In the first quadrant, y > 0

-b [> > B
Y= ava —x
a 4
I:J% a2 — 52 dx Figure 4.14
0
b [x[2" 244 —lx]
a [2 a —x +T
2
=§[(%xo+%sm—11)—(o+0)]
b [ 48] -5
a 2
Required area = 4 X === ﬂ:ab = Ttab

4
v

Remain : If we consider x2 + )2
102 for area of a circle.

=r2

in this question then we get well known formula

Exercise 4.1

Find the area bounded by the parabola y = x2 + 2, X-axis and the lines x = 1 and x = 2.
Find the area bounded by the parabola y = x> — 4, the X-axis and the lines x = —1 and x = 2.

,/x —1, the Y-axis and the lines y = 1 and

1.
2.
3.  What is the area bounded by the parabola y = x2 and the lines x = —2 and x = 1 2
4. Find the area of the region bounded by the curve y =
y =5
5. Find the area bounded by the X-axis the parabola y = —x2 + 4.
6. Find the area bounded by the curve y = 9 — x2 and the X-axis.
7. Find the area enclosed by the circle x2 + 12 = 42,
8.

4.3 Area Between Two Curves

In this section, we will find the area of
the region bounded by a line and a circle,
a line and a parabola, a line and an ellipse,
a circle and a parabola, two circles etc.

Let us try to get intuitive idea of how
area between two intersecting curves may
be obtained. As discussed earlier, area of the
region bounded by y = fi(x), x = a, x = b

*k

Find the area of the region bounded by the parabola y = xZ and the line y = 4.

Y= (x)

A

Figure4.15
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and X-axis is given by A = |1, | where I, = ljzfl(x) dx. 1
a y=£(x)
Here, I, =2 0 as we have assumed that fj(x) = 0.
(See figure 4.15)
As shown in figure 4.16 area of the region
bounded by y = £5,(x), x = a, x = b and X-axis is given 5 L 4 > X
v

b
by A, = |1, where I, = J SH(x) dx.

a

Since f5,(x) 2 0 we have I, 2 0. Y

Figure 4.16

If two curves y = fi(x) and y = f5(x) intersect
each other at only two points for which their
x-coordinates are a and b (a # b), then the area

enclosed by them is given by
A = [T]

b b o
where 1 =1, — I, = ifl(x) dx — (_[fz(x) dx Figure 4.17
b Y
= [ (/i) — fox) dx 1
@ d
If two curves x = g,(y) and x = g,(y) intersect =)
each other at only two points for which their r=g,()
y-coordinates are ¢ and d (¢ # d) then the area
enclosed by them is given by A = |1].
¢
d
where I = | g0 — g0)) dy. e X
c v
Here we have assumed that g,(y) = 0, g,(») = 0. Figure4.18
Y
Y=/ () y=£ )
< o » X

Figure 4.19

If the curves intersect once within the region being considered then as shown in the figure 4.19,

the interval of integration will have to be split up. Suppose we wish to find the area between the curves
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y = fi(x) and y = f,(x) and the lines x = @ and x = b. Suppose that the curves intersect each other at

some point ¢ between a and b then A = [I, | + |1, |.

c b
where 1, = [ (fi(x) — ) dx, 1, = [ (fi(x) = fo(x)) dx

2
Example 5 : Find the smaller of the two areas enclosed between the ellipse % +

e X Y
11nea+b 1.

Solution : The given line is % +

|
I
—_

) v

RN
»
>

and the ellipse is &5 + Zz I (i) B(0, b)

Clearly, the line intersects the ellipse at

2

Z]—Z = 1 and the

A(a, 0) and B(0, »). The required area is X'« 5 x > X
shown as in the figure 4.20 as coloured region. \ ‘/A\(; 0)

For the ellipse y = %"az — x2 (First quadrant)
v

Now, area of AAOB = %OA . OB Y
Figure 4.20

= Lab (iii)

Also, area enclosed by the ellipse in the first quadrant is

a a b
Jydx = | o a’ — x? dx
0 0
- Q[i 2_ 2 4 4y li]a
al?2 a X 0
] [a sin~1 1] = —TCZ (iv)
By (iii) and (iv)
Required area = ‘n%b - %ab‘ = ’ (E—Z)ab‘ = (71:—42)ab as T > 2.
Second Method : Required area = ||
where | = J (fi(x) — £o(x)) dx, where f,(x) = % a®—x% and fy(x) = b (1 — ﬁ)
a
- [[2 _Xx
Bt
~[e(2 [ 2+ i) _ ( _ _)]
[a (2 + L sin~ P b(x 0
2
=[2(0 + & sin! 1) - b(a— %)] — (0)
= Zab _ ab
4 2
141
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_ (m—2)ab
4

Required area = sT > 2.

‘ (n—2)ab‘ _ (m-2)ab
4 4 a

Example 6 : Using integration, find the area of the region bounded by the circle x2 + y2 = 4, line
x — 3 = 0 and X-axis in the first quadrant.

Solution : Here the given curves are x2 + 32 = 4 and x — y/3 = 0.

Substitute y = % inx2 4 )2 =4

Y
A
¥+ X - 4
3
P 1
4x2 =12 (ﬁa )
=+
x=%3 A, Ay
In the first quadrant x = /3 and so y = = = X< > X
q 3 y=5 "1 0 M(/3,0)/A20)
In the first quadrant the point of
intersection of the line and the circle
is P(y/3, 1).
PM L X-axis and M({/3, 0) is the v
Y
foot of the perpendicular.
Figure4.21

Now, area of the sector OPA.
= area of AOPM + Area of the region bounded by the circle x2 + 2 = 4, X-axis and the
lines x = /3 and x = 2.
Required area = A| + A,
A, = Area of AOPM

= 2OM X PM
-1 x1=4 0)
Ay = 1]
2 2
where [ = [ ydx = [ J4_ 2 dx (v > 0 in the first quadrant)
J3 J3

3
_|ln _ Bl _ 3 ..
Ay =|E-B=2- 8 @)

[%>1as7t>3andJ§<2so%<1.80,%—£>0]

2
n_J3
3 2

Required area = % + %
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Second Method : Required area A = ||

1
where 1= | (2,() — g,(") dy. where g,(») = JJ4—,2 and g,(») = V3

=)

_[x 2 4 4 11_£]1
[2 4—y +2sm > 2y20
_ 3 11l _ 3 _H,. m_x1
S otasin 5 -5 =28=3

Required area = %

y= % means y = mx, where m = tan® = ﬁ and O = mZPOM.
So mZPOM = £

:lz :l. .E:E
Area of sector i 0 5 4 - g

We may feel that it is easy to find area using geometry than using calculus. But we have to use

integration to derive formula %rze for area of a sector.

Example 7 : Find the area of the region bounded by the parabola y = x2 and the rays y = | x|.

Solution : Consider the curves y = x2 @) Y
A
and y = | x | (i)
The two curves intersect where x% = | x |

[xPP=1x]|=0 «Z=1xP
[x|[(lx|—1)=0
x=0orx==1

Forx=0,y=0

Forx=x1,y=1

Hence, the two curves intersect at

the points (—1, 1), (0, 0) and (1, 1).
We have to find area of the region enclosed between given curves and is shown as coloured

Figure 4.22

region in the figure 4.22.
As both the curves are symmetrical about Y-axis,

required area A = 2(area of the region in the first quadrant)

1
=2|1| where I = J(fl(x) — /(%)) dx, where fi(x) = | x| and f,(x) = x2
0

I = [ (x| — x?) dx

(x — x2) dx (x| = xin [0, 1])

S = O~
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Required area A = 2 X

1
3

L
6

Example 8 : Find the area of the region bounded by the circle x2 + y2 = % and the parabola x2 = 4y.

Solution : Given circle has equation x2 + y? = T @)
and parabola has equation x2 = 4y (i)
The two curves intersect at points where 4y = % —y? (each x?)

16y = 9 — 4y? v

492 4+ 16y —9 =10 4

2y —DHR2y+9) =0 B

r-gor- c(-2.4) AV

But y € 0, (Why ?) therefore the two

A
v
o

curves intersect when y = =

[\o) (=
O

x2=4y=4><%=

x=iﬁ

The two curves intersect at (—\/5 l) and (\/5 l).

> 2 > 2
Since both the curves are symmetrical about Y-axis, v
required area = 2(Area of region OABO) Figure 4.23
=211
2 2
where I = | (£,(x) — fo(x)) dx, where f,(x) = ‘/%—xz and fy(x) = <.
0
2
= J' ’ x_
0 4
' J2
_[x 2 122 X
=5 + sin~ 3 E]
I > 0
_[+2 [o_ 9. 1(242) _ 22
SNz 2 togsin 3 12 ]
2,90 .-1(22) _
T + 3 Sin 3 T
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Required area A =2 [% + %sin_1 (%)]

2,0 -—1(&)

Tt

Example 9 : Using integration, find the area of the triangular region whose vertices are (4, 1), (6, 6)
and (8, 4).
Solution : Let A(4, 1), B(6, 6) and C(8, 4) be the vertices of a triangle ABC. (See figure 4.24)

Y
A
B(6, 6)
Y C8,4)
A@, 1) 5 :
< : ' > X
(0] L M N
v
Figure 4.24
. < y—1  x—4
The equation of AB is T—7 = c—7
y=1=32@x-4
1 =35,
y—1 =X 10
y = %x -9
L d N d

Similarly, the equation of BC is y = —x + 12 and the equation of AC is y = %x -2

Let L, M, N be the feet of perpendiculars from A, B, C to X-axis respectively.

Now, area of AABC = area of region ALMB + area of region BMNC — area of region ALNC.
= |I1| + |Iz| - |I3|

6

= i(%x— 9)dx + i(—x + 12)dx‘— ijj(%x— 2)a’x
[[2 - o] +‘[_x; s |- [[22 - 2]
- [(%(36) - 54)— (%(16) - 36)] | + | [(—6—24 + 96) - (—376 + 72)”

- | [(%(64) - 16) - (%(16) - 8)]|
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=9+ 16)|+|(64—54)|— |8+ 2)|
=7+ 10—10

Required area = 7

Area of the triangle A = ; |D|
4 1 1
where D =[6 6 1
8 4 1
= 4(2) — 1(=2) + 1(—24) =—14
A=2|-14|=7

Example 10 : Find the area of the region bounded by the circle x2 + y2 — 2ax = 0 and the

parabola y2 = ax, a > 0 in the first quadrant.

Solution : The equation xZ + 2 — 2ax = 0 can

Y
A
be written as (x — a)? + y? = a? which represents
a circle whose centre is (a, 0) and radius is a. A, @)
y2 = ax is a parabola whose vertex is (0, 0)
and its axis is X-axis.
Substituting y? = ax in x2 + y2 — 2ax =0,
< o > X
x2 + ax — 2ax =0 o (a, 0)
x2—ax =0
xx —a)=0 B(a, —a)
x=0orx=a
Since y? = ax, M )
Figure 4.25

y=0ory==%a
Both the curves intersect at O(0, 0), A(a, a) and B(a, —a)

x2 + 3% = 2ax gives y = ‘/2ax—x2 .2 = ax gives y = Jax (as y =2 0)

Required area = |1 |

where T = [ (f,(1) — £()) dv. where £(x) = J2ax— 22 and /@) = Jax.
0
<‘/2ax—x - JE) dx (First quadrant)
(‘/az—(x—a) - \/;\/;) dx
() mar + Lo (54 - ]
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- [_% Ja -a% - %2 sin ! (—1)]

2 3w —38
I =_%a2+M=( )az

4 12

i M-8 ,
Required area = B a

Example 11 : Find the area of the region bounded by the curves y =x2 + 2, y =x, x = 3 and x = 0.
Solution : Here y = x2 + 2
x2 =y — 2, which is a parabola whose vertex is (0, 2) and it opens upwards.

Let us draw a graph of the region bounded by the curves y = x2 + 2, y =x, x = 3 and x = 0.

Required area A = |1 | Y
A
3
where | = I(fl(x) — H(x)) dx, A
0

where f((x) = x2 + 2 and Hx) = x.

3
=J(x2+2—x)a’x

0
3,3)

_ (2 _ x_2]3 ©,2) G,

[ 5 T 2x 7 1o
_ 9 x=0 =3

O v
_ 21
- v
A = % Figure 4.26

Example 12 : Find the area of the region bounded by the curves y = 4 — x%, x = 0, x = 3 and X-axis.
Solution : Here y = 4 — x2

Sox2=4-—y Y
A

x2 = —(y — 4), which is the equation
of a parabola. Tts vertex is (0, 4) and opens (0,4)
downwards. To find its point of intersection
with X-axis, let us take y = 0.

4—x= 3.0)

R o @0

A
v
>~

The points of intersection of the

curve with X-axis are (2, 0) and (=2, 0).

Here, the limits of the region bounded

by the curve and the X-axis are x = 0 and S’

v
x = 3. The curve intersects X-axis at (2, 0)

between (0, 0) and (3, 0). Figure 4.27
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So, A= |1+ ||

2 3
where Il=fydx, 12=Iydx
0 2
: 2 21? 8 _ 16
h=£(4—xﬁh=kx—340=8—§=§-
; 2 2717 8
5=£(4—x)ﬁ=[%w—?42=U2—%—«8—§)
=373 3
i = |16 Il =16 4 7 _-23
Requ1redareaA—|3|+| 3| 3 T 3 3

Example 13 : Find the area bounded by the curve y = cosx between x = 0 and x = 2T.
Solution :
Y

A

A

Figure 4.28

From the figure 4.28, the required area = area of the region OABO + area of the region BCDB
+ area of the region DEFD

T 3T
o 2 2n
Required area = J.cosx dx| + _[ cosx dx| + _[ cosx dx
0 I 3T
2 2
b 3m
= | [sin x] >+ [sin x]T + | [sin x]21t
0 i an
2 2

=0+ [T =D+ ][O —D]

1+2+1=4

Example 14 : Determine the area of the region enclosed by y = sinx, y = cosx, x = % and the

Y-axis.

Solution : First let us draw the graph of the region.

148 MATHEMATICS 12 - IV



A A

y = cosx y =sinx

=
Il
NI

©, 1)

A

T 3
4

v v

Figure 4.29

Now, from the figure it is clearly seen that we have a situation where we will need to evaluate
two integrals to get the area. The point of intersection of y = sinx and y = cosx will be where

sinx = cosx in [0, E].

This gives x = % (Why ?)
The required area A = [1;] + |1, |
I
4
where 1, = f(]rl(x) — /(X)) dx, where f{(x) = cosx and f,(x) = sinx.
0
iy
4
= J(cosx — sinx) dx
0
s
= [sinx + cosx]*
0
= L L fr— = J— 3
[(./5+./§) (0+1)] J2 -1 @)
iy
2
L, = T{(fl(x) — f(x) dx
n
i
2
= I (cosx — sinx) dx
T
o
= [sinx + cosx] ’
o
4
= - (L + L
[ +0) (./5 + ./5)]
=1-42 <0 (i)
|Iz| = \/5 -1
From (i) and (ii) required area A = [I;| + [, | = J2 —1+42 -1 =2(‘/5 -1
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Exercise 4.2

Find the area of the region enclosed by parabola 4y = 3x2 and the line 2y = 3x + 12.

Find the area of the region bounded by curves y = 2x — x? and the line y = —x.

Find the area of the region bounded by the curves f(x) = cosTtx and X-axis where x € [0, 2].
Find the area of the region bounded by the curves f(x) = 4 — x2 and g(x) = xZ — 4.

N AW N -

Find the area of the region bounded by the curves y = x, y = 1 and y = XTZ lying in the
first quadrant.
6. Find the area of the region enclosed by the curves y = x2 + 5x and y = 3 — x% and bounded by
x=—2and x = 0.
Find the area bounded by the curves y = x2, y = 2 — x and above the line y = 1.
Determine the area of the region bounded by y = 2x2 + 10 and y = 4x + 16.
9. Using integration, find the area of the triangular region whose sides lie along the lines y = 2x + 1,
y=3x+ 1 and x = 4.
10. Using integration, find the area of the triangular region formed by (—1, 1), (0, 5) and (3, 2).
11. Find the area of the region in the first quadrant enclosed by the X-axis, the line y = x and the
circle x2 + )2 = 32.
12. Find the area of the region bounded by y = 5 — x% x = 2, x = 3 and X-axis.
Region Represented by Inequalities :
Consider {(x, ») | 0 <y < x2}.
As shown in the figure 4.30, if we consider any point P(x, y) on AB, then y 20 and y < x2,
So if B is any point on the parabola and A is on X-axis such that AB L X-axis then any point
P(x, y) € AB will satisfy 0 < y < 2.
Now, consider {(x, ) | 0 <y <xZ 0<y<x+2, x>0}

Y Y
A A
-
\
s B
P(x, »)
<t > X ;
O A (=2,0) O R A R
v v
Figure 4.30 Figure 4.31

As shown in the figure 4.31, if we consider any point P(x, ¥) on RS, then y = 0, y < x2 and

y < x + 2. Similarly for any point on R'S' also conditions satisfied.

All such points P form a set satisfying given conditions. The region represented by the given
set is coloured in the figure 4.31.
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Miscellaneous Examples :
Example 15 : Find the area of the region : {(x, ) |0 <y <x2 0<y<x+2, 0<x <3}
Solution : Let us first sketch the region whose area is to be found out.

We have 0 < y < x2 @)
0<y<x+2 (i)
0<x<3 (i)

Draw the curve y = x2, a parabola with origin as vertex.

The line y = x + 2 intersects the parabola y = x2, X

where x + 2 = x2

2 _ v _9 =
x> —x—2=0 , /'

x=2)x+1)=0 Yo PQ,4) QG3.5)
x=2,—1
Forx=2,y=4and forx=—1,y =1 0,2) x=3
The points of intersection of y = x2 and M(=1, )
y=Xx + 2 are P(2, 4) and M(—1, l).. | < /_2’0) 5 TR > X
Since 0 < x < 3 the above region is as y=x+2

v

shown as coloured region OPQRSO in figure
Figure 4.32

4.32.
The required area A = area of region OPSO + area of the region SPQRS
The area of the region OPSO is bounded by the curve y = x2, x = 0, x = 2 and X-axis.
The area of the region SPQRS is bounded by y = x + 2, x = 2, x = 3 and X-axis.

T +j@+2ﬁh
[l [se]
5-0)+(5+e)-c+9

:4—
6

Required area

Example 16 : Find the area of the region enclosed by two circles x2 + 2 = 1 and
x—1D%2+32=1.

Solution : Here, x2 + 32 = 1

For points of intersection, 1 — x2 = 1 — (x — 1)2

=2 ==+ 2x—1

=
Il
l\)l»—i

=+ 3

-2

<
I
+
—_
|
=
o
Il
+
._
.J;|.~
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_,/5)

. . . 3
Hence the circles intersect at the points A(%,§) and B(%,T .

A

Figure 4.33
Required area = area of the region OACBO.
Since both the circles are symmetric about X-axis, the required area,
= 2(area of the region OACDO)
= 2[area of the region OADO + area of the region DACD)
The area of the region OADO is bounded by the circle (x — 1) + )2 = 1
1

e, ¥y = J1-¢ x—1)2 (first quadrant), x = 0, x = > and X-axis, while the area of the region

DACD is bounded by the circle x2 + 32 = 1. ie. y = J1— 2, x = %, x = 1 and X-axis.

The required area is sum of the two areas. (Why not | I, | + |1,]| ?)

1
Ji-(x—1)2dx + J 1= dx]
7

1
. L 1
=23 = Dfimmn? + einT 6 - 1)]; +2 [g‘/l_)ﬂ + Lsin lx]%

=2 %(—%)g + %sin_l(—%) -0 — %sin_l(—l)] +

Required area = 2

S =

2 [0 + %sin_1 1—41. ﬁ — lsin_ll]

4 2 2 2
2 E-gr)e(E-£-8)
(F g 8[54

Second Method :

Required area = | I |,
L
2
L= [ (@ —god
B
2
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where gl(y)=‘/1_y2 and g,(») = 1 — J1—-? (Why ?)
L
2
NP
_3
2
L
2
=2J (2‘/1_y2 - 1) dy
0
L
2
[ (=7 -9
0
[y v
42 2 L Lo —1,_ Y]2
4_2 1—y= +5siny 2]0
4B [1-3 LB 4B
_4_T 4 + 2Sln 7 T:I
_4[3 .11 n_ﬁ]: [g_./?
4_T > T X3 T 23— 5
Required area = 2 (ﬂ — ﬁ)
3 4
From figure 4.34, OM = 1 AM=§ Y
Therefore mZAOM = ? \A‘( ;?)
A A,
Area of sector OAC = %(1)2 % = %
_ 1l B y1_ 4B
AreaofAAOM—2><2><2 =
_x _ 3 o) M C(10) > X
£y 6 ) !
Similarly, A, = & — 83 |
- T _ 3 T _ 3
Required area= [(F T) (F T)] !
— 2T _ J3 Figure 4.34
3 2

Exercise 4

1. Find the area of the region bounded by the curve y =

x2 — x — 6 and the X-axis.

2. Find the area of the region bounded by the Y-axis, the line y = 3 and the curve y = xZ + 2 in

the first quadrant.

3. Calculate the area bounded by the curve y = (x — 1)(x — 2) and the X-axis.

4. Find the area of the region bounded by the circle x2 + 2 = 3, line x — y/3 = 0 and the X-axis

in the first quadrant.

5. Determine the area enclosed between the two curves y* =

x+ 1and y? = —x + 1.
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10.
11.
12.
13.

14.

15.
16.
17.

Find the area bounded by the curve x2 = 4y and the line x = 4y — 2.

Find the area lying in the first quadrant enclosed by X-axis, the circle x2 + )2 = 8x and
parabola y? = 4x.

Find the area of the region bounded by the line y = 3x + 2, the X-axis and the lines x = —1
and x = 1.

Prove that the curves y2 = 4x and x* = 4y divide the area of the square bounded by x = 0,
x =4,y =4 and y = 0 into three congruent parts.

Find the area of the region {(x, ) |0 Sy <x2+ 1,0<y<x+1,0<x<2}.
Find the area of the region bounded by the circles x2 + y? = 4 and x% + )2 = 4x.
Find the area of the region enclosed by y* = 8x and x + y = 0.

Using integration, find the area of the region bounded by the curve |x| + |y ]| = 1.

Using integration, find the area of the given region : {(x, ) ‘ lx — 1<y < J5- 421
Find the area of the region enclosed by the parabola 32 = x and the line x + y = 2.

Find the area of the region bounded by y =x2 + 1, y =x, x = 0 and y = 2.

Select a proper option (a), (b), (c) or (d) from given options and write in the box given on

the right so that the statement becomes correct :

(1) The area enclosed by y = x, y = 1, y = 3 and the Y-axis is ...... . ]
(a) 2 (b) 3 (c) 4 @ 2

(2) The area enclosed by the curve y = 2x — x2 and the X-axis is ...... . ]
OF (b) 2 ©) 8 d %

(3) The area enclosed by y = cosx, —% <x < % and the X-axis is ...... . ]
(@1 (b) 4 (©) 2 (d 7

(4) The area bounded by the curve y = sinx, T < x < 270 and the X-axis is ...... . ]
(am (b) 2 (c) 2 (do

(5) The area enclosed by y = x2, the X-axis and the line x = 4 is divided into two
congruent halves by the line x = a. The value of a is ...... . ]
(a) 2 OFE (© 25 (d) 4

(6) The area of the region bounded by the lines x = 2y + 3, y = 1, y = —1 and Y-axis

is ... . ]

(a) 4 (b) 2 (©) 6 () 8
(7) The area bounded by the parabola y? = 4ax and its latus rectum is ...... . ]
4.0 8.2 16 2 320
(a) 3a (b) 34 (©) 3 d (d) 5 a
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(8) Area bounded by the curve y = 2x2, the X-axis and the line x = 1 is ...... . ]
(@) 2 (b) 1 © 1 G
(9) The area bounded by the curve y = x|x|, X-axis and the lines x = —1 and x = 1
is ... ]
1 2 4
(a) 0 ® + © 2 A %
(10) The area bounded by the curves y = cosx, y = sinx, Y-axis and 0 < x < % 1S e ]
@22 -1  ®J2 -1 © V2 +1 @ V2
(11) Area bounded by the line y = 3 — x and the X-axis on the interval [0, 3] is ...... ) ]
@ 2 (b) 4 © 5 @ 4
(12) Area bounded by the curves y = xZ and x = 32 is ...... ]
1 1 1
@ + () 4 © & @ 1
(13) Area bounded by the curve y = sinx bounded by x = 0 and x = 2T is ...... . ]
(@) 1 (b) 2 (© 3 (d) 4
(14) The area bounded by the curve y = 3 cosx, 0 < x < %, y=01is ... . ]
3 1
() 3 (b 1 (© 2 OF
(15) The area under the curve y = cos?x between x = 0 and x = T is ...... . ]
(a) T (b) % (c) 21 d) 2
(16) The area under the curve y = 2Jx bounded by the lines x = 0 and x = 1
is ... ]
4 2 8
(@) (b 2 © 1 OF:
(17) The area bounded by y = 2x — x2 and X-axis is ...... ) ]
1 2 4
(@ % (b 2 © 1 (A %
(18) The area bounded by the curve y = 3x, X-axis and the lines x = 1, x = 3 is ...... o
(a) 3 (b) 6 (c) 12 (d) 36
(19) The area bounded by the curve y = |x — 5|, X-axis and the lines x = =1
is ... . ]
@ 2 (b) Z (© 9 (d) s
(20) The area of the region between the curve y> = 4x and the line x = 3 is ..... . ]
(a) 443 (b) 843 (©) 16v/3 ) 53
@
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Summary

We have studied the following points in this chapter :
1.

The area A of the region bounded by the curve y = f(x), X-axis and the lines x = a, x = b

b
is given by A = |1|, where I = | f(x) dx.

a

The area A of the region bounded by the curve x = g(y), Y-axis and the lines y = ¢, y =d is

d
given by A = |I|, where | = J gy) dy.

©

If the graph of y = f(x) intersects X-axis at (¢, 0) only and a < ¢ < b, then the area of the
region bounded by y = f(x), x = a, x = b and X-axis is given by A = | I, | + | I, |, where

c b
I, = Jf(x) dx, 1, = jf(x) dx.
a C
If the two curves y = f|(x) and y = f,(x) intersect each other at only two points for x = a and

b
x = b (a # b), then the area enclosed by them is given by A =| 1|, where | = J' (f1(x) — /(X)) dx.

a

If the two curves x = g,(v) and x = g,(y) intersect each other at only two points for y = ¢ and

d
y =d (¢ #d), then the area enclosed by them is given by A= | |, where | = J (g0 —g,() dy.

C

BHASKARACHARYA

He was born in a village of Mysore district.
He was the first to give that any number divided by 0 gives infinity.
He has written a lot about zero, surds, permutation and combination.

He wrote, “The hundredth part of the circumference of a circle
seems to be straight. Our earth is a big sphere and that’s why it appears
to be flat.”

He gave the formulae like sin(A + B) = sinA - cosB £+ cosA - sinB
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DIFFERENTIAL EQUATIONS

Mathematics is the art of giving the same name to different things.
— Jules Henri

5.1 Introduction
If y is a function of x, then we denote it as y = f(x). Here x is called an independent variable

and y is called a dependent variable. We have already learnt various methods to find L) or f'(x).

dx
Also we know how to find f using indefinite integration when we are given an equation like
f'(x) = g(x) (Primitive) i.e. % = g(x)
Here the equation % = g(x) contains the variable x and derivative of y w.r.z. x. This type of an

equation is known as a differential equation. We will give a formal definition later.

Differential equations play an important role in the solution of problems of Physics, Chemistry,
Biology, Engineering etc. Here we will study the basic concepts of differential equations, the
solution of a first order - first degree differential equation and also simple applications of differential
equations.

If the function y = f(x) is a differentiable function of x, then its first order derivative

is denoted by %, Y, V' or f'(x). If f'(x) is also a differentiable function of x, then the second order
2
derivative of the function y = f(x) is denoted by %, Yy, ¥" or f"(x). Similarly we may get third

order, fourth order derivatives of the function y = f(x) etc. In general nth order derivative of the

d"y
s Y Y or [, Here, y, = 40, _ ).

function y = f(x) is denoted by the symbols

5.2 Differential Equation

An equation containing an independent variable and a dependent variable and the

derivatives of the dependent variable with respect to the independent variable is called an
ordinary differential equation.

If x is an independent variable, y is a dependent variable depending upon x i.e. y = f(x)

dy d*y d’y

or G(x, y) = 0 and the derivatives of y w.r.t. x are ) W’ e

. then the functional equation

dy d’y d’y d"y
dx, dxz 9 dx3 9°°°9 dxn

F (x, P ) = 0 is called an ordinary differential equation (Derivatives

must occur in this equation)
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. dy . d*y
For instance, (1) —— + y cosx = sinx 2) —= = 2x
1) Z+y @ =3
2
2 ) 4y
3) dx+y X 4) 2y xdx+ 1+(x
3 3
d’y d dy V12 d?
2 Y _ ay _ y
(5) 2x (dxzj + 5y = 2y (6) [1+(dx)] -5
@ J J
dx y _ y | _
(7) e™ + T ky (8) log dx| kx

5.3 Order and Degree of a Differential Equation

Order of the highest order derivative of the dependent variable with respect to the
independent variable occurring in a given differential equation is called the order of
differential equation.

1) d_y + ycosx = sinx

dx
The order of the highest order derivative is 1. So it is a differential equation of order 1.
d’y . dy _
2) 2 e +xa—ex

The order of the highest order derivative is 2. So it is a differential equation of order 2.

a’y2
3) (a) + 6y +x=0.

The order of the highest order derivative is 1. So it is a differential equation of order 1.

6
@) d4y—6(d—y) — 4y = 0.

dx? dx

The order of the highest order derivative is 4. So it is a differential equation of order 4.

d’y _ [dy
() <5 = |F+s

The order of the highest order derivative is 2. So it is a differential equation of order 2.

Degree of a Differential Equation :

When a differential equation is in a polynomial form in derivatives, the highest power of
the highest order derivative occurring in the differential equation is called the degree of
the differential equation.

Obviously to obtain the degree of a differential equation, we should make the equation
free from radicals and fractional powers.

The degree of a differential equation is a positive integer.

dy \’ .
(1) (Ej + 2y = sinx.
In this equation the highest power of the highest order derivative is 2. So the degree of the
differential equation is 2.
@) f;cf +7(jx—y)4 — 4y =0
In this equation the highest power of the highest order derivative is 1. So its degree is 1.
(Why not 4?)
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2
-y Y a
3 x=y—+ 1+(dx)

Convert this equation in a polynomial form in derivatives.

2
d
We get, 02 — 1)(%) - 2xy%+x2— 1=0

In this equation, the power of highest order derivative is 2. So the differential equation has degree 2.

To determine the degree, the differential equation has to be expressed in a polynomial
form. If the differential equation cannot be expressed in a polynomial form in the derivatives, the
degree of the differential equation is not defined.

For example,

d
€)) x% + sin (d_z) = 0 is a given differential equation. Its order is 1 and degree is not

defined because the equation is not in a polynomial form in derivatives.

2 d
2) %y _ lo 2 + y, the order of the equation is 2 and the degree is not defined because

we cannot express this equation in a polynomial form in derivatives.

Example 1 : Obtain the order and degree (if possible) of the following differential equation :

Py | (dyY _ 5 d’y _ 5 dy Y
W G (F] v @ @@

dy ) 4

o d
SRET SRRl @ <23 ($] oo

Y
5) T | T sy + 3x
°y
= and its power is 1.

Solution : (1) The highest order derivative is
The differential equation has order 3 and degree 1.
2

d’y _ sy (dy

?2) el 1+ =

To make it radical free, we cube both the sides.

3
d? 2
L ——
dx dx

This differential equation has order 2 and degree 3.

(3) The highest order derivatives is Zx_y Hence the differential equation has order 1. But we can

not express the differential equation in a polynomial form in derivatives. So the degree

is not defined.

2
(4) The highest order derivative is y and its power is 1, so the differential equation has order

dx*
2 and degree 1.
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2
(5) The highest order derivative is ay and its power is 3, so the differential equation has order

dx’

2 and degree 3.

Exercise 5.1

Obtain the order and degree (if possible) of the following differential equations :

d’y | dy _ dy ¥ _
1. dx2+ 2. x+(aj =Ji+y
2
3. dxz sm(%)+y=0 4. dx:x
d3y d?y N B d?y dy
5. (Xj [de] + xlogy =0 6. F J;
7. (Zi) =0 8. ( ) ( j
3
9. Ziz = 3sin 3x 10. x(f;g) +y(ix—y)5—5y=0
%
5.4 Formation of a Differential Equation
Now let us try to understand a family of curves. Consider the equation x2 + y2 = 72 (i)
and assign different values to r.
If » = 1, then x2+y2=1 X
If » =2, then x2+3)2=4
If =3, then x2+)2=9
If » = 4, then x2 + )2 =16
From the above equations, it is clear that equation =1
(i) represents a family of concentric circles having < \ > X
center at origin and having different radii. y
Now we are interested to find the differential
equation which is satisfied by each member of the
family irrespective of radius. The above equation
has one arbitrary constant. i.e. ». We should find an ¥+ y? =16
equation which is free from 7. v
2 Figure 5.1

Differentiate x2 + 1% = 2 w.rt. x

dy _
So 2x+2ya—0
dy _
dx_o

This is the required differential equation satisfied by all the members of the family of concentric

x+y

circles 2 + 2 = 72 and note that it does not contain arbitrary constant 7.
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Example 2 : Obtain the differential equation of the family of parabolas having vertex at origin and
having Y-axis as axis.

Solution : We know that the equation of the family of parabolas having vertex at origin and axis
along positive direction of Y-axis is x2 = 4by.

Let S(0, ) be the focus of one of these Y

parabolas where b is an arbitrary constant.
Now differentiating both the sides of the
equation x2 = 4by w.rt. x we get, '
2x = 4b Zx—y
3 X
2xy = 4by%
But 4by = x2
d d
24 _ 24 =
x° == 2xy or X P 2xy =0 !
Figure 5.2
X lex_y =2 ¢ x # 0)

This is the differential equation of the given family of parabolas.

If x = 0, then y = 0, since x2 = 4by.

(0, 0) also satisfies x % = .

Example 3 : Obtain the differential equation of family of all the parallel lines represented by
y = 2x + ¢ having slope 2. (c is an arbitrary constant).
Solution : y =2x + ¢ is the given equation of line A
where ¢ is an arbitrary constant.

For distinct values of ¢ we get different lines. All
the lines are parallel to each other.

So, y = 2x + ¢, (c abitrary constant) is a family
of parallel lines. //

Now we shall find an equation not containing the

< > X
arbitrary constant and which is satisfied by all such //

members of the family of parallel lines.

Hence differentiating y = 2x + ¢ with respect

to x.
dy _
e
4
This equation not containing arbitrary constant Figure 5.3

represents the differential equation of family of lines.

Example 4 : Obtain the differential equation of the family of curves y = a sin(x + b), (¢ and b are
arbitrary constants).
Solution : y = a sin(x + b) is a given family curves.

Differentiating w.rt. x, Zx—y = acos(x + b)
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Again differentiating w.7t. x,

2
% = —asin(x + b)
d*y d*y

—_— = — or —= 4+ y = 0 is the differential equation representing the given family.
e Y e y q p g g y

From examples 2 and 3, we can say that the differential equation of a family of curves having one
arbitray constant is of order one. From example 4, we can say that the differential equation of a family
of curves having two arbitrary constants is of order two. From these examples let us understand the
formation of a differential equation as under.

@

(b)

If the family of curves has only one arbitrary constant ¢, then it can be represented by
the equation f(x, y, ¢) = 0. Differentiating above equation w.rt. x, we get a new
functional relation showing relation among x, ), )' and c¢. Let this functional relation be
gx ¥ ¥, ) =0

Now eliminating ¢ from the equations f(x, ¥, ¢) = 0 and g(x, », )', ¢) = 0, we get an equation
F(x, ¥, V') = 0 representing differential equation of the family f(x, ), ¢) = 0.

If the family of curves has two arbitrary constants c¢; and c¢,, then it can be represented
by the equation f(x, ), ¢, ¢,) = 0.

Differentiating w.z.t. x, we get a new functional relation showing relation among x, y, ', ¢,
and c,. Let this functional relation be the equation g(x, y, )'. c¢;, ¢,) = 0 relating
X, ¥, J, ¢; and ¢,. But both arbitrary constants ¢; and ¢, can not be eliminated from only
these two equations. Differentiating equation g(x, 3, ', ¢, ¢;) = 0 again w.rt. x,

the equation A(x, y, ), y", ¢;, ¢,) = 0 is obtained relating x, y, }', »", ¢; and c,.
Now eliminating arbitrary constants ¢; and ¢, from f(x, 3, ¢;, ¢;) = 0 and g(x, », )", ¢}, ¢;) =0

and A(x, y, ), V", ¢, ¢;) = 0 we get an equation F(x, y, )", y") = 0 which represents
the differential equation of given family f(x, y, ¢, ¢,) = 0.

In short differentiating n times, the functional relation f(x, y, ¢, ¢,,..., ¢,) = 0 containing

n arbitrary constants, we get (n + 1) equations including given equation.

Eliminating ¢, ¢,,..., ¢,; we get the differential equation of the given family. Remember

that, if the number of arbitrary constants is 7z, then the order of the differential equation
so obtained is also n.

Example 5 : Obtain the differential equation representing the family of ellipses having focii

on X-axis or Y-axis and centre at the origin.

Solution : We have the equation, Y

2

2
2—2+Z—2=1where,aandb

are arbitrary constant. (a # b) (i)

family of ellipses. > X < \ y > X
Differentiating equation (i) w.rt. x,
2x 2y dy
We get ? + ? T =0

4/

This equation represents a ﬁ
N

N

dy _  p?

ya —?x (ii)

SN\
=7

Figure 5.4(a)

v

Figure 5.4(b)
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Differentiating both the sides of equation (ii) w.rt. x,

2 2
dy) d’y B>
We get, [ = | +y—=-L

Multiply by x on both sides

2 2
d d 2

dx dx* a
2 2
gy dy _ dy N
. [a’x) toxy d Y (using (ii))
2 2
dy d’y dy _
x(ﬁ) T TV T

This is the required differential equation representing the family of ellipses.

There are two arbitrary constants. So we have differentiated twice. The differential
equation is of order 2.

Example 6 : Find the differential equation of the family of circles having centre on X-axis and
radius 1 unit.

Solution : A

|
?

N WGP S

v
Figure 5.4

Here the centres of the circles in the family are on X-axis. Let the centre of a circle
be (a, 0), (¢ € R) and let these circles have radius 1.
. The equation of this family of circles is
x—a’+)y>=1 @)
Differentiating w.r:¢. x,

2(x—a)+2y§x—y=0

(c—a)+y 2 =
=)=y (i)

To remove the arbitrary constant a, substitute the value of (x — @) in equation (i),
dy )2 b}
(Cr &)+

2 d_y 2 2 _ — . . . . . . .
b% ( T +y 1 = 0 is the differential equation of the given family of circles.

There is only one arbitrary constant. So we have differentiated only once. We get first
order differential equation.
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5.5 Solution of a Differential Equation

The solution of a differential equation is a function y = f(x) or functions obtained from
functional relation f(x, y) = 0 which independent of derivatives and shows relation between

variables and satisfies the given differential equation along with all its derivatives.

If for a function y = f(x), defined on some interval, there exist derivatives of f upto
order n and if the function f and its derivatives together satisfy the given differential
equation, then this function y = f(x) is called a solution of given differential equation.

In order that a function y = f(x) is a solution of a given differential equation it is necessary
that some conditions regarding domain and continuity of functions are satisfied. In other
words if solution of a differential equation can be obtained, we discuss how to obtain the
solution under some favourable conditions. We will not discuss the existence of a solution of
a differentiable equation. We will study some methods to obtain the solution, when it exists

and we will not mention the conditions or circumstances under which the solution exists.

Solution of a differential equation :

@ _

e 2. (Example 3) because y = 2x + ¢, satisfies the differential

y = 2x + c is a solution of

. dy
equation I 2.

Let us see another example.
2
y = sinx, x € R is a solution of the differential equation 22 y=0

dx*
because differentiating y = sinx w.rt. x, % = cosx

d’y .

= —sinx = —
dx’ g
d’y

+y=0
T

. . d?
Now y = cosx, x € R is also a solution of Y 4+ y=0.
dx*

Here y = cosx

Differentiating w.rt. x

Zx_y = —sinx

d2

dxz = —cosx = —y
dzy

w0

From the above examples, we say that in general there can be more than one solution of a
differential equation.
General and Particular Solution :

The general solution of a differential equation is a function y = f(x, ¢, ¢35, ¢,) Or

S ys ¢y Cy9eees ¢,) = 0 with arbitrary constants whose number is equal to the order of
the differential equation.
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In general, there are n arbitrary constants in the solution of the differential equation

dy d’y d"y) —o.

F(x, 2 5, W,..., "

This solution is denoted by G(x, y, ¢, ¢;5..., ¢,) = 0 where ¢, ¢,...., ¢, are arbitrary constants.

If we can find definite values of the arbitrary constants occurring in the general solution
of the differential equation under some conditions on the given variables x, y and derivaties
dy d*y
E, ?,u
constants is called a particular solution and the given conditions are called initial conditions
or boundary conditions.

. etc, then the solution of the differential equation with definite values of arbitrary

If a solution other than general solution of a differential equation cannot be obtained
as a particular solution from the general solution, then such a solution of the differential
equation is called a singular solution.

Example 7 : Verify that the function y = A cosx + B sinx, where A and B are arbitrary constants,
2

Y
e +y=0.

is a general solution of the differential equation

Solution : Here y = A cosx + B sinx is the given function.
Differentiating both sides of the equation w.rt. x,
dy _

we get, i —A sinx + B cosx
2
ng = —A cosx — B sinx
d*y
e = —(A cosx + B sinx)
d*y -
dx*
d*y
T +y=0

Therefore, the given function y = A cosx + B sinx is the general solution of the given differential
2

equation d_xg + y =0, because there are two arbitrary constants in this solution of the differential equation.

2
d
Example 8 : Verify that y = cx + % is a solution of the differential equation y Zx—y =X (d—ij + 1,

where ¢ is an arbitrary constant.

Solution : Here y = ¢cx + % (c is an arbitrary constant)

Differentiating w.r:t. x, flx_y =c
. _dy . . _ 1
Substituting ¢ = 7o I the equation y = cx + e

dx
dy dy 2
o) - (F]

Therefore, the function cx + % is a solution of the given differential equation.

d
we get, y = (d—zjx+[d—ly]
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Example 9 : Verify y = cx* is a solution of the differential equation x;lx—y — 4y = 0, where ¢ is

an arbitrary constant.
Solution : Here given relation is y = cx* (i)

Differentiating (i) w.rt. x,

we get Zx_y = 4ex3 (i)
b D _ 4y = x(4cex3) — 4ex?
dx
= 4ext — 4ext
=0
_ 4 . dy _
Hence, y = cx* is a solution of x i 4y = 0.
Example 10 : Verify that y = ax + a? (a is an arbitrary constant) is the general solution of the

2
d d
differential equation (Ey) + x (_dic)) = y. Find a particular solution, when a = 3. Also show that

a singular solution of this differential equation is x2 + 4y = 0.

Solution : Here y = ax + a? (a is an arbitrary constant)

Substituting a = % in y = ax + a%, we get the given differential equation
2 2
_ Ay () (4 dy
e () -(R) %

Because of presence of one arbitary constant y = ax + a2 is the general solution of

aY L (D)
dx + x dx | =V
Now substitute a = 3 in the general solution.

We get y = 3x + 9, which is a particular solution of the given differential equation.

Now consider x2 + 4y = 0

4y = —x?
dy _
4dx_ 2x
@ _ _x
dx 2

&

T in the given differential equation, we get,

Substituting this value of

2
d d 2 2
(Ey) +x (d—i’) =X +x (—%) = — < = . which shows that x> + 4y = 0 satisfies given

differential equation.
Thus x2 + 4y = 0 satisfies the given differential equation. This is a solution of the differential
equation. But this solution cannot be obtained by substituting any value of a in the general solution.
Hence this solution is a singular solution of the differential equation.

General solution represents a family of lines. A singular solution x> + 4y = 0 represents

a parabola.
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10.

11.

12.

5.6

any interval). If we let F(x, y) =

Exercise 5.2

Find the differential equation of all the circles which touch the coordinate axes in the first
quadrant.

Obtain the differential equation representing family of lines y = mx + ¢ (m and c¢ are
arbitrary constant)

Form the differential equation representing family of curves y2 = m(a*> — x%) (m and a are
arbitrary constants).

Find the differential equation of the family of all the circles touching X-axis at the origin.

&

e + 2xy = 4x3 has the solution y = 2(x2 — 1) + ce‘x2, where

Show that the differential equation

c is an arbitrary constant.

2
d
Verify that y2 = 4b(x + b) is a solution of the differential equation y [l - (_y] ] = 2x D

dx dx ”
_ . . . . . .5 d?y dy _
Prove y = a cos(log x) + b sin(log x) is a solution of the differential equation x e +x I +y=0,
where a and b are arbitrary constants.
. . . . o d 2y dy . _ 1
Verify that differential equation (1 — x )W X T 0 has solution y = a cos™'x + b. (where

a and b are arbitrary constants.)

Find the differential equation of the following family of curves, where a and b are arbitrary

constants :

2 2
(1)%+%=1 (2)%+Z—2=1 (3)(y—b)2=4(x—a) (4) y=(ax+%)
(5) y = ax’ 6)y=eX(a+bx) (7)) =ab®— x?)

2
Verify that y = S5sindx is a solution of the differential equation fixf + 16y = 0.

Show that Ax?2 + By? = 1 is the general solution of the differential equation

x [y f;z + (Zx_y)z] =y (%) (A, B are arbitrary constants)
a : : Y 2 dy
Show that y = - + b is a solution of e + i 0.
*

Solution of Differential Equation of First Order and First Degree :

A first order and first degree differential equation is represented by Do F(x, y), x € 1 (Iis

dx
—f(x,y)
g(x,y)

f(x, y)dx + g(x, y)dy = 0 is also another form of first order and first degree differential equation.

The first order and first degree differential equation may not be always solvable but we will discuss

particular forms of these equations which have a general solution.
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Now we shall discuss some methods to solve a first order and first degree differential equation.

(1) Method of Variables Separable : In the differential equation f(x, y)dx + g(x, y)dy = 0
of first order and first degree, if f(x, y) is a function p(x) of x only and g(x, y) is a function

q(») of y only, then the general form of first order and first degree differential equation is

px)dx + q(y)dy = 0. Such an equation is said to be in variable-separable form.

Now J px)dx + j q(¥)dy = ¢ (c is an arbitrary constant) is the general solution.

In the general solution of a differential equation, we can take arbitrary constant in a
form according to our convenience.

Example 11 : Solve the differential equation, x(1 + y*)dx — y(1 + x2)dy = 0.

Solution : Here x(1 + y?)dx = y(1 + x3)dy

1+xx2 dx 1+y 7 dy (Variables Separable form)

2x 2y
2 o = y:
1+ & 1+ y? 4

Integrating on both the sides,

2X 2y
d =J 17)
J1+x2 . 1+ y? Y

log |1+ x2| =1log| 1+ y?| + log ¢ (Instead of c, let log ¢ be the arbitrary constant, ¢ > 0)

1+ x2
log(mj=logc (c > 0) A+x2>0,1+y>0

1+ x2
1+ y?
(A +x2)=c(+)?

This is the general solution and ¢ is an arbitrary positive constant.
dy _

=cC

Example 12 : Solve the differential equation (¢* + ™) yri X — e
. -~ dy _
Solution : Here (&* + ¢ x)a =ef —e™?
et —e*
dy = m dx (Variables Separable)

Integrating on both the sides,

PRI
jdy N Jex+e_x d

y=log|e*+ e+ ¢

which is the required general solution of the given equation.

We may write y = log (¢* + e™) + cas e + e > 0.
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Example 13 : Find the particular solution of the differential equation P y tanx given that y = 1

dx
when x = 0. (y # 0)

Solution : Zx—y = y tanx
ia’y = tanx dx @)
Integrating on both sides of equation (i),

1
we get, | — dy = | tanx dx
g f T =]

log |y| = log | secx | + log | ¢ | (log | ¢ | arbitrary constant)
log |y| = log | c sec x|
y = c secx (i)

This is the general solution.
Substituting y = 1 and x = 0 in equation (ii), we get value of arbitrary constant ¢ which gives
a particular solution
1 = secO-c
I1=1-¢
c=1
y = sec x is the required particular solution.

Sometimes if y is a function of x, we express it as y = yp(x). Thus if y(x) = x2,
(1) =1, y(2) = 4 etc. Find y(2) means find y(x), when x = 2. In this example we can say }(0) = 1.

Example 14 : Solve the differential equation fbc_y =¥~V + x2 eV

Solution : Here we have % ="V 4+ x2 e

dy _ e | x2
dx e’ + e’
dy _ e+ x?
dx ev

eddy = (¥ + x2) dx
Integrating on both the sides,
jeya’y = j(ex + x2) dx

3
e =e + x? +c (c arbitrary constant)

is the general solution of the given differential equation.
. LAy _ 2
Example 15 : Solve : e x +y
Solution : This differential equation cannot be expressed in the form p(x)dx + q(y)dy = 0.
So at first sight this differential equation does not seem to be of variables separable form. But we
can transform it into that form.

dy _ 2
Here e x + )

Substitute x + y = z in the equation.

DIFFERENTIAL EQUATIONS 169



L

dx dx
& _dr
dx  dx
So the equation will become
dz _ -2
dx 1=z
dz _ 2
dx 1 +z
Lz = dx (Variables Separable form)
1+z

Integrating on both the sides

deT = J. dx
1+z
tan~lz =x + ¢ (¢ arbitrary constant)

tan~'(x + y) = x + c is the general solution.

Example 16 : Solve cos(x — y)dy = dx

Solution : Here Zx_y = m ()
Substituting x — y = ¢, (ii)
LoD _ar
dx dx
d
ay =1 - % (iii)
From (i), (ii) and (iii)
1 — 4L -
dx  cost
|- =L
cost dx
cost—1
cost  dx
—(—cost) _ dt
cost T dx
cost
—dx = T o5t 9t

Integrating on both the sides,

cos t 1+ cost
—J.dx = Jl X dt

—cost 1+ cost

2
cost+cos 't
—_[dx= f— dt

sin® t
—J.dx = jcosect - cott dt + Jcotzt dt

—Idx = fcosect «cott dt + I(coseczt —1) dt
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—cosectl — cott —

—x + ¢

—x + ¢ = —cosec(x — y) — cot(x —y) — (x — )

cosec(x —y) + cot(x —y) + c=y

Exercise 5.3

1. Solve the following differential equations. Also find particular solution where initial
conditions are given :

(1) x@ + Ddy = @2+ 1)dx 2) (1 +edy =W + 1)erdx

dy _ _ dy _ C ) sec?
3) T tanx tamy 4) T y tanx y secox
(5) (@ + Dcosx dx + & sinx dy =0 (6) Zlix_y = (1 + x3)(1 +y?)

_ dy _ 2 _

(7) ylogydex —xdy=20 (8)a——4xy;y(0)—1
(9) xdy=@2x2+ Ddx (x#0) 1) =1 (10) xy cdiz =y+2; ¥2)=0
(11)d—y=2ex 3 9(0) = + (12)xd—y+cot =0; WJ2)==L
(13)e® =x+1; 0)=3,x>—1 (14)sin(%) =a whenx=0,y=1, (a € R)
(15 o Y tanx, y(0) = 1 (16) x + 1) T xe*

2. Solve the following differential equations :

dy . dy (x=y+3 dy=
1) o = sin(x + y) 2) o 20—y s 3 x+y+ 1)_dx 1
Doty 2 dy _ o
@ L=¢ 5) G+ L =a

*k

5.7 Homogeneous Differential Equations :

Let f(x, ¥) = 3x2 + 2xy + )2
-2 (34 2(%) + (%)2)
ool
S ) =220 (%)
y

Here we have expressed f(x, y) in the form of x? @ [;) If a two variable function f(x, y) can

be written as f(x, y) = x" ¢ (%) form, then the function f(x, y) is called a homogeneous

function of degree n.
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Now let us see a method to solve a differential equation of first order and first degree.

In place of x and y substitute Ax and Ay respectively in f(x, y). (where A # 0 is constant)
We get, f(Ax, Ay) = 3(A)* + 2(A0(Ay) + (W)
= 3A%2 + 2A2xy + A2
=M (3x2 + 2xy +)?)
= Mf(x p)
Here we have expressed the relation in the form f(Ax, Ay) = A”f(x, y). Such a function f(x, y)

is called a homogeneous function of degree n and A is a non-zero constant.

f(x, ) = tanx + tany. This type of function cannot be written in the form f(x, y) = x" ¢ (%)
So it is not a homogeneous function.
Homogeneous Differential Equation : If in a differential equation f(x, y) dx + g(x, y) dy =0,

f(x, y) and g(x, y) are homogeneous functions with same degree, then this differential
equation is called homogeneous differential equation.

o (%) type of functions are always homogeneous.

Solution of homogeneous Differential Equation :

Let the homogeneous differential equation f(x, y)dx + g(x, y)dy = 0 be in the form of
dy Yy
o3

Let%=v,soy=vx

Differentiating w.r.z. ‘x’,

Zx_y =v+ x %

PEE =00 (Zx—y=¢(%)=¢(v))
x % =0 —v

ﬁ - % (Variables Separable form)

Integrating on both the sides, we get,
—dv__ _ (1
[sor= = [ &
dv
fm=log|x|+c x # 0)

This is the general solution of a homogeneous differential equation and c is an arbitrary constant.

dy Yy
2

Example 17 : Solve T .
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Letl=v
X

y =wx
dy _ dv
So, T V+xa’x
v _ 2
v+xdx V=V
av _ _ ’)
X I v +v9)
dv__ _ _ dx
2V +v? X

1 -1 =— 1
5 log |v[— 3 log v+ 2] log [x| + 5 log |c]|

log|v|—log|v+2]|=—2log|x]|+ log|c|

o | 755 |-t &
log | 357 | = toe [ 7
xZy = c¢(2x + y)

This is the general solution.

dy _

Example 18 : Solve x2 e x2 + xy + )2

dy _ x2+xy+y2

(i)
(iii)

(using (i), (ii) and (iii))

(Variables Separable form)

(Integrating both the sides)

(c is an arbitrary constant)

Solution : T =
dy _ y Y2 .
e 1+ " + (x @)
y _ _ ..
Let < v, SO y = VX (i)
dy _ dv
oV + x dx (iii)
From equations (i), (ii) and (iii),
v + x dv _ 1 +v+2
dx
dv _ 2
X dx 1 +v
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dv_ _ dx (x # 0) (Variables Separable form)

14?2 X

Integrating both the sides, we get,

f 12dv=fldx
1+v X
Ty

1

tan =log | x| + log | c| (¢ arbitrary constant)

tan"'v = log | xc |

tan™! (%) = log | xc | is the general solution of the given differential equation.

Example 19 : Solve x sin (%) ;lx_y +x — ysin (%) = 0. Find the particular solution, if the initial
condition is (1) = %
ion : Y N I )
Solution : Here x sin (x) e + x — ysin (x)
- (y)
y sin [;] X

Qo
dx X sin [X]
X

2 sin(l) -1
X X

dy .

sin| =

X
l = .o
Let " (ii)

So, y = vx

dy _ dv
I v+ x dx (iii)

From equations (i), (ii) and (iii),

dv ysiny —1

vtx o= T siny
v+xﬂ =y — =L
dx sin v
dv 1
X == =—-——
dx sinv
sinv dv = _dx

Integrating both the sides,

J sinv dv = —fﬂ
X

—cosv =—log |x| — log | c|
cos(%) =log |x| + log | c|

cos% = log | cx | (iv)

This is the general solution.
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I

Now we are given (1) = 5

i,e. when x = 1 and y = %

So, from equation (iv),

n _
cos log | c|
log|c| =0
el =1

cos (%) = log | x| (x # 0) is the required particular solution.

Example 20 : Solve [x sin? | 2] — y] dx + x dy = 0. Find the particular solution, if the initial
X

condition is (1) = %

Solution : Here [x sin? (%) - y] de+ xdy =0

dy _y _ .2) .
T " sin " (i)
Let % =V,s0y=vx (ii)
dy _ dv
i + x dx (iii)

From equations (i), (ii) and (iii) we get

v+xﬂ = v — sin®v
dx
dv _ _ 2
X Ix sin<y
L= dx .
—— dv = (Variables Separable form)
Sin°vy b

Integrating both the sides

fcoseczv dv = — J‘% dx

—cotv=—log |x| —log|c]|
y C . .
cot (;) = log | cx | which is general solution.

Now we are given )(1) = % i,e. when x =1y = %

7t=
cot log | c|
log|c|=1

el =e
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cot%=log|ex|=log|x|+loge x %0

=log|x|+1

This is the required particular solution.

Example 21 : Solve 2xy + y? — 2x2 Zx_y = 0. Also find the particular solution for y(1) = 2.

Solution : Here 2xy + y% — ZxZZx—y =0

d_y1(x)

dx X + 2 (x) ®
A ..

Let = =v (i)
y =
dy _ dv
i + x dx (iii)

From equations (i), (ii) and (iii)

dv _ )
v+ x de Y + >V
dv _ 12
Xk >V
v% dv = % (Variables Separable form)

Integrating both the sides,
A e
2| v = [ L adx

—l=log|x|+c

<

I\

— = = log | x| + ¢ is the general solution.

y
Now p(1)=2. Soifx=1,y=2

_2:
> log |1]|+ ¢

c=-1
2x _ —
Y log |[x| —1
_ 2X
Y= Tologixl x#0, x £ e

Exercise 5.4

1. Solve the following differential equations :

(1) 2+ x)dy = (x> + )?) dx
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5.8

2 L)y = (vsind — 2y D
2) (x cos < +ysmx)y y sin < xcosx)x

dx
dy _ (X))
3) xa y+xs1n(;)—0
X X d
Y dx = y 2 (X)) L = sin(2
4) yeXdx=xeY+y)dy 3) xsm(x)dx ysm(x)+x
(6) +2e§ﬂ=2xe% @) R2E =22 4y
y Ye- dy dx 24 y
5 + X\ o, y _
(8) (1+e)dx+e(1—y)dy—0 © xZ=x+y
Y
(10) y dx +x log (%) dy = 2x dy (11) (xe~* % +y)dx = xdy
dy [ y(x+y) _ dy _ y
(12) F + 55 0 (13) & =2 +tan(x)
Find the particular solution of the given differential equations under given initial
condition :
= d
(1) 2 +yDde+xpdy=0; y1)=1 (2) xex —y+ xay =0; y(e) =0
d—y — l l = - = 2 — 2 =] . —
3) e P + cosec x 0; (1) =10 “4) (x 2y9)dx + 2xy dy = 0; y(1) =1
(5) 2xy +y* — 2x2§x—y =0; y(1) =2 6) 2+ 3xy+y)dx —x2dy =0; (1) =0

Linear Differential Equation :

If P(x) and Q(x) are functions of variable x, then the differential equation flx_y + P(x) y = Q(x)

is called a Linear Differential Equation.

For example, (1) 2% + xy = cosx  P(x) = x, Q) = cosx
@) L2 Py = =L Q) = e
3) xix—y + 2y = x3 P(x) = 2, Q) = »?
@ Ly=x PO = 1, QW) = ¥

Method of solving a linear differential equation :

Let Zx—y + P(x) y = Q(x) be a given linear differential equation.

If we multiply both the sides by e [P a we get Zx_y e J P ds +ye ['P@as. P(x) = Q(x) ej P(x) dx
% e ] PO dx] = Qx) el PO
Integrating w.r.t. x, we get

yel P = [1Q0) o P47 ax
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Here the linear differential equation is multiplied on both the sides by

eI Px)dx to make it easily integrable. So eI P()dx js called an Integrating Factor - LF.

The first order linear differential equation is % + P(x)y = Q(x).

If we multiply both the sides by /4(x), a function of x, we get

d .
hx) S5+ h(x) POy = h(x)Q() 0
Choose a function A(x) in such a way that /A(x)Q(x) becomes a derivative of y A(x).

1) 2+ ) Py = Ly

M) L+ b POy = A 2+ )
M) - Py = )
h(x) - P(x) = H(x)

h'(x)
h(x)

Integrating both the sides with respect to x,
. 1 '
2, jP(x)dx = JW H(x) dx

c [P@)dx = log | () |
h(x) = eI e ek

P(x) =

In the equation (i) substitute the value of A(x),

eJ P(x) dx % + e-[ P(x) dx Px)y = eJ IRs) 22 Q)
L e aryy = ol P ax g

eJ P(x) dx y = J-eJ P(x) dx Q(x) dx.
In this way we get the solution of a linear differential equation.

The function A(x) = eI P() dx js an Integrating Factor.

4y
dx

Solution : The given differential equation is linear.

+ % = x2. The given linear differential equation of the type L2 + P(x) y = Q(x).

Example 22 : Solve T

Here P(x) = %, Qx) = x2
LF. = ol Py

— dx

We can take I.F. as x because if we multiply both sides of the differential equation by x, then
there will no change.

Multiply by x on both the sides.
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xe—y+y=x

3

d - .3
x (xy X

xy = .[x3a’x

4
xy = xT +c (c is an arbitrary constant)

This is the general solution of the given differential equation.

Example 23 : Solve flx_y + ysecx = tanx.

Solution : D + ysecx = tanx.

dx

This is a linear differential equation.

Here, P(x) = sec x, Q(x) = tanx
LF. = o Pwax

[ seex dx

e

= o log |secx + tanx |

= |secx + tanx|

We can take L.F. = secx + tanx
Multiply both the sides of given equation by L.F., we get,

(secx + tanx)% + secx (secx + tanx)y = tanx (secx + tan x)

d
dx

y(secx + tanx) = Itanx(secx + tan x) dx

[y (secx + tan x)] = tan x (sec x + tan x)

y(secx + tanx) = jsecx tan x dx + Jtanzx dx

y(secx + tanx) = jsecx tan x dx + j(seczx — 1) dx

y(secx + tanx) = secx + tanx — x+ ¢ (¢ is an arbitrary constant)

is the general solution.

Example 24 : Solve Zx—y =y tanx + &*

Solution : % =y tanx + €' is a linear differential equation in the form

Here P(x) = —tanx and Q(x) = ¢&*
Now, L.F. = eJ P(x) dx

_[—tanx dx
= e

= o —log |secx]|
= o log |cosx|

= |cos x|

We can take I.F. = cos x

L+ Py = Q).
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General solution of this linear equation is,

y cosx = '[e"cosx dx

(yef P dx — jQ(x) o P(x)dxdx)

y cosx = % (cos x + sinx) + c is the general solution. (c arbitrary constant)

Example 25 : Solve % + % = log x

Solution : This is a linear differential equation in the form Li2 + P(x)y = Q(x).

Here P(x) = % and Q(x) = log x

e_[ P(x) dx

[+ ax

:ex

LF.

= e log x|
=X
We can take LF. = x
According to the general solution,

yel Pax = JQ(X).eI P(x) dv gy

yx = jx log x dx
yx = log x jx dx — J(% (log x) Jx dx) dx

- X[l X2
yx = log x 5 jxX 2dx

2
yx=x710gx—%x2+c

This is the general solution.

Exercise 5.5

Solve the following differential equations :

. 2

o + 2y = sinx 2.
3. «x % =x+y 4.
s. ay =x+y 6.
7. Zx—y + 8y = 5% 8.
9. (I +y¥dx = (tan"ly — x)dy 10.
11. sin’x Zx_y + y = cotx 12.
*

dx
(c is an arbitrary constant)
xix—y —y=00+x)e™
d 2xy
Ey T+ 41
dy 2y _
dx + X ¢

dy
2 — 452 =
(1 + x9) ; + 2xy — 4x

dy

xlogxdx

+y=%logx,x>0

ydx—(x+22)dy =0
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5.9 Applications of differention Equations :

As we know the study of differential equations began in order to solve the problems that
originated from different branches of mathematics, physics, biological sciences etc.
(1) Physics (RL circuit) : Let us consider RL
circuit. This circuit contains resistor (R) and Inductor ILI
(L). So it is known as RL circuit. At £ = 0, the switch | | 0 ——
is closed and current does not pass throuch the circuit.

When switch is on, the current passes through

the circuit. As per the electricity law, when voltage A
O
across a resistor of resistance R is equal to Ri, t—:) + \E -
the voltage across an inductor is given by L ﬂ, )
dt Figure 5.5
where i is the current.
Example 26 : The equation of electromotive force (e.m.f) is E = Ri + L %, where R is resistance,

L is the self inductance and i is electric current. Find the equation relating time (7) and electric

current (7).

Solution : The given equation can be written as L di _p _ g

dt
1 g _ 1
E_Rl di = T dr
E_—};i di = % dt (Variable Separable form)

Now integrating both the sides,

—R . R

log(E—Ri)=it+logc

L
(E-Ri) _

t

—R
. T !
E — Ri = ce
: T !
Ri=E — ce
_R,
ce
R

i= % - is the required equation.

Another Method :

Given equation is L % =E —Ri
di { R,_E
dr TLIT T
- . . . . [Ra 2
This is a linear differential equation. L.LF. = e =e
Ry Rep o Ry
Multiplying both the sides by LF., et d—; + et Ti=T el

R R

i ft':E rt
a’t(e i) L ¢
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Integrating both the sides w.r.t. 1,

R, e &
Lt .- |E L
e i JLe dt
R
eL

R E
=t —_
el =L % — % (—% arbitrary constant)
R R
', E 1'_ ¢
e i=ge A
E_ ¢, 1!
= L= _ C L
i=x <€
This is the general solution. v
(2) Application in Geometry : A y = f(x)
y = f(x) is a given curve.
If y = f(x) is differentiable at (x,, ) \
then, slope of the tangent at the point (x,,,
p g point (xg, vp) PCxps )
o (Y
is given by m = | 7~ (500 70)
(1) The equation of the tangent to the o G
curve at point (x,, is < —— — X
point (xg. o) P M S\
Sub tangent
( dyj normal
Y7 Y0 7 Lax (x0- ¥o) (¥ = x) Figure 5.6
(2) The equation of the normal to the curve at point (x,, y,) is
__(ax ay
Y __(dy)(xod’o) (= xo) (dxioj

Let M(x,, 0) be the foot of perpendicular from P(x,, y,) on the X-axis. Suppose tangent at P
intersects X-axis at T, then TM is called the subtangent.

Yo

(&)
dx (X0, Y0)

Suppose the normal at P intersects X-axis at G, then MG is called the subnormal.

4
Yo dx (xoa J’o)

Example 27 : The slope of the tangent to the curve at any point is reciprocal of the y-coordinate of

Length of subtangent TM =

Length of subnormal MG =

that point (y # 0) and the curve passes through (—1, 2). Find the equation of the curve.

Solution : Let P(x, y) be any point on the curve.

Slope of the tangent to the curve at the point P(x, y) is Zx_y

But the slope of the tangent to the curve at point P(x, y) = i
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yT =x+ % (c is an arbitrary constant)
v =2x+ec,

It passes through (—1, 2)
4=-2+c
c=6
% = 2x + 6 is the equation of the curve.
(3) Exponential Growth :

Let p(7) be a quantity which increases with time 7. Suppose at time ¢ = 0, p(1) = p,,.
So the rate of increase of the quantity is proportional to the given quantity p(7).

. d p)
1.e. o7 p

dpt) _
7 k@ (k>0

1 d p)

PO —ar K

Integrating both the sides, we get

dpt) _

log p(¢¥) = kt + log ¢
log p(t) — log ¢ = kt

log% = kt

p(t) = cek!, where ¢ is an arbitrary constant.
Suppose at 1 = 0, p(1) = p,.
Then p(0) = ce?
¢ =p0)
P = poyet
Using this solution, we can find the growth of quantity p(¢) at any time ¢.

Example 28 : The population of a city increases at the rate of 2 % per year. How many years
will it take to double the population ?

Solution : Let the p, be the population at present and after 7 years suppose it will be p().
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Now population increases at the rate of 2 %.

dp _ 2
SO, E—mp

dp
f7=%jdt

logp=%t+logc

p = ce>

Att=0, p=p,

So py = ce

¢ =py
4

Now if the population doubles, then p = 2p,,
1

2p0 = Do es0 !

— 1
log 2 = i
t =50log,2 = 34.65 = 35 years
(4) Exponential Decay :
Let m(t) be the mass of a product which decreases with time 7.

The rate of decrease is proportional to the given mass m.

dm _
So, —= = —km k>0

Using the above method, we can find the decay.

Example 29 : A certain radioactive material has a half life of 2000 years. (This is called half life
period of the substance.) Find the time required for a given amount to become one tenth of its
original mass.

Solution : Let initial mass of the material be m, grams.

If the mass of the material is m grams after time 7, then from the rate of decay we have,

dm _ _

i — k > 0)
dn — g gy

m

J.d—’;f:_[—kdt

log m = —kt + log ¢
m = ce ¥

Now when ¢ = 0, m = m,
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m = mye M @)

At £ = 2000 years, m = %

&~k 2000

—k2000 = —log 2

_ log2
2000

Now at some time ¢, m will be My

10°
From equation (i),

my _ —kt
10 moe

—kt = €L
kt = log 6

—kt = —log 10

kt = log 10

1 _ 2000
=% log 10 = Tog, 2

- log 10 = 6644 years
(5) Newton's Law of Cooling :

The rate of change of temperature of a body is proportional to the difference between the
temperature of the body itself and that of the surroundings.

Let S be the constant temperature of surroundings. Let T be the temperature of the

body at any time ¢. Then,
dT

ar = (T—=09)
dar _ _ T—S5S k> 0i
dt k( ) ( is a constant)

1
T_s dI = —kdt
Integrating both the sides,
log | T—S|=—kt+ log c

T-S
C

= —kt

log

T—S=ce™
Example 30 : The temperature of a body in a room is 80° F. After five minutes the temperature

of the body becomes 60° F. After another 5 minutes the temperature becomes 50° F. What is the

temperature of surroundings ?
Solution : Let T be the temperature of the body at any time ¢.
Let S be the constant temperature of the surroundings. (i.e. room temperature)

Then by Newton's law of cooling.

ar . 1 —
o = (T—=9
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ar - —k(T — S) (k > 0 is a constant as temperature decreases in time interval)
dT
T-s = T
dT
f T = |k
log (T —S)=—kt + ¢ (1

Now at 1 =0, T = 80° F
log (80 — S) =¢
From equation (i), we get
log (T — S) = —kt + log (80 — S)
Alsoatr=5,T=60°F
log (60 — S) = =5k + log (80 — S) (i)
Also at r =10, T = 50° F
log (50 — S) = —10k + log (80 — S) (i)

From equations (ii) and (iii), we get
1 S0-S)y_ _, _ 1 0-S
slog(30-s )= %= 15 log |35
60 —S 50-S
2log {30_s ) = log |30—s

(55) - (=)
80— S 80-S
(60 — S)2 = (80 — S)(50 — S)
3600 — 120S + S? = 4000 — 130S + S?
10S = 400
S =40°F
Hence, temperature of the room is 40° F.

Example 31 : Saptesh has a fixed deposit of ¥ 10,000 in a bank. Principal amount increases

continuously at the rate of 7 % per year. In how many years will it get doubled ?
Solution : Let P be the amount at any time .
According to the given conditions,

de _ 7P

dr 100

dp _ 7 .
< = 1% dt (Variables Separable form)
Integrating both the sides,

dp _ (2
?—fmd’
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L
100

log P = t+ log ¢

7t

P = ce'®

Attr=0, P =% 10000

10000 = ce®
¢ = 10000
Tt
P = 10000 ¢'® @)

Let ¢ be the time to double the investment.
After time ¢, P = 2 X principal

=2 X 10000

=13 20000

From equation (i),
7t

20000 = 10000 ¢!

2 = elOO
=7
log,2 100 °
100

1=== log,2 which is approximately 9.9 years.

Exercise 5.6

If the X intercept of the tangent to a curve at any point is four times its y-coordinate, then find
the equation of the curve.

In an experiment of culture of bacteria in a laboratory, the rate of increase of bacteria is
proportional to the number of bacteria present at that time. If in one hour the number of
bacteria gets doubled, then

(1) What is the number of bacteria at the end of 4 hours ?

(2) If the number of bacteria is 24,000 at the end of 3 hours. Find the number of bacteria in
the beginning.

2y

A curve passes through (3, —4). Slope of tangent at any point (x, y) is - Find the equation of

the curve.

The increase in the principal amount kept at the compound interest in a bank is proportional to

the product of the principal amount and annual rate of interest.

(1) Annual rate of interest in a bank is 5 %. How many years will it take to double the principal
amount ?

(2) At what annual rate of interest, the principal amount will double in 10 years ?

Rate of decay of a radioactive body is proportional to its mass present at that time. After

a decay of one year the mass of the body is 100 grams and after two years it is 80 grams.
Find the initial mass of the body.
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6. If the length of the subnormal of a curve is constant and if it passes through the origin, then
find its equation.

7. Find the equation of the curve passing through the point (1, 2), given that at any point (x, ¥) on
the curve, if the product of the slope of its tangent and y-coordinate of the point is equal to the
x-coordinate of the point.

Exercise 5
1.  Verify that the function y = cx + % is the general solution of the differential equation,
_ dy dx . .
y=Xx ( dx) + a (d_y (¢ is an arbitrary constant).
2. Show that the solution of the differential equation Zx_y =1+ x2+x+y% y0)=0is
2
= x—
y = tan (x + 5 )
2

3. Show that y = ¢ + ax + b is a solution of the differential equation ¢* dxz —1=0.

4.  Verify that the function y = ae? + be ™™ is a solution of the differential equation
d*y d
=&y

5. Find the differential equation for the family of the curves represented by 2 = a(bh + x)(b — x).
(a, b arbitrary constant)

6. Solve :

dy .
1) i cos (x +y) + sin(x + y)

dy axy _ 1
) dx + X2+1 (X +1)?

X X
3) 2yeYdx + (y —2xe¥Y)dy =0
@ wP =y
(5) F=hdv+2ydy=0 y)=1
(6) coszxd—y + vy = tanx
dx

7. Select a proper option (a), (b), (c) or (d) from given options and write in the box given

on the right so that the statement becomes correct :
(1) The order of a differential equation whose general solution is y = Asinx + Bcosx is ......
(A, B are arbitrary constants.) ]
(a) 4 (b) 2 (©) 0 (d)3
Oy Y (dyY :
(2) The order and degree of I + 2 +y =0 are ...... respectively. ]
(a) 3,2 (b) 2,3 (c) 3, not defined 2,3
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(3) ¥ +y = = has degree ...... ) ]
y

(@) 1 (b) 2 (c) not defined d) —1
. . . dy x+y .

4) The differential tion =— = — 1S ... .

“) e differential equation — . ]
(a) of variable separable form (b) homogeneous
(c) linear (d) of second order

3.3

5) flx, )= xx Ty is a homogeneous function of degree ...... ) ]

(a) 1 (b) 2 ()3 (d) not defined
. . . . .ody 1 .

(6) An integrating factor of differential equation o i vis vi2 is ...... . ]
(a) e (b)y ¥ty +2 (c) e d) log |x+y+ 2]

(7) The differential equation of the family of rectangular hyperbolas is ...... . ]
@y, =0 ®)xy+y, =0 ©w=x dxy, +y=0

. . . dy 2 dz)’ .

(8) The order and the degree of the differential equation e + x I + xy = sinx, are ......
respectively. ]
(@) 1,1 (b) 2, 1 (c) 3,2 (d) 2, not defined

(9) Which of the following function is a solution of the differential equation

2
dy dy
—_ — x = =09

( dx) x——t+y 09 ]
(@) y = 4x b)yy=4 c)y=2x2+4 dy=2x—4

(10) Solution of the differential equation x Zx_y +y=0is ... ) ]
(a) eV = ¢ (b) y = cx () x =c¢cy d) ey =c¢

(11) The solution of the differential equation % + 27)] = 0 with y(1) = 1 is given by ...... ]

1 1 1

(@ y=-— ®y="3 ©x =73 @ =<5

(12) The number of arbitrary constants in the general solution of differential equation of second
order is ...... ]
(a) 1 (b) 0 (©) 2 (d) 4

(13) The number of arbitrary constants in the particular solution of a differential equation of
fourth order is ...... ]
(a) 4 (b) 2 © 1 (CRY

(14) The differential equation filx—y = &* 1V has solution ...... . ]
(@) e +e?V =c (b) e+ & =c¢ )e*+e=c de*X+e?V=c¢c
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1.

2
. . . dy Y P d’y ) .

(15) The degree of the differential equation 1+(Ej = x| 2 )0 e ) ]

(@) 3 (b) 2 (c) 6 (d) 1
(16) The solution of the differential equation 2x Ellx_y —»y = 0; »(1) = 2 represents ...... . ]

(a) straight line (b) parabola (c) circle (d) ellipse

@
Summary

We have studied the following points in this chapter :

An equation involving independent variable (x), dependent variable () and derivatives of the

dependent variable w.r.z. independent variable is known as a differential equation.

. Order of the highest order derivative occuring in the given differential equation is called the

order of the differential equation.

. If the differential equation is in a polynomial form in derivatives, then the highest power of the

highest order derivative occurring in the differential equation is called the degree of the equation.

. Solution of a differential equation of order » is a function which satisfies the differential

equation. The solution which contain » arbitrary constants is called the general solution

and the solution free from all arbitrary constants is called a particular solution.

. Variables separable method is used to solve the differential equation in which variables can be

separated completely.

Y
. If a two variable function f(x, y) can be written as f(x, y) = x" 0 (7) form, then the

function f(x, y) is called homogeneous function having degree .

d
. P(x) and Q(x) are functions of variable x, then the differential equation —1 + P(x)y = Q(x) is

d
called linear differential equation.

. Applications of differential equations.
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VECTOR ALGEBRA

Mathematics knows no races or geographic boundaries;
for mathematics, the cultural world is one country.

— Jules Henri

6.1 Introduction

In everyday conversation, when we talk of a quantity, we generally discuss a scalar quantity
which has only magnitude. If we say that we drove through a distance of 50 km, we talk about the
distance travelled. Here we do not bother in which direction we have travelled. 50 km is a scalar
quantity. Now, if we drive towards our home, then simply to say driving 50 km is not enough, but we
have to say that we should drive 50 km South to reach our home. This information provides not
just magnitude but also the direction of the quantity. This quantity is a vector quantity.

The latin word vector means ‘Carrier’. Vector ‘carries’ magnitude as the distance between two
points (i.e. distance between initial point and terminal point) and also the direction from the first point
to the last point (i.e. from initial point to terminal point). Most of the basic algebraic operations like
addition, subtraction, multiplication and division are reflected equally well in vector-operations as
addition, subtraction and multiplication by a scalar. Vector addition also follows the algebraic properties
of R like commutativity, associativity.

Vector is a very important concept in the study of Physics. Many physical quantities like velocity,
acceleration, force acting on an object etc. are described by vectors. Many physical quantities do
not represent distance but are still represented by vectors and so it helps a lot to understand the
concepts of Physics.

Generally, gravity, electrostatic force, magnetic force, electromagnetic force or mechanical force
are studied in physics. Physicists had found by scientific experiments that these forces in general
conditions act in a linear (vector) way and their resultant forces are also the result of the addition
of vectors, e.g. Coulomb's law of electrostatics. So vector space and its algebraic operations etc
are developed to study these forces.

Vectors are denoted by small arrow (—) or bar (—) sign above the letter or bold letters in print form.
In Mathematics, Physics and Engineering, we frequently come across scalar quantities such as
length, distance, speed, time, mass etc and also vector quantities like, displacement, velocity,
acceleration, force, weight etc.

We have already studied in std. XI about vector space RZ as well as R3 and some operations on
vectors like addition of vectors, multiplication of a vector by a scalar and their properties, magnitude
of a vector, a unit vector etc. These concepts are needed for further study. So in this chapter,
we shall summarise them and consolidate by solving some examples.

6.2 Vector as an Element of a Vector Space

R2={(x ) |xe€ R ye R}

R3={(x,y,2)|x€ R,y € R, z€ R}

The sets R and R3 under operations of addition and multiplication by a scalar given on page 192
are called vector spaces over R.

The elements of R2 and R3 as vector space are denoted by X, y, z etc. X, y, z are called

vectors. Elements of R are called scalars.
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Equality of Vectors :

(xp Y1 zl) = (xz, Voo zz) X =XV T and 1 = 2
Addition of Vectors :

(s Y15 29) F (5 125 Zp) = () + x5, ¥ F ¥y, 2 T 25)

Multiplication of a Vector by a Scalar :
k(xy, ¥1» 27) = (kxy, kyy, kzy), Yk € R

Properties of Addition of Elements of R3 and Multiplication by a Scalar

(1) Closure property : Vx, y € R3, ¥ + y € R3

(2) Commutative law of addition : x + y =y + x; VX, y € R3

(3) Associative law of addition : (x + y) +z7 =X +(y + z); VX, y,z € R3

(4) Existence of additive identity : There exists a vector () € R3 such that
T+0=0+x=Xx,Vx € R3, () is called zero vector or null-vector. ) = (0, 0, 0)

(5) Existence of additive inverse : For every x € R3, there exists a vector, —x € R3
such that ¥ + (—X) = (—X) + ¥ = (. This vector —x is called additive inverse vector
of X or negation of Xx.

(6) Vk € Rand ¥ € R3, kx € R3.

(7) Vk € R, k(x + y) = kx + ky; Vx,y € R3

8) Vk,l € R, (k+ Dx =kx + Ix; VX € R3

9) VI, k € R, (kDX = k(Ix); VX € R3

(10)1x = ¥, Vx € R3

The above rules are also true for the elements of R2.

Some Basic Concepts
Magnitude of a Vector : If X = (x;, x,, X3), then magnitude of X, denoted by | x | is defined

as | x| = \/xlz+x%+x32- If X = (x, x,), then | X | = \’x12+x%-

For example, if x = (1, 2, =2), then | X | = ‘/(1)2 +(2)2 +(=2)* = 3.

Some obvious results : (x € RZ or R3)

® [x1=0

2 IX|=0%=0

) kx| =1kl| x|, k€R

Unit Vector : If | X | = 1, then X is called a unit vector. A unit vector is denoted by x.

, — 1 —1 1 — — . .
For example, if X = (ﬁ, E, f), then | X | = 1 and hence X is a unit vector.

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) are unit vectors in the positive direction of X-axis,
Y-axis and Z-axis respectively.
6.3 Direction of vectors

Let X and y be non-zero vectors of RZ or R and k¥ € R.

If i) x =ky, k> 0, then x and
(ii) x = ky, k < 0, then X and

y are vectors having same direction.
y are vectors having opposite directions.
(iii)x # ky, for any k£ € R, then x and y are vectors having different directions.
If directions of non-zero vectors X and y are same or opposite, they are called collinear
vectors.

. If X = ky then and only then X and y are collinear. (x # (0, y # ()
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Notation : Let X = (x;, X,, X3). Direction of x is denoted by <x;, x,, x3> and direction

opposite, to the direction of X is denoted by —<x;, x,, x3>.
It follows from the definition that,
() <xq5 Xy, X3> = <kxy, kxy, kx3>, if kK > 0.
(i) —<xq, X5, X3> = <kxy, kxp, kx>, if k < 0.
We also denote direction of X as (kx, kx,, kx3), k € R — {0}
We accept the following theorems without proving them.
Theorem 6.1 : Non-zero vectors x and y are equal if and only if [ X | =]y | and X and

y have the same direction.

Theorem 6.2 : If X # () then there is a unique unit vector in the direction of x.

Unit Vector in the Direction of a Given Vector : If X is any non-zero vector, then

|_

| X is a unit vector in the direction of X and it is denoted by X.

X
— kx . . — .
Y = 1%» k¥ > 0 has same direction as x and has magnitude k.
y = _|§)|C ,k > 0 is in direction opposite to the direction of X and has magnitude k.

Example 1 : Find the vector of magnitude 10 in the direction opposite to the direction of
x = (3, 0, —4).

Solution : | X | = ‘/9+0+16 =5

The vector of magnitude 10 in the direction opposite to the direction of X is
=10 —
X1
Right Hand Thumb Rule : Let O be a fixed
point in space and take three mutually perpendicular

==0(3,0,~4) = (=6, 0, 8).
Z

lines through O. These are taken as X-axis, Y-axis and
Z-axis. Normally, X-axis and Y-axis are so arranged
that they are in a horizontal plane. Z-axis is ¢ P(x}, x), x3)
perpendicular to both X-axis and Y-axis. The positive
directions of these axes follow the Right Hand

Thumb rule, that is, if you curl the fingers of your
right hand around the Z-axis in the direction of

(3
2

to the positive Y-axis, then your thumb points in the

counter clockwise < rotation from the positive X-axis

positive direction of positive Z-axis. X
6.4 Position Vector Figure 6.1

Let X = (x1, xp, x3) € R3 be a vector and a point P in space having coordinates (x> Xy, X3).
The directed line-segment OP with initial point O and terminal point P is called the position vector

%
of the point P and it is denoted as OP. Thus the position vector of P is X = (x|, x,, x3), i.e.

— —
OP = (x, x,, x3). If the position vector of a point is X, then OP = X is the the geometrical

representation of the vector.
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If A(x;, x5, x3) and B(y, ¥,, ¥3) are two distinct points in R3, the vector joining the points

9
A and B with initial point A is AB .

Theorem 6.3 : (1) Every vector of R? can be uniquely expressed as linear combination

of { and }
Proof : Suppose X = (x, x,) € R2. v
Then X = (x, x,) = (x;, 0) + (0, x,) T
=x,(1, 0) + x,(0, 1)
1,\ o 2 (x5 %)
= xli + XyJ _ .
~ . X Xy J
Thus, X is a linear combination of { and ;.
~ O ~ >' > X

Now, suppose x can be expressed as a linear X1
combination of i and j as X = pi + ¢J also.

Then (x, x,) = X = pi + qJA'

= p(1, 0) + q(0, 1) N
~ @0+ 0.9 Figure 6.2
=@ 9 '

x, =pand x, = ¢q
pi + qf and xlf + xzf are same.
Thus x = xlf + xzf is a unique linear combination of / and j.
(2) Every vector in R3 can be uniquely expressed as a linear combination of {, j and k.
Proof : Suppose X = (x|, x5, X3) € R3.
Then X = (xq, x5, x3) = (x1, 0, 0) + (0, x5, 0) + (0, 0, x3)
x1(1, 0, 0) + x,(0, 1, 0) + x5(0, 0, 1)

= xlf + xzj + x312
If X =pi + qf + rk, then we can prove x; = p, X, = g and x; = r as before.

Thus, x = xlf + xzj + x3lg is unique linear combination of i, f and k.

Geometric Representation : P

9
Let OP = (xq, xp, x3).
Let L be the foot of perpendicular from €0, 0, x3) MO, %, x3)

P to XY plane (figure 6.3). So L(xy, x,, 0).
- - .~ N(xl’ O’X”}) P(xp"z,’@)
Then ILP = OC = x3k. Similarly, M and N are the
feet of perpendiculars from P to YZ and ZX plane
respectively. So M(0, x,, x3) and N(x;, 0, x3)
- - . - o . \4
and so MP = OA = x;i and NP = OB = x,/. O B(0, x,, 0)
G R Y L(xy, x5, 0
OA, OB, OC are bound vectors corresponding to Alx1,0.0) (1% 0)
X
e T Figure 6.3

free vectors MP, NP, IP respectively.
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[The coordinates of A, B and C are A(x, 0, 0), B(0, x,, 0) and C(0, 0, x3).]
- > oS> o - >
Now, OL OA + AL OA+OB—x11+x21 (OB = AL)
[The coordinates of L are (x;, x,, 0). Similarly coordinates of M and N are (0, x,, x;) and
(x5 0, x3) respectively.]

-> > >
OP = OL + 1P —xlz +x2] + x3k The form OP = xlz +x21 + x3k of a vector is also

called component form. Here x;, x, and x5 are the scalar components of OP, while xlz . Xy ] and

x3I€ are the vector components of OP.

(1) Distance of P(x;, x,, x3) from XY plane is PL = |[x3|. Similarly, distance of P
from YZ plane = PM = | x| and distance from ZX plane = PN = |x, |.

(2) Distance of P(x;, x5, x3) from X-axis = AP = " x%+x%- Similarly distance from
Y-axis = BP = ‘/ x5 +x{ and distance from Z-axis = CP = /2 4 x3.

(3) Distance of P(x|, x,, x3) from origin = OP = " xE + x5 + x5 -
6.5 Triangle Law of Vector Addition

A particle is displaced from A to B and the displacement

%
is represented by AB and the displacement from B to C is c
%
represented by BC as shown in figure 6.4. The displacement of
%
the particle from A to C is given by the vector AC. The result
— —> - '
AC = AB + BC is called the Triangle Law of Vector
Addition. A B
Let A, B, C have position vectors @, b and ¢ respectively. Figure 6.4
e - I
AB + BC =(b —a)+(c —b)
_ _ —>
=c¢c —a = AC
Y Y Y
i Q
/.
Q -
- 2
/b B “ .
7 a P a
< > X < X
O _E O X 9
?\
\6\ :
—-2a
y R
Figure 6.5 Figure 6.6 Figure 6.7

If @ and b are two non-zero vectors, then the operations of addition and subtraction of

vectors a and b in R2 are shown in figure 6.5. Figures 6.6 and 6.7 illustrate scalar multiplication

. —> _ > _ —> _
of vector in RZ. Here OP = @, OQ = 2a and OR = —2a.
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Parallelogram Law for Vector Addition :

—> _ —> — o
Let OA = a and OB = p be two distinct vectors.

We construct parallelogram OACB (figure 6.8). The
vector along the diagonal from their common initial
%

point OC represents the sum of vectors @ and b . Thus
—> — — _ '
OC = OA + OB. This law is known as the

parallelogram law for vector addition. Figure 6.8
= =5 o5 S = = —
[Note : |OA + OB = OA + AC = OC (OB = AC)

I
OC = OA + OB

Properties of Vector Addition (Geometrically) :

Property 1 : For any two vectors X and y, x +y =y + X (Commutative property)

— —
Let AB = X and AD = y. We complete the parallelogram ABCD.

. % — % —
Obviously, BC =y and DC = X (By theorem 6.1)

Now, applying triangle law for AABC,

s s
we get AB + BC = AC =x + Yy

-
Al

@

A =
- -
Similarly, for AADC, AD + DC

Thus, x +y = y + X. Figure 6.9

Property 2 : For vectors X, y, 2, (x + y)+zZ =x +(y + 2) (Associative property)

(a) Figure 6.10

% — % — % — . . .o, .
Let AB = X, BC =y, CD = 7. Using triangle law of addition,

From figure 6.10(a)

From AABC,

- S >
AB + BC = AC

_ —
x +y = AC.

From AACD,
N
AC + CD = AD
_ _ _ —>
(x +y)+ 7z =AD.

Thus, (x + y) + 7

From figure 6.10(b)

From ABCD,

- o o
BC + CD = BD

_ _ —>

y +z = BD.
From AABD,

Y T

AB + BD = AD

_ _ _ —

x +(y +z)= AD.
=x +(y +32).
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Example 2 : Find the vector having initial point (3, 2, —1) and terminal point (4, —2, 0) and its magnitude.

6.6

X1

two

_)
Solution : A(3, 2, —1) is the initial point and B(4, —2, 0) is the terminal point of AB .

%
AB = Position vector of B — Position vector of A

=@4,-2,0—@G3,2,—1)
=(1,—4,1)

- -
Magnitude of AB = | AB | = ‘/(1)2 +(=4)2 +(1)?

AB = /18
=342

Exercise 6.1

Find the magnitude of the following vectors :

(1) 2,3,V3) @30 —4k @) i+] -4k

Find the unit vector in the direction of 2f — 2 + k.

Find the vector of magnitude 2417 in the direction of 3, =2, —2).

Find the vector of magnitude 20 in the direction opposite to the direction of vector
—3f +243) - 2k.

For vectors X =3i +4) — 5k and ¥ = 2 + J, find the unit vector in the direction of ¥ + 27 .
Find the scalar and vector components of the vector with initial point (=2, 1, 0) and terminal
point (1, =5, 7).

If the position vector of a point P is (4, 5, —3), then find the distance of P, (i) from ZX plane (ii)
from Y-axis and (iii) from the origin.

Inner Product of Vectors in R? and R3

If X = (x;, x,) and y = (vy» y,) are vectors in R2, their inner product is defined as
+ Xx,y, and is denoted by X - y.

Similarly, for ¥ = (x;, x5, X3) and ¥ = (y;, 5, y3) in R3, X -V = xp; + x,p, + x3p3.
Here, X and y are vectors, but X - ¥ is not a vector, it is a real number. Thus inner product of

vectors is a scalar, so the inner product is also called Scalar Product. This operation is

known as Scalar Multiplication. Since notation for inner product is a dot (.) between the two

vectors, so inner product is also called Dot Product of Vectors.

Difference between scalar product and product by a scalar.

product by a scalar with a vector is a vector quantity.

vector quantity.

Scalar product is performed between two vectors and the result is a scalar quantity and

If x =(2,3,—1)and y = (—1, 4, —2), then scalar product of X and y is
X+Yy =—2+4 12+ 2 = 12 is a scalar quantity.
While product of X = (2, 3, —1) with a scalar, say 2 is 2x = 2(2, 3, —1) = (4, 6, —2) is a
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Properties of Inner Product :

Suppose X = (x, X5, X3), y = (V1> Y9, ¥3) and T = (z;, z,, z3) are vectors in R3 and k € R.

1 x-

X -

2) x-
3) T-
@ x-

S x-

=l

=l

¥20and X-X =0<& X = 0.

X = (Xp, Xy, X3)+ (X[, Xy, X3)
=x?24+x2+x220 (Property of R)
=0<:>x1=x2=x3=0<:>726

Y=|xPasx ¥ =x2+x2+x2=|%]

y=y-%x

(ky) = (kX)-y = k(X +Y)

O +z7)=x-y +x-2

(Y +2)=(x), xp X)) 2z Yy 2y ¥yt 2y)

=x tx1z1 + X0, + X5z) + x3y5 + X323 (Distributive law in R)
= (v T Xy + x3v3) + (X2 + x5z + x323)

=X.Yy +X-2

These properties are also valid for the vectors in R2.

Example 3 : Find X -+ ¥, where x = (1, 2, —1), ¥ = (=3, 4, —2).

Solution :

X-y =(1,2,-1)- (3,4, -2)
=—3+8+2
=7

Example 4 : If X =5{ + 4] — 3k and ¥ =2{ — ] + 2k, then find (X + 2Y)- (2% — V).

Solution :

T A2y =i +4] —3k)+ 2271 — ] +2k)
=5/ +4] — 3k +4F5 —2] + 4k

=9/ +2] + k

or T+2Y =(5,4,-3)+22,—1,2) =G, 4, -3+ @, —2,4)=0,2,1)

2% — Y =25 + 4] —3k)— Qi — ] +2k)

=10{ +8] — 6k —2i +J — 2k

=8 +9] — 8k

or2x —y =2(5,4,-3)—(2,—1,2) =(10,8, —6) + (-2, 1, —2) = (8, 9, —8)
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Now, (X +2Y) QX — ¥) =9 +2j + k)-(8 +9] — 8k)
=(9,2,1)-(8,9, —8)
=72+ 18— 8
=82
Outer Product of Vectors in R3 :
If x = (xp5 X5, x3) and y = (1> Y25 ¥3) are vectors in R3, their outer product is denoted

by X X ¥ and defined as

XXy = 1y X35 X3) X (V15 V25 V3)

. )

= (P53 = X3¥p, X3y T X3 Xy T X))
Here, ¥ and Yy are vectors and their outer product X X Y is also a vector. So outer product
is also called Vector Product. The operation of obtaining outer product is known as Vector
Multiplication. Since the notation for outer product is a cross (X) between the two vectors, outer

product is also called Cross Product.

X X3

Y2 3

X1 X3

yroy3

A1 X2

Yy »

9 9

Properties of Outer Product :

(1) X Xy==-y XX (Interchange of rows in a determinant)

2)
3) TX*KY)=(kT) XY =k
)=
X

XX=0 (Two identical rows in a determinant)

=|

~~
=|

X
4 XX +7)=Xx Xy +xXx7Z

5) xx0=0

Difference Between Inner and Outer Product of Vectors :

x=0

(1) Inner product is a scalar quantity, while outer product is a vector quantity.
(2) Inner product is defined in RZ as well as in R3, while outer product is not defined in RZ2.

(3) Inner product is commutative, while outer product is not commutative.

[Note : |[¥-% = |X[% but ¥ X ¥ = 0.

Example 5 : Find X X y, where X = (1,3, —2)and y = (-2, 1, 5)

}

=(15+2,-5—-4.,1+6)=017,—-1,7)

1 -2
-2 5

1 3
-2 1

3 =2
1 5

b

>

Solution : X X y =(

Example 6 : If ¥ =27 + ] — 3k and y =37 —2j + k, find | ¥ X ¥ |.
Solution : ¥ = (2, 1, =3), ¥ = (3, =2, 1)

_ 1 -3
XXy = ,

-2 1
=(1-6,—(2+9),—4—-3)=(5,—-11,-7)

X X V| = ,/25+121+49 = J195
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Box Product and Vector Triple Product :

If ¥, Y and 7 are vectors in R3, the product X - (Y x Z7) is called the box product of X,
Yy and 7, it is denoted by [Xx Y Z].
Let X = (x}, X5, X3), ¥ = (V|, ¥5. ¥3) and Z = (24, Z5, z3). Then
X (Y X Z) = (g X, X3) 1 (073 = V3T =023 = Y320 V12— 0F)

[x ¥ 2] = x,0nz3 = ¥325) — %23 — y3z)) + x30012, — »2))

X1 X X3
[x ¥ Z]=|N Y2 ¥3
i1 2 Z3

Properties of Box Product :

M [x Yy zZI=1y z xI=1Iz x Y]
Xy X X3
Proof : [Xx Y Z]=|N Y2 ¥3
{q <2 3
M Y2
=—|x X x3 Ry,
1 2 23
i Y2 N
=la 2 3 R;,3)
X1 X2 X3
=[y 7 X]

Similarly, we can prove that [x Yy zZ]=[z x Y]

2) [x ¥ Yy]1=0, [x ¥y X]=0, [x ¥ Y]=0

@) mx ¥y Z]=m[x Y 3 [x my Z]=m[x Y Z; [x Y mZ]=m|x Yy Z];meR
@ [x Yy 01=0

(1) If the vectors are changed in cyclic order, the box product remains unchanged.

(2) Interchange of any two vectors in [x Yy Z] results in mere interchange of

two rows in the determinant. So the value of the box product will be additive inverse, i.e.

[x ¥ zZ]=-[y X Z]

The product X X (¥ X Zz) is called the vector triple product.
It can be proved that ¥ X (¥ X 7)=(x-2)y — (x * YV)Z.

Similarly (X X V) X 7 = (7 - %)Y — (T * Y)X.

We shall prove the following result :

XX () xZ2)=F2)Y - (Y2

Proof : Let X = (x{, x5, X3), y = 0> Yo ¥3)s 7 = (215 295 23)

Then X X (¥ X 7) = (x> X9, X3) X (VaZ3 — V325, V32| — ViZ3 V122 — VoZ))
= (P]: D l’3)a say
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Now, py = x, (123 = »p71) — %3032 — 123)
= 1 0z + x373) = 2000, + X3p3)
=y (X127 + x5z + x323) — z;(x1y; + xp¥, + x3v3) (Adding and subtracting x,y,z,)
=»nE-7) —5(x-Y)
Similarly p, = yy(X +27) — z,(Xx * ¥) and py = y3(x *Z) — z3(x * ¥)
TXO XD = (@ T — @ Nz T-TW — (T Vzp (T3 — (T V)z)
=(x- E)(Vla Vo5 y3) —(x- y)(zl, 25, Z3)
=Xy —-(F-)Y)z
Example 7 : Find [x ¥ z],ifx =(1,2,0), Y =@G,—1,2),z =(, 1, 1).

1 2 O
Solution : [x ¥ Zz] =[3 -1 2
1 1 1

=1(=3)—2(1)+ 0
=-5
Example 8 : Find X X (¥ X 7),ifx =(1,2,3), Yy =(2,3,5).,z =(, -1, —1).
Solution : Method 1 :X-7 = (1,2,3)-(1,—1,—-1)=1—-2—3=—4
Ty = (1,2,3)-(2,3,5)=2+6+15=23
XX(YXZ)=(Xx-2)y —(x-Y)T
=—4(2, 3, 5) — 23(1, =1, —=1)
= (=8, —12, —20) + (=23, 23, 23)
= (=31, 11, 3)
Method 2 : Yy = (2, 3, 5) and
Z =(,—1,-1)
XZ=(=3+5 —(-2-5),-=2-3)=(@2,7 -5
x = (1, 2, 3) and
Yy X7 =@ 17 -5
T X(Y XZ)=(=10 =21, —(=5—6), 7 — 4) = (=31, 11, 3)
Example 9 : VX, ¥, 7 € R3 prove that, (X + Y) X (Y + D] (X +2)=2[x ¥ 7]
Solution : LHS. =[(x + Y) X (Y + 2)]- (X + 2)
=[XXY+XXZT+YXYy+YyXZ7]-(x +7)

<

S[AXY+IXZTHYXZ](F+7I) & =0

S~

Xy
SEXY)XAGEXY)THEXD X HEXD) T AHO XD T XD)-T
=[x ¥y XI+[x ¥V Zl+[x T X]1+[x T Z1+[Y T XI+[y Z Z]
=0+[x¥ ¥ T]H0+0+[X ¥V Z]+0 (v z xI=[x ¥y zZD
=2[x ¥ Z]=RHS

VECTOR ALGEBRA 201



o I N W

6.7

Exercise 6.2

Find the vector or scalar as required :

2,3, H)-2,—-1,4) 2. (1,-1,2) X(2,3, 1)
2,-1,-2)X 4, 1, 8) 4. 1(2,1,3) X (0,4, —4)|

|3, —4,—-1)-(1, 2, -2)| 6. (1,1,2) X [(1,2, 1) X (2,1, 1)]
(1,0, - [(1, 1, 0) X (1, 0, =1)] 8. (2,3,4)-[(1, 1, 1) X (3, 4, 5)]

[(1,5 1) X (2,—1,2)] X 4,1, -3) 10. |[(2, 3,4)-(—4, 3, =2)] (1, —1, 2) |

Lagrange's Identity
If x;, x5, X3, ¥15 ¥, 3 € R, then
ey + Xy + x3)? + (wy — 00+ (s~ xp)? + (s — X))’ =
2+ 52+ x3) 2 + 02 ) (Verify )
This identity is known as Lagrange's identity.
If we take X = (x, x,, x3) and y = (V1> ¥9» ¥3), then vector form of Lagrange's identity is
TP+ X x Y=Y~
because X+ y = X T Xy + X393, X X y = (9y3 — X395, —(X1V3 — X3¥7), XV — Xo)q)
X2 =x2+x2+x2and | Y 2 =y72+ 3,2+

Example 10 : If X and Y are unit vectors and X + y = 0, then prove that X X Y is a unit vector.

Solution : X and Y are unit vectors.
|X|=1=1]Y]

Using Lagrange's identity,
XX YP+H|XT-YP=[TP|Y
X XV [2+0= (1))
¥ Xy |=1

X X Y is a unit vector.

Cauchy-Schwartz Inequality :

For any two vectors ¥ and ¥ of RZ or R3, [X-YV | < |X ||V |
This inequality is known as Cauchy - Schwartz inequality.

In R3, according to the Lagrange's identity,

[T XYP+H|T-YP=|TP|V
X YP<S|XPIYP (EIR =)
|-V <IX[]Y]

For R%, let X = (x;, x,) and ¥ = (¥}, ¥,)

So, XYy = Xy + xp,

202
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Now, (x;y; + x2y2)2 + (x, — xz)’1)2 = (xl2 + x22) . (yl2 + y22) (Verify !)
|x1y1 + X0 |2 < (3512 + x22) : ()’12 + yzz) ((xpy — x2y1)2 = 0)
|-V <|x2|Y|?and hence | XY | < |X]||Y |

Second Proof : This is valid for R and R3.

Ifx=0ory =0,then x-Yy=0and |[X||Y]|=0

So [Xx:Y|=|X||Y]
Let x # 0 and Yy # 0
Suppose |[Xx|=1and |y | = 1.
Now, (x = ¥)*(x —¥) =0
XX —=2Xx-y+y:y 20
|x2=2x-Y+ Y220
2-2%:y2>0 (x|I=1yl=1
Hence, x -y < 1
Similarly, (x + Y)-(x + ¥)=0
IXP+2x-Y+|YP =0

2+2x-y 20
—1<x-y
Thus, -1 <x-y <1
Xy <1
XY [ <XV (x|=1=1YD @
Finally, let ¥ # 0 and ¥ # 0,50 |T|#0, | | # 0
S S _ 5
Let u |;|,v—|§|.Then|u|—l—|v|
So by (i), |[u -V |=<|ul|]V]
SR N I e I O B o T
X1 Ty S | T ||y||‘|x| Sl

XY [ <Xy
For non-zero vectors x and Yy,
if Xy =|x||Y]| then
[ Ix=Y ]2 =@x—Y)-((x—=Y)
=2|XP=2%7 + | V]

=A2IXP=2% |V [+ |TP xX-y =Xy
=@x| =1y
. y _
Taking I=H (x|#0)
| tx —=V[2=0
x =y
y = (x @t >0

VECTOR ALGEBRA 203



X and Y are in the same direction.

IfxX:Y =—X[|Y]|,then (&X—=Y |)>=(@X|+ |Y]?
LB
Now taking 7= —157 , we get
=Y =0
5 i t < 0)

X and Y are in the opposite direction.
<. In Cauchy-Schwartz inequality, if |X:-Y | = |X||Y |, for non-zero vectors
X and Y, then X and Y are in the same or in the opposite direction.
Triangle Inequality :
For vectors X, ¥ in RZ as wellas in R3, |[x + YV | < | X |+ |V |

Proof : [T+ Y2 =G+ Y):(x +Y)

=Xx+x-y+y-x+y-y
= TP +2%-Y + |V ]? Xy =5Y'%
S|ITP+2|x-Y | +|YP Va € R, a < |a))
SIXP+2(X[| Y] +]|Y]P (Cauchy-Schwartz Inequality)
ST +1Y D
X+ V] S|X[+]Y]| Y
Geometric Interpretation : 1
Let P(X) and Q(Y) be two distinct points. In
figure 6_.11, EI(E{Q is a parallelogram whge Q(Y) R(T+7)
sides OP and QQ represent two vectors OP
and (7(3 respectively. By the parallelogram law
of vector addition,
(7i>+0_(>2=(71>1 - SP(X) |
In AOPR, OP + PR > OR v Figure 6.11
OP + OQ > OR (Opposite sides of a parallelogram are congruent)
(X +Y [>T+ Y] Y

N

If O, P, Q are collinear and O—P—Q or
O—Q—P (See figure 6.12),
then OP + OQ = OR

FI+[T =T +7] ®

Also, if O—P—Q or O—Q-—P is not the case

and O, P, Q are collinear, then OP + OQ > OR. P 3
Thus |X |+ |Y|>|x + Y|
X+ YISIX[+]Y] <0 > X
Inall cases | x + Y | < |X |+ Y| v Figure 6.12
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6.8 Collinear and Coplanar Vectors

We know that, if X # 0, Yy # 0 and if X = kY, k # 0 then X and Y have same or opposite
directions. If two vectors have same or opposite directions, then they are called collinear
vectors. Free vectors equivalent to the same bound vector or a non-zero multiple of it
are conventionally called parallel vectors. If the bound vectors are not collinear, their
directions are different. Hence either two bound vectors are collinear or have different

directions. They can not be parallel.
Theorem 6.4 : Non-zero vectors x = (x;, X,) and y = s yy) of R2 are collinear if and
only if x;y, — x,y; = 0.
Proof : ¥ and Y are collinear = X = kY, k€ R— {0}, X #0,. Y # 0
= (x1, xp) = k(yy, 1)
X) = kv Xy =k
X1y = Xy T kvyy — kv = 0
Conversely, let x;y, — x,y; = 0
X2 T XN
Let y;, #0,y, #0

XX
Then o Vs k, say.

If k=0, then x; =0, x, = 0. So ¥ = 0, But ¥ # 0. So k # 0.
X = (x. X)) = (kyy, kyy) = k(. vy) = kY. k € R — {0}
If y, = 0 or y, = 0, (both cannot be zero as Y #0),
let for definiteness y, = 0, y; # 0
Xy, =0
Xy, =0 (1 = X01)
X, =0asy #0

Let % =k
(xp x2) = (kyl, 0) = (kyl, kJ’2) (Vz =0)

Again k=0 = x,=0,x,=0.S0 ¥ = 0, But ¥ # 0.

Y =ky, k€ R — {0}

If x;y, — x,y; = 0, then for k € R — {0}, X = kY and hence X and y are collinear.

M) |x-Y|=|x||Y| ifand only if x =ky, k€ R— {0}, X #0, Y # 0
Proof : Let x = ky, k€ R — {0}

Y| =YY | = kYY)

[kl 1Y -y |

| X
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= |kl |V

=kl 1YY

= kY |||

=Xy
Conversely, let |[x Y | =|X || Y |

Now, vector form of Lagrange's identity is

ITX YR+ |- TP =|TP|7P

[T XY[P=0 XY =1x11YD
XXY=0
We can prove that x = ky ke R — {0}. (See exercise 6)

Thus |[X+Y | < |X||Y |if and only if X # kY, forany k€ R— {0}, X #0, Y # 0
@ |[T+5|=|%|+|7|,ifandonly if T =kY, k>0, X#0,5 # 0
i.e. x and ¥ have the same direction.

Proof : Let X = ky, k > 0.

X+ Y[=[G(Y)+Y |=|G+DY| =[k+1]]Y]
=G+ D[] (k>0
=klyl+1Y]|
=|kllYy|+1Y]| (k>0
=lky |+ 1Y
=|x|+1V|
Conversely, let |x + Y | =|X |+ | |

X+ YP=(X|+|YV]?
F+Y)E+N=|XP+2X||V|+]|TV P
|7|2+2f'§+|§|2=|f|2+2|f||§|+|§|2

Xy =[x||Y]

From the equality in Cauchy-Schwartz inequality, X = ky, k > 0.

X and y are in the same direction.

Theorem 6.5 : Non-zero vectors x and Y of R3 are collinear if and only if X X y = 0.
Proof : Since, ¥ and y are collinear X =ky, k€ R— {0}, X #0, Y # 0
XXY =Ky XY)=Ky X¥)=k0 =0
Conversely, let X X ¥ = 0.
X - Y| =|x||Y] (Lagrange's identity)
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Cauchy Schwarz inequality gives ¥ = kY, k € R — {0} as X # 0.

X, Y are collinear.
Coplanar Vectors : Let X, Y and z be vectors of R3. If we can find o, B, Y € R with at

least one of them non-zero, such that ax + By + yz = 0, then X, ¥ and 7 are said to be

coplanar vectors.

If X, ¥, 7 are not coplanar, they are called non-coplanar or linearly independent

vectors. Thus if X, ¥ and 7 are non-coplanar vectors, then

ax + By +y7=0=>0a=0,p =0and y = 0.

Theorem 6.6 : Distinct non-zero vectors ¥, y, z of R3 are coplanar if and only if
[x ¥y z]=0.
Proof : Suppose X, ¥, z are coplanar.
We can find o, 3, Y with at least one non-zero in R such that X + BY + yz = 0.

Let us assume that ¥ # 0
S
F 7 =@ x5 T =@ xD[(2)7 +(2)7]

- Ex T (R)r +Ex T (F)7

Y Y
= (=) (& x i)-f)+(§) (T X))
=0+0=0
[Xx ¥y z1 =0

Conversely, suppose [x Yy z]= 0.
X (y Xz)=0
If Y X T =0, then ¥ and 7 are collinear.
Yy =kT, k#0
0X + 1y —kz =0
Comparing it with X + BY + Y2 =0, =0, B =1and Y= —k# 0
X, ¥, Z are coplanar.
Now suppose ¥ X 7 # 0.
At least one of the numbers y,z, — y,zy, ¥,23 — y32, and y;z3 — y3z; is non-zero.

Assume that y;z, — y,z; # 0

Now, we will prove ¥ — a0y — Bz = 0 for some ¢, B € R (i)
Consider the equations Oy, + le —x; =0 (ii)
o, + Bz, —x, =0 (iii)

and O3 + Pz; —x3=0 (iv)
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Since yz, — y,z; # 0, we can solve (ii) and (iii) to find O and B and these Ol and [3 satisty (iv)

as [x ¥ 2] = 0.
We can find o, B € R such that oy + Bz = x.
Here 1IX — oy — Bz =0
Also 1 # 0.
X — oy — BZ = 0 with at least one coefficient 1 # 0.
Thus, X, ¥, 7 are coplanar.
Example 11 : Prove that (=1, 0, —1), (0, —1, 1) and (=1, 1, 0) are non-coplanar and that every
¥ € R3 can be written as X = o(—1, 0, —1) + B, —1, 1) + Y(—1, 1, 0) for some real
numbers O, 3 and Y.

-1 0 -1
Solution : [0 -1 1|=—-1(-D)4+0—-1(-1)=2#0
-1 1 0

Vectors (—1, 0, —1), (0, —1, 1) and (—1, 1, 0) are non-coplanar.
Now, let X = o(—1, 0, =1) + B(0, =1, 1) + Y(—I, 1, 0) for some ., B, Y € R,
where X = (xq, x5, x3).
(xla -xzz x3) = (_a - ’Ya _B + ’Ya _a + B)
—0L—Y=x, PH+y=x, —0+P=x;
Solving them, we get
x1+x2+X3’ B _ x?,_.xl_.& , Y= .&"‘.;3_)(—1

o= —

2 2
To—AT2TE 0, -+ BDTR (0, -1, + 2EHTX 1,1, 0)
Example 12 : Give one example of vectors X and y such that |[Xx -y | < |X || |.
Solution : Let, X = (1, —1,2)and ¥ = (2, 1, —2) (choose X # kY)
T y=2-1—4=—
Xy |=3 )
X1 =V6-4o
=3J6 (ii)

From results (i) and (ii), we have | X+ Y | <|X || Y |, since 3 < 3V6.
Example 13 : Whenis| X + Y |=| X | +| Y | ? Verify your answer by giving one example of X and y .
Solution : If X and y are in the same direction, then | X +Y | = |X |+ |V |.

Let ¥ = (1, —1, 1) and ¥ = (2, =2, 2)

Here, x = %i, % > 0, so x and y are in the same direction.
Now, T+75 =3, =3, 3)
1T+ | =31 —1, 1) =343
[X+5 =343 @
IX1=v3.17=2J3
T+ Y =43 +243 =33
Hence, | X+ Y | =|X |+ |V |
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6.9 Angle Between Two Non-zero Vectors Z

]|
S

If two non-zero vectors in R3 are given,
then the measure of the angle between
their corresponding bound vectors is

defined as the measure of the angle
between the given vectors.

—> —> _
Let OA and OB be the corresponding

bound vectors of 7 and b respectively. The

v
<

measure of the angle between g and b is the o)

measure of the angle between 074 and (?B

Let X and ¥ be two non-zero vectors. X Figure 6.13

(1) If x =ky, k> 0, then X and ¥ have the same directions and so the measure of the
angle between them is defined to be 0.

(2) If X =ky, k <0, then X and Y have opposite directions and so the measure of the
angle between them is defined to be .

(3) Now, suppose that x and y have different directions. So by Cauchy-Schwartz inequality,
XY <IX[[¥]

=X YI<X-Yy <|X||Y] (x|<a©o —a<x<a
=.5
Xyl
There is a unique o0 € (0, ) such that,
Xy
cos™! alea =
X1yl

The number o is defined to be the measure of the angle between x and Y. It is

N
denoted by o = (x, ).

Xy

VAN — —
-— — — —1 . — -
Thus (x, y) = cos =y if x #0,y #0.

Also, if [X Y |=|X||Y |, then Xy =|X||Y]|orx+Y = —|X||Y | The directions of
X and Yy are same or opposite respectively. Hence respective measure of the angle between
X and ¥ is 0 or Tt.

Let us justify.

If X and Y have same direction, then X = kY, k > 0.

¥y  k»-y _kGy-y o kyP
Now =157 = Ty iy 1 =~ TRy iy~ %y P ! *k > 0)
Xy
cos™! leyl =cos11=0
If ¥ and Y have opposite directions, then x = ky, k<O0.
Xy _kyn-y _kGy-y o kiyE
Now =75 = Ty iy 1 = TRy 1151~ —ki5F ! k < 0)
-1 X'y o -1 _
cos Ei cos ' (—l)=m
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Thus, for all non-zero vectors x and Y, there exists o0 € [0, ] such that,

Nyl Y

=|

_/\— —
o= (x, ¥)=cos !

=l

N

Geometrical Interpretation : Our definition Q(7) P(T)
of the measure of the angle between two _
vectors is quite consistent with our understanding (v) lof/Rtw)
of the measure of the angle in geometry.

Suppose, position vectors of P and Q are 0 X
% and Y respectively, where ¥ # 0, ¥ # 0.

Let = = 7 and L - v be unit vectors in

x| 1y

the direction of X and y respectively. 4

(y’/\y) - (E,AV) Figure 6.14

Suppose u and v are the position vectors of R and S respectively. R and S are the points on

the unit circle, so for some O and [3 with 0 < O, B < 27, we would have u = (cosOl, sinQl) and
v = (cosP, sinP).
. . % % . . .
Now if the radian measure of the angle formed by the rays OR and OS is 0, then it is clear
that, @ = o — B or B — 0.
Yy _
Hnyl
(cosOL, sinQl) - (cosB, sinB)
cost cosB + sinOl sinﬁ
cos(0L — [3) or cos(B — Q)
_N=
= cos0O 0V<0O0<mo< G, Y)<mn
"y
1yl

— —
Thus, the measure of angle © formed by OP and OQ, as we understand from geometry is same

=l

=I

_N—
Now, cos (x, V) |

=1

0= (Y,/\§) = cos~!

=

as (I,/\§).

Orthogonal Vectors : If X # 0, ¥ # 0 and (E,AY) = %, then X and y are said to be
orthogonal or perpendicular to each other. Perpendicularity of X and y denoted by X L y. We say
X is perpendicular to y.

Necessary and sufficient condition for two non-zero vectors to be perpendicular to
each other :

Let ¥ and ¥ be two non-zero vectors.

- A
Tly ea =%

_N= T
& cos(x, y)=c0s7
X-y
X1yl
S Xy =0

Thus X and Y are orthogonal if and only if X -y = 0.
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