=u(—x)", ie., if (—=1)"=-—1,

i.e. if n be an odd integer, or if it be of the form ZP;L’ where p and

q are integers; in these cases the same equation holds on both sides

of the origin; otherwise it does not.
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36. EX. A small bead, of mass m, moves on a straight rough wire
under the action of a force equal to ml times the distance of the bead
from a fixed point A outside the wire at a perpendicular distance a
from it. Find the motion if the bead start from rest at a distance c
from the foot, O, of the perpendicular from A upon the wire.

Let P be the position of the bead at any time ¢, where OP = x and
AP =y.

Let R be the normal reaction of the wire and u; the coefficient of
friction.

C' ] > C

mpy

A

Resolving forces perpendicular to the wire, we have
R =muysinOPA = mla.

Hence the friction 4R = muua.

The resolved part of the force muy along the wire
= mycos OPA = mlx.

Hence the total acceleration = uuja — ux.

The equation of motion is thus

d’x
W:.Ulila—.ux:—ﬂ@_ﬂla) (1),

so long as P is to the right of O.
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[If P be to the left of O and moving towards the left, the equation

of motion is
d%x

) = acceleration in the direction OC

= upa+ u(—x), as in the last article,

and this is the same as (1) which therefore holds on both sides of O.]

Integrating, we have

dr\ 2
(d—);> = —u(x—pmwa)>+C, where 0= —pu(c—pa)*+C.

dx\ 2
= (G) —ulem - wopa) )
and therefore, as in Art. 22,
1 X— Ha
t = Ci,
VUt = cos c a +C
where 0 = cos ™! ¢~ tha +Cy,i.e. C; =0.
c— Uua
" \/,l_Lt:cos_lx_'ula ..(3),

c— la
(2) and (3) give the velocity and time for any position.
From (2) the velocity vanishes when x — ja = +(c — p1a),
ie. when x=c¢=0C, and when x= —(c—2au,),
i.e. at the point C’, where OC' = ¢ — 2ay;,
and then from (3) the corresponding time

1 — 1
— ol ZETH2_ cos I(—1) = ——.

Vi c—pa /R Vi

The motion now reverses and the particle comes to rest at a point C”
on the right of O where OC” = OC' —2uja = OC — 4, a.
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Finally, when one of the positions of instantaneous rest is at a dis-
tance which is equal to or less than tja from O, the particle remains
at rest. For at this point the force towards the centre is less than the
limiting friction and therefore only just sufficient friction will be ex-

erted to keep the particle at rest.

2m
It will be noted that the periodic time ﬁ is not affected by the
friction, but the amplitude of the motion is altered by it.
37. EX. A particle, of mass m, rests in equilibrium at a point N,
being attracted by two forces equal to mu" (distance)" and m,ul”
(distance)" towards two fixed centres O and O'. If the particle be
slightly displaced from N, and if n be positive, show that it oscillates,

and find the time of a small oscillation.

x
0o N 0O
Let OO’ =a,ON =d, and NO' = d’, so that
u'd'=u".d" ..(1),

since there i1s equilibrium at N.

d d  a
uop ut
Let the particle be at a distance x from N towards O'.

The equation of motion is then

d2 / / /
d—t;“ = " OP"+ U PO = p(d +x)" + W (d —x)" -(3).
If x 1s positive, the right-hand side is negative; if x is negative, it is

positive; the acceleration is towards N in either case.
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Expanding by the Binomial Theorem, (3) gives
d’x n(n n—1 'n( i'n 'n—1
W:_” (d"+nd" 'x+--)+u"(d"—nd" 'x+--)
= —nx[u"d" ' + u/”d/”_l] + terms involving higher powers of x

ot (R
(b + p)=2

If x be so small that its squares and higher powers may be ne-

= —nxa by (2).

glected, this gives

d2 ! \n—1
o (upa) X ..(4).
dr? (m+p')r=2

Hence, as in Art. 22, the time of a small oscillation

| (up'a)r! (u+p)m—>
2w |n 5 =27 Ppnv—
(L+p') n(1 p'a)

If n be negative, the right-hand member of (4) is positive and the

motion is not one of oscillation.

EXAMPLES ON CHAPTER 2

1. A particle moves towards a centre of attraction starting from rest

at a distance a from the centre; if its velocity when at any distance

a2 — x2
2

2. A particle starts from rest at a distance a from a centre of force

x from the centre vary as , find the law of force.

where the repulsion at distance x is px~2; show that is velocity at
2u(x—a)

ax

distance x is and that the time it has taken is
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a x o fx
o [ x? —ax+alog, (\/;—i— o 1)] :

3. Prove that it is impossible for a particle to move from rest so that its

velocity varies as the distance described from the commencement
of the motion.

If the velocity vary as (distance)”, show that n cannot be greater

1
than —.
an

4. A point moves in a straight line towards a centre of force

#3 , starting from rest at a distance a from the centre
(distance)

of force; show that the time of reaching a point distant b from

ava? —b?

the centre of force is ————, and that its velocity then is

VE
\/_l‘i_l /a2 — b2,
a
5. A particle falls from rest at a distance a from a centre of force,

where the acceleration at distance x 1s un_s/ 3. when it reaches the

centre show that its velocity is infinite and that the time it has taken

) Cll /3
V3l . o o
6. A particle moves in a straight line under a force to a point in it

varying as (distance)_4/ 3. show that the velocity in falling from

1S

rest at infinity to a distance a is equal to that acquired in falling
from rest at a distance a to a distance g.
o
7. A particle, whose mass is m, is acted upon by a force u ( x+ 3

towards the origin; if it start from rest at a distance a, show that it
T

4/

will arrive at the origin in time
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8.

10.

I1.

12.

A particle moves in a straight line with an acceleration towards a

. o o A

fixed point in the straight line, which is equal to % — — when the
X< X

particle is at a distance x from the given point; it starts from rest at

a distance a; show that it oscillates between this distance and the
2rua’

(2ap— 1)

distance and that its periodic time is

_ e
2ua—A’

. A particle moves with an acceleration which is always towards,

and equal to u divided by the distance from, a fixed point O. If it
start from rest at a distance a from O, show that it will arrive at O

In time 77:
a, | —.
2u
NG

[Assume that / e_xzdx = .
0 2

A particle is attracted by a force to a fixed point varying inversely
as the nth power of the distance; if the velocity acquired by it in
falling from an infinite distance to a distance a from the centre is

equal to the velocity that would be acquired by it in falling from

rest at a distance a to a distance ?1’ show that n = X

A particle rests in equilibrium under the attraction of two centres
of force which attract directly as the distance, their attractions per
unit of mass at unit distance being u and u’; the particle is slightly

displaced towards one of them; show that the time of a small os-

s 2r
cillation is :
N
A mass of 100 kg. hangs freely from the end of a rope. The mass is

hauled up vertically from rest by winding up the rope, the pull of
which starts at 150 kg. weight and diminishes uniformly at the rate
of 1 kg weight for each metre wound up. Neglecting the weight of
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13.

14.

15.

16.

the rope, show that the mass has described 50 metres at the end of
572

4.428
A particle moves in a straight line with an acceleration equal to

time

secs. and that its velocity then is 11.07+/2 metres/sec.

u = the nth power of the distance from a fixed point O in the
straight line. If it be projected towards O, from a point at a distance

a, with the velocity it would have acquired in falling from infinity,

show that it will reach O in time 2 n—1 .anZil.
n+1\ 2u

In the previous question if the particle started from rest at distance

a, show that it would reach O in time

e D) T D)

2u I ()

according as n 1s > or < unity.

A shot, whose mass is 25 kg is fired from a gun, 2.5 metres in
length. The pressure of the powder gas is inversely proportional to
the volume behind the shot and changes from an initial value of
1600 kg weight per square centimetre to 160 kg weight per square
centimetre as the shot leaves the gun. Show that the muzzle ve-
locity of the shot is approximately 240 metres per second, having
given log, 10 = 2.3026.

If the Moon and Earth were at rest, show that the least velocity
with which a particle could be projected from the Moon, in order
to reach the Earth, 1s about 2% km per second, assuming their radii
to be 1760 and 6400 km respectively, the distance between their
centres 385,000 km, and the mass of the Moon to be 1/81 that of
the Earth.
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17.

18.

19.

20.

21.

A small bead can slide on a smooth wire AB, being acted upon by
a force per unit of mass equal to u =+ the square of its distance

from a point O which is outside AB. Show that the time of a small

27
oscillation about its position of equilibrium is ﬁb3/ 2, where b is
the perpendicular distance of O from AB.

A solid attracting sphere, of radius a and mass M, has a fine hole
bored straight through its centre; a particle starts from rest at a
distance b from the centre of the sphere in the direction of the hole
produced, and moves under the attraction of the sphere entering
the hole and going through the sphere; show that the time of a

complete oscillation is

\/% [\/Ecﬁ/z sin” !4/ ﬁ +b32cos™! \/24— ab(b — a)]

where 7 is the constant of gravitation.
A circular wire of radius a and density p attracts a particle accord-

ing to the Newtonian law y%; if the particle be placed on

the axis of the wire at a distance b from the centre, find its velocity
when it is at any distance x.

If it be placed on the axis at a small distance from the centre, show

|21
that the time of a complete oscillation is a %

In the preceding question if the wire repels instead of attracting,

and the particle be placed in the plane of the wire at a small dis-
tance from its centre, show that the time of an oscillation 2a, / %
A particle moves in a straight line with an acceleration directed

towards, and equal to u times the distance from, a point in the

straight line, and with a constant acceleration f in a direction op-

~
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22.

23.

24.

25.

posite to that of its initial motion; show that its time of oscillation
is the same as it is when f does not exist.

A particle P moves in a straight line OCP being attracted by a force
mp. PC always directed towards C, whilst C moves along OC with
constant acceleration f. If initially C was at rest at the origin O,
and P was at a distance ¢ from O and moving with velocity V,
prove that the distance of P from O at any time ¢ is

(g—kc) COS\/Ht‘I‘%SiH\/HZL—ﬁ_'_gtz-

Two bodies, of masses M and M’, are attached to the lower end
of an elastic string whose upper end is fixed and hang at rest; M’
falls off; show that the distance of M from the upper end of the

string at time ¢ 1S a+ b + ccos ( %t , where a is the unstretched

length of the string, and b and c the distances by which it would
be stretched when supporting M and M’ respectively.

A point is performing a simple harmonic motion. An additional
acceleration is given to the point which is very small and varies
as the cube of the distance from the origin. Show that the increase
in the amplitude of the vibration is proportional to the cube of the
original amplitude if the velocity at the origin is the same in the
two motions.

One end of a light extensible string is fastened to a fixed point and
the other end carries a heavy particle; the string is of unstretched
length a and its modulus of elasticity is n times the weight of the
particle. The particle is pulled down till it is at a depth b below the
fixed point and then released.

Show that it will return to this position at the end of time
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26.

27.

28.

T
2, [ L b%—cosec_lpjL V p?— 1} ,
ng

where p = b _ (n+1), provided that p is not > /1 +4n.
Itp> m, show how to find the corresponding time.
An endless elastic string, whose modulus of elasticity is A and
natural length is 27c, is placed in the form of a circle on a smooth
horizontal plane and is acted upon by a force from the centre equal

to u times the distance per unit mass of the string. Show that its
2nAc

27TA —muc’

where m is the mass of the string, assuming that 27A > muc. Ex-

radius will vary harmonically about a mean length

amine the case when 274 = myc.
An elastic string of mass m and modulus of elasticity A rests un-
stretched in the form of a circle whose radius is a. It is now acted

on by a repulsive force situated in its centre whose magnitude per
U

(distance)?
next comes to rest its radius is a root of the quadratic equation
P’ —ar= e

A’

A smooth block, of mass M, with its upper and lower faces hori-

unit mass of the string is . Show that when the circle

zontal planes, is free to move in a groove in a parallel plane, and a
particle of mass m is attached to a fixed point in the upper face by
an elastic string whose natural length is @ and modulus E. If the
system starts from rest with the particle on the upper face and the
string stretched parallel to the groove to (n+ 1) times its natural

length, show that the block will perform oscillations of amplitude

(n+1)am . . 2 aMm
——— in the periodic time 2 | & + — —.
M+m n E(M+m)
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29. A particle is attached to a point in a rough plane inclined at an an-
gle a to the horizon; originally the string was unstretched and lay

along a line of greatest slope; show that the particle will oscillate

only if the coefficient of friction is < 3 tan .
30. A mass of m kg moves initially with a velocity of u metres per
sec. A constant power equal to H horse-power is applied so as

to increase its velocity; show that the time that elapses before the

.. 1 : . :
acceleration is reduced to —th of its original value is
n

m(n® —1)u?
150gH
31. Show that the greatest velocity which can be given to a bullet of

mass M fired from a smooth-bore gun is

211V

where changes of temperature are neglected, and the pressure I1

in front of the bullet is supposed constant, the volume V' of the
powder in the cartridge being assumed to turn at once, when fired,
into gas of pressure mII will and of volume V.

32. Two masses, m; and my, are connected by a spring of such a
strength that when m is held fixed m; performs n complete vi-

brations per second. Show that if m, be held fixed, m; will make

n. /™2 and, if both be free, they will make 1, | "2 yibra-
mj nj

tions per second, the vibrations in each case being in the line of
the spring.
33. A body i1s attached to one end of an inextensible string, and the

other end moves in a vertical line with simple harmonic motion of
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34.

35.

36.

amplitude a and makes n complete oscillations per second. Show
that the string will not remain tight during the motion unless
I

412a
A light spring is kept compressed by the action of a given force;
the force is suddenly reversed; prove that the greatest subsequent
extension of the spring is three times its initial contraction.
Two masses, M and m, connected by a light spring, fall in a ver-
tical line with the spring unstretched until M strikes an inelastic
table. Show that if the height through which M falls is greater than
M—i——2ml , the mass M will after an interval be lifted from the table,
[ be%g the length by which the spring would be extended by the
weight of M.
Two uniform spheres, of masses m and m; and of radii a; and ay,
are placed with their centres at a distance a apart and are left to
their mutual attractions; show that they will have come together at

the end of time

2mwaDR 1 Jart+a
acos + alt+ax)la—ay—a ,
\/3g(m1+m2) [ ” V(a1 +ax)(a—ar—ay)

where R is the radius, and D the mean density of the Earth.

If mi =my=4Xkg, a; =a, =6.25 cm, and a = 0.5 metre, show
that the time is about 4% hours, assuming R = 6400 km. and D =
5600 kg per cubic metre.

[When the spheres have their centres at a distance x, the accelera-
. . ..My

tion of m; due to the attraction of m» 1s Y= and that of m», due to

X

.y i ) . _mp+nmp
mi is Y—-. Hence the acceleration of m, relative to m 1s V——>—
X X

. . T m|+m
and the equation of relative motion is x = —y%.]
X
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37. Assuming the mass of the Moon to be 1/81 that of the Earth, that
their radii are respectively 1760 and 6400 km, and the distance
between their centres 385,000 km, show that, if they were instan-
taneously reduced to rest and allowed to fall towards one another
under their mutual attraction only, they would meet in about 4%
days.

38. A particle 1s placed at the end of the axis of a thin attracting cylin-

der of radius a and of infinite length; show that its kinetic energy

x+Vx%+a?

a
39. AB is a uniform string of mass M and length 2a; every element

when it has described a distance x varies as log

of it is repelled with a force, = (. distance, acting from a point O
in the direction of AB produced; show that the acceleration of the
string is the same as that of a particle placed at its middle point,
and that the tension at any point P of the string varies as AP.PB.

40. Show that the curve which is such that a particle will slide down
each of its tangents to the horizontal axis in a given time is a cy-
cloid whose axis is vertical.

41. Two particles, of masses m and m’ are connected by an elastic
string whose coefficient of elasticity is A; they are placed on a
smooth table, the distance between them being a, the natural length
of the string. The particle m is projected with velocity V along the
direction of the string produced; find the motion of each particle,
and show that in the subsequent motion the greatest length of the
string is a+ V p, and that the string is next at its natural length after

mm'  a

. m+m A _
42. Two particles, each of mass m, are attached to the ends of an inex-

time 7p, where p? =

tensible string which hangs over a smooth pulley; to one of them.
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A, another particle of mass 2m 1s attached by means of an elastic
string of natural length a, and modulus of elasticity 2mg. If the
system be supported with the elastic string just unstretched and be

then released, show that A will descend with acceleration

) 8
— 1.
gsin [1/261 ]

43. A weightless elastic string, of natural length / and modulus A, has
two equal particles of mass m at its ends and lies on a smooth
horizontal table perpendicular to an edge with one particle just
hanging over. Show that the other particle will pass over at the end

of time ¢ given by the equation

2l—|—m—glsin2 i =

l 5
A 2ml 2

gt”.

ANSWERS WITH HINTS

Art. 28

Ex. 1 x =acosnt +2acos (nH—g) = av/5cos (nt + )
cosff  sinf3 1

1 2 5
Ex.2x:a\/§cos(nt—§).

. 1
Ex.3x= —Uu (x—iaﬂ).
x—1

Ex.4mx =mg —ng——.

I
Ex.5mi=—-A"—% See Art. 22.
a

Ex. 6 (2ml+2m'l")x = glm(l —x) +m'(I' +x) —m(l +x) —m'(I' —
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x)].
Ex.7x = —gx, 42% mins. (approx.)
a
Art. 34 )
Ex. 1i= -2
X
Ex.2 608.17 12<m/sec.
. gas . .2 ) |1 1
Ex.3x=—2+,ie,x =2 ——
X.3 X o ien X ga [x a+h]

Examples on Chapter 2 (End of Art. 37).
1. The acceleration varies inversely as the cubic of the distance.
.v=Ax", f=nAx>""1,if2n—1>0bothv=0, f =0 whenx =0
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End of Art 37
EXAMPLES ON CHAPTER 2
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omigin A8 a.fp (At 22). The equation of motion bacones

- oo o Vo SR —Jm5+; e gt
= A H (el
Hanee =0 when J‘"-fﬁ‘:iﬁ.ﬁ“, Tha fivst apprezimation 18 g=0. Pot

#=n & where £ and 4 are both amall. Suhatiteting, we have ﬂagn%

o,

on neglecting squares, s thab r= Lz+$ 2. Heuve, ehe.

25, Let 0 Do the fized point, O4CH the vevtical through {1 Od=a,
08=b and O¢=u+ 2. b
L3
The vertical acceleration whon tho perticle is ot by poing & (whare
A =)

% s P [ el W s
i [H O Y |

a0 that the wmotion is simple harmonio with ¢ as centre and €5 as

eyl Wi B =h -‘—:"'-f a2, By Ast, 92,

o
=—qonT b
S Ty B o T 0 B ol

t +
3 FELY) Tr
Mo =
R _.
= \/'Jl.'? [_ﬂ + cogec _,;.:I: _____________ ‘s

At 4 the string beesmos slacl, wod timo to highest pount of the path

T S
veloat 4 \/a-I'LHP cﬂllhvfu
) 2 w
This helds provided the velecity at 4 is wob = '35 2 (for then the
string would agadn becoma stretched before the highest poing of the path

Iat gF Lo
waa renehed ), {9, 'fﬁT'? {Pﬂ. - E;] woh =4, iF pF nok = 4 4a

" Thue the total bme is dwice fhe o of (1) and (3,

abovi ()

i A if i
- 0G5 20= L (e -

and we have simple harmonic motion abowt o pednt, above O, as centre,
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8%, Consider the matisn of an element of the string sultending & small
angle 94 at the centre. Let T be the tevsion; and ¢ the eadiog, then, The
equation of wation ia

L L Ll L P N i
Zer Ax =
; . Harh — e [ Dar e
Al = — e [! -gﬂ'}l_- vt :

Henco 2s stated
O If Zedepe, the equation becomes Fepe, G the string comtinnally
inereases o radins until it finally Teeaks,

27, Asin the last ezample

w2 L m B f—a oo dwko
P E”--.F-ﬂﬂ.h s oot = b (==
%1"&= —E-— oI {1 —l:I-:lg-!—E.
Lad L]
The string i ab rest apaim when
I Ty  wk, : . M
i :1_5-)_@”_“}:’ o, when o are—.

28, Wher the string s of lsngth &, let the block have moved through
s distencs £ The eguations of mwokion of the bleck and particlo ws

e =g z—a
- i E4idl= — F—=.
A = and o (E4 31 o =
- a T E{.l#—'f"?"l}
. B= - e —al, where pi= ﬁa_

oo e e A, 08 (F B
where sa— 4 cos By and U= — 4 sl B, o that s—a=ne o6 g
Woy Ghe shring s nheteotehod again when ¢ = %J i then the volocity
of the particle along the block =={d]ems = — nap, 5o that the tie & to the
fized puinhni i i
Henee the total fime required =4 (5 +)=2 ('-r “'i;' g eto
Alio the centre of gravity of the wystem is elanrly fived, Since on the
whals epstorn thers 18 no extarnil fores, . PR
o MEm e (kL e Mt [ - 1) 2]
e g ; . P Fat(n41) 2
o twice the roquived s,.mphtuda_._ti_fﬁ_._g;.;n_._ .
29, When the string iz of longth #, the equation of motion is
T =g ainu—,dmyomn-h?.'

t A =By (Bl —p 008 @) r-—%{t—ﬁ-:ls—ﬁg{ﬂinu—pﬂjﬁu] i
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i : : ; A
Henes the velotity vaniahes again when Sgiain t-,u-:-mn]-;r—u [t — 2]y
T
aod then the noeeleration np the plann

=$ fw—ul—glEna+pcose)=Fiell a— B codal
Thiy ks esitive, e, partiele oaoillates, IF ten g3,

. -:q.ir’-H—'?_iqg a0 that #%= ]'-]-Dgﬂ FETLY

ke accelarakion = ;léth of ita original value when the velooity 15 » times

the original value, Lo whon i
1'\.--"+ﬁﬂr‘qI £=i\?\.2ﬂ'?; oto.
e
51, d =the =section of the hore ; r=1he distance of the ghot from the
end at time 2| a=the ariginal valos of 2, g0 that F=da
The pressure of ghg belrind the shot at time ¢, by Boyle's Lew,
Vool o

= il

Then .H‘Fﬂ.’l[- will — IIJ— lfll(—f—'
: ﬁJJ.L”:I‘H(m]ugJ‘——-]- VI [ o = 1]

= FII "nhg———+1]

Wow the scceleration is mepp, and hence fhe veloelty gma-tmf-. when
=g, and shen

= EI [m g =1L

32 il —ﬁ.? e sk %-ﬂv A m%‘?, and .. h=dmg rhon

1 e w_ S
In the second cmn—l_is ,\/ T and henea b 5
When both masses are free, lot p and y+2 be the distances of oy ond ey
from & Bxed origine Then
mypes T, and mey (§ 48 = - T
Eww - qu*.m-:= Tt }..g-—#'

Wy T T
N ]—'-*r V/_mlm., a1 g
Ty My bag A B gy
1
33. The accelorstion of tho'end of the string i2 pr, whers ‘T“ ==-

Heamce, at she, bighest point of the motian, the acceleration downwerds
=pa=4n e, Henes the sleing will beoome slack if 4rtefa =g

12
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34 Tt P he the fores, £ the length o which it compresses thie spring,

unid & the nnstratobod lomgth, o that Pe=3 d%e. When & i reverssd, et
Lt
2 be the greatest lovgih of the spring duddeg the sbsequent rstion, 20
that the total work done during the meting is zera.
o Pla= §}+J L 'Ejr_‘f‘gj le . T
P
cdo—E (e—f4 e EP—- 1}{.1,-;&‘-* =), 6o that 2= o=8 (= &), obo
35, 1f {3 be the ywnstratched length, then
.‘E’p:l;-. SRR et F s A
i

Let @ be the velocity when A stefles the felile; the spring becores
compreszed notil the velocity of m is destroyed & It then recovers and when
It I& #gain unstretehed the velooity of @ i o apwards, Let s rise unkil
the Tength of the spring is = Then

ﬁ

Yot =work done=F (e — 1. et SRS APIONG Jy SONOON [

Tlie msas 3 will be then fust on the paiuk -.'ri riging, if
Mg A “'f‘ .............................. ()

Hence (#) gives  fom. 2gh=gt Hggﬂ-l- - Mgt

E—H;;:'m.ffh .-H’+E_.fa_-ar .
If 4 is groater than this, then, before the velooity © 15 destroyed, the

tenaion of the apring is =3, and A rises,

36, i!=—~f%ﬁ. Henoe, by Art 51,

RO o e vt o f 2. %
i : @’

Honow, when @ =0+ g,

tﬂ\/m [J(azﬁu,}{.-:-ﬁ,?,;;}_,_am \/@]

S )
Alzo =y "y i ','--_:{EEL-B.
Sere SR .q,‘ ag ——
3 Gty o) ["‘ o0 A +Nmtalla—a-a) |

I my == 4 4y =iy=t ; and a=1, thun
mf.am.ai{;g;__._nm.a m_,]_*_\/‘;_r_i

=500 J??«[ ]_mm Jil = "f!‘{ , taking = as '?rj

T

-£ 14142 1481 hourg =32 huum Approx.
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«DE ___«DR 3 81
m,-}-.r.'.g_b’.ﬂ.xl EL A o

P s T
tmgg dlqr[r‘ et A ﬂdm+n¢"'{-11+rrg:| l'.;r-n;—ah'n:l
b 0000 = SR [ Al —:I
= B T AW
= 41 Ltrm:ouma LI L /5100 % 234
ﬂiii:ﬂﬂﬁ 1 |_"-l cos~! (*1465) 4 4/TT 98] vearly
ﬁﬂth']ﬂl:l

37. Here

< 1ERE o [Ee 1S 4 3],

sinee cos~ ! {1468 =81" 37"=1"424 rail.,
w 11000000 A7l we A 140NH 3pes; apgpros; =4 days 19 hes appros.

8. 5 [} Smap ¥—x e [ _ —Emrap I_ _Efrﬂf_
U e = Ty - T LW etk ke

o #¥=aqrip {log e+ o0 et - Tog o, e
38 OF=§, BP=g whare P is any point of the string ; then
& gﬁ.é-—i?+dﬂ - T+ %;E—x.p:.ifi-xj. ............ i1
Imdzersting this from O fo % we have
ME -[i“l';& M (),
i sinee ¥ s mere af each end of the atring,

Ee g (B4 noeclorabion of o particle placed ab the middle pomnt.

LAY gwas df:— [pe e = 23].

f'=d:|;:'[n;£i—|_rf—.#|“]— — B P

4. I 4 be the inclination to the horistotal ot o pomt wheas cosrdinates
ira £ and 4, we bove

. hE dm)“
qur =Llgeingd AL . ﬁ-ﬂ +(d__9' -

Puttiug p=4% a® sin® 8, wa ::btmu s'—“?)' (28 qeain 2, e the corve s &

eyoloid with axie vartical.

41, A¢ time ¢ bet ' ave movedd thvngh &, and let £ La the langth of
the stying then Henee )
diem T A i E A EI= = T oo e {1

_ m-l-m E—w_ kg
SE Y N .

L oE—a= -'i-:c-e-( +£5) pF’$m§

ginces E=aand = [' when f=0,

14
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Henoe the greatest value of § is o4 pV, aud f=a sgain when {=mp.
Al (1) gives (4w # =,
-, ti ') & mEmoonst, =wl
e ) e = Ve
giving the motion of m',

4%, Teb x Vo the depth of A, and g the length of the elastic string, at
time ¢, Then

1nrmmg+lL- R Sl R i1y
i (F A= Emg—hL ........................ 2
anl “,‘*J— e g = T i e e (&)

Sirs A ="2ing, these give

=L (y—a), and y-—%(af-@)

sl B3]

ginee y=na and j=>0, when 8=,

y=?§—gm[\/% c:l anil ‘E‘?“"![\/é_:i‘]-

45, Teb x and y be the longths of the steing hanging vertically, and oo
the table st tims i Thew

-
wob g Tmmg A ZX 0 i)
-1
snd my-—'!"-—k“-h-k:"l ................. etindsinlE)
Henes 4§ = —m{_ﬂ+y—e‘-} .

: k: 7Y
. :B-'I-y‘-f:-' —é’?? [I—ﬁﬁ '\/:}'aé E],
ginge initially the steing is ab vest and ussbretched,

o FL
{2} grives y=—‘r—'r+g:mﬁ- b

el
= =._E ‘\/ migh
; ¥ i ﬂm.w ;$+(-!T+
sinee y={ and =0, ml‘LmEI}'

i i A
Heneo y=>0, whan --“;f.=zr+“T‘?‘E i [N/;ER'{I 2
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