466 (°C)

Total No. of Questions: 24 Total No. of Printed Pages: 4

			_			_
Donal				45.23		
Regd.			4727	1000		
0			100	14300		
No.			1 1		1000	
INO.				- 1		

Part-III

MATHEMATICS, Paper - II(A)

(English version)

Time: 3 Hours]

[Max. Marks: 75

Note: This question paper containsthree Sections A, B and C.

SECTION - A

 $10 \times 2 = 20$

- I. Very short answer type questions.
 - Answer all questions.
 - (ii) Each question carries TWO marks.
 - 1. Find the extreme value of the Quadratic expression $2x 7 5x^2$. Also state whether 3 is maximum or minimum with reason.
 - 2. If 1, 1, α are the roots of the equation $x^3 6x^2 + 9x 4 = 0$, then find the value of α .
 - 3. If $A = \begin{bmatrix} 2 & 4 \\ -1 & k \end{bmatrix}$ and $A^2 = O$ (null matrix), then find the value of k.
 - 4. Find the adjoint matrix and inverse matrix

of the matrix
$$\begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

- 5. Find the number of ways of permuting the letters of the word PICTURE so that all the vowels come together.
- 6. Find the number of ways of forming a committee of 5 members from 6 men and 3 women.
- 7. If $^{22}C_r$ is the largest binomial coefficient in the expansion of $(1+x)^{22}$, find the value of $^{13}C_r$.
- 8. Find the sum of the infinite series $1 + \frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \dots$
- 9. When two dice are thrown, the sum on the two dice happened to be 7.
 Find the probability that none of the dice shows a number 2.
- The mean and variance of a Binomial distribution is 4 and 3 respectively.
 Find its parameters.

SECTION - B

 $5 \times 4 = 20$

- II. Short answer type questions.
 - (i) Attempt ANY FIVE questions.
 - (ii) Each question carries FOUR marks.
 - 11. Find the range of the expression $\frac{x^2 + x + 1}{x^2 x + 1}$
 - 12. If $A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$, then find A^{-1} .
 - 13. Find the sum of all four digit numbers that can be formed using the digits 1, 3, 5, 7, 9.

14. If
$$1 \le r \le n$$
, then prove that ${}^n\mathbf{C}_r + {}^n\mathbf{C}_{r-1} = {}^{n+1}\mathbf{C}_r$.

15. Resolve
$$\frac{1}{(x-1)^2(x-2)}$$
 into partial fractions.

16. Find the sum of the infinite series

$$\frac{4}{1!} + \frac{11}{2!} + \frac{22}{3!} + \frac{37}{4!} + \frac{56}{5!} + \dots$$

17. Three boxes B1, B2, B3 contain balls with different colours as follows.

190	White	Black	Red		
B_1	2	1	2		
B_2	3	. 2/	4		
B ₃	4	3	2		

A dice is thrown. If 1 or 2 turns up on the dice, box B_1 is selected; if 3 or 4 turns up, B_2 is selected; if 5 or 6 turns up, then B_3 is selected. If a box is selected like this, a ball is drawn from that box. If the ball is red, then find the probability that it was drawn from B_2 .

SECTION - C

 $5 \times 7 = 35$

III. Long answer type questions.

- (i) Attempt ANY FIVE questions.
- (ii) Each question carries SEVEN marks.
- 18. If the equation $x^4 + 4x^3 2x^2 12x + 9 = 0$ has two pairs of equal roots, find the roots of the equation.

$$9. \quad 3x + 4y + 5z = 18, \quad 2x - y + 8z = 13, \quad 5x - 2y + 7z = 20.$$

Solve the above system of equations by Cramer's method.

20. Prove that

$$\begin{bmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{bmatrix} = (a+b+c)^3$$

21. Prove that

$$C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \frac{C_3}{4} + \dots + \frac{C_n}{n+1} = \frac{2^{n+1}-1}{(n+1)}$$

22. Find the sum of the infinite series

$$1 + \frac{1}{3} + \frac{1 \cdot 3}{3 \cdot 6} + \frac{1 \cdot 3 \cdot 5}{3 \cdot 6 \cdot 9} + \dots$$

- 23. In a race, 3 horses A, B, C are participating. The probability of A winning is twice the probability of B. The probability of winning B is twice the probability of winning C. Then find the probabilities of winning A, B and C.
- **24.** The range of a random variable X is $\{0, 1, 2\}$.

Given that $P(X = 0) = 3c^3$; $P(X = 1) = 4c - 10 c^2$; P(X = 2) = 5c - 1, then (i) find the value of c,

(ii) P(X < 1), (iii) $P(1 < X \le 2)$, and (iv) $P(0 < X \le 3)$.