Mechanical Design of Overchead Lines

SAG and Tension

SAG

The vertical distance between the conductor at the mid point and the line joining the two adjacent level support is known as sag.

Catenary

A line conductor of uniform cross-section and material, perfectly flexible but stretched inelestic between 2 support hanging freely under its own weight is represented by a curve known as catenary.

Sag Calculation

1. Supports at Same Level

where,

I = Length of span, metres

S = Sag at mid span, metres

T = Conductor tension (assumed constant over the whole span), newtons

W = Conductor weight, N/m

Spacing Between Conductors (without sparking)

Spacing =
$$\sqrt{S} + \frac{V}{150}$$
 metres

where,

S = sag in metres

V = line voltage in kV

2. Effect of Ice and Wind

Weight of Ice Per Metre Length of Conductor

$$W_i = 2.8 \times 10^4 \, \text{t(d+t)} \, \text{N/m}$$

where, d = diameter of conductor, metres

t = radial thickness of ice, metres

Wind load

$$F_W = P \times D$$
 N/m

where, P = Wind pressure, Newton per square metre of projected area.

Total force acting on conductor per metre length

$$F_t = \sqrt{(W + W_i)^2 + F_W^2}$$
 N/m

Sag under worst condition

$$S = \frac{F_1 I^2}{8T}$$
 in new plane

where, F, = Total force per meter

T = Limiting tension

Vertical sag

$$\tan \gamma = \frac{F_W}{W + W_i}$$

Total length of conductor

$$Z = I \left(\frac{\mathsf{F}_{\mathsf{i}}^2 I^2}{24 \mathsf{T}^2} \right)$$

where, Z = Total length of the conductor

F_t = Total force acting on conductor per metre length

3. Supports at different levels

$$S = \frac{WI_c^2}{8T}$$
 and $I_c = I + \frac{2Th}{WI}$

where, $l_c = \text{Span of complete parabola}$

Remember:

The formulas are also valid if two supports A and C fall on the same side of

origin (i.e. if
$$l < \frac{l_c}{2}$$
).

.....