Chapter 9

Electromagnetic Waves

9.1 Waves in One Dimension

9.1.1 The Wave Equation

What is a “wave?” 1 don’t think I can give you an entirely satisfactory answer—the concept
is intrinsically somewhat vague—but here’s a start: A wave is a disturbance of a continuous
medium that propagates with a fixed shape at constant velocity. Immediately I must add
qualifiers: In the presence of absorption, the wave will diminish in size as it moves; if
the medium is dispersive different frequencies travel at different speeds; in two or three
dimensions, as the wave spreads out its amplitude will decrease; and of course standing
waves don’t propagate at all. But these are refinements; let’s start with the simple case:
fixed shape, constant speed (Fig. 9.1).

How would you represent such an object mathematically? In the figure I have drawn
the wave at two different times, once at# = 0, and again at some later time t—each point on
the wave form simply shifts to the right by an amount vt, where v is the velocity. Maybe the
wave is generated by shaking one end of a taut string; f(z, t) represents the displacement
of the string at the point z, at time ¢. Given the initial shape of the string, g(z) = f(z, 0),

fz,0) fz, 1)

vt
Figure 9.1
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what is the subsequent form, f(z,¢)? Evidently, the displacement at point z, at the later
time ¢, is the same as the displacement a distance v to the left (i.e. at z — vt), back at time
t=0:

f(Z,t)=f(Z—Ut,O)=g(Z—Ut). (91)

That statement captures (mathematically) the essence of wave motion. It tells us that the
function f(z, t), which might have depended on z and ¢ in any old way, in fact depends on
them only in the very special combination z — vz; when that is true, the function f(z, 1)
represents a wave of fixed shape traveling in the z direction at speed v. For example, if A
and b are constants (with the appropriate units),

b4 M A
filz. 1) = Ae™PE p ey = Asinlb(z — )], fiz.1) = bz — o241

all represent waves (with different shapes, of course), but
Fi(z, ) = AePGZHN and 2 1) = Asin(bz) cos(but)’,

do not.

Why does a stretched string support wave motion? Actually, it follows from Newton’s
second law. Imagine a very long string under tension T'. If it is displaced from equilibrium,
the net transverse force on the segment between z and z + Az (Fig. 9.2) is

AF =Tsin6’ — T sin®,

where 6’ is the angle the string makes with the z-direction at point z + Az, and @ is the
corresponding angle at point z. Provided that the distortion of the string is not too great,
these angles are small (the figure is exaggerated, obviously), and we can replace the sine
by the tangent:

9
AF=T{and —tan6) =T <a_f
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If the mass per unit length is 1, Newton’s second law says

3 f
and therefore
Cf_ o
9z2 T 912’

Evidently, small disturbances on the string satisfy

32 1 2
oy _ 177 2
8z2 v? o2
where v (which, as we’ll soon see, represents the speed of propagation) is
T
w

Equation 9.2 is known as the (classical) wave equation, because it admits as solutions
all functions of the form
flz, 1) =gz —wo), 94
(that is, all functions that depend on the variables z and ¢ in the special combination u =
z — vt), and we have just learned that such functions represent waves propagating in the z
direction with speed v. For Eq. 9.4 means
af dgou dg of dgou  dg

9z dudz du or duor  ldu

and
Pf 9 (dg\ d’gou d’g
972 9z \du)  du? oz du®
Pf 8 (dg\ _ digou  ,d’g
S =Vl )=V =v"—7,
ar? at \ du du? ot du?
SO

2 2 2
L R
du?  3z2 % 8r?
Note that g(u) can be any (differentiable) function whatever. If the disturbance propagates
without changing its shape, then it satisfies the wave equation.

But functions of the form g(z — vt) are not the only solutions. The wave equation
involves the square of v, so we can generate another class of solutions by simply changing
the sign of the velocity:

f(z,t) = h(z+ vt). 9.5)

This, of course, represents a wave propagating in the negative z direction, and it is certainly
reasonable (on physical grounds) that such solutions would be allowed. What is perhaps



9.1. WAVES IN ONE DIMENSION 367

surprising is that the most general solution to the wave equation is the sum of a wave to the
right and a wave to the left:

flz, 1) =gz —vt) + h(z + vt). (9.6)

(Notice that the wave equation is linear: The sum of any two solutions is itself a solution.)
Every solution to the wave equation can be expressed in this form.

Like the simple harmonic oscillator equation, the wave equation is ubiquitous in physics.
If something is vibrating, the oscillator equation is almost certainly responsible (at least,
for small amplitudes), and if something is waving (whether the context is mechanics or
acoustics, optics or oceanography), the wave equation (perhaps with some decoration) is
bound to be involved.

Problem 9.1 By explicit differentiation, check that the functions fi, f>, and f3 in the text
satisfy the wave equation. Show that f4 and f5 do not.

Problem 9.2 Show that the standing wave f(z,1) = Asin(kz) cos(kvr) satisfies the wave
equation, and express it as the sum of a wave traveling to the left and a wave traveling to the
right (Eq. 9.6).

9.1.2 Sinusoidal Waves

(i) Terminology. Of all possible wave forms, the sinusoidal one
f(z,t) = Acoslk(z — vt) + 8] 9.7

is (for good reason) the most familiar. Figure 9.3 shows this function at time f = 0. A is
the amplitude of the wave (it is positive, and represents the maximum displacement from
equilibrium). The argument of the cosine is called the phase, and § is the phase constant
(obviously, you can add any integer multiple of 277 to § without changing £ (z, ¢); ordinarily,
one uses a value in the range 0 < § < 27). Notjce that at z = vt — §/k, the phase is zero;
let’s call this the “central maximum.” If § = 0, the central maximum passes the origin
at time ¢+ = 0; more generally, 8/k is the distance by which the central maximum (and

Central
maximum f(z,0)
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Figure 9.3



368 CHAPTER 9. ELECTROMAGNETIC WAVES

therefore the entire wave) is “delayed.” Finally, & is the wave number; it is related to the
wavelength A by the equation
2
=0
for when z advances by 27/ k, the cosine executes one complete cycle.
As time passes, the entire wave train proceeds to the right, at speed v. At any fixed
point z, the string vibrates up and down, undergoing one full cycle in a period

A (9.8

2
T =—. 9.9
v 9.9)
The frequency v (number of oscillations per unit time) is
1 kv v
= =-—=_. 9.10
Y T 27 A (©-10)

For our purposes, a more convenient unit is the angular frequency w, so-called because
in the analogous case of uniform circular motion it represents the number of radians swept

out per unit time:
w="2mrv = kv. 9.11)

Ordinarily, it’s nicer to write sinusoidal waves (Eq. 9.7) in terms of w, rather than v:
f(z,t) = Acos(kz — wt + §). (9.12)

A sinusoidal oscillation of wave number k and (angular) frequency w traveling to the
left would be written
f(z,t) = Acos (kz + wr — §). (9.13)

The sign of the phase constant is chosen for consistency with our previous convention that
8/k shall represent the distance by which the wave is “delayed” (since the wave is now
moving to the left, a delay means a shift to the right). Att = 0, the wave looks like Fig.9.4.
Because the cosine is an even function, we can just as well write Eq. 9.13 thus:

f(z,t) = Acos(—kz — wt + §). 9.14)

Comparison with Eq. 9.12 reveals that, in effect, we could simply switch the sign of k
to produce a wave with the same amplitude, phase constant, frequency, and wavelength,
traveling in the opposite direction.

f(z, 0) Central

maximum
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Figure 9.4
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(ii) Complex notation. In view of Euler’s formula,
¢'% =cosf +isinb, 9.15)
the sinusoidal wave (Eq. 9.12) can be written
f(z,1) = Re[Ae! kzme1+)] (9.16)

where Re(§) denotes the real part of the complex number &. This invites us to introduce
the complex wave function 5 o
fz. 1) = Ae'hemen), (9.17)

with the complex amplitude A = Al absorbing the phase constant. The actual wave
function is the real part of f: ~

fz, 1) =Re[f(z, D] (9.18)
If you know f, itisa simple matter to find f; the advantage of the complex notation is that
exponentials are much easier to manipulate than sines and cosines.

Example 9.1

Suppose you want to combine two sinusoidal waves:

3= fi+ fr=Re(f1) +Re(f2) = Re(fi + f2) = Re(f3),

with f3 = f1 + f>. You simply add the corresponding complex wave functions, and then take
the real part. In particular, if they have the same frequency and wave number,

f~3 - Alei(kz—wt) + Azei(kz—wt) — A3ei(kz—wt),
where ) _ . _
A3 =A1+ A, or A3ela3 = Alelsl + A26182; ©.19)

evidently, you just add the (complex) amplitudes. The combined wave still has the same
frequency and wavelength,

f3(z, 1) = Az cos (kz — wt + 83),

and you can easily figure out A3 and 83 from Eq. 9.19 (Prob. 9.3). Try doing this withour using
the complex notation—you will find yourself looking up trig identities and slogging through
nasty algebra.

(iii) Linear combinations of sinusoidal waves. Although the sinusoidal function 9.17 is a
very special wave form, the fact is that any wave can be expressed as a linear combination
of sinusoidal ones: ~
f(z,0) = f A(kye!*z=et gg. (9.20)
—00
Here w is a function of k (Eq. 9.11), and I have allowed k to run through negative values in
order to include waves going in both directions. !

I This does not mean that A and o are negative—wavelength and frequency are always positive. If we allow
negative wave numbers, then Eqs. 9.8 and 9.11 should really be written A = 27/|k| and w = |k|v.
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The formula for A(k), in terms of the initial conditions f(z,0) and f (z,0), can be
obtained from the theory of Fourier transforms (see Prob. 9.32), but the details are not
relevant to my purpose here. The point is that any wave can be written as a linear combination
of sinusoidal waves, and therefore if you know how sinusoidal waves behave, you know
in principle how any wave behaves. So from now on we shall confine our attention to
sinusoidal waves.

Problem 9.3 Use Eq. 9.19 to determine A3 and 33 interms of Ay, Aj, 81, and §5.

Problem 9.4 Obtain Eq. 9.20 directly from the wave equation, by separation of variables.

9.1.3 Boundary Conditions: Reflection and Transmission

So far I have assumed the string is infinitely long—or at any rate long enough that we
don’t need to worry about what happens to a wave when it reaches the end. As a matter of
fact, what happens depends a lot on how the string is attached at the end—that is, on the
specific boundary conditions to which the wave is subject. Suppose, for instance, that the
string is simply tied onto a second string. The tension T is the same for both, but the mass
per unit length u presumably is not, and hence the wave velocities v 1 and vy are different
(remember, v = /T /). Let’s say, for convenience, that the knot occurs at z = 0. The
incident wave

fiz )y = Agef®zen . gy 9.21)

coming in from the left, gives rise to a reflected wave
frz, 1) = AgeTh=en (o <), (9.22)

traveling back along string 1 (hence the minus sign in front of k), in addition to a trans-
mitted wave
friz, o) = Are!®en  (z > 0), 9.23)

which continues on to the right in string 2.

The incident wave f;(z, t) is a sinusoidal oscillation that extends (in principle) all the
way back to z = —oo, and has been doing so for all of history. The same goes for fr
and f7 (except that the latter, of course, extends to z = +00). All parts of the system are
oscillating at the same frequency w (a frequency determined by the person at 7 = —oo,
who is shaking the string in the first place). Since the wave velocities are different in the
two strings, however, the wavelengths and wave numbers are also different:

A _k_ v (9.24)
A2 ki ow
Of course, this situation is pretty artificial—what’s more, with incident and reflected waves
of infinite extent traveling on the same piece of string, it’s going to be hard for a spectator to



9.1. WAVES IN ONE DIMENSION 371

tell them apart. You might therefore prefer to consider an incident wave of finite extent—
say, the pulse shown in Fig. 9.5. You can work out the details for yourself, if you like
(Prob. 9.5). The rrouble with this approach is that no finite pulse is truly sinusoidal. The
waves in Fig. 9.5 may look like sine functions, but they’re not: they re little pieces of sines,
joined onto an entirely different function (namely, zero). Like any other waves, they can be
built up as linear combinations of true sinusoidal functions (Eq. 9.20), but only by putting
together a whole range of frequencies and wavelengths. If you want a single incident
frequency (as we shall in the electromagnetic case), you must let your waves extend to
infinity. In practice, if you use a very long pulse with many oscillations, it will be close to
the ideal of a single frequency.

f !
Y1 S 2.
[ z w I % z
(a) Incident pulse (b) Reflected and transmitted pulses
Figure 9.5

For a sinusoidal incident wave, then, the net disturbance of the string is:

A~Iei(k[Z—(l)l) + ARei(—klz—wt)’ fOI' 7 < 0’
fen=1 9.25)
Apeltkz—on) forz > 0.

At the join (z = 0), the displacement just slightly to the left (z = 07) must equal the
displacement slightly to the right (z = 0™), or else there would be a break between the two
strings. Mathematically, f(z, t) is continuous at z = 0:

fO7, 0= 0O 0. (9.26)
If the knot itself is of negligible mass, then the derivative of f must also be continuous:
d d
& = o 9.27
Bz 0- aZ o+,

Otherwise there would be a net force on the knot, and therefore an infinite acceleration
(Fig. 9.6). These boundary conditions apply directly to the real wave function f(z, t). But
since the imaginary part of f differs from the real part only in the replacement of cosine by
sine (Eq. 9.15), it follows that the complex wave function f(z, t) obeys the same rules:

afl_af

9.28
az o- 9z ( )

FO™, 1) =fO%, 1),

0+
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T
i ~
T Knot T Knot
4 z
(a) Discontinuous slope; force on knot (a) Continuous slope; no force on knot

Figure 9.6

When applied to Eq. 9.25, these boundary conditions determine the outgoing amplitudes
(A r and AT) in terms of the incoming one (A 1)

A1+ Agr = Ar, ki(A; - Ag) = koAr,

from which it follows that

g k] kz) ~ < 2](1 ) ~
Ag = A;, Ar=(—)A4,. 9.29
. <k1 k)OO ki+hky ) 029
Or, in terms of the velocities (Eq. 9.24):
i —(”Z‘vl)g h —< 202 )A 9.30)
k= vy + U boar= v2 + vy " ‘
The real amplitudes and phases, then, are related by
. — ; . 2 .
Agel®R = (u) A1l Apeldt = < v2 )A,e"”. (9.31)
V2 + V1 vz + 1

If the second string is lighter than the first (1 < w1, so that vp > v1), all three waves
have the same phase angle (§g = 87 = 8;), and the outgoing amplitudes are

vy — Vg 2uy
R (vz—l—vl) 1 T <v2+v1> I (9.32)

If the second string is heavier than the first (v; < v;) the reflected wave is out of phase by
180° (6g + = 87 = §;). In other words, since

cos(—kjz —wt + 87 — ) = —cos (—kjz — wt + &;),

the reflected wave is “upside down.” The amplitudes in this case are

- 2
Ag = (”‘ UZ)A, and Ay = ( 2 )A,. 9.33)

v2 + V1
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In particular, if the second string is infinitely massive—or, what amounts to the same thing,
if the first string is simply nailed down at the end—then

Ar=A; and Ar =0.

Naturally, in this case there is no transmitted wave—all of it reflects back.

Problem 9.5 Suppose you send an incident wave of specified shape, g7 (z — v1t), down string
number 1. It gives rise to a reflected wave, hg (z + v1t), and a transmitted wave, g7 (z — v2¢).
By imposing the boundary conditions 9.26 and 9.27, find Az and g7.

Problem 9.6

(a) Formulate an appropriate boundary condition, to replace Eq. 9.27, for the case of two strings
under tension T joined by a knot of mass m.

(b) Find the amplitude and phase of the reflected and transmitted waves for the case where the
knot has a mass m and the second string is massless.

Problem 9.7 Suppose string 2 is embedded in a viscous medium (such as molasses), which
imposes a drag force that is proportional to its (transverse) speed:

af
AFirg =~y 5 -Az.

(a) Derive the modified wave equation describing the motion of the string.

(b) Solve this equation, assuming the string 95cillates at the incident frequency w. That is,
look for solutions of the form f(z, ¢) = &' “' F(z).

(c) Show that the waves are attenuated (that is, their amplitude decreases with increasing z).
Find the characteristic penetration distance, at which the amplitude is 1/e of its original value,
interms of y, T, y, and w.

(d) If a wave of amplitude A, phase §; = 0, and frequency o is incident from the left (string
1), find the reflected wave’s amplitude and phase.

9.1.4 Polarization

The waves that travel down a string when you shake it are called transverse, because the
displacement is perpendicular to the direction of propagation. If the string is reasonably
elastic, it is also possible to stimulate compression waves, by giving the string little tugs.
Compression waves are hard to see on a string, but if you try it with a slinky they’re quite
noticeable (Fig. 9.7). These waves are called longitudinal, because the displacement from
equilibrium is along the direction of propagation. Sound waves, which are nothing but
compression waves in air, are longitudinal; electromagnetic waves, as we shall see, are
transverse.
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Figure 9.7

Now there are, of course, two dimensions perpendicular to any given line of propagation.
Accordingly, transverse waves occur in two independent states of polarization: you can
shake the string up-and-down (“vertical” polarization—Fig. 9.8a),

f,(z.1) = Aefkaon g, (9.34)
or left-and-right (“horizontal” polarization—Fig. 9.8b),

fn(z,1) = Ae'ki=on g, (9.35)
or along any other direction in the xy plane (Fig. 9.8¢):

f(z,1) = Ae'® e i, (9.36)

The polarization vector i defines the plane of vibration.”> Because the waves are transverse.
fi is perpendicular to the direction of propagation:

n-z=0. (9.37)
In terms of the polarization angle 9,
n=cosfX+sind§. (9.38)

Thus, the wave pictured in Fig. 9.8¢ can be considered a superposition of two waves—one
horizontally polarized, the other vertically:

f(z,7) = (Acos@)e! ®=®) g 4 (Asin)e! ke g, (9.39)

Problem 9.8 Equation 9.36 describes the most general linearly polarized wave on a string.
Linear (or “plane”) polarization (so called because the displacement is parallel to a fixed
vector i) results from the combination of horizontally and vertically polarized waves of the
same phase (Eq. 9.39). If the two components are of equal amplitude, but out of phase by 90°
(say, 8y =0, &, = 90°), the result is a circularly polarized wave. In that case:

(a) At a fixed point z, show that the string moves in a circle about the z axis. Does it go
clockwise or counterclockwise, as you look down the axis toward the origin? How would you
construct a wave circling the other way? (In optics, the clockwise case is called right circular
polarization, and the counterclockwise, left circular polarization.)

(b) Sketch the string at time ¢ = 0.

(¢) How would you shake the string in order to produce a circularly polarized wave?

2Notice that you can always switch the sign of i, provided you simultaneously advance the phase constant by
180°, since both operations change the sign of the wave.
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X

(b) Horizontal polarization

(¢) Polarization vector

Figure 9.8

9.2 Electromagnetic Waves in Vacuum

9.2.1 The Wave Equation for E and B

In regions of space where there is no charge or current, Maxwell’s equations read

. aB
i V-E=0, (i) VxE=——,
(9.40)
.. . JE
) V-B=0, (iv) VxB= Moéog.

They constitute a set of coupled, first-order, partial differential equations for E and B. They
can be decoupled by applying the curl to (iii) and (iv):

5 ( 8B>
Vx(VxE) =V(V-E)—VE=V x

ot
a(v B) 8’E
= —— X = — € ——=
a1 Mooatz,
2 JE
Vx(VxB) =V(V-B)—V°B=Vx MOGOE
€ a(V E) € ‘B
= — X = — —_— .
Mooat Mooatz
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Or,sinceV-E=0and V-B =0,

9°E ’B
V2E = poco—, V2B = poeg—-.. 9.41
Moo~ Moo~ (9.41)
We now have separate equations for E and B, but they are of second order; that’s the price
you pay for decoupling them.
In vacuum, then, each Cartesian component of E and B satisfies the three-dimensional
wave equation,

2f:i82_f
v2 912’

(This is the same as Eq. 9.2, except that 82 f/8z? is replaced by its natural generaliza-
tion, V2 f.) So Maxwell’s equations imply that empty space supports the propagation of
electromagnetic waves, traveling at a speed

v= =3.00 x 108 m/s, (9.42)

which happens to be precisely the velocity of light, ¢. The implication is astounding:
Perhaps light is an electromagnetic wave.> Of course, this conclusion does not surprise
anyone today, but imagine what a revelation it was in Maxwell’s time! Remember how ¢
and o came into the theory in the first place: they were constants in Coulomb’s law and
the Biot-Savart law, respectively. You measure them in experiments involving charged pith
balls, batteries, and wires—experiments having nothing whatever to do with light. And
yet, according to Maxwell’s theory you can calculate ¢ from these two numbers. Notice
the crucial role played by Maxwell’s contribution to Ampere’s law (ugeodE /0t); without
it, the wave equation would not emerge, and there would be no electromagnetic theory of
light.

9.2.2 Monochromatic Plane Waves

For reasons discussed in Sect. 9.1.2, we may confine our attention to sinusoidal waves of
frequency w. Since different frequencies in the visible range correspond to different colors,
such waves are called monochromatic (Table 9.1). Suppose, moreover, that the waves are
traveling in the z direction and have no x or y dependence; these are called plane waves,*
because the fields are uniform over every plane perpendicular to the direction of propagation
(Fig. 9.9). We are interested, then, in fields of the form

E(Z, t) — Eoei(kZ—wt)’ ﬁ(z, t) — ﬁoei(kZ*wt)’ (9.43)

3 As Maxwell himself putit, “We can scarcely avoid the inference that light consists in the transverse undulations
of the same medium which is the cause of electric and magnetic phenomena” See Ivan Tolstoy, James Clerk
Maxwell, A Biography (Chicago: University of Chicago Press, 1983).

4For a discussion of spherical waves, at this level, see J. R. Reitz, F. J. Milford, and R. W. Christy, Foundations
of Electromagnetic Theory, 3rd ed., Sect. 17-5 (Reading, MA: Addison-Wesley, 1979). Or work Prob. 9.33. Of
course, over small enough regions any wave is essentially plane, as long as the wavelength is much less than the
radius of the curvature of the wave front.
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The Electromagnetic Spectrum
Frequency (Hz) Type Wavelength (m)
1022 10—13
10?1 gamma rays 10712
1020 10—11
]019 10—10
10;8 X 1ays 10-°
107 10-8
106 ultraviolet 1077
10 visible 106
10 infrared 1073
1013 1074
1012 103
10 1072
1010 microwave 10!
10° 1
108 TV, FM 10
107 10
108 AM 10°
10° 10*
104 RF 10°
103 108
The Visible Range
Frequency (Hz) Color Wavelength (m)
1.0 x 100 near ultraviolet 3.0 x 1077
7.5 x 1014 shortest visible blue 4.0 x 1077
6.5 x 1014 blue 4.6 x 1077
5.6 x 1014 green 5.4 x 1077
5.1 x 10 yellow 5.9 x 1077
49 x 10 orange 6.1 x 1077
3.9 x 1014 longest visible red 7.6 x 1077
3.0 x 1014 near infrared 1.0 x 1076
Table 9.1

where Eg and By are the (complex) amplitudes (the physical fields, of course, are the real
parts of E and B).

Now, the wave equations for E and B (Eq. 9.41) were derived from Maxwell’s equations.
However, whereas every solution to Maxwell’s equations (in empty space) must obey the
wave equation, the converse is not true; Maxwell’s equations impose extra constraints on
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Figure 9.9

Eg and Bo. In particular, since V-E =0 and V - B = 0, it follows® that
(Eo); = (Bo): =0. 9.44)

That is, electromagnetic waves are transverse: the electric and magnetic fields are per-
pendicular to the direction of propagation. Moreover, Faraday’s law, V x E = —3B/3r.
implies a relation between the electric and magnetic amplitudes, to wit:

—k(Eo)y = w(Bo)x, k(Eo)x = w(Bo)y, (9.45)
or, more compactly:
. k .
By = a(i x Eg). (9.46)

Evidently, E and B are in phase and mutually perpendicular; their (real) amplitudes are

related by
k 1
By = —E¢ = -E. (9.47)
o) c
The fourth of Maxwell’s equations, V x B = p9e9(dE/37), does not yield an independent

condition; it simply reproduces Eq. 9.45.

Example 9.2

If E points in the x direction, then B points in the y direction (Eq. 9.46):
. L o i
E(z,1) = Ege! % Bz, 1) = R

or (taking the real part)

1
E(z,t) = Egcos(kz —wt + 8)X, B(z,t) = —Egcos(kz — ot +8)§. (9.48)
c

SBecause the real part of E differs from the imaginar); part only in the replacement of sine by cosine, if the
former obeys Maxwell’s equations, so does the latter, and hence E as well.
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Figure 9.10

This is the paradigm for a monochromatic plane wave (see Fig. 9.10). The wave as a whole is
said to be polarized in the x direction (by convention, we use the direction of E to specify the
polarization of an electromagnetic wave).

There is nothing special about the z direction, of course—we can easily generalize to
monochromatic plane waves traveling in an arbitrary direction. The notation is facilitated
by the introduction of the propagation (or wave) vector, k, pointing in the direction
of propagation, whose magnitude is the wave number k. The scalar product k- r is the
appropriate generalization of kz (Fig. 9.11), so

Br.)= om0 4,
1 1 (9.49)
Br,r)= =“Ep®"“)(k xn)= -k xE,
c c
where 1 is the polarization vector. Because E is transverse,
n-k=0. (9.50)
k

Figure 9.11
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(The transversality of B follows automatically from Eq. 9.49.) The actual (real) electric and
magnetic fields in a monochromatic plane wave with propagation vector k and polarization
n are

E(r,t) = Egcos(k-r — wt + 8) 1, (9.51)

B(r, 1) = lEo cos (k - r — wt + 8)(k x ). (9.52)
c

Problem 9.9 Write down the (real) electric and magnetic fields for a monochromatic plane
wave of amplitude Ey, frequency w, and phase angle zero that is (a) traveling in the negative
x direction and polarized in the z direction; (b) traveling in the direction from the origin to the
point (1, 1, 1), with polarization parallel to the x z plane. In each case, sketch the wave, and
give the explicit Cartesian components of k and f.

9.2.3 Energy and Momentum in Electromagnetic Waves

According to Eq. 8.13, the energy per unit volume stored in electromagnetic fields is

1 1
u=- (60E2 + —BZ> ) 9.53)
2 o

In the case of a monochromatic plane wave (Eq. 9.48)
B? = CizE2 = poeoE2, (9.54)
80 the electric and magnetic contributions are equal:
u= eOE2 = eOE% cos? (kz — wt +§). (9.55)

As the wave travels, it carries this energy along with it. The energy flux density (energy per
unit area, per unit time) transported by the fields is given by the Poynting vector (Eq. 8.10):

1
Ho

S=_(ExB). 9.56)

For monochromatic plane waves propagating in the z direction,
S = ceoEg cos? kz—wt +8)z=cuz. (9.57)

Notice that S is the energy density (u) times the velocity of the waves (c Z)—as it should be.
Forinatime At, alength ¢ At passes through area A (Fig. 9.12), carrying with it an energy
uAc At. The energy per unit time, per unit area, transported by the wave is therefore uc.
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cAt

Figure 9.12

Electromagnetic fields not only carry energy, they also carry momentum. In fact, we
found in Eq. 8.30 that the momentum density stored in the fields is

» =S (9.58)

For monochromatic plane waves, then,
1, .1,
= —epEjcos” (kz —wt +8) 2= -ul (9.59)
C C

In the case of light, the wavelength is so short (~ 5 x 10~7 m), and the period so brief
(~ 10715 g), that any macroscopic measurement will encompass many cycles. Typically,
therefore, we’re not interested in the fluctuating cosine-squared term in the energy and
momentum densities; all we want is the average value. Now, the average of cosine-squared
over a complete cycle® is 1, so

1 2
(u) = EGOEO, (9.60)
1 2 ~
8) = ECGOEO z, (9.61)
1 2 ~
() = z—ceoEo z. (9.62)

I use brackets, ( ), to denote the (time) average over a complete cycle (or many cycles, if
you prefer). The average power per unit area transported by an electromagnetic wave is
called the intensity:

1

I=(S)= EceOEg. (9.63)

OThere is a cute trick for doing this in your head: sin2 @ + cos26 = 1, and over a complete cycle the average
of sin? 6 is equal to the average of cos? 6, so (sin?) = (cosz) = 1/2. More formally,

1 T
?/ cos? (kz — 27t/ T +8) dt = 1/2.
0
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When light falls on a perfect absorber it delivers its momentum to the surface. In a
time At the momentum transfer is (Fig. 9.12) Ap = (p)Ac At, so the radiation pressure
(average force per unit area) is

tAap 1, T
=—— = —¢Ej=-. 9.64
AAr - 20T ©.64)
(On a perfect reflector the pressure is twice as great, because the momentum switches
direction, instead of simply being absorbed.) We can account for this pressure qualitatively,
as follows: The electric field (Eq. 9.48) drives charges in the x direction, and the magnetic
field then exerts on them a force (¢vx B) in the z direction. The net force on all the charges
in the surface produces the pressure.

Problem 9.10 The intensity of sunlight hitting the earth is about 1300 W/m?2. If sunlight
strikes a perfect absorber, what pressure does it exert? How about a perfect reflector? What
fraction of atmospheric pressure does this amount to?

Problem 9.11 In the complex notation there is a clever device for finding the time average of
a product. Suppose f(r,1) = Acos (k- T — o + ;) and g(r, 1) = Beos (k-1 — wt + 8p).
Show that (fg) = (1/2)Re( f *), where the star denotes complex conjugation. [Note that this
only works if the two waves have the same k and w, but they need not have the same amplitude
or phase.] For example

1 L 1 . . 1 L.
(u) = —Re(egE - E* + —B - B*) and (S) = —Re(E x B*).
4 Ho 2ug

Problem 9.12 Find all elements of the Maxwell stress tensor for a monochromatic plane wave
traveling in the z direction and linearly polarized in the x direction (Eq. 9.48). Does your
answer make sense? (Remember that % represents the momentum flux density.) How is the
momentum flux density related to the energy density, in this case?

).3 Electromagnetic Waves in Matter

9.3.1 Propagation in Linear Media

Inside matter, but in regions where there is no free charge or free current, Maxwell’s equa-
tions become

oB
i V-D=0, (i) VXE:_E’
(9.65)
aD
(i) V.B=0, (iv)y VxH= TR
If the medium is linear,
1
D=¢E, H= —B, (9.66)
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and homogeneous (so € and  do not vary from point to point), Maxwell’s equations reduce
to

. B
i) V-E=0, (i) VxE:—_g,
9.67)
JE
(i) V-B=0, (V) VxB=per,

which (remarkably) differ from the vacuum analogs (Egs. 9.40) only in the replacement of
Ho€o by we.” Evidently electromagnetic waves propagate through a linear homogeneous
medium at a speed

1 c
= = -, 9.68
v == 9.68)
where
n= |H (9.69)
€0

is the index of refraction of the material. For most materials, u is very close to wg, so

n= /e, (9.70)

where ¢, is the dielectric constant (Eq. 4.34). Since ¢, is almost always greater than 1, light
travels more slowly through matter—a fact that is well known from optics.

All of our previous results carry over, with the simple transcription €g —> €, ug — 4,
and hence ¢ — v (see Prob. 8.15). The energy density is®

1 1
u=- (eE2 + —B2> , 9.71)
2 H
and the Poynting vector is
1
S=—(E xB). (9.72)
“

For monochromatic plane waves the frequency and wave number are related by w = kv
(Eq. 9.11), the amplitude of B is 1/v times the amplitude of E (Eq. 9.47), and the intensity

18

1
I = EevEé. (9.73)

TThis observation is mathematically pretty trivial, but the physical implications are astonishing: As the wave
passes through, the fields busily polarize and magnetize all the molecules, and the resulting (oscillating) dipoles
create their own electric and magnetic fields. These combine with the original fields in such a way as to create a
single wave with the same frequency but a different speed. This extraordinary conspiracy is responsible for the
phenomenon of transparency. It is a distinctly nontrivial consequence of the /inearity of the medium. For further
discussion see M. B, James and D. J. Griffiths, Am. J. Phys. 60, 309 (1992).

8Refer to Sect. 4.4.3 for the precise meaning of “energy density,” in the-context of linear media.
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The interesting question is this: What happens when a wave passes from one transparent
medium into another—air to water, say, or glass to plastic? As in the case of waves on a
string, we expect to get a reflected wave and a transmitted wave. The details depend on
the exact nature of the electrodynamic boundary conditions, which we derived in Chapter
7 (Eq. 7.64):

() €1 Bl = eEf, (i) E! = El,
1 1 (9.74)
(i) Bi* = By, (iv) —B} = —Bl.
M1 n2
These equations relate the electric and magnetic fields just to the left and just to the right of
the interface between two linear media. In the following sections we use them to deduce
the laws governing reflection and refraction of electromagnetic waves.

9.3.2 Reflection and Transmission at Normal Incidence

Suppose the xy plane forms the boundary between two linear media. A plane wave of
frequency w, traveling in the z direction and polarized in the x direction, approaches the
interface from the left (Fig. 9.13):

E[(z, 1) = Eolei(kiz—wt) %,

: Ve (9.75)
B/(z,1) = —Ey, o kiz—ot) g,
v
It gives rise to a reflected wave
ER (Z, t) = EORei(*kll—wt) )2,
(9.76)

- 1 -~ . )
Br(z, 1) = —v—lEoRe“—’“Z““’) .

@
)‘ Vl // )- V2
/// BT

B,
’
Eg 9t ¢
Bg .
v, ._T/( Interface
y

Figure 9.13
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which travels back to the left in medium (1), and a transmitted wave

Brz.r) = Eop 0%

9.77)

= 1~
Br(z,1) = —Eg,ef®mon g,
U2

which continues on the the right in medium (2). Note the minus sign in B, as required
by Eq. 9.49—or, if you prefer, by the fact that the Poynting vector aims in the direction of
propagation.

At z = 0, the combined fields on the left, E 7+ Eg and B 7+ Bg, must join the fields on
the right, E; and B7, in accordance with the boundary conditions 9.74. In this case there
are no components perpendicular to the surface, so (i) and (ii) are trivial. However, (iii)
requires that

Eo, + Eox = Eoy, (9.78)
while (iv) says
1 1 -~ 1 - 1 1 -
—\\ —Eo; — —Eog | = — | —Eor }, (9.79)
w1 \v1 V] n2 \v2
or i ) i
Ey, — Eop = BEo,, (9.80)
where v n
Sl L ad e 9.81)
M2V2  Mom

Equations 9.78 and 9.80 are easily solved for the outgoing amplitudes, in terms of the
incident amplitude:

Eo —ﬂ Eo, Eo = —2— Eo. (9.82)
R l—|—,3 / T 1+ 8 /

These results are strikingly similar to the ones for waves on a string. Indeed, if the
permittivities u are close to their values in vacuum (as, remember, they are for most media),
then B8 = v /v;, and we have

. vy — v ~ 2vp |\ =
Eo, = E , Eg, = Eyp,, 9.83
Or <U2+v1) O Oor <U2+v1) o ( )

which are identical to Egs. 9.30. In that case, as before, the reflected wave is in phase (right
side up) if v; > v and out of phase (upside down) if vy < vy; the real amplitudes are
related by

By = |27 By By = (22 E (9.84)
0r = |3 oo, | B0 Eor o tor ) For -

or, in terms of the indices of refraction,

nyp —ny 2n)
Ep, = Ey,, Ep, = Ey,. 9.85
O ny+np O 0 ("1 +n2> o ( )
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What fraction of the incident energy is reflected, and what fraction is transmitted?
According to Eq. 9.73, the intensity (average power per unit area) is

1= tevr?
= —€V .
2 0

If (again) ;y = p2 = g, then the ratio of the reflected intensity to the incident intensity is

R="F_(Z0r) _(Zm) (9.86)
I Ey, ny +ny

whereas the ratio of the transmitted intensity to the incident intensity is

Ir €102 <E0T>2 _ dnin, 9.87)

T =— = = 0.
1 vt \ Ey, (n) +n2)

R is called the reflection coefficient and 7 the transmission coefficient; they measure the
fraction of the incident energy that is reflected and transmitted, respectively. Notice that

R4+T=1, (9.88)

as conservation of energy, of course, requires. For instance, when light passes from air
(n; = 1) into glass (np = 1.5), R = 0.04 and T = 0.96. Not surprisingly, most of the light
is transmitted.

Problem 9.13 Calculate the exact reflection and transmission coefficients, without assuming
u1 = p2 = pug. Confirmthat R+ 7 = 1.

Problem 9.14 In writing Eqs. 9.76 and 9.77, 1 tacitly assumed that the reflected and transmitted
waves have the same polarization as the incident wave—along the x direction. Prove that this
must be so. [Hint: Let the polarization vectors of the transmitted and reflected waves be

A7 =cosfOr X +sinfr §, fAg = cosfr X + sinbg §,

and prove from the boundary conditions that 7 = 6r =0.]

9.3.3 Reflection and Transmission at Oblique Incidence

In the last section I treated reflection and transmission at normal incidence—that is, when
the incoming wave hits the interface head-on. We now turn to the more general case of
oblique incidence, in which the incoming wave meets the boundary at an arbitrary angle 6;
(Fig. 9.14). Of course, normal incidence is really just a special case of oblique incidence,
with 6; = 0, but I wanted to treat it separately, as a kind of warm-up, because the algebra
is now going to get a little heavy.
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kg

Or oy

Z

Plane of Incidence

v, ORO

Figure 9.14

Suppose, then, that a monochromatic plane wave
E;(r,r) = Eg,e!® ™) Byr,1) = Ul—l(f(, x Ep) (9.89)
approaches from the left, giving rise to a reflected wave,
Er(r,t) = Eope'®xT=00 - Br(r,1) = vil(fcR x Eg), (9.90)
and a transmitted wave
Er(r, 1) = Eo e/ ¥ 7790 Br(r,1) = viz(fq x Er). (9.91)

All three waves have the same frequency w—that is determined once and for all at the source
(the flashlight, or whatever, that produces the incident beam). The three wave numbers are
related by Eq. 9.11:

kv = kguy = kyva = w, or ky = kg = —kr = —tkr. (9.92)
U1 ny

Thg combined fields in medium (1), E, + ER and B; + Bg, must now be joined to the
fields ET and By in medium (2), using the boundary conditions 9.74. These all share the
generic structure

( )ei(kl-l'—u)f) + ( )ei(kR-l'—u)T) — ( )ei(k’]“l'—u)t)’ atz = 0. (993)

I’11 fill in the parentheses in a moment; for now, the important thing to notice is that the
x, vy, and ¢t dependence is confined to the exponents. Because the boundary conditions
must hold at all points on the plane, and for all times, these exponential factors must be
equal. Otherwise, a slight change in x, say, would destroy the equality (see Prob. 9.15). Of
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course, the time factors are already equal (in fact, you could regard this as an independent
confirmation that the transmitted and reflected frequencies must match the incident one).
As for the spatial terms, evidently

k;-r=kg-r=kr-r, whenz=0, (9.94)
or, more explicitly,
x(kp)x + )’(kl)y = x(kp)x + )’(kR)y = x(kr)x + Y(kT)y, (9.95)

for all x and all y.
But Eq. 9.95 can only hold if the components are separately equal, for if x = 0, we get

(kl)y = (kR)y = (kT)y, (9.96)

while y = 0 gives
kr)x = (kr)x = (kr)x- 9.97)

We may as well orient our axes so that K; lies in the x z plane (i.e. (k;), = 0); according
to Eq. 9.96, so too will kg and ky. Conclusion:

First Law: The incident, reflected, and transmitted wave vectors form aplane
(called the plane of incidence), which also includes the normal to the surface
(here, the 7 axis).

Meanwhile, Eq. 9.97 implies that
kysin; =kgpsinfg = kT sinOp, (9.98)

where 6; is the angle of incidence, 6% is the angle of reflection, and 97 is the angle of
transmission, more commonly known as the angle of refraction, all of them measured with
respect to the normal (Fig. 9.14). In view of Eq. 9.92, then,

Second Law: The angle of incidence is equal to the angle of reflection,

0; = 6g. (9.99)
This is the law of reflection.
As for the transmitted angle,
Third Law:
in @
Mhor _ M (9.100)
sin 9[ ny

This is the law of refraction, or Snell’s law.
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These are the three fundamental laws of geometrical optics. It is remarkable how
little actual electrodynamics went into them: we have yet to invoke any specific boundary
conditions—all we used was their generic form (Eq. 9.93). Therefore, any other waves
(water waves, for instance, or sound waves) can be expected to obey the same “optical”
laws when they pass from one medium into another.

Now that we have taken care of the exponential factors—they cancel, given Eq. 9.94—
the boundary conditions 9.74 become:

(i) €1(Eo, + Eo,); = €2(Eo,);

(i) (Bo, + Bog): = By, );

L - - (9.101)
(111) (EOI + EOR)x,y = (EOT)x,y

1 - .. | -
(iv) —Bg; + Bog)x,y = —(Bg,)
wi 1 R/X,Y U T/X,Y

where ﬁo =(1/ v)ﬁ X Eo in each case. (The last two represent pairs of equations, one for
the x-component and one for the y-component.)

Suppose that the polarization of the incident wave is parallel to the plane of incidence
(the x 7 plane in Fig. 9.15); it follows (see Prob. 9.14) that the reflected and transmitted
waves are also polarized in this plane. (I shall leave it for you to analyze the case of
polarization perpendicular to the plane of incidence; see Prob. 9.16.) Then (i) reads

€1(—Eg, sin6; + Eo, sing) = e(—Eq, sinf7); (9.102)

(ii) adds nothing (0 = 0), since the magnetic fields have no 7 components; (iii) becomes

EO, cosf; + EOR cosOp = EOT cosfr; (9.103)
B X
k N\
R Eg Er
kr
Ok or 'Br
z
g O
“ON®

Figure 9.15
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and (iv) says

(Ey, — Eop) = Eo,. (9.104)
H1v) H2v2
Given the laws of reflection and refraction, Eqs. 9.102 and 9.104 both reduce to
Eo, — Eog = BEo,, (9.105)
where (as before)
g = piv Ml”2’ (9.106)
H2v2  uong
and Eq. 9.103 says
EO/ —f-EoR :O[EOT, (9.107)
where
o= O80T (9.108)
cosf;
Solving Egs. 9.105 and 9.107 for the reflected and transmitted amplitudes, we obtain
Eoy = (Z+§) Ey,, Eo, = (ﬁg) Ey,. (9.109)

These are known as Fresnel’s equations, for the case of polarization in the plane of inci-
dence. (There are two other Fresnel equations, giving the reflected and transmitted ampli-
tudes when the polarization is perpendicular to the plane of incidence—see Prob. 9.16.)
Notice that the transmitted wave is always in phase with the incident one; the reflected
wave is either in phase (“right side up”), if @ > f8, or 180° out of phase (“upside down”).
ifo < p°

The amplitudes of the transmitted and reflected waves depend on the angle of incidence.
because « is a function of 6;:

oo YLzsin?or 1 [(ny/n2)sin6, 1

cos 6y cos 6y

(9.110)

In the case of normal incidence (6; = 0), « = 1, and we recover Eq. 9.82. At grazing
incidence (67 = 90°), a diverges, and the wave is totally reflected (a fact that is painfully
familiar to anyone who has driven at night on a wet road). Interestingly, there is an in-
termediate angle, 6 (called Brewster’s angle), at which the reflected wave is completely
extinguished.'® According to Eq. 9.109, this occurs when a = 8, or

I St
(n1/np)? — g2

9There is an unavoidable ambiguity in the phase of the reflected wave, since (as I mentioned in footnote 2)
changing the sign of the polarization vector is equivalent to a 180° phase shift. The convention I adopted in
Fig. 9.15, with Eg positive “upward,” is consistent with some, but not all, of the standard optics texts.

10Because waves polarized perpendicular to the plane of incidence exhibit no corresponding quenching of the
reflected component, an arbitrary beam incident at Brewster’s angle yields a reflected beam that is totally polarized
parallel to the interface. That’s why Polaroid glasses, with the transmission axis vertical, help to reduce glare off
a horizontal surface.

sin’ 0 = (9.111)
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For the typical case u; = s, s0 8 = ny/ny, sin? Op = ,82/(1 + B?), and hence

tan 0y = 2. 9.112)

ny
Figure 9.16 shows a plot of the transmitted and reflected amplitudes as functions of 9,, for
light incident on glass (ny = 1.5) from air (n; = 1). (On the graph, a negative number
indicates that the wave is 180° out of phase with the incident beam-—the amplitude itself is
the absolute value.)
The power per unit area striking the interface is S - Z. Thus the incident intensity is

1
I = Eelle(%I cos 6y, (9.113)
while the reflected and transmitted intensities are

1 1
Igr = EEIUIESR cosfg, and It = EegngST cos Or. 9.114)
(The cosines are there because I am talking about the average power per unit area of
interface, and the interface is at an angle to the wave front.) The reflection and transmission
coefficients for waves polarized parallel to the plane of incidence are

7 E 2 i 2
RE—R=(ﬁ) =(“ ﬂ) : 9.115)
I; Ey, a+B
T Ir € vy ( Eo, 2 cos Ot 8 2 2 9.116)
= = — R = . .
; €v) \ Ey, ) cos6; a+p
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Figure 9.17

They are plotted as functions of the angle of incidence in Fig. 9.17 (for the air/ glass inter-
face). R is the fraction of the incident energy that is reflected—naturally, it goes to zero at
Brewster’s angle; T is the fraction transmitted—it goes to 1 at §5. Note that R + T = 1.
as required by conservation of energy: the energy per unit time reaching a particular patch
of area on the surface is equal to the energy per unit time leaving the patch.

Problem 9.15 Suppose Ae'“* + Be!P* = Cei®* | for some nonzero constants A, B,C,a,b.
c,and forall x. Provethata =b=cand A+ B = C.

! Problem 9,16 Analyze the case of polarization perpendicular to the plane of incidence (i.e.
electric fields in the y direction, in Fig. 9.15). Impose the boundary conditions 9.101, and obtain
the Fresnel equations for EOR and EOT . Sketch (EOR /EOI) and (EOT /EOI) as functions of 6;.
for the case B = ny/ny = 1.5. (Note that for this 8 the reflected wave is always 180° out of
phase.) Show that there is no Brewster’s angle for any ny and ny: E & 18 never zero (unless, of
course, n| = ny and uy = g, in which case the two media are optically indistinguishable).
Contfirm that your Fresnel equations reduce to the proper forms at normal incidence. Compute
the refiection and transmission coefficients, and check that they add up to 1.

Problem 9.17 The index of refraction of diamond is 2.42. Construct the graph analogous to
Fig. 9.16 for the air/diamond interface. (Assume u; = puy = no.) In particular, calculate
(a) the amplitudes at normal incidence, (b) Brewster’s angle, and (c) the “crossover” angle, at
which the reflected and transmitted amplitudes are equal.

.4 Absorption and Dispersion

9.4.1 Electromagnetic Waves in Conductors

In Sect. 9.3 I stipulated that the free charge density p 1 and the free current density J ; are
zero, and everything that followed was predicated on that assumption. Such a restriction
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is perfectly reasonable when you’re talking about wave propagation through a vacuum or
through insulating materials such as glass or (pure) water. But in the case of conductors we
do not independently control the flow of charge, and in general J ¢ is certainly not zero. In
fact, according to Ohm'’s law, the (free) current density in a conductor is proportional to the
electric field:

Jr =0E. 9.117)
With this, Maxwell’s equations for linear media assume the form
(i) V-E 1 (i) V x E B
i -E=—pg, (il xE=——,
€ Pf ar
(9.118)
" . JE
(i) V-B=0, (iv) VxB:p,aE—i—p,e—a?.
Now the continuity equation for free charge,
3pf
V-IJf=—, 9.119
f ot ( )
together with Ohm’s law and Gauss’s law (i), gives
dpr o
e _6(V-E)= ——
o o( ) cPf
for a homogeneous linear medium, from which it follows that
pr(t) =e ) p(0). (9.120)

Thus any initial free charge density p s (0) dissipates in a characteristic time 7 = €/o’. This
reflects the familiar fact that if you put some free charge on a conductor, it will flow out
to the edges. The time constant t affords a measure of how “good” a conductor is: For a
“perfect” conductor 0 = oo and T = 0; for a “good” conductor, 7 is much less than the
other relevant times in the problem (in oscillatory systems, that means T <« 1/w); for a
“poor” conductor, 7 is greater than the characteristic times in the problem (7 > 1/w).!!
At present we’re not interested in this transient behavior—we’ll wait for any accumulated

free charge to disappear. From then on p = 0, and we have
oB
(i) V-E=0, (i) V XEz_a_t’

(9.121)

dE
(i) V-B=0, (iv) VxB-—_uea—t+uaE.

1N, Ashby, Am. J. Phys. 43, 553 (1975), points out that for good conductors 7 is absurdly short (10‘19 s, for
copper, whereas the time between collisions is 7 = 1014 s). The problem is that Ohm’s law itself breaks down
on time scales shorter than t.; actually, the time it takes free charge to dissipate in a good conductor is of order 7,
not 7. Moreover, H. C. Ohanian, Am. J. Phys. 51, 1020 (1983), shows that it takes even longer for the fields and
currents to equilibrate. But none of this is relevant to our present purpose; the free charge density in a conductor
does eventually dissipate, and exactly how long the process takes is beside the point.
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These differ from the corresponding equations for nonconducting media (9.67) only in the
addition of the last term in (iv).
Applying the curl to (iii) and (iv), as before, we obtain modified wave equations for E

and B:

32E 3E 3B 3B
VZE:MGW—FMUE, V2B=M€W+[¢Laa—t (9122)

These equations still admit plane-wave solutions,
Bz 1) = Boel &) B(z, 1) = Boe &), 9.123)
but this time the “wave number” & is complex:
k* = pew? +ipow, (9.124)

as you can easily check by plugging Eq. 9.123 into Eq. 9.122. Taking the square root,

k=k+ik, (9.125)

1/2
_[er oV
k=02 [ 1+(6w) 1} . 9.126)

The imaginary part of k results in an attenuation of the wave (decreasing amplitude with
increasing z):

E(z, 1) = Ege e ®790 - B(z, 1) = Bpe ! kemen), (9.127)
The distance it takes to reduce the amplitude by a factor of 1/e (about a third) is called the
skin depth:

d (9.128)

’

& |

it is a measure of how far the wave penetrates into the conductor. Meanwhile, the real part
of k determines the wavelength, the propagation speed, and the index of refraction, in the

usual way:
2 w ck
A=—, v=—, n=—.
k w
The attenuated plane waves (Eq. 9.127) satisty the modified wave equation (9.122) for
any Eg and By. But Maxwell’s equations (9.121) impose further constraints, which serve
to determine the relative amplitudes, phases, and polarizations of E and B. As before, (1)
and (ii) rule out any z components: the fields are transverse. We may as well orient our
axes so that E is polarized along the x direction:

(9.129)

E(z,1) = Ege *telke—eD g, (9.130)
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Then (iii) gives
. k- .
B(z,1) = — Ege ¥Zikemen g, 9.131)
1)
(Equation (iv) says the same thing.) Once again, the electric and magnetic fields are mutually
perpendicular. y
Like any complex number, k can be expressed in terms of its modulus and phase:

k=Ke'?, (9.132)
where
K = F =¢m=w,/em1+(£)2 (9.133)
and
¢ =tan" ' (k/k). (9.134)

According to Eq. 9.130 and 9.131, the complex amplitudes Eq = Ege'*t and By = Bye'®®

are related by
Kel?

Boe'’s = Ege'®e. (9.135)
Evidently the electric and magnetic fields are no longer in phase; in fact,

8 ~dp =¢; (9.136)
the magnetic field lags behind the electric field. Meanwhile, the (real) amplitudes of E and
B are related by

B K 2
=== e 14 () 9.137)
Ey w €w
The (real) electric and magnetic fields are, finally,
E(z,t) = Ege ™ *cos (kz — wt + 85) X,
(9.138)
B(z,1) = Bpe **cos (kz — wt + 85 + @) V.

These fields are shown in Fig. 9.18.

Problem 9.18

(a) Suppose you imbedded some free charge in a piece of glass. About how long would it take
for the charge to flow to the surface?

(b) Silver is an excellent conductor, but it’s expensive. Suppose you were designing a mi-
crowave experiment to operate at a frequency of 101° Hz. How thick would you make the
silver coatings?

(c) Find the wavelength and propagation speed in copper for radio waves at 1 MHz. Compare
the corresponding values in air (or vacuum).
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W .

Figure 9.18

Problem 9.19

(a) Show that the skin depth in a poor conductor (¢ <« we) is (2/0)+/€/u (independent of
frequency). Find the skin depth (in meters) for (pure) water.

(b) Show that the skin depth in a good conductor (0 > we)is A /2 (where A is the wavelength
in the conductor). Find the skin depth (in nanometers) for a typical metal (¢ & 107 (22 m~h
in the visible range (w ~ 1013/s), assuming € ~ ¢g and i ~ pg. Why are metals opaque?

(c) Show that in a good conductor the magnetic field lags the electric field by 45°, and find the
ratio of their amplitudes. For a numerical example, use the “typical metal” in part (b).
Problem 9.20

(a) Calculate the (time averaged) energy density of an electromagnetic plane wave in a conduct-
ing medium (Eq. 9.138). Show that the magnetic contribution always dominates. [Answer:
(k2/2/m)2)E8e_2"Z]

(b) Show that the intensity is (k/2uw)E§e_2”.

9.4.2 Reflection at a Conducting Surface

The boundary conditions we used to analyze reflection and refraction at an interface between
two dielectrics do not hold in the presence of free charges and currents. Instead, we have
the more general relations (7.63):

() e1Ei —e2Ey =y, (i) E! —E! =0,

Loy 1y (9.139)
(i) B — B+ =0, (iv) —B! — —B! =K/ x #,
i 2 ) Pt f

where o7 (not to be confused with conductivity) is the free surface charge, K 1 the free
surface current, and fi (not to be confused with the polarization of the wave) is a unit
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vector perpendicular to the surface, pointing from medium (2) into medium (1). For ohmic
conductors (Jy = oE) there can be no free surface current, since this would require an
infinite electric field at the boundary.

Suppose now that the xy plane forms the boundary between a nonconducting linear
medium (1) and a conductor (2). A monochromatic plane wave, traveling in the z direction
and polarized in the x direction, approaches from the left, as in Fig. 9.13:

. . o~ 1 - . .
E;(z.1) = Eo 0%, By(z,1) = an,e“klz—wﬂ y. (9.140)
This incident wave gives rise to a reflected wave,
N . . |
Er(z.1) = Eope! ™78 Bz 1) = — - Eope!THy, (9.141)

propagating back to the left in medium (1), and a transmitted wave

- - s - ky ~ s
Erz, 1) = Eo e @03 Br(z,1) = 2y e Rimeny, (9.142)
w

which is attenuated as it penetrates into the conductor.

Atz = 0, the combined wave in medium (1) must join the wave in medium (2), pursuant
to the boundary conditions 9.139. Since E+ = 0 on both sides, boundary condition (i) yields
oy = 0. Since B+ = 0, (ii) is automatically satisfied. Meanwhile, (iii) gives

EO[ + EOR = EOTa (9143)
and (iv) (with K¢ = 0) says
- ~ kr =~
(Eo; — Eog) — ——Eo, =0, (9.144)
H1v1 2w
or ) N .
Ey, — Eop = BEo,, (9.145)
where -
A="UE (9.146)
Haw
It follows that _
. 1-8\ - - 20\ -
Ey.=——=1Ey,, Ep = (——N) Eg,. (9.147)
() 825

These results are formally identical to the ones that apply at the boundary between nonconductors
(Eq. 9.82), but the resemblance is deceptive since 8 is now a complex number.
For a perfect conductor (o = 00), k» = 00 (Eq. 9.126), so B is infinite, and

Eoq = —Eo,, Eo, =0. (9.148)
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In this case the wave is totally reflected, with a 180° phase shift. (That’s why excellent
conductors make good mirrors. In practice, you paint a thin coating of silver onto the back
of a pane of glass—the glass has nothing to do with the reflection; it’s just there to support
the silver and to keep it from tarnishing. Since the skin depth in silver at optical frequencies
is on the order of 100 A, you don’t need a very thick layer.)

Problem 9.21 Calculate the reflection coefficient for light at an air-to-silver interface (uy =
U2 =po. €] =€, 0 =6 x 107(Q - m)_l), at optical frequencies (w = 4 x 1015/3).

9.4.3 The Frequency Dependence of Permittivity

In the preceding sections, we have seen that the propagation of electromagnetic waves
through matter is governed by three properties of the material, which we took to be constants:
the permittivity €, the permeability p, and the conductivity o. Actually, each of these
parameters depends to some extent on the frequency of the waves you are considering.
Indeed, if the permittivity were truly constant, then the index of refraction in a transparent
medium, n = ,/€,, would also be constant. But it is well known from optics that n is
a function of wavelength (Fig. 9.19 shows the graph for a typical glass). A prism or a
raindrop bends blue light more sharply than red, and spreads white light out into a rainbow
of colors. This phenomenon is called dispersion. By extension, whenever the speed of a
wave depends on its frequency, the supporting medium is called dispersive.!2

T

1.480

1.470 [

Index of refraction

1.460

1

4000 5000 6000 7000 Angstroms
Wavelength, A (in air)

1.450

~ Figure 9.19

12Conductors, incidentaily, are dispersive: see Egs. 9.126 and 9.129.
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Because waves of different frequency travel at different speeds in a dispersive medium,
a wave form that incorporates a range of frequencies will change shape as it propagates. A
sharply peaked wave typically flattens out, and whereas each sinusoidal component travels
at the ordinary wave (or phase) velocity,

w
= —, 9.149
v=o ( )
the packet as a whole (the “envelope”) travels at the so-called group velocity!3

dw
Ug = dk .
[You can demonstrate this by dropping a rock into the nearest pond and watching the waves
that form: While the disturbance as a whole spreads out in a circle, moving at speed v,,
the ripples that go to make it up will be seen to travel twice as fast (v = 2uv, in this
case). They appear at the back end of the packet, growing as they move forward to the
center, then shrinking again and fading away at the front (Fig. 9.20).] We shall not concern
ourselves with these matters—I’ll stick to monochromatjc waves, for which the problem
does not arise. But I should just mention that the energy carried by a wave packet in a
dispersive medium ordinarily travels at the group velocity, not the phase velocity. Don’t be
too alarmed, therefore, if in some circumstances v comes out greater than o4

SAANS
\/\_\/ VAR

(9.150)

Figure 9.20

My purpose in this section is to account for the frequency dependence of € in nonconduc-
tors, using a simplified model for the behavior of electrons in dielectrics. Like all classical
models of atomic-scale phenomena, it is at best an approximation to the truth; nevertheless,
it does yield quaglitatively satisfactory results, and it provides a plausible mechanism for
dispersion in transparent media.

The electrons in a nonconductor are bound to specific molecules. The actual binding
forces can be quite complicated, but we shall picture each electron as attached to the end
of an imaginary spring, with force constant kspring (Fig. 9.21):

Fhinding = —Kspring* = _mw(Z)X, (9.151)

13See A. P, French, Vibrations and Waves, p. 230 (New York: W. W. Norton & Co., 1971), or F. S. Crawford,
Jr., Waves, Sect. 6.2 (New York: McGraw-Hill, 1968).

14Even the group velocity can exceed ¢ in special cases—see P. C. Peters, Am. J. Phys. 56, 129 (1988).
Incidentally, if o different “speeds of light” are not enough to satisfy you, check out S. C. Bloch, Am. J. Phys.
45, 538 (1977), in which no fewer than eight distinct velocities are identified!



400 CHAPTER 9. ELECTROMAGNETIC WAVES

Electron

X
E
L(W\ - §h

W Z

Figure 9.21

where x is displacement from equilibrium, m is the electron’s mass, and wy is the natural
oscillation frequency, /kspring/m. [If this strikes you as an implausible model, look back at
Ex. 4.1, where we were led to a force of precisely this form. As a matter of fact, practically
any binding force can be approximated this way for sufficiently small displacements from
equilibrium, as you can see by expanding the potential energy in a Taylor series about the
equilibrium point:

Ux) = U(©) +xU'(0) + %sz”(O) ..

The first term is a constaht, with no dynamical significance (you can always adjust the
zero of potential energy so that U(0) = 0). The second term automatically vanishes,
since dU /dx = —F, and by the nature of an equilibrium the force at that point is zero.
The third term is precisely the potential energy of a spring with force constant kgpring =
d*U /dx? |0 (the second derivative is positive, for a point of stable equilibrium). As long as
the displacements are small, the higher terms in the series can be neglected. Geometrically,
all I am saying is that virtually any function can be fit near a minimum by a suitable parabola.]

Meanwhile, there will presumably be some damping force on the electron:

Faamping = _m)";_);' (9.152)

[Again I have chosen the simplest possible form; the damping must be opposite in direction
to the velocity, and making it proportional to the velocity is the easiest way to accomplish
this. The cause of the damping does not concern us here—among other things, an oscillating
charge radiates, and the radiation siphons off energy. We will calculate this “radiation
damping” in Chapter 11.]

In the presence of an electromagnetic wave of frequency w, polarized in the x direction
(Fig. 9.21), the electron is subject to a driving force

Fyriving = g E = qEq cos(wr), (9.153)

where g is the charge of the electron and Ej is the amplitude of the wave at the point :
where the electron is situated. (Since we’re only interested in one point, I have reset the
clock so that the maximum E occurs there at 7 = 0.) Putting all this into Newton’s second
law gives

d’x

mﬁ = Fiot = Fhinding + Fdamping + Firiving,
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or
d’x dx 2

mﬁ +myd—t + mwyx = q Eg cos(wt). (9.154)

Our model, then, describes the electron as a damped harmonic oscillator, driven at frequency
w. (I assume that the much more massive nuclei remain at rest.)

Equation 9.154 is easier to handle if we regard it as the real part of a complex equation:

d°F  di .. q . .
F—Fyd—t—}—wox:ZEoe e (9.155)

In the steady state, the system oscillates at the driving frequency:

F(r) = Fpe ', (9.156)
Inserting this into Eq. 9.155, we obtain

. q/m
Xp = 2 _

—————Ey. (9.157)
Wy —w* —iyw

The dipole moment is the real part of
p(t) = qi(t) = ——————Ege ", (9.158)

The imaginary term in the denominator means that p is out of phase with E—lagging
behind by an angle tan~! [y w/ (a)% — w?)] that is very small when w < wp and rises to
when w > wy.

In general, differently situated electrons within a given molecule experience different
natural frequencies and damping coefficients. Let’s say there are f ; electrons with frequency
w; and damping y; in each molecule. If there are N molecules per unit volume, the
polarization P is given by'> the real part of

. Ng? ; s
P=—1 (Y J;f : E. (9.159)
m F a)j—a) —lyjw

Now, I defined the electric susceptibility as the proportionality constant between P and E
(specifically, P = €g x.E). In the present case P is not proportional to E (this is not, strictly
speaking, a linear medium) because of the difference in phase. However, the complex
polarization P is proportional to the complex field E, and this suggests that we introduce a
complex susceptibility, ¥.:

P = ¢ox.E. (9.160)

5 This applies directly to the case of a dilute gas; for denser materials the theory is modified slightly, in accordance
with the Clausius-Mossotti equation (Prob. 4.38). By the way, don’t confuse the “polarization” of a medium, P,
with the “polarization” of a wave—same word, but two completely unrelated meanings.
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All of the manipulations we went through before carry over, on the understanding that the
physical polarization is the real part of P, just as the physical field is the real part of E. In
particular, the proportionality between D and E is the complex permittivity ¢ = e (14 %.),
and the complex dielectric constant (in this model) is

Na? .
AL i o R/ E— (9.161)
meg I a)j—a)z—zij

Ordinarily, the imaginary term is negligible; however, when w is very close to one of the
resonant frequencies (w;) it plays an important role, as we shall see.
In a dispersive medium the wave equation for a given frequency reads

se . O°E
it admits plane wave solutions, as before,
(. 1) = Boelke—en (9.163)

with the complex wave number
‘ k= eéupw. (9.164)
Writing £ in terms of its real and imaginary parts,

k=k+ix, (9.165)

Eq. 9.163 becomes ~ 5 '
E(z, 1) = Ege ¥t kz—0t), (9.166)

Evidently the wave is attenuated (this is hardly surprising, since the damping absorbs
energy). Because the intensity is proportional to E2 (and hence to e ~2¢%), the quantity

o =2 (9.167)

is called the absorption coefficient. Meanwhile, the wave velocity is w/k, and the index
of refraction is .
C

w

Thave deliberately used notation reminiscent of Sect. 9.4.1. However, in the present case
k and « have nothing to do with conductivity; rather, they are determined by the parameters
of our damped harmonic oscillator. For gases, the second term in Eq. 9.161 is small, and
we can approximate the square root (Eq. 9.164) by the first term in the binomial expansion.
VI+eZ 1+ Le Then

- Ng? .
P=25 =14+ 24 fi , (9.169)
c c 2meg F a)? —a)z—iyja)
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Figure 9.22

SO

ck Ng? fj(w? - o?)
=—=1 , 9.170
n=— + Ime Z (a)? — o2 ijwz ( )
J
and ) 5
N LAz
a=2% = L2 137 9.171)

mege 4 (w? —w?)? + yj.2w2'

In Fig. 9.22 T have plotted the index of refraction and the absorption coefficient in the
vicinity of one of the resonances. Most of the time the index of refraction rises gradually with
increasing frequency, consistent with our experience from optics (Fig. 9.19). However, in
the immediate neighborhood of a resonance the index of refraction drops sharply. Because
this behavior is atypical, it is called anomalous dispersion. Notice that the region of
anomalous dispersion (w] < @ < w;, in the figure) coincides with the region of maximum
absorption; in fact, the material may be practically opaque in this frequency range. The
reason is that we are now driving the electrons at their “favorite” frequency; the amplitude
of their oscillation is relatively large, and a correspondingly large amount of energy is
dissipated by the damping mechanism.

InFig. 9.22, n runs below 1 above the resonance, suggesting that the wave speed exceeds
c. As I mentioned earlier, this is no cause for alarm, since energy does not travel at the
wave velocity but rather at the group velocity (see Prob. 9.25). Moreover, the graph does
not include the contributions of other terms in the sum, which add a relatively constant
“background” that, in some cases, keeps # > 1 on both sides of the resonance.
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If you agree to stay away from the resonances, the damping can be ignored, and the
formula for the index of refraction simplifies:

Ng? ;
P AL iy (9.172)
J J

2m€0 ; a).—a)z'

For most substances the natural frequencies w; are scattered all over the spectrum in a rather
chaotic fashion. But for transparent materials, the nearest significant resonances typically
lie in the ultraviolet, so that @ < w;. In that case

-1
1 1 (1 a)2> ! (1+w2>
2_.2- 2\ T3 =2 PN
w; —w w; OF Ok w;

and Eq. 9.172 takes the form

Ng* j 2 N¢* — fi
=1 = | + — 1. 9.173
" + 2m€0 Z a)z. @ 2m€0 Z 0)4 ( )
J J J J
Or, in terms of the wavelength in vacuum (A = 27 c/w):
B
n=1+A(1+5). (9.174)

This is known as Cauchy’s formula; the constant A is called the coefficient of refraction
and B is called the coefficient of dispersion. Cauchy’s equation applies reasonably well
to most gases, in the optical region.

What I have described in this section is certainly not the complete story of dispersion in
nonconducting media. Nevertheless, it does indicate how the damped harmonic motion of
electrons can account for the frequency dependence of the index of refraction, and it explains
why n is ordinarily a slowly increasing function of w, with occasional “anomalous” regions
where it precipitously drops.

Pioblem 9.22

(a) Shallow water is nondispersive; the waves travel at a speed that is proportional to the
square root of the depth. In deep water, however, the waves can’t “feel” all the way down to
the bottom—they behave as though the depth were proportional to A. (Actually, the distinction
between “shallow” and “deep” itself depends on the wavelength: If the depth is less than A
the water is “shallow”; if it is substantially greater than A the water is “deep.”) Show that the
wave velocity of deep water waves is fwice the group velocity.

(b) In quantum mechanics, a free particle of mass m traveling in the x direction is described
by the wave function

W(x,t) = A (PX—ED/R,
where p is the momentum, and E = p2/2m is the kinetic energy. Calculate the group velocity
and the wave velocity. Which one corresponds to the classical speed of the particle? Note that
the wave velocity is half the group velocity.
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Problem 9.23 If you take the model in Ex. 4.1 at face value, what natural frequency do you get?
Put in the actual numbers. Where, in the electromagnetic spectrum, does this lic, assuming
the radius of the atom is 0.5 A? Find the coefficients of refraction and dispersion and compare
them with those for hydrogen at 0°C and atmospheric pressure: A = 1.36 x 1074, B =
7.7 x 10~ m?2,

Problem 9.24 Find the width of the anomalous dispersion region for the case of a single
resonance at frequency wg. Assume y < wg. Show that the index of refraction assumes its
maximum and minimum values at points where the absorption coefficient is at half-maximum.

Problem 9.25 Assuming negligible damping (y j = 0), calculate the group velocity (v, =
dw/dk) of the waves described by Eqs. 9.166 and 9.169. Show that vg < ¢,evenwhenv > c.

9.5 Guided Waves
9.5.1 Wave Guides

So far, we have dealt with plane waves of infinite extent; now we consider electromagnetic
waves confined to the interior of a hollow pipe, or wave guide (Fig. 9.23). We’ll assume
the wave guide is a perfect conductor, so that E = 0 and B = 0 inside the material itself,
and hence the boundary conditions at the inner wall are!®

(i) El=o0,
9.175
(i) Bt =0. o

Figure 9.23

165¢e Eq. 9.139 and Prob. 7.42. In a perfect conductor E = 0, and hence (by Faraday’s law) 8B/3: = 0;
assuming the magnetic field started out zero, then, it will remain so.
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Free charges and currents will be induced on the surface in such a way as to enforce these
constraints. We are interested in monochromatic waves that propagate down the tube, so E
and B have the generic form

() E(x,y,z.1) = Eo(x, y)e' ko0,
(9.176)
(i) B(x,y,z, 1) = Bg(x, y)e! ke,

(For the cases of interest k is real, so I shall dispense with the tilde.) The electric and
magnetic fields must, of course, satisfy Maxwell’s equations, in the interior of the wave
guide:

oB
(i) V-E=0, (i) Vsz_E,
(9.177)
1 OE
(i) v-B=0, (i) VXBzc_ZE‘

The problem, then, is to find functions Ey and By such that the fields (9.176) obey the
differential equations (9.177), subject to boundary conditions (9.175).

As we shall soon see, confined waves are not (in general) transverse; in order to fit the
boundary conditions we shall have to include longitudinal components (E, and B,):1”

Eo=E. X +E,§+E.2, By=B.%+B,§+ B, %, (9.178)

where each of the components is a function of x and y. Putting this into Maxwell’s equations
(iii) and (iv), we obtain (Prob. 9.26a)

IE, OE, 0B, 9B,  iw

: — B . Py —_
(1) ax ay 1w < (IV) ax ay 02 el
aE aB '
(ii) ByZ —ikEy = iwBy, (V) _B_yz —ikBy = —IC%)EX, » (9.179)
IE 9B j
(i) ikE,— == =iwB,, (Vi) ikBy— == =—"2F,.
X : dx 2

17T avoid cumbersome notation I shall leave the subscript 0 and the tilde off the individual components.
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Equations (ii), (iii), (v), and (vi) can be solved for E,, Ey, By, and By:

0 E=— (k% 95
T (w/e) k2 ox dy )
3 i 9E, OB,
-_—-———- k——— _— ,
@ £ @ycﬂ-—kZ( 3y ‘”ax>
(9.180)
i B wdE
B = ( ox 2 ay >
i 3B, wdE
v By=— L (2B @
@) y(MN—W(8y+ﬂM>

It suffices, then, to determine the longitudinal components £, and B.; if we knew those,
we could quickly calculate all the others, just by differentiating. Inserting Eq. 9.180 into
the remaining Maxwell equations (Prob. 9.26b) yields uncoupled equations for E, and B,:

: ¥ 92 5
® l:@—ka—yz-l-(w/c) —k }EZ—O,
(9.181)
®[£+ﬁﬂwﬂﬁﬁ=o
ax2 " 9y? T
If E; = 0 we call these TE (“transverse electric”) waves; if B, = 0 they are called TM
(“transverse magnetic”) waves; if both E, = 0 and B, = 0, we call them TEM waves '8
It turns out that TEM waves cannot occur in a hollow wave guide.

Proof: If £, = 0, Gauss’s law (Eq. 9.177i) says

0B, OE,

dx dy
and if B, = 0, Faraday’s law (Eq. 9.177iii) says
% — 2 =0.

dx dy

Indeed, the vector Eq in Eq. 9.178 has zero divergence and zero curl. It can
therefore be written as the gradient of a scalar potential that satisfies Laplace’s
equation. But the boundary condition on E (Eq. 9.175) requires that the surface
be an equipotential, and since Laplace’s equation admits no local maxima or
minima (Sect. 3.1.4), this means that the potential is constant throughout, and
hence the electric field is zero—no wave at all. ged

1810 the case of TEM waves (including the unconfined plane waves of Sect. 9.2), k = w/c, Egs. 9.180 are
indeterminate, and you have to go back to Egs. 9.179.
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Notice that this argument applies only to a completely empty pipe—if you run a separate
conductor down the middle, the potential at its surface need not be the same as on the outer
wall, and hence a nontrivial potential is possible. We’ll see an example of this in Sect. 9.5.3.

Problem 9.26
(a) Derive Egs. 9.179, and from these obtain Egs. 9.180.

(b) Put Eq. 9.180 into Maxwell’s equations (i) and (ii) to obtain Eq. 9.181. Check that you get
the same results using (i) and (iv) of Eq. 9.179.

9.5.2 TE Waves in a Rectangular Wave Guide

Suppose we have a wave guide of rectangular shape (Fig. 9.24), with height a and width b,
and we are interested in the propagation of TE waves. The problem is to solve Eq. 9.181ii,
subject to the boundary condition 9.175ii. We’ll do it by separation of variables. Let

B (x,y) = X(x)Y(y),

so that
d’x d?y

Y—+X—
dx2+ dy?

+ [(w/c)* —k*1XY = 0.

Divide by XY and note that the x- and y-dependent terms must be constant:

L 1d*x o ld%y
i) 577 = —k2, (i) FaE = —k2, (9.182)
with
—k2 = k5 + (w/c)* — k* = 0. (9.183)
X

Figure 9.24
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The general solution to Eq. 9.182i is
X (x) = Asin (kyx) + Bcos (kyx).

But the boundary conditions require that By-—and hence also (Eq. 9.180iii) d X /dx—
vanishes atx =0and x =a. So A =0, and

ky=mnfa, (m=0,1,2,...). (9.184)
The same goes for ¥, with
ky=nm/b, n=0,1,2,..), (9.185)
and we conclude that
B, = Bycos (mmx/a) cos (nmy/b). (9.186)

This solution is called the TE,,,, mode. (The first index is conventionally associated
with the larger dimension, so we assume a > b. By the way, at least one of the indices
must be nonzero—see Prob. 9.27.) The wave number (k) is obtained by putting Egs. 9.184
and 9.185 into Eq. 9.183:

k= @/c? — x2m/a)? + (n/b). 9.187)

w < ¢/ (m/a)? + (n/b)? = wpp, (9.188)

the wave number is imaginary, and instead of a traveling wave we have exponentially
attenuated fields (Eq. 9.176). For this reason w,,, is called the cutoff frequeney for the
mode in question. The lowest cutoff frequency for a given wave guide occurs for the mode
TEo:

If

wig = cr/a. (9.189)

Frequencies less than this will not propagate at all.
The wave number can be written more simply in terms of the cutoff frequency:

k=-Jw? -2, . (9.190)

The wave velocity is
v=2_-__° (9.191)

k V1-— (wmn/w)z’

which is greater than ¢. However (see Prob. 9.29), the energy carried by the wave travels
at the group velocity (Eq. 9.150):

1
Vg = dkjdw =¢\/1 = (Wmn/w)? < c. (9.192)
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‘ Ve

Wave fronts

Figure 9.25

There’s another way to visualize the propagation of an electromagnetic wave in a rect-
angular pipe, and it serves to illuminate many of these results. Consider an ordinary plane
wave, traveling at an angle ¢ to the z axis, and reflecting perfectly off each conducting
surface (Fig. 9.25). In the x and y directions the (multiply reflected) waves interfere to
form standing wave patterns, of wavelength A, = 2a/m and Ay = 2b/n (hence wave num-
ber ky = 2w /Ay = wm/a and k, = 7n/b), respectively. Meanwhile, in the z direction
there remains a traveling wave, with wave number k, = k. The propagation vector for the
“original” plane wave is therefore

and the frequency is

@ = clK| = /K2 + w200m/a)? + (n/bY) = /() + (.

Only certain angles will lead to one of the allowed standing wave patterns:

Ilf’l =1 — (Wmn/w)?.

The plane wave travels at speed ¢, but because it is going at an angle 6 to the z axis, its net
velocity down the wave guide is

Vg = ¢ 0086 = cy/ 1 — (0n /).

The wave velocity, on the other hand, is the speed of the wave fronts (A, say, in Fig. 9.25)
down the pipe. Like the intersection of a line of breakers with the beach, they can move
much faster than the waves themselves—in fact

cosf =

c c

vV = = .
086 /1 = (wmn/w)?)
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Problem 9.27 Show that the mode TEqg cannot occur in a rectangular wave guide. [Hint: In
this case w/c = k, so Eqgs. 9.180 are indeterminate, and you must go back to 9.179. Show that
B; is a constant, and hence—applying Faraday’s law in integral form to a cross section—that
B; =0, so this would be a TEM mode.]

Problem 9.28 Consider a rectangular wave guide with dimensions 2.28 cm x 1.01 cm. What
TE modes will propagate in this wave guide, if the driving frequency is 1.70 x 1010 Hz?
Suppose you wanted to excite only one TE mode; what range of frequencies could you use?
What are the corresponding wavelengths (in open space)?

Problem 9.29 Confirm that the energy in the TE,,;, mode travels at the group velocity. [Hint:
Find the time averaged Poynting vector (S) and the energy density (#) (use Prob. 9.11 if you
wish). Integrate over the cross section of the wave guide to get the energy per unit time and
per unit length carried by the wave, and take their ratio.]

Problem 9.30 Work out the theory of TM modes for a rectangular wave guide. In particular,
find the longitudinal electric field, the cutoff frequencies, and the wave and group velocities.
Find the ratio of the lowest TM cutoff frequency to the lowest TE cutoff frequency, for a given
wave guide. [Caution: What is the lowest TM mode?]

9.5.3 The Coaxial Transmission Line

In Sect. 9.5.1, I showed that a hollow wave guide cannot support TEM waves. But a coaxial
transmission line, consisting of a long straight wire of radius a, surrounded by a cylindrical
conducting sheath of radius b (Fig. 9.26), does admit modes with £, = 0 and B, = 0. In
this case Maxwell’s equations (in the form 9.179) yield

(so the waves travel at speed ¢, and are nondispersive),
cBy=E; and c¢B,=—E, (9.194)
(so E and B are mutually perpendicular), and (together with V- E =0, V - B = 0):
%_{_%:0, aﬂ_aE" =0,
ax ay dax ay
(9.195)
OB | 0By 0B, 0B _,
ox dy ox dy

Figure 9.26
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These are precisely the equations of electrostatics and magnetostatics, for empty space, in
two dimensions; the solution with cylindrical symmetry can be borrowed directly from the
case of an infinite line charge and an infinite straight current, respectively:

A A A A
Eo(s, ¢) = i Bo(s, ¢) = E'p’ (9.196)

for some constant A. Substituting these into Eq. 9.176, and taking the real part:
Acos(kz —wt)
s, p.2.1) = Scoskz =) o
S

(9.197)
Acos (kz — wt) q3

cs

B(s,¢,z,t) =

Problem 9.31

(a) Show directly that Eqs. 9.197 satisfy Maxwell’s equations (9.177) and the boundary con-
ditions 9.175.

(b) Find the charge density, A(z, 7), and the current, I (z, t), on the inner conductor.

More Problems on Chapter 9

! Problem 9.32 The “inversion theorem” for Fourier transforms states that

- o0 . - 1 o0 - .
) = / bk dk = D)= / $@e ke dz, 9.198)
00 27 J—oo

Use this to determine A(k), in Eq. 9.20, in terms of f(z, 0) and f(z, 0).
[Answer: (1/27) [S21f(z.0) + (i/w) £z, 0)]e =2 dz]

Problem 9.33 Suppose
ing )
E(r, 8,0, 1) = A" [cos (kr — wt) — (1/kr)sin (kr — w1)] . with Z=e
r
(This is, incidentally, the simplest possible spherical wave. For notational convenience, let

(kr — wt) = u in your calculations.)

(a) Show that E obeys all four of Maxwell’s equations, in vacuum, and find the associated
magnetic field.

(b) Calculate the Poynting vector. Average S over a full cycle to get the intensity vector I.
(Does it point in the expected direction? Does it fall off like r—2, as it should?)

(c) Integrate I - da over a spherical surface to determine the total power radiated. [Answer:
47 A2 3pgc]
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Problem 9.34 Light of (angular) frequency w passes from medium 1, through a slab (thickness
d) of medium 2, and into medium 3 (for instance, from water through glass into air, as in
Fig. 9.27). Show that the transmission coefficient for normal incidence is given by

2 2,2 _ 2
l:(nl + n3)2 + 4 nz);n3 ny) sin? (nzwd):| . (9.199)
ns ¢

—1
T7 =
4nn3

[Hint: To the left, there is an incident wave and a reflected wave; to the right, there is a
transmitted wave; inside the slab there is a wave going to the right and a wave going to the
left. Express each of these in terms of its complex amplitude, and relate the amplitudes by
imposing suitable boundary conditions at the two interfaces. All three media are linear and
homogeneous; assume () = pp = Uz = o]

X A

~nyY

Water Glass Air

Figure 9.27

Problem 9.35 A microwave antenna radiating at 10 GHz is to be protected from the environment
by a plastic shield of dielectric constant 2.5. What is the minimum thickness of this shielding
that will allow perfect transmission (assuming normal incidence)? [Hint: use Eq. 9.199]

Problem 9.36 Light from an aquarium (Fig. 9.27) goes from water (n = %) through a plane
of glass (n = %) into air (n = 1). Assuming it’s a monochromatic plane wave and that it
strikes the glass at normal incidence, find the minimum and maximum transmission coefficients
(Eq. 9.199). You can see the fish clearly; how well can it see you?

Problem 9.37 According to Snell’s law, when light passes from an optically dense medium into
a less dense one (n| > ny) the propagation vector k bends away from the normal (Fig. 9.28).
In particular, if the light is incident at the critical angle

6 =sin"Lna/ny), (9.200)

then 67 = 90°, and the transmitted ray just grazes the surface. If 8; exceeds 6., there is no
refracted ray at all, only a reflected one (this is the phenomenon of total internal reflection,
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kr

6, Zz

OR®

Figure 9.28

on which light pipes and fiber optics are based). But the fields are not zero in medium 2; what
we get is a so-called evanescent wave, which is rapidly attenuated and transports no energy
into medium 2.19
A quick way to construct the evanescent wave is simply to quote the results of Sect. 9.3.3.
with k7 = wny /c and
kr = ky(sin 07 X + cos 67 7);
the only change is that

. ny o,
sinfy = — sinéy
ny
is now greater than 1, and

cosfr = \/1 —sin® oy = i\/sin2c97 ~1
is imaginary. (Obviously, 87 can no longer be interpreted as an angle!)
(a) Show that N _
Er(r,1) = o e e kx—on), (9.201)

where

w U

k=—Jnsin6)2 —nd and k=Ling,. (9.202)
C

C
This is a wave propagating in the x direction (parallel to the interface!), and attenuated in the
z direction,

(b) Noting that & (Eq. 9.108) is now imaginary, use Eq. 9.109 to calculate the reflection
coefficient for polarization parallel to the plane of incidence. [Notice that you get 100%
reflection, which is better than at a conducting surface (see, for example, Prob. 9.21).]

(¢) Do the same for polarization perpendicular to the plane of incidence (use the results of
Prob. 9.16).

19The evanescent fields can be detected by placing a second interface a short distance to the right of the first: in
a close analog to quantum mechanical tunneling, the wave crosses the gap and reassembles to the right. See F.
Albiol, S. Navas, and M. V. Andres, Am. J. Phys. 61, 165 (1993).
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(d) In the case of polarization perpendicular to the plane of incidence, show that the (real)
evanescent fields are
E(r,t) = Ege *? cos(kx — ot) ¥,

E 9.203)
B(r,t) = 20wz [K sin(kx — wt) X + kcos(kx — wt) i] .
®

(e) Check that the fields in (d) satisfy all of Maxwell’s equations (9.67).

(f) For the fields in (d), construct the Poynting vector, and show that, on average, no energy is
transmitted in the z direction.

Problem 9.38 Consider the resonant cavity produced by closing off the two ends of a rect-
angular wave guide, at 7 = 0 and at z = d, making a perfectly conducting empty box. Show
that the resonant frequencies for both TE and TM modes are given by

Olmn = cn\/ (1/d)? + (m/a)? + (n/b)?, (9.204)

for integers /, m, and n. Find the associated electric and magnetic fields.




