Verify the Algebraic Identity $(a-b)^2 = a^2 - 2ab+b^2$

OBJECTIVE

To verify the algebraic identity $(a - b)^2 = a^2 - 2ab + b^2$.

Materials Required

- 1. Drawing sheet
- 2. Pencil
- 3. Coloured papers
- 4. Scissors
- 5. Ruler
- 6. Adhesive

Prerequisite Knowledge

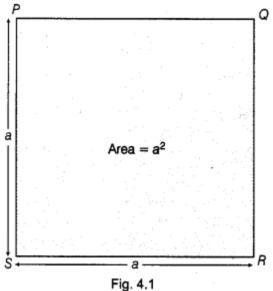
- 1. Square and its area.
- 2. Rectangle and its area.

Theory

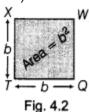
- 1. For square and its area refer to Activity 3.
- 2. For rectangle and its area refer to Activity 3.

Procedure

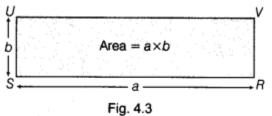
1. From a coloured paper, cut a square PQRS of side a units, (see Fig. 4.1)



Further, cut out another square TQWX of side b units such that b < a. (see Fig. 4.2)



3. Now, cut out a rectangle USRV of length a units and breadth b units from another coloured paper, (see Fig. 4.3)



4. Now further, cut out another rectangle ZVWX of length a units and breadth b units, (see Fig. 4.4)

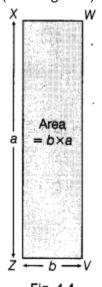
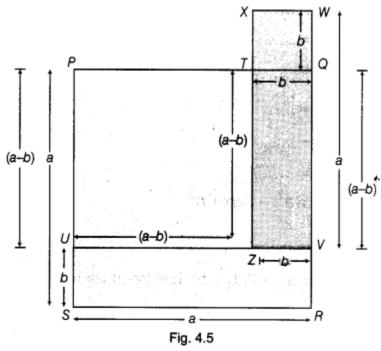


Fig. 4.4

5. Now, arrange figures 4.1, 4.2, 4.3 and 4.4, according to their vertices and paste it on a drawing sheet, (see Fig. 4.5)



Demonstration

From the figures 4.1,4.2, 4.3 and 4.4, we have Area of square PQRS = a^2 Area of square TQWX = b^2 Area of rectangle USRV = ab and Area of rectangle ZVWX – ab

Area of square PUZT = Area of square PQRS + Årea of square TQWX – Area of rectangle ZVWX – Area of rectangle USRV

= $a^2 + b^2 - ba$ -ab = $(a^2 - 2ab + b^2) \dots (i)$ Also, from Fig. 4.5, it is clear that PUZT is a square whose each side is (a - b). Area of square PUZT = $(Side)^2$ = $[(a-b)]^2 = (a-b)^2 \dots (ii)$ From Eqs. (i) and (ii), we get $(a - b)^2 = (a^2 - 2ab + b^2)$ Here, area is in square units.

Observation

On actual measurement, we get $a = \dots, b = \dots, (a-b) = \dots, a^2 = \dots, b^2 = \dots, (a^2 - b^2) = \dots, ab = \dots, ab = \dots, adb = \dots, and 2ab = \dots, Hence, <math>(a - b)^2 = a^2 - 2ab + b^2$

Result

Algebraic identity $(a - b)^2 = a^2 - 2ab + b^2$ has been verified.

Application

The identity $(a - b)^2 = a^2 - 2ab + b^2$ may be used for

- 1. calculating the square of a number which can be expressed as a difference of two convenient numbers.
- 2. simplification and factorization of algebraic expressions.

Viva Voce

Question 1:

What do you mean by an algebraic identity?

Answer:

An algebraic identity is an algebraic equation which is true for all values of variables occurring in it.

Question 2:

Is $(x - 3y)^2 = x^2 - 6xy + 9y^2$ an algebraic identity? Answer: Yes

Question 3:

Which identity should be use to expand $(3x - 2y)^2$?

Answer:

 $(a - b)^2 = a^2 - 2ab + b^2$

Question 4:

Is the identity $(a - b) = a^2 - 2ab + b^2$ hold for negative values of a and b? Answer:

Yes

Question 5:

What do we mean by degree of an algebraic expression? **Answer:**

The highest power of the variable involved in the algebraic expression is called its degree.

Question 6:

The algebraic identity is true for every real number. **Answer:**

Yes

Question 7:

Suppose we want square of any natural number, then it is possible to find the square of any natural number by using the identity $(a - b)^2 = a^2 + b^2 - 2ab$

Answer:

Yes

Question 8:

In an identity $(a - b)^2 = a^2 + b^2 - 2ab$, if both variables are equal, then find the value of $(a - b)^2$.

Answer:

When a = b, then $(a-b)^2 = (b-b)^2 = 0$

Suggested Activity

Verify the algebraic identity $(a-b)^2 = a^2 - 2ab + b^2$ by taking a = 9 and b = 4.