Chapter

3

Progressions

3.1 Introduction Arithmetic progression (A.P.) 3.2 Definition 3.3 General term of an A.P. 3.4 Selection of terms in an A.P. 3.5 Arithmetic mean 3.6 Properties of A.P. Geometric progression (G.P.) 3.7 Definition 3.8 General term of G.P. 3.9 Sum of first n terms of a G.P. 3.10 Selection of terms in a G.P. 3.11 Sum of infinite terms of a G.P. 3.12 Geometric mean 3.13 Properties of G.P. Harmonic progression (H.P.) 3.14 Definition 3.15 General term of an H.P.		
3.2 Definition 3.3 General term of an A.P. 3.4 Selection of terms in an A.P. 3.5 Arithmetic mean 3.6 Properties of A.P. Geometric progression (G.P.) 3.7 Definition 3.8 General term of G.P. 3.9 Sum of first n terms of a G.P. 3.10 Selection of terms in a G.P. 3.11 Sum of infinite terms of a G.P. 3.12 Geometric mean 3.13 Properties of G.P. Harmonic progression (H.P.) 3.14 Definition		
3.3 General term of an A.P. 3.4 Selection of terms in an A.P. 3.5 Arithmetic mean 3.6 Properties of A.P. Geometric progression (G.P.) 3.7 Definition 3.8 General term of G.P. 3.9 Sum of first n terms of a G.P. 3.10 Selection of terms in a G.P. 3.11 Sum of infinite terms of a G.P. 3.12 Geometric mean 3.13 Properties of G.P. Harmonic progression (H.P.) 3.14 Definition		
3.4 Selection of terms in an A.P. 3.5 Arithmetic mean 3.6 Properties of A.P. Geometric progression (G.P.) 3.7 Definition 3.8 General term of G.P. 3.9 Sum of first n terms of a G.P. 3.10 Selection of terms in a G.P. 3.11 Sum of infinite terms of a G.P. 3.12 Geometric mean 3.13 Properties of G.P. Harmonic progression (H.P.) 3.14 Definition		
3.5 Arithmetic mean 3.6 Properties of A.P. Geometric progression (G.P.) 3.7 Definition 3.8 General term of G.P. 3.9 Sum of first n terms of a G.P. 3.10 Selection of terms in a G.P. 3.11 Sum of infinite terms of a G.P. 3.12 Geometric mean 3.13 Properties of G.P. Harmonic progression (H.P.) 3.14 Definition		
3. 6 Properties of A.P. Geometric progression (G.P.) 3.7 Definition 3.8 General term of G.P. 3.9 Sum of first n terms of a G.P. 3.10 Selection of terms in a G.P. 3.11 Sum of infinite terms of a G.P. 3.12 Geometric mean 3.13 Properties of G.P. Harmonic progression (H.P.) 3.14 Definition		
Geometric progression (G.P.) 3.7 Definition 3.8 General term of G.P. 3.9 Sum of first n terms of a G.P. 3.10 Selection of terms in a G.P. 3.11 Sum of infinite terms of a G.P. 3.12 Geometric mean 3.13 Prpoperties of G.P. Harmonic progression (H.P.) 3.14 Definition		
 3.7 Definition 3.8 General term of G.P. 3.9 Sum of first n terms of a G.P. 3.10 Selection of terms in a G.P. 3.11 Sum of infinite terms of a G.P. 3.12 Geometric mean 3.13 Prpoperties of G.P. Harmonic progression (H.P.) 3.14 Definition 		
 3.8 General term of G.P. 3.9 Sum of first n terms of a G.P. 3.10 Selection of terms in a G.P. 3.11 Sum of infinite terms of a G.P. 3.12 Geometric mean 3.13 Prpoperties of G.P. Harmonic progression (H.P.) 3.14 Definition 		
 3.9 Sum of first n terms of a G.P. 3.10 Selection of terms in a G.P. 3.11 Sum of infinite terms of a G.P. 3.12 Geometric mean 3.13 Prpoperties of G.P. Harmonic progression (H.P.) 3.14 Definition 		
 3.10 Selection of terms in a G.P. 3.11 Sum of infinite terms of a G.P. 3.12 Geometric mean 3.13 Prpoperties of G.P. Harmonic progression (H.P.) 3.14 Definition 		
 3.11 Sum of infinite terms of a G.P. 3.12 Geometric mean 3.13 Prpoperties of G.P. Harmonic progression (H.P.) 3.14 Definition 		
3.12 Geometric mean 3.13 Prpoperties of G.P. Harmonic progression (H.P.) 3.14 Definition		
3.13 Prpoperties of G.P. Harmonic progression (H.P.) 3.14 Definition		
Harmonic progression (H.P.) 3.14 Definition		
3.14 Definition		
3.16 Harmonic mean		
3.17 Properties of H.P.		
Arithmetico-geometric progression (A.G.P.)		
3.18 <i>n</i> th term of A.G.P.		
3.19 Sum of A.G.P.		
3.20 Method of finding sum		
3.21 Method of difference		
Miscellaneous series		
3.22 Special series		
3.23 V _n method		
3.24 Properties of arithmetic, geometric and		
harmonic means between two given numbers		
3.25 Relation between A.P., G.P. and H.P.		
3.26 Applications of progressions		
Assignment (Basic and Advance Level)		
Answer Sheet of Assignment		

According to Boethius (510 A.D.) arithmetic, Geometric and Harmonic sequences were known to early Greek writers. Among the Indian mathematician; Aryabhatta (476 A.D.) was the first to give the formula for the sum of squares and cubes of natural numbers in his famous work Aryabhatiyam.

Another special type of sequence having important applications in mathematics, called Fibonacci sequence, was discovered by Italian Mathematician Leonardo Fibonacci (1170-1250 A.D.) The general series was given by Frenchman Francois-vieta (1540-1603 A.D.)

It was only through the rigorous developed of algebraic and set theoretic tools that the concepts related to sequence and series could be formulated suitably.

3.1 Introduction

(1) **Sequence**: A sequence is a function whose domain is the set of natural numbers, N.

If
$$f: N \to C$$
 is a sequence, we usually denote it by $\langle f(n) \rangle = \langle f(1), f(2), f(3), \dots \rangle$

It is not necessary that the terms of a sequence always follow a certain pattern or they are described by some explicit formula for the n^{th} term. Terms of a sequence are connected by commas. *Example*: 1, 1, 2, 3, 5, 8, is a sequence.

(2) Series: By adding or subtracting the terms of a sequence, we get a series.

If $t_1, t_2, t_3, \dots, t_n, \dots$ is a sequence, then the expression $t_1 + t_2 + t_3 + \dots + t_n \dots$ is a series.

A series is finite or infinite as the number of terms in the corresponding sequence is finite or infinite.

Example:
$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$$
 is a series.

(3) **Progression**: A progression is a sequence whose terms follow a certain pattern i.e. the terms are arranged under a definite rule.

Example: 1, 3, 5, 7, 9, is a progression whose terms are obtained by the rule: $T_n = 2n - 1$, where T_n denotes the n^{th} term of the progression.

Progression is mainly of three types: Arithmetic progression, Geometric progression and Harmonic progression.

However, here we have classified the study of progression into five parts as:

- Arithmetic progression
- Geometric progression
- Arithmetico-geometric progression
- Harmonic progression
- Miscellaneous progressions

Arithmetic progression(A.P)

3.2 Definition

A sequence of numbers $< t_n >$ is said to be in arithmetic progression (A.P.) when the difference $t_n - t_{n-1}$ is a constant for all $n \in N$. This constant is called the common difference of the A.P., and is usually denoted by the letter d.

If 'a' is the first term and 'd' the common difference, then an A.P. can be represented as $a, a + d, a + 2d, a + 3d, \dots$

Example: 2, 7, 12, 17, 22, is an A.P. whose first term is 2 and common difference 5.

Algorithm to determine whether a sequence is an A.P. or not.

Step I: Obtain a_n (the n^{th} term of the sequence).

Step II: Replace n by n-1 in a_n to get a_{n-1} .

Step III: Calculate $a_n - a_{n-1}$.

If $a_n - a_{n-1}$ is independent of n, the given sequence is an A.P. otherwise it is not an A.P. An arithmetic progression is a linear function with domain as the set of natural numbers N.

 \therefore $t_n = An + B$ represents the n^{th} term of an A.P. with common difference A.

3.3 General Term of an A.P.

(1) Let 'a' be the first term and 'd' be the common difference of an A.P. Then its n^{th} term is a+(n-1)d.

$$T_n = a + (n-1)d$$

(2) p^{th} term of an A.P. from the end: Let 'a' be the first term and 'd' be the common difference of an A.P. having *n* terms. Then p^{th} term from the end is $(n-p+1)^{th}$ term from the beginning.

$$p^{th}$$
 term from the end = $T_{(n-p+1)} = a + (n-p)d$

Important Tips

- General term (T_n) is also denoted by l (last term).
- Common difference can be zero, +ve or -ve.
- n (number of terms) always belongs to set of natural numbers.
- If T_k and T_p of any A.P. are given, then formula for obtaining T_n is $\frac{T_n T_k}{n-k} = \frac{T_p T_k}{n-k}$.
- If $pT_p = qT_q$ of an A.P., then $T_{p+q} = 0$.
- If p^{th} term of an A.P. is q and the q^{th} term is p, then $T_{p+q}=0$ and $T_n=p+q-n$.
- If the p^{th} term of an A.P. is $\frac{1}{a}$ and the q^{th} term is $\frac{1}{n}$, then its pq^{th} term is 1.
- If $T_n = pn + q$, then it will form an A.P. of common difference p and first term p + q.

Let T_r be rth term of an A.P. whose first term is a and common difference is d. If for some positive Example: 1 integers m, n, $m \ne n$, $T_m = \frac{1}{n}$ and $T_n = \frac{1}{m}$, then a - d equals [AIEEE 2004]

(a)
$$\frac{1}{m} + \frac{1}{n}$$

(b) 1

(c)
$$\frac{1}{mn}$$

(d) o

Solution: (d)
$$T_m = \frac{1}{n} \implies a + (m-1)d = \frac{1}{n}$$

and
$$T_n = \frac{1}{m} \implies a + (n-1)d = \frac{1}{m}$$

Subtract (ii) from (i), we get
$$(m-n)d = \frac{1}{n} - \frac{1}{m} \Rightarrow (m-n)d = \frac{(m-n)}{mn} \Rightarrow d = \frac{1}{mn}$$
, as $m-n \neq 0$

$$a=\frac{1}{m}-(n-1)d=\frac{1}{m}-\frac{n-1}{mn}=\frac{1}{mn}=d$$
 . Therefore $a-d=0$

Example: 2 The 19th term from the end of the series $2 + 6 + 10 + \dots + 86$ is

- (a) 6
- (b) 18

- (c) 14
- (d) 10

Solution: (c) $86 = 2 + (n-1)4 \implies n = 22$

19th term from end = $t_{n-19+1} = t_{22-19+1} = t_4 = 2 + (4-1)4 = 14$

Example: 3 In a certain A.P., 5 times the 5th term is equal to 8 times the 8th term, then its 13th term is [AMU 1991]

- (a) o
- (b) 1
- (c) 12
- (d) 13

Solution: (a) We have $5T_5 = 8T_8$

Let *a* and *d* be the first term and common difference respectively

$$\therefore 5\{a+(5-1)d\} = 8\{a+(8-1)d\}$$

$$\Rightarrow 3a + 36d = 0 \Rightarrow a + 12d = 0$$
, i.e. $a + (13 - 1)d = 0$. Hence 13th term = 0

Example: 4 If 7th and 13th term of an A.P. be 34 and 64 respectively, then its 18th term is

- (a) 87
- (b) 88

- (c) 89
- (d) 90

Solution: (c) Let a be the first term and d be the common difference of the given A.P., then

$$T_7 = 34 \implies a + 6d = 34$$

$$T_{13} = 64 \implies a + 12d = 64$$

From (i) and (ii), d = 5, a = 4

$$T_{18} = a + 17d = 4 + 17 \times 5 = 89$$

Trick:
$$\frac{T_n - T_k}{n - k} = \frac{T_p - T_k}{p - k} \Rightarrow \frac{T_{18} - T_7}{18 - 7} = \frac{T_{13} - T_7}{13 - 7} \Rightarrow \frac{T_{18} - 34}{11} = \frac{64 - 34}{6} \Rightarrow T_{18} = 89$$

Example: 5 If $\langle a_n \rangle$ is an arithmetic sequence, then $\Delta = \begin{vmatrix} a_m & a_n & a_p \\ m & n & p \\ 1 & 1 & 1 \end{vmatrix}$ equals

- (a) 1
- (b) -1

- (c) (
- (d) None of these

Solution: (c) Let a be the first term and d the common difference. Then $a_r = a + (r-1)d$

$$\Delta = \left| \begin{array}{ccc} a + (m-1)d & a + (n-1)d & a + (p-1)d \\ m & n & p \\ 1 & 1 & 1 \end{array} \right| = \left| \begin{array}{ccc} a & a & a \\ m & n & p \\ 1 & 1 & 1 \end{array} \right| + d \left| \begin{array}{ccc} m-1 & n-1 & p-1 \\ m & n & p \\ 1 & 1 & 1 \end{array} \right|$$

$$= a \begin{vmatrix} 1 & 1 & 1 \\ m & n & p \\ 1 & 1 & 1 \end{vmatrix} + d \begin{vmatrix} m & n & p \\ m & n & p \\ 1 & 1 & 1 \end{vmatrix} = a \cdot 0 + d \cdot 0 = 0$$

Example: 6 The n^{th} term of the series $3 + 10 + 17 + \dots$ and $63 + 65 + 67 + \dots$ are equal, then the value of n is

[Kerala (Engg.) 2002]

- (a) 11
- (b) 12
- (c) 13
- (d) 15

Solution: (c) n^{th} term of 1st series = 3 + (n-1)7 = 7n-4

 n^{th} term of 2^{nd} series = 63 + (n-1) = 2n + 61

 \therefore we have, $7n-4=2n+61 \Rightarrow n=13$

3.4 Selection of Terms in an A.P.

When the sum is given, the following way is adopted in selecting certain number of terms :

Number of terms Terms to be taken

01 01 001

3

$$a - d$$
, a , $a + d$

4
$$a - 3d, a - d, a + d, a + 3d$$

5 $a - 2d, a - d, a, a + d, a + 2d$

In general, we take a - rd, a - (r - 1)d,, a - d, a, a + d,, a + (r - 1)d, a + rd, in case we have to take (2r + 1) terms (*i.e.* odd number of terms) in an A.P.

And, a - (2r - 1)d, a - (2r - 3)d,....., a - d, a + d,...., a + (2r - 1)d, in case we have to take 2r terms in an A.P.

When the sum is not given, then the following way is adopted in selection of terms.

Number of terms

Terms to be taken

3
$$a, a + d, a + 2d$$

4 $a, a + d, a + 2d, a + 3d$

5
$$a, a+d, a+2d, a+3d, a+4d$$

Sum of *n* terms of an A.P.: The sum of *n* terms of the series $a+(a+d)+(a+2d)+......+\{a+(n-1)d\}$ is given by

$$S_n = \frac{n}{2}[2a + (n-1)d]$$

Also, $S_n = \frac{n}{2}(a+l)$, where l = last term = a + (n-1)d

Important Tips

- The common difference of an A.P is given by $d = S_2 2S_1$ where S_2 is the sum of first two terms and S_1 is the sum of first term or the first term.
- The sum of infinite terms = $\begin{cases} \infty, & \text{when } d > 0 \\ -\infty, & \text{when } d < 0 \end{cases}$
- F If sum of n terms S_n is given then general term $T_n = S_n S_{n-1}$, where S_{n-1} is sum of (n-1) terms of A.P.
- Sum of n terms of an A.P. is of the form $An^2 + Bn$ i.e. a quadratic expression in n, in such case, common difference is twice the coefficient of n^2 i.e. 2A.
- If for the different A.P's $\frac{S_n}{S_n'} = \frac{f_n}{\phi_n}$, then $\frac{T_n}{T_n'} = \frac{f(2n-1)}{\phi(2n-1)}$
 - If for two A.P.'s $\frac{T_n}{T_n'} = \frac{An+B}{Cn+D}$ then $\frac{S_n}{S_n'} = \frac{A\left(\frac{n+1}{2}\right) + B}{C\left(\frac{n+1}{2}\right) + D}$
- Some standard results
 - Sum of first n natural numbers = $1 + 2 + 3 + \dots + n = \sum_{r=1}^{n} r = \frac{n(n+1)}{2}$
 - Sum of first n odd natural numbers = $1 + 3 + 5 + \dots + (2n-1) = \sum_{r=1}^{n} (2r-1) = n^2$
 - Sum of first n even natural numbers = $2+4+6+\dots+2n=\sum_{n=1}^{n}2r=n(n+1)$
- If for an A.P. sum of p terms is q and sum of q terms is p, then sum of (p + q) terms is $\{-(p + q)\}$.
 - If for an A.P., sum of p terms is equal to sum of q terms, then sum of (p + q) terms is zero.

Example: 7

Example: 8

Example: 9

					[MP PET 2003]
	(a) 1	(b) 8	(c) 4	(d) 6	
Solution: (c)	Let $a-d, a, a+d,$	oe an A.P.			
	$\therefore (a-d)+(a+d)=12 \Rightarrow$	a = 6 . Also, $(a - d)a = 24 = 24$	$\Rightarrow 6 - d = \frac{24}{6} = 4 \implies d = 2$	2	
	\therefore First term = $a - d = 6$	5 - 2 = 4			
Example: 10	If S_r denotes the sum	of the first r terms of an	A.P., then $\frac{S_{3r} - S_{r-1}}{S_{2r} - S_{2r-1}}$ i	s equal to	
	(a) 2r - 1	(b) $2r + 1$	(c) $4r + 1$	(d) $2r + 3$	
	$S_{3r} - S_{r-1} = \frac{3r}{2} \{2a + (3r)\}$	$\frac{3r-1}{2}$ $\left\{2a+(r-1)-\frac{1}{2}\right\}$	1) d } $(2r+1)a + \frac{d}{2} \{3r(3n+1)a + \frac{d}{2}\}\}$	(r-1)-(r-1)(r-2)	}
Solution: (b)	$\frac{S_{r}}{S_{2r}} - S_{2r-1} = \frac{Z}{S_{2r-1}}$	T_{2r}	$=$ $=$ $\frac{2}{a + (2)}$	(2r-1)d	-
	$=\frac{(2r+1)a+\frac{d}{2}\left\{8r^2-2\right\}}{a+(2r-1)d}=$	$= \frac{(2r+1)a + d(4r^2 - 1)}{a + (2r-1)d} = 2r + 1$			
Example: 11	If the sum of the firs	st 2 <i>n</i> terms of 2, 5, 8 is	equal to the sum of	the first n terms	s of 57, 59, 61,
	then n is equal to				
	(5) 10	(h) 40	(-) 44		IT Screening 2001]
	(a) 10	(b) 12	(c) 11	(d) 13	
Solution: (c)	We have, $\frac{2n}{2} \{2 \times 2 + (2n)\}$	$(n-1)3$ = $\frac{n}{2}$ {2×57 + (n-1)2} =	$\Rightarrow 6n+1=n+56 \Rightarrow n=1$	11	
Example: 12	If the sum of the 10 t	terms of an A.P. is 4 times	s to the sum of its 5 t	erms, then the r	atio of first term
	and common differen	ce is		[Ra	jasthan PET 1986]
	(a) 1:2	(b) 2:1	(c) 2:3	(d) 3:2	
Solution: (a)	Let a be the first term and d the common difference				
	Then, $\frac{10}{2} \{ \{ a + (10 - 1)d \} \}$	$= 4 \times \frac{5}{2} \{2a + (5-1)d\} \implies 2a + (5-1)d\}$	$-9d = 4a + 8d \implies d = 2a$	$\Rightarrow \frac{a}{d} = \frac{1}{2}$, \therefore a:	d = 1 : 2
Example: 13	150 workers were en	gaged to finish a piece of	work in a certain nu	mber of days. 4	workers dropped
		ore workers dropped the t	=	_	re days to finish
	the work now. The nu	imber of days in which the	e work was completed	lis [Kuru	kshetra CEE 1996]
	(a) 15	(b) 20	(c) 25	(d) 30	
Solution: (c)	Let the work was to b	be finished in x days. \therefore Wo	ork of 1 worker in a da	$ay = \frac{1}{150}$	

If the p^{th} term of an A.P. is $\frac{1}{q}$ and q^{th} term is $\frac{1}{p}$, then sum of pq terms is given by $S_{pq} = \frac{1}{2}(pq+1)$

The first term of an A.P. is 2 and common difference is 4. The sum of its 40 terms will be [MNR 1978; MP PET

(c) 200

The sum of the first and third term of an A.P. is 12 and the product of first and second term is 24, the

[Karnataka CET 2003]

(d) 2080

(d) 2800

 7^{th} term of an A.P. is 40, then the sum of first 13 terms is

(b) 520

(b) 1600

Solution: (b) $S_{13} = \frac{13}{2} \{2a + 12d\} = 13\{a + 6d\} = 13 \times T_7 = 13 \times 40 = 520$

Solution: (a) $S = \frac{n}{2} [2a + (n-1)d] = \frac{40}{2} [2 \times 2 + (40-1)4] = 3200$

(a) 3200

first term is

Now the work will be finished in (x + 8) days. \therefore Work done = Sum of the fraction of work done

$$1 = \frac{1}{150x} \times 150 + \frac{1}{150x} (150 - 4) + \frac{1}{150x} (150 - 8) + \dots$$
 to $(x + 8)$ terms

$$\Rightarrow 1 = \frac{x+8}{2} \left\{ 2 \times \frac{150}{150 \, x} + (x+8-1) \left(\frac{-4}{150 \, x} \right) \right\} \Rightarrow 150 \, x = (x+8) \{150 - 2(x+7)\} \Rightarrow (x+8)(x+7) - 600 = 0$$

$$\Rightarrow (x+8)(x+7) = 25 \times 24$$
, $\therefore x+8 = 25$

Hence work completed in 25 days.

Example: 14 If the sum of first p terms, first q terms and first r terms of an A.P. be x, y and z respectively, then $\frac{x}{p}(q-r) + \frac{y}{q}(r-p) + \frac{z}{r}(p-q)$ is

- (a) o
- (b) 2

- (c) pgr
- (d) $\frac{8xyz}{}$

We have a, the first term and d, the common difference, $x = \{2a + (p-1)d\}\frac{p}{2} \Rightarrow \frac{x}{p} = a + (p-1)\frac{d}{2}$ Solution: (a)

Similarly,
$$\frac{y}{q} = a + (q-1)\frac{d}{2}$$
 and $\frac{z}{r} = a + (r-1)\frac{d}{2}$

$$\therefore \frac{x}{p}(q-r) + \frac{y}{q}(r-p) + \frac{z}{r}(p-q) = \left\{ a + (p-1)\frac{d}{2} \right\} (q-r) + \left\{ a + (q-1)\frac{d}{2} \right\} (r-p) + \left\{ a + (r-1)\frac{d}{2} \right\} (p-q)$$

$$= a\{(q-r) + (r-p) + (p-q)\} + \frac{d}{2} \left\{ (p-1)(q-r) + (q-1)(r-p) + (r-1)(p-q) \right\}$$

$$=a..\,0+\frac{d}{2}[\{pq-pr+rq-pq+pr-qr-\{(q-r)+(r-p)+(p-q)\}=0+\frac{d}{2}\{0-0\}=0$$

The sum of all odd numbers of two digits is Example: 15

- (b) 2530
- (c) 4905
- (d) 5049

Required sum, $S = 11 + 13 + 15 + \dots + 99$ Solution: (a)

Let the number of odd terms be *n*, then $99 = 11 + (n-1)2 \implies n = 45$

$$\therefore S = \frac{45}{2}(11+99) = 45 \times 55 = 2475$$

$$\left[\because S = \frac{n}{2} (a+l) \right]$$

If sum of *n* terms of an A.P. is $3n^2 + 5n$ and $T_m = 164$, then m =Example: 16 [Rajasthan PET 1991, 95; DCE 1999]

Example: 17

- (d) None of these

 $T_m = S_m - S_{m-1} \implies 164 = (3m^2 + 5m) - \{3(m-1)^2 + 5(m-1)\} \implies 164 = 3(2m-1) + 5 \implies m = 27$ Solution: (b)

The sum of *n* terms of the series $\frac{1}{1+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{5}} + \frac{1}{\sqrt{5}+\sqrt{7}} + \dots$ is

[UPSEAT 2002]

[Roorkee 1993]

- (b) $\frac{1}{2}\sqrt{2n+1}$
- (c) $\sqrt{2n-1}$
- (d) $\frac{1}{2}(\sqrt{2n+1}-1)$

Solution: (d) $S_n = \frac{1}{1+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{5}} + \frac{1}{\sqrt{5}+\sqrt{7}} + \dots + \frac{1}{\sqrt{2n-1}+\sqrt{2n+1}}$

$$= \frac{\sqrt{3}-1}{(\sqrt{3}-1)(\sqrt{3}+1)} + \frac{\sqrt{5}-\sqrt{3}}{2} + \frac{\sqrt{7}-\sqrt{5}}{2} + \dots + \frac{\sqrt{2n+1}-\sqrt{2n-1}}{2}$$

$$=\frac{1}{2}\left[\sqrt{3}-1+\sqrt{5}-\sqrt{3}+\sqrt{7}-\sqrt{5}+\ldots\ldots+(\sqrt{2n+1}-\sqrt{2n-1})\right]=\frac{1}{2}\left[\sqrt{2n+1}-1\right]$$

If a_1, a_2, \dots, a_{n+1} are in A.P., then $\frac{1}{a_1 a_2} + \frac{1}{a_2 a_3} + \dots + \frac{1}{a_n a_{n+1}}$ is

[AMU 2002]

- (a) $\frac{n-1}{a_1 a_2}$
- (b) $\frac{1}{a_1 a_{n+1}}$ (c) $\frac{n+1}{a_2 a_{n+1}}$
- (d) $\frac{n}{a_1 a_{n+1}}$

Solution: (d)
$$S = \frac{1}{a_1 a_2} + \frac{1}{a_2 a_3} + \dots + \frac{1}{a_n a_{n+1}} = \frac{\left(\frac{1}{a_1} - \frac{1}{a_2}\right)}{(a_2 - a_1)} + \frac{\left(\frac{1}{a_2} - \frac{1}{a_3}\right)}{(a_3 - a_2)} + \dots + \frac{\left(\frac{1}{a_n} - \frac{1}{a_{n+1}}\right)}{(a_{n+1} - a_n)}$$

As $a_1, a_2, a_3, \dots, a_{n+1}$ are in A.P., i.e. $a_2 - a_1 = a_3 - a_2 = \dots = a_{n+1} - a_n = d$ (say)

$$\therefore S = \frac{1}{d} \left[\left(\frac{1}{a_1} - \frac{1}{a_2}\right) + \left(\frac{1}{a_2} - \frac{1}{a_3}\right) + \dots + \left(\frac{1}{a_n} - \frac{1}{a_{n+1}}\right) \right] = \frac{1}{d} \left[\frac{1}{a_1} - \frac{1}{a_{n+1}}\right] = \frac{a_{n+1} - a_1}{d \cdot a_1 \cdot a_{n+1}} = \frac{[a_1 + (n+1-1)d] - a_1}{d \cdot a_1 \cdot a_{n+1}}$$

$$S = \frac{nd}{d \cdot a_1} = \frac{n}{a_1 \cdot a_{n+1}}$$

3.5 Arithmetic Mean

- (1) Definitions
- (i) If three quantities are in A.P. then the middle quantity is called Arithmetic mean (A.M.) between the other two.

If a, A, b are in A.P., then A is called A.M. between a and b.

- (ii) If $a, A_1, A_2, A_3, \dots, A_n, b$ are in A.P., then $A_1, A_2, A_3, \dots, A_n$ are called n A.M.'s between a and b.
 - (2) Insertion of arithmetic means
- (i) **Single A.M. between a and b**: If a and b are two real numbers then single A.M. between a and $b = \frac{a+b}{2}$
 - (ii) n A.M.'s between a and b: If $A_1, A_2, A_3, \dots, A_n$ are n A.M.'s between a and b, then

$$A_1 = a + d = a + \frac{b - a}{n + 1}, \qquad A_2 = a + 2d = a + 2\frac{b - a}{n + 1}, \qquad A_3 = a + 3d = a + 3\frac{b - a}{n + 1}, \qquad \dots$$

$$A_n = a + nd = a + n\frac{b - a}{n + 1}$$

Important Tips

 r Sum of n A.M.'s between a and b is equal to n times the single A.M. between a and b.

i.e.
$$A_1 + A_2 + A_3 + \dots + A_n = n \left(\frac{a+b}{2} \right)$$

- If A_1 and A_2 are two A.M.'s between two numbers a and b, then $A_1 = \frac{1}{3}(2a+b)$, $A_2 = \frac{1}{3}(a+2b)$.
- *Between two numbers,* $\frac{\text{Sum of } m \text{ A.M.'s}}{\text{Sum of } n \text{ A.M.'s}} = \frac{m}{n}$.
- If number of terms in any series is odd, then only one middle term exists which is $\left(\frac{n+1}{2}\right)^{th}$ term.
- *If* number of terms in any series is even then there are two middle terms, which are given by $\left(\frac{n}{2}\right)^{th}$ and $\left\{\left(\frac{n}{2}\right)+1\right\}^{th}$

term.

Example: 19 After inserting n A.M.'s between 2 and 38, the sum of the resulting progression is 200. The value of n is [MP PET 2001]

- (a) 10
- (b) 8

- (c) 9
- (d) None of these

Solution: (b) There will be (n + 2) terms in the resulting A.P. $2, A_1, A_2, \dots, A_n, 38$

Sum of the progression = $\frac{n+2}{2}(2+38) \Rightarrow 200 = (n+2) \times 20 \Rightarrow n=8$

Example: 20 3 A.M.'s between 3 and 19 are

- (a) 7, 11, 15
- (b) 4, 6, 10
- (c) 6, 10, 14
- (d) None of these

Solution: (a) Let A_1, A_2, A_3 be three A.M.'s. Then $3, A_1, A_2, A_3, 19$ are in A.P.

$$\Rightarrow$$
 common difference $d = \frac{19-3}{3+1} = 4$.Therefore $A_1 = 3+d=7$, $A_2 = 3+2d=11$, $A_3 = 3+3d=15$

Example: 21 If a, b, c, d, e, f are A.M.'s between 2 and 12, then a+b+c+d+e+f is equal to

- (a) 14
- (b) 42

- (c) 84
- (d) None of these

Solution: (b) Since, a, b, c, d, e, f are six A.M.'s between 2 and 12

Therefore,
$$a+b+c+d+e+f=\frac{6}{2}(a+f)=\frac{6}{2}(2+12)=42$$

3.6 Properties of A.P.

- (1) If a_1, a_2, a_3, \ldots are in A.P. whose common difference is d, then for fixed non-zero number $K \in \mathbb{R}$.
 - (i) $a_1 \pm K, a_2 \pm K, a_3 \pm K, \dots$ will be in A.P., whose common difference will be d.
 - (ii) Ka_1, Ka_2, Ka_3 will be in A.P. with common difference = Kd.
 - (iii) $\frac{a_1}{K}, \frac{a_2}{K}, \frac{a_3}{K}$ will be in A.P. with common difference = d/K.
- (2) The sum of terms of an A.P. equidistant from the beginning and the end is constant and is equal to sum of first and last term. *i.e.* $a_1 + a_n = a_2 + a_{n-1} = a_3 + a_{n-2} = \dots$
- (3) Any term (except the first term) of an A.P. is equal to half of the sum of terms equidistant from the term *i.e.* $a_n = \frac{1}{2}(a_{n-k} + a_{n+k})$, k < n.
- (4) If number of terms of any A.P. is odd, then sum of the terms is equal to product of middle term and number of terms.
- (5) If number of terms of any A.P. is even then A.M. of middle two terms is A.M. of first and last term.
- (6) If the number of terms of an A.P. is odd then its middle term is A.M. of first and last term.
- (7) If a_1, a_2, \dots, a_n and b_1, b_2, \dots, b_n are the two A.P.'s. Then $a_1 \pm b_1, a_2 \pm b_2, \dots, a_n \pm b_n$ are also A.P.'s with common difference $d_1 \neq d_2$, where d_1 and d_2 are the common difference of the given A.P.'s.
 - (8) Three numbers a, b, c are in A.P. iff 2b = a + c.
 - (9) If T_n, T_{n+1} and T_{n+2} are three consecutive terms of an A.P., then $2T_{n+1} = T_n + T_{n+2}$.
 - (10) If the terms of an A.P. are chosen at regular intervals, then they form an A.P.

Example: 22 If $a_1, a_2, a_3, \dots, a_{24}$ are in arithmetic progression and $a_1 + a_5 + a_{10} + a_{15} + a_{20} + a_{24} = 225$, then $a_1 + a_2 + a_3 + \dots$

(a) 909

 $+a_{23} + a_{24} =$

(b) 75

- (c) 750
- (d) 900

[MP PET 1999; AMU 1997]

 $a_1 + a_5 + a_{10} + a_{15} + a_{20} + a_{24} = 225 \implies (a_1 + a_{24}) + (a_5 + a_{20}) + (a_{10} + a_{15}) = 225 \implies 3(a_1 + a_{24}) = 225 \implies a_1 + a_{24} = 75$ Solution: (d)

> (: In an A.P. the sum of the terms equidistant from the beginning and the end is same and is equal to the sum of first and last term)

$$a_1 + a_2 + \dots + a_{24} = \frac{24}{2}(a_1 + a_{24}) = 12 \times 75 = 900$$

If a, b, c are in A.P., then $\frac{1}{bc}$, $\frac{1}{ca}$, $\frac{1}{ab}$ will be in Example: 23

[DCE 2002; MP PET 1985; Roorkee 1975]

[MP PET 1998: Karnataka CET 2000]

(a) 5/2

(c) H.P.

(d) None of these

Solution: (a) a, b, c are in A.P., $\Rightarrow \frac{1}{bc}, \frac{1}{ca}, \frac{1}{ab}$ will be in A.P.

[Dividing each term by abc]

Example: 24 If $\log 2$, $\log(2^n - 1)$ and $\log(2^n + 3)$ are in A.P., then n = 1

(c) $\log_2 5$

(d) $\frac{3}{2}$

Solution: (b) As, $\log 2$, $\log(2^n - 1)$ and $\log(2^n + 3)$ are in A.P. Therefore

$$2\log(2^n - 1) = \log 2 + \log(2^n + 3) \Rightarrow (2^n - 5)(2^n + 1) = 0$$

(b) $\log_2 5$

As 2^n cannot be negative, hence $2^n - 5 = 0 \implies 2^n = 5$ or $n = \log_2 5$

Geometric progression(G.P.)

3.7 Definition

A progression is called a G.P. if the ratio of its each term to its previous term is always constant. This constant ratio is called its common ratio and it is generally denoted by r.

Example: The sequence 4, 12, 36, 108, is a G.P., because $\frac{12}{4} = \frac{36}{12} = \frac{108}{36} = = 3$, which is constant.

Clearly, this sequence is a G.P. with first term 4 and common ratio 3.

The sequence $\frac{1}{3}$, $-\frac{1}{2}$, $\frac{3}{4}$, $-\frac{9}{8}$,... is a G.P. with first term $\frac{1}{3}$ and common ratio $\left(-\frac{1}{2}\right)/\left(\frac{1}{3}\right) = -\frac{3}{2}$

3.8 General Term of a G.P.

(1) We know that, $a, ar, ar^2, ar^3, \dots ar^{n-1}$ is a sequence of G.P.

Here, the first term is 'a' and the common ratio is 'r'.

The general term or n^{th} term of a G.P. is $T_n = ar^{n-1}$

It should be noted that,

$$r = \frac{T_2}{T_1} = \frac{T_3}{T_2} = \dots$$

(2) p^{th} term from the end of a finite G.P.: If G.P. consists of 'n' terms, p^{th} term from the end $=(n-p+1)^{th}$ term from the beginning $=ar^{n-p}$.

Also, the p^{th} term from the end of a G.P. with last term l and common ratio r is $l\left(\frac{1}{r}\right)^{n-1}$

Important Tips

 \mathcal{F} If T_k and T_p of any G.P. are given, then formula for obtaining T_n is

$$\left(\frac{T_n}{T_k}\right)^{\frac{1}{n-k}} = \left(\frac{T_p}{T_k}\right)^{\frac{1}{p-k}}$$

F If a, b, c are in G.P. then

$$\Rightarrow \frac{b}{a} = \frac{c}{b} \Rightarrow \frac{a+b}{a-b} = \frac{b+c}{b-c} \text{ or } \frac{a-b}{b-c} = \frac{a}{b} \text{ or } \frac{a+b}{b+c} = \frac{a}{b}$$

- Let the first term of a G.P be positive, then if r > 1, then it is an increasing G.P., but if r is positive and less than 1, i.e. 0 < r < 1, then it is a decreasing G.P.
- Let the first term of a G.P. be negative, then if r > 1, then it is a decreasing G.P., but if 0 < r < 1, then it is an increasing G.P.
- If a, b, c, d,... are in G.P., then they are also in continued proportion i.e. $\frac{a}{b} = \frac{b}{c} = \frac{c}{d} = \dots = \frac{1}{r}$

Example: 25 The numbers $(\sqrt{2}+1), 1, (\sqrt{2}-1)$ will be in

[AMU 1983]

- (a) A P
- (b) G.P.
- (c) H.P.
- (d) None of these

Solution: (b) Clearly $(1)^2 = (\sqrt{2} + 1).(\sqrt{2} - 1)$

$$\therefore \sqrt{2} + 1.1.\sqrt{2} - 1$$
 are in G.P.

Example: 26 If the p^{th} , q^{th} and r^{th} term of a G.P. are a, b, c respectively, then $a^{q-r} \cdot b^{r-p} \cdot c^{p-q}$ is equal to

[Roorkee 1955, 63, 73; Pb. CET 1991, 95]

- (a) o
- (b) 1

- (c) abc
- (d) pgr

Solution: (b) Let $x, xy, xy^2, xy^3,...$ be a G.P.

$$a = xy^{p-1}, b = xy^{q-1}, c = xy^{r-1}$$

Now,
$$a^{q-r} \cdot b^{r-p} \cdot c^{p-q} = (xy^{p-1})^{q-r} (xy^{q-1})^{r-p} (xy^{r-1})^{p-q} = x^{(q-r)+(r-p)+(p-q)} \cdot y^{(p-1)(q-r)+(q-1)(r-p)+(r-1)(p-q)}$$

= $x^0 \cdot y^{p(q-r)+q(r-p)+r(p-q)-(q-r+r-p+p-q)} = x^0 \cdot y^{0-0} = (xy)^0 = 1$

Example: 27 If the third term of a G.P. is 4 then the product of its first 5 terms is

[IIT 1982; Rajasthan PET 1991]

- (a) 4^3
- (b) 4⁴

- (c) 4^5
- (d) None of these

Solution: (c) Given that $ar^2 = 4$

Then product of first 5 terms = $a(ar)(ar^2)(ar^3)(ar^4) = a^5r^{10} = [ar^2]^5 = 4^5$

Example: 28 If x, 2x + 2, 3x + 3 are in G.P., then the fourth term is

[MNR 1980, 81]

- (a) 27
- (b) -27
- (c) 13.5
- (d) 13.5

Solution: (d) Given that x, 2x + 2, 3x + 3 are in G.P.

Therefore,
$$(2x+2)^2 = x(3x+3) \implies x^2 + 5x + 4 = 0 \implies (x+4)(x+1) = 0 \implies x = -1, -4$$

Now first term a = x, second term ar = 2(x+1)

$$\Rightarrow r = \frac{2(x+1)}{x}$$
, then 4th term = $ar^3 = x \left[\frac{2(x+1)}{x} \right]^3 = \frac{8}{x^2} (x+1)^3$

Putting x = -4, we get

$$T_4 = \frac{8}{16}(-3)^3 = -\frac{27}{2} = -13.5$$

3.9 Sum of First 'n' Terms of a G.P.

If a be the first term, r the common ratio, then sum S_n of first n terms of a G.P. is given by

$$S_n = \frac{a(1-r^n)}{1-r}$$
, $|r| < 1$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$
, $|r| > 1$
 $S_n = na$, $r = 1$

3.10 Selection of Terms in a G.P.

(1) When the product is given, the following way is adopted in selecting certain number of terms:

Number of terms	Terms to be taken
3	$\frac{a}{r}$, a, ar
4	$\frac{a}{r^3}, \frac{a}{r}, ar, ar^3$
5	$\frac{a}{r^2}, \frac{a}{r}, a, ar, ar^2$

(2) When the product is not given, then the following way is adopted in selection of terms

Number of terms	Terms to be taken	
3	a, ar, ar^2	
4	a, ar, ar^2, ar^3	
5	a, ar, ar^2, ar^3, ar^4	

Let a_n be the n^{th} term of the G.P. of positive numbers. Let $\sum_{n=1}^{100} a_{2n} = \alpha$ and $\sum_{n=1}^{100} a_{2n-1} = \beta$, such that $\alpha \neq \beta$,

then the common ratio is

[IIT 1992]

(a)
$$\frac{\alpha}{\beta}$$

(b)
$$\frac{\beta}{\alpha}$$

(c)
$$\sqrt{\frac{\alpha}{\beta}}$$

(c)
$$\sqrt{\frac{\alpha}{\beta}}$$
 (d) $\sqrt{\frac{\beta}{\alpha}}$

Let x be the first term and y, the common ratio of the G.P. Solution: (a)

Then,
$$\alpha = \sum_{n=1}^{100} a_{2n} = a_2 + a_4 + a_6 + \dots + a_{200}$$
 and $\beta = \sum_{n=1}^{100} a_{2n-1} = a_1 + a_3 + a_5 + \dots + a_{199}$

$$\Rightarrow \quad \alpha = xy + xy^3 + xy^5 + \dots + xy^{199} = xy \frac{1 - (y^2)^{100}}{1 - y^2} = xy \left(\frac{1 - y^{200}}{1 - y^2} \right)$$

$$\beta = x + xy^{2} + xy^{4} + \dots + xy^{198} = x \cdot \frac{1 - (y^{2})^{100}}{1 - y^{2}} = x \cdot \left(\frac{1 - y^{200}}{1 - y^{2}}\right)$$

$$\therefore \quad \frac{\alpha}{\beta} = y \text{ . Thus, common ratio } = \frac{\alpha}{\beta}$$

The sum of first two terms of a G.P. is 1 and every term of this series is twice of its previous term, then the first term will be

[Rajasthan PET 1988]

(a)
$$\frac{1}{4}$$

(b)
$$\frac{1}{3}$$

(c)
$$\frac{2}{3}$$

(d)
$$\frac{3}{4}$$

Solution: (b) We have, common ratio r = 2;

$$\left[\because \frac{a_n}{a_{n-1}} = 2\right]$$

Let a be the first term, then $a+ar=1 \Rightarrow a(1+r)=1 \Rightarrow a=\frac{1}{1+r}=\frac{1}{1+2}=\frac{1}{3}$

3.11 Sum of Infinite Terms of a G.P.

(1) When
$$|r| < 1$$
, (or $-1 < r < 1$)

$$S_{\infty} = \frac{a}{1 - r}$$

(2) If $r \ge 1$, then S_{∞} doesn't exist

The first term of an infinite geometric progression is *x* and its sum is 5. Then Example: 31

[IIT Screening 2004]

(a)
$$0 \le x \le 10$$

(b)
$$0 < x < 10$$

(c)
$$-10 < x < 0$$

(d)
$$x > 10$$

Solution: (b) According to the given conditions, $5 = \frac{x}{1-r}$, r being the common ratio $\Rightarrow r = 1 - \frac{x}{5}$

Now,
$$|r| < 1$$
 i.e. $-1 < r < 1 \Rightarrow$

$$-1 < 1 - \frac{x}{5} < 1$$
 \Rightarrow $-2 < -\frac{x}{5} < 0$ \Rightarrow $2 > \frac{x}{5} > 0$

$$\Rightarrow 2 > \frac{x}{5} > 0$$
 i.e

$$0 < \frac{x}{5} < 2$$
, $\therefore 0 < x < 10$

Example: 32 $\lim_{n\to\infty}\sum_{i=1}^{n}\frac{1}{n}e^{\frac{r}{n}}$ is

[AIEEE 2004]

(a)
$$e + 1$$

(c)
$$1 - \epsilon$$

Solution: (b) $\lim_{n\to\infty}\sum_{i=1}^{n}\frac{1}{n}e^{r/n}=\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}e^{r/n}=\lim_{n\to\infty}\frac{1}{n}\cdot(e^{1/n}+e^{2/n}+e^{3/n}+....+e^{n/n})=\lim_{n\to\infty}\frac{1}{n}\cdot[e^{1/n}+(e^{1/n})^2+(e^{1/n})^3+.....+(e^{1/n})^n]$

$$= \lim_{n \to \infty} \frac{1}{n} e^{1/n} \frac{1 - (e^{1/n})^n}{1 - e^{1/n}} = \lim_{n \to \infty} \frac{1}{n} e^{1/n} \frac{1 - e}{1 - e^{1/n}} = \lim_{n \to \infty} \frac{(1 - e)(e^{1/n} - 1 + 1)}{n(1 - e^{1/n})} = \lim_{n \to \infty} \frac{(e - 1)}{n} + \lim_{n \to \infty} \frac{(e - 1) \cdot \frac{1}{n}}{e^{1/n} - 1}$$

Put
$$\frac{1}{n} = h$$
, we get $h \to 0$

$$= 0 + (e - 1) \lim_{h \to 0} \frac{h}{e^h - 1}$$

$$\left[\frac{0}{0} \text{ form}\right]$$

$$= (e-1) \lim_{h \to 0} \frac{1}{e^h} = (e-1).1 = e-1.$$

The value of .234.234 is Example: 33

[MNR 1986; UPSEAT 2000]

(a)
$$\frac{232}{990}$$

(b)
$$\frac{232}{9990}$$

(c)
$$\frac{0.232}{990}$$

(d)
$$\frac{232}{9909}$$

Solution: (a) $.2\overset{\bullet}{3}\overset{\bullet}{4} = .234343434 \dots = \frac{2}{10} + \frac{34}{1000} + \frac{34}{100000} + \frac{34}{10^7} + \dots = \frac{2}{10} + \frac{34}{1000} \left(1 + \frac{1}{100} + \frac{1}{(100)^2} + \dots \right)$

$$= \frac{1}{5} + \frac{17}{500} \left(\frac{1}{1 - \frac{1}{100}} \right) = \frac{1}{5} + \frac{17}{500} \times \frac{100}{99} = \frac{1}{5} \left\{ 1 + \frac{17}{99} \right\} = \frac{116}{495} = \frac{232}{990}$$

Example: 34 If a, b, c are in A.P. and |a|, |b|, |c| < 1, and

$$x = 1 + a + a^2 + \dots \infty$$

$$y = 1 + b + b^2 + \dots \infty$$

$$z = 1 + c + c^2 + \dots \infty$$

Then x, y, z shall be in

(a) A.P.

(b) G.P.

(c) H.P.

[Karnataka CET 1995] (d) None of these

Solution: (c)

$$x = 1 + a + a^2 + \dots = \frac{1}{1 - a}$$

$$y = 1 + b + b^2 + \dots \infty = \frac{1}{1 - b}$$

$$z = 1 + c + c^2 + \dots = \frac{1}{1 - c}$$

Now, a, b, c are in A.P.

 \Rightarrow 1 - a, 1 - b, 1 - c are in A.P. $\Rightarrow \frac{1}{1-a}, \frac{1}{1-b}, \frac{1}{1-c}$ are in H.P. Therefore x, y, z are in H.P.

3.12 Geometric Mean

- (1) **Definition**: (i) If three quantities are in G.P., then the middle quantity is called geometric mean (G.M.) between the other two. If a, G, b are in G.P., then G is called G.M. between a and b.
- (ii) If $a, G_1, G_2, G_3, \dots, G_n, b$ are in G.P. then $G_1, G_2, G_3, \dots, G_n$ are called n G.M.'s between a and b.
- (2) Insertion of geometric means : (i) Single G.M. between a and b : If a and b are two real numbers then single G.M. between a and $b = \sqrt{ab}$
 - (ii) n G.M.'s between a and b: If $G_1, G_2, G_3, \dots, G_n$ are n G.M.'s between a and b, then

$$G_1 = ar = a \left(\frac{b}{a}\right)^{\frac{1}{n+1}}, G_2 = ar^2 = a \left(\frac{b}{a}\right)^{\frac{2}{n+1}}, G_3 = ar^3 = a \left(\frac{b}{a}\right)^{\frac{3}{n+1}}, \dots, G_n = ar^n = a \left(\frac{b}{a}\right)^{\frac{n}{n+1}}$$

Important Tips

 ${}^{\mathscr{F}}$ Product of n G.M.'s between a and b is equal to nth power of single geometric mean between a and b.

i.e.
$$G_1 G_2 G_3 \dots G_n = (\sqrt{ab})^n$$

- **G.M.** of $a_1 a_2 a_3 \dots a_n$ is $(a_1 a_2 a_3 \dots a_n)^{1/n}$
- ${}^{\text{GP}}$ If G_1 and G_2 are two G.M.'s between two numbers a and b is $G_1 = (a^2b)^{1/3}$, $G_2 = (ab^2)^{1/3}$.
- The product of n geometric means between a and $\frac{1}{a}$ is 1.
- *If* n G.M.'s inserted between a and b then $r = \left(\frac{b}{a}\right)^{\frac{1}{n+1}}$

3.13 Properties of G.P.

- (1) If all the terms of a G.P. be multiplied or divided by the same non-zero constant, then it remains a G.P., with the same common ratio.
- (2) The reciprocal of the terms of a given G.P. form a G.P. with common ratio as reciprocal of the common ratio of the original G.P.
- (3) If each term of a G.P. with common ratio r be raised to the same power k, the resulting sequence also forms a G.P. with common ratio r^k .

(4) In a finite G.P., the product of terms equidistant from the beginning and the end is always the same and is equal to the product of the first and last term.

i.e., if
$$a_1, a_2, a_3, \dots, a_n$$
 be in G.P. Then $a_1 a_n = a_2 a_{n-1} = a_3 a_{n-2} = a_n a_{n-3} = \dots = a_r a_{n-r+1}$

- (5) If the terms of a given G.P. are chosen at regular intervals, then the new sequence so formed also forms a G.P.
- (6) If $a_1, a_2, a_3, \dots, a_n$ is a G.P. of non-zero, non-negative terms, then $\log a_1, \log a_2, \log a_3, \dots \log a_n$ is an A.P. and vice-versa.
 - (7) Three non-zero numbers a, b, c are in G.P. iff $b^2 = ac$.
 - (8) Every term (except first term) of a G.P. is the square root of terms equidistant from it.

i.e.
$$T_r = \sqrt{T_{r-p} \cdot T_{r+p}}$$
; $[r > p]$

- (9) If first term of a G.P. of n terms is a and last term is l, then the product of all terms of the G.P. is $(al)^{n/2}$.
- (10) If there be n quantities in G.P. whose common ratio is r and S_m denotes the sum of the first m terms, then the sum of their product taken two by two is $\frac{r}{r+1}S_nS_{n-1}$.

Example: 35 The two geometric mean between the number 1 and 64 are

[Kerala (Engg.) 2002]

- (a) 1 and 64
- (b) 4 and 16
- (c) 2 and 16
- (d) 8 and 16

Solution: (b) Let G_1 and G_2 are two G.M.'s between the number a=1 and b=64

$$G_1 = (a^2b)^{\frac{1}{3}} = (1.64)^{\frac{1}{3}} = 4$$
, $G_2 = (ab^2)^{\frac{1}{3}} = (1.64)^{\frac{1}{3}} = 16$

Example: 36 The G.M. of the numbers $3, 3^2, 3^3, \dots, 3^n$ is

[DCE 2002]

- (a) $3^{\frac{2}{n}}$
- (b) 3^{-2}
- (-) $2^{\frac{n}{2}}$
- (d) $2^{\frac{n-1}{2}}$

Solution: (b) G.M. of
$$(3.3^2.3^3.....3^n) = (3.3^2.3^3.....3^n)^{1/n} = (3)^{\frac{1+2+3+...+n}{n}} = 3^{\frac{n(n+1)}{2n}} = 3^{\frac{n+1}{2}}$$

Example: 37 If a, b, c are in A.P. b - a, c - b and a are in G.P., then a : b : c is

- (a) 1:2:3
- (b) 1:3:5
- (c) 2:3:4
- (d) 1:2:4

Solution: (a) Given, a, b, c are in A.P. $\Rightarrow 2b = a + c$

b - a, c - b, a are in G.P. So $(c - b)^2 = a(b - a)$

$$\Rightarrow (b-a)^2 = (b-a)a \qquad \begin{bmatrix} \because 2b = a+c \\ \Rightarrow b+b = a+c \\ \Rightarrow b-a = c-b \end{bmatrix}$$

 $\Rightarrow b = 2a \qquad [\because b \neq a]$

Put in 2b = a + c, we get c = 3a. Therefore a : b : c = 1 : 2 : 3

Harmonic progression(H.P.)

3.14 Definition

A progression is called a harmonic progression (H.P.) if the reciprocals of its terms are in A.P.

Standard form: $\frac{1}{a} + \frac{1}{a+d} + \frac{1}{a+2d} + \dots$

Example: The sequence $1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}$... is a H.P., because the sequence 1, 3, 5, 7, 9, is an

A.P.

3.15 General Term of an H.P.

If the H.P. be as $\frac{1}{a}$, $\frac{1}{a+d}$, $\frac{1}{a+2d}$,.... then corresponding A.P. is a, a+d, a+2d,.....

 T_n of A.P. is a + (n-1)d

$$T_n$$
 of H.P. is $\frac{1}{a+(n-1)d}$

In order to solve the question on H.P., we should form the corresponding A.P.

Thus, General term : $T_n = \frac{1}{a + (n-1)d}$ or T_n of H.P. $= \frac{1}{T_n \text{ of A.P.}}$

Example: 38 The 4th term of a H.P. is $\frac{3}{5}$ and 8th term is $\frac{1}{3}$ then its 6th term is

[MP PET 2003]

(a)
$$\frac{1}{6}$$

(b)
$$\frac{3}{7}$$

(c)
$$\frac{1}{7}$$

(d)
$$\frac{3}{5}$$

Solution: (b) Let $\frac{1}{a}$, $\frac{1}{a+d}$, $\frac{1}{a+2d}$,..... be an H.P.

$$\therefore$$
 4th term = $\frac{1}{a+3d} \Rightarrow \frac{3}{5} = \frac{1}{a+3d}$

$$\Rightarrow \frac{5}{3} = a + 3d$$

Similarly, 3 = a + 7d

From (i) and (ii),
$$d = \frac{1}{3}$$
, $a = \frac{2}{3}$

$$\therefore 6^{\text{th}} \text{ term} = \frac{1}{a+5d} = \frac{1}{\frac{2}{3} + \frac{5}{3}} = \frac{3}{7}$$

Example: 39 If the roots of $a(b-c)x^2 + b(c-a)x + c(a-b) = 0$ be equal, then a, b, c are in

[Rajasthan PET 1997]

Solution: (c) As the roots are equal, discriminate = 0

$$\Rightarrow \{b(c-a)\}^2 - 4a(b-c)c(a-b) = 0 \Rightarrow b^2c^2 + a^2b^2 - 2ab^2c - 4a^2bc + 4a^2c^2 + 4ab^2c - 4abc^2 = 0$$

$$\Rightarrow (b^2c^2 + 2ab^2c + a^2b^2) = 4ac\{ab + bc - ac\} \Rightarrow (ab + bc)^2 = 4ac(ab + bc - ac) \Rightarrow \{b(a+c)\}^2 = 4abc(a+c) - 4a^2c^2$$

$$\Rightarrow b^2(a+c)^2 - 2b(a+c) \cdot 2ac + (2ac)^2 = 0 \Rightarrow [b(a+c) - 2ac]^2 = 0$$

$$\therefore b = \frac{2ac}{a+c}$$

Thus, a, b, c are in H.P.

Example: 40 If the first two terms of an H.P. be $\frac{2}{5}$ and $\frac{12}{23}$ then the largest positive term of the progression is the

- (a) 6th term
- (b) 7th term
- (c) 5th term
- (d) 8th term

Solution: (c) For the corresponding A.P., the first two terms are
$$\frac{5}{2}$$
 and $\frac{23}{12}$ i.e. $\frac{30}{12}$ and $\frac{23}{12}$

Common difference =
$$-\frac{7}{12}$$

:. The A.P. will be
$$\frac{30}{12}, \frac{23}{12}, \frac{16}{12}, \frac{9}{12}, \frac{2}{12}, -\frac{5}{12}, \dots$$

The smallest positive term is $\frac{2}{12}$, which is the 5th term. \therefore The largest positive term of the H.P. will be the 5th term.

3.16 Harmonic Mean

(1) **Definition**: If three or more numbers are in H.P., then the numbers lying between the first and last are called harmonic means (H.M.'s) between them. For example 1, 1/3, 1/5, 1/7, 1/9 are in H.P. So 1/3, 1/5 and 1/7 are three H.M.'s between 1 and 1/9.

Also, if a, H, b are in H.P., then H is called harmonic mean between a and b.

- (2) Insertion of harmonic means:
- (i) Single H.M. between a and $b = \frac{2ab}{a+b}$

(ii)
$$H$$
, H . M . of n non-zero numbers $a_1, a_2, a_3, \dots, a_n$ is given by
$$\frac{1}{H} = \frac{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}}{n}$$
.

(iii) Let a, b be two given numbers. If n numbers H_1, H_2, \dots, H_n are inserted between a and b such that the sequence $a, H_1, H_2, H_3, \dots, H_n$ is an H.P., then H_1, H_2, \dots, H_n are called n harmonic means between a and b.

Now,
$$a, H_1, H_2, \dots, H_n, b$$
 are in H.P. $\Rightarrow \frac{1}{a}, \frac{1}{H_1}, \frac{1}{H_2}, \dots, \frac{1}{H_n}, \frac{1}{b}$ are in A.P.

Let *D* be the common difference of this A.P. Then,

$$\frac{1}{b} = (n+2)^{th} \text{ term} = T_{n+2}$$

$$\frac{1}{b} = \frac{1}{a} + (n+1)D \implies D = \frac{a-b}{(n+1)ab}$$

Thus, if *n* harmonic means are inserted between two given numbers *a* and *b*, then the common difference of the corresponding A.P. is given by $D = \frac{a-b}{(n+1)ab}$

Also,
$$\frac{1}{H_1} = \frac{1}{a} + D$$
, $\frac{1}{H_2} = \frac{1}{a} + 2D$,...., $\frac{1}{H_n} = \frac{1}{a} + nD$ where $D = \frac{a - b}{(n+1)ab}$

Important Tips

Fig. If
$$H_1$$
 and H_2 are two H.M.'s between a and b, then $H_1 = \frac{3ab}{a+2b}$ and $H_2 = \frac{3ab}{2a+b}$

3.17 Properties of H.P.

- (1) No term of H.P. can be zero.
- (2) If a, b, c are in H.P., then $\frac{a-b}{b-c} = \frac{a}{c}$.
- (3) If H is the H.M. between a and b, then

(i)
$$\frac{1}{H-a} + \frac{1}{H-b} = \frac{1}{a} + \frac{1}{b}$$

(ii)
$$(H-2a)(H-2b) = H^2$$

(iii)
$$\frac{H+a}{H-a} + \frac{H+b}{H-b} = 2$$

The harmonic mean of the roots of the equation $(5+\sqrt{2})x^2-(4+\sqrt{3})x+8+2\sqrt{3}=0$ is Example: 41 [IIT 1999]

Solution: (b) Let α and β be the roots of the given equation

$$\therefore a + \beta = \frac{4 + \sqrt{3}}{5 + \sqrt{2}}, \ \alpha \beta = \frac{8 + 2\sqrt{3}}{5 + \sqrt{2}}$$

Hence, required harmonic mean $=\frac{2\alpha\beta}{\alpha+\beta} = \frac{2\left(\frac{8+2\sqrt{3}}{5+\sqrt{2}}\right)}{4+\sqrt{3}} = \frac{2(8+2\sqrt{3})}{4+\sqrt{3}} = \frac{4(4+\sqrt{3})}{4+\sqrt{3}} = 4$

Example: 42 If a, b, c are in H.P., then the value of $\left(\frac{1}{b} + \frac{1}{c} - \frac{1}{a}\right) \left(\frac{1}{c} + \frac{1}{a} - \frac{1}{b}\right)$ is

[MP PET 1998; Pb. CET 2000]

(a)
$$\frac{2}{bc} + \frac{1}{b^2}$$

(b)
$$\frac{3}{c^2} + \frac{2}{ca}$$

(c)
$$\frac{3}{b^2} - \frac{2}{ab}$$

Solution: (c) a, b, c are in H.P. $\Rightarrow \frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P.

$$\therefore \frac{1}{a} + \frac{1}{c} = \frac{2}{b}$$

Now,
$$\left(\frac{1}{b} + \frac{1}{c} - \frac{1}{a}\right)\left(\frac{1}{c} + \frac{1}{a} - \frac{1}{b}\right) = \left\{\frac{1}{b} + \left(\frac{1}{a} + \frac{1}{c}\right) - \frac{2}{a}\right\}\left(\frac{2}{b} - \frac{1}{b}\right) = \left(\frac{1}{b} + \frac{2}{b} - \frac{2}{a}\right)\left(\frac{1}{b}\right) = \frac{1}{b}\left(\frac{3}{b} - \frac{2}{a}\right) = \frac{3}{b^2} - \frac{2}{ab}$$

Example: 43 If a, b, c are in H.P., then which one of the following is true [MNR 1985]

(a)
$$\frac{1}{b-a} + \frac{1}{b-c} = \frac{1}{b}$$
 (b) $\frac{ac}{a+c} = b$

(b)
$$\frac{ac}{a+a} = b$$

(c)
$$\frac{b+a}{b-a} + \frac{b+c}{b-c} = 1$$
 (d) None of these

Solution: (d) a, b, c are in H.P. $\Rightarrow b = \frac{2ac}{a+c}$, \therefore option (b) is false

$$b-a = \frac{2ac}{a+c} - a = \frac{a(c-a)}{c+a} \implies b-c = \frac{c(a-c)}{a+c}$$

$$\therefore \frac{1}{b-a} + \frac{1}{b-c} = \frac{a+c}{a-c} \left\{ -\frac{1}{a} + \frac{1}{c} \right\} = \frac{a+c}{a-c} \cdot \frac{a-c}{ac} = \frac{a+c}{ac} = \frac{a+c}{2ac} \cdot 2 = \frac{2}{b}, \therefore \text{ option (a) is false}$$

$$\frac{b+a}{b-a} + \frac{b+c}{b-c} = \frac{(c+a)(b+a)}{a(c-a)} + \frac{(b+c)(a+c)}{c(a-c)} = \frac{a+c}{a-c} \left\{ -\left(\frac{b+a}{a}\right) + \frac{b+c}{c} \right\} = \frac{a+c}{a-c} \left(\frac{b}{c} - \frac{b}{a}\right) = \frac{a+c}{a-c} \cdot \frac{(a-c)b}{ac} = \frac{a+c}{a-c} \cdot \frac{a+c}{ac} = \frac{a+c}{a-c} \cdot \frac{a+c}{a-c} = \frac{a+c}{a-c} \cdot \frac{a+c}{a-c}$$

$$= \frac{a+c}{ac} \cdot b = \frac{a+c}{2ac} \cdot 2b = \frac{1}{b} \cdot 2b = 2$$

∴ option (c) is false.

Arithmetico-geometric progression(A.G.P.)

3.18 *n*th Term of A.G.P.

If $a_1, a_2, a_3, \ldots, a_n$ is an A.P. and b_1, b_2, \ldots, b_n is a G.P., then the sequence $a_1b_1, a_2b_2, a_3b_3, \ldots, a_nb_n$ is said to be an arithmetico-geometric sequence.

Thus, the general form of an arithmetico geometric sequence is $a,(a+d)r,(a+2d)r^2,(a+3d)r^3,...$

From the symmetry we obtain that the *n*th term of this sequence is $[a+(n-1)d]r^{n-1}$

Also, let $a,(a+d)r,(a+2d)r^2,(a+3d)r^3,...$ be an arithmetico-geometric sequence. Then, $a+(a+d)r+(a+2d)r^2+(a+3d)r^3+...$ is an arithmetico-geometric series.

3.19 Sum of A.G.P.

(1) **Sum of** *n* **terms :** The sum of *n* terms of an arithmetico-geometric sequence $a,(a+d)r,(a+2d)r^2$, $(a+3d)r^3$,.... is given by

$$S_n = \begin{cases} \frac{a}{1-r} + dr \frac{(1-r^{n-1})}{(1-r)^2} - \frac{\{a + (n-1)d\}r^n}{1-r}, & \text{when } r \neq 1\\ \frac{n}{2} [2a + (n-1)d], & \text{when } r = 1 \end{cases}$$

(2) **Sum of infinite sequence**: Let |r| < 1. Then $r^n, r^{n-1} \to 0$ as $n \to \infty$ and it can also be shown that $n.r^n \to 0$ as $n \to \infty$. So, we obtain that $S_n \to \frac{a}{1-r} + \frac{dr}{(1-r)^2}$, as $n \to \infty$.

In other words, when |r| < 1 the sum to infinity of an arithmetico-geometric series is $\overline{S_{\infty} = \frac{a}{1-r} + \frac{dr}{(1-r)^2}}$

3.20 Method for Finding Sum

This method is applicable for both sum of *n* terms and sum of infinite number of terms.

First suppose that sum of the series is S, then multiply it by common ratio of the G.P. and subtract. In this way, we shall get a G.P., whose sum can be easily obtained.

3.21 Method of Difference

If the differences of the successive terms of a series are in A.P. or G.P., we can find n^{th} term of the series by the following steps :

Step I: Denote the n^{th} term by T_n and the sum of the series upto n terms by S_n .

Step II: Rewrite the given series with each term shifted by one place to the right.

Step III: By subtracting the later series from the former, find T_n .

Step IV: From T_n , S_n can be found by appropriate summation.

Example: 44 $1 + \frac{3}{2} + \frac{5}{2^2} + \frac{7}{2^3} + \dots \infty$ is equal to

[DCE 1999]

(c) 9

(d) 12

Solution: (b)

$$S = 1 + \frac{3}{2} + \frac{5}{2^2} + \frac{7}{2^3} + \dots \infty$$

$$\frac{1}{2}S = \frac{1}{2} + \frac{3}{2^2} + \frac{5}{2^3} + \dots \infty$$

$$\frac{1}{2}S = 1 + \frac{2}{2} + \frac{2}{2^2} + \frac{2}{2^3} + \dots \infty$$
 (on subtracting)

$$\Rightarrow \frac{S}{2} = 1 + 2\left(\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots \infty\right) \Rightarrow \frac{S}{2} = 1 + 2 \times \left(\frac{1/2}{1 - 1/2}\right) = 3 \text{ . Hence } S = 6$$

Example: 45 Sum of the series $1+2.2+3.2^2+4.2^3+....+100.2^{99}$ is

[IIIT (Hydrabad) 2000; Kerala (Engg.) 2001]

(a) $100.2^{100} + 1$ (b) $99.2^{100} + 1$

(c) $99.2^{100} - 1$ (d) $100.2^{100} - 1$

Solution: (b) Let
$$S = 1 + 2.2 + 3.2^2 + 4.2^3 + + 100.2^{99}$$

$$2S = 1.2 + 2.2^2 + 3.2^3 + \dots + 99.2^{99} + 100.2^{100}$$
(ii)

Equation (i) - Equation (ii) gives,

$$-S = 1 + (1.2 + 1.2^{2} + 1.2^{3} + \dots \text{ upto } 99 \text{ terms}) - 100.2^{100} = 1 + \frac{2(2^{99} - 1)}{2 - 1} - 100.2^{100}$$

$$\Rightarrow$$
 $S = -1 - 2^{100} + 2 + 100.2^{100} = 1 + 99.2^{100}$

The sum of the series $3 + 33 + 333 + \dots + n$ terms is Example: 46

[Rajasthan PET 2000]

(a)
$$\frac{1}{27}(10^{n+1} + 9n - 28)$$

(b)
$$\frac{1}{27}(10^{n+1}-9n-10)$$

(a)
$$\frac{1}{27}(10^{n+1} + 9n - 28)$$
 (b) $\frac{1}{27}(10^{n+1} - 9n - 10)$ (c) $\frac{1}{27}(10^{n+1} + 10n - 9)$ (d) None of these

Solution: (b)

$$S = 3 + 33 + 333 + \dots$$
 to *n* terms

$$\frac{S = 3 + 33 + \dots}{0 = 3 + 30 + 300 + \dots \text{ to } n \text{ terms } -T_n} \text{ (on subtracting)}$$

$$T_n = 3(1 + 10 + 100 + \dots \text{ to } n \text{ terms}) = 3 \times 1 \cdot \frac{10^n - 1}{10 - 1} = \frac{1}{3}(10^n - 1)$$

$$S_n = \sum_{n=1}^n \frac{1}{3} (10^n - 1) = \frac{1}{3} \sum_{n=1}^n 10^n - \frac{1}{3} \sum_{n=1}^n 1 = \frac{1}{3} \left(10 \cdot \frac{10^n - 1}{10 - 1} \right) - \frac{1}{3} n$$

$$S = \frac{1}{27} (10^{n+1} - 9n - 10)$$

Example: 47 The sum of *n* terms of the following series $1+(1+x)+(1+x+x^2)+...$ will be

[IIT 1962]

$$(a) \ \frac{1-x^n}{1-x}$$

(b)
$$\frac{x(1-x^n)}{1-x}$$

(b)
$$\frac{x(1-x^n)}{1-x}$$
 (c) $\frac{n(1-x)-x(1-x^n)}{(1-x)^2}$ (d) None of these

Solution: (c)

$$S = 1 + (1 + x) + (1 + x + x^{2}) + \dots$$

$$S = 1 + (1 + x) + \dots$$

$$0 = (1 + x + x^{2} + \dots \text{ to } n \text{ terms}) - T_{n}$$
 (on subtracting)

$$\overline{0 = (1 + x + x^2 + \dots \text{ to } n \text{ terms}) - T_n} \quad \text{(on subtracting)}$$

$$T_n = \frac{1 - x^n}{1 - x}$$

$$S_n = \sum_{n=1}^n T_n = \sum_{n=1}^n \frac{1-x^n}{1-x} = \frac{1}{1-x} \sum_{n=1}^n 1 - \frac{1}{1-x} \sum_{n=1}^n x^n = \frac{1}{1-x} \cdot n - \frac{1}{1-x} \cdot x \cdot \left(\frac{1-x^n}{1-x}\right)$$

$$= \frac{n}{1-x} - \frac{x(1-x^n)}{(1-x)^2} = \frac{n(1-x)-x(1-x^n)}{(1-x)^2}$$

Example: 48 The sum to *n* terms of the series 1+3+7+15+31+... is

[IIT 1963]

(a)
$$2^{n+1} - n$$

(b)
$$2^{n+1} - n - 2$$

(c)
$$2^n - n - 2$$

(d) None of these

Solution: (b)

$$S = 1 + 3 + 7 + 15 + 31 + \dots$$

$$S = 1 + 3 + 7 + 15 + \dots$$

$$0 = (1 + 2 + 4 + 8 + 16 + \dots \text{ to } n \text{ terms}) - T_n$$
 (on subtracting)

$$T_n = 1 + 2 + 4 + 8 + \dots$$
 to *n* terms $= 1 \cdot \frac{2^n - 1}{2 - 1} = 2^n - 1$

$$S_n = \sum_{n=1}^n T_n = \sum_{n=1}^n (2^n - 1) = \sum_{n=1}^n 2^n - \sum_{n=1}^n 1 = 2 \cdot \left(\frac{2^n - 1}{2 - 1}\right) - n = 2^{n+1} - n - 2$$

Miscellaneous series

3.22 Special Series

There are some series in which $n^{\rm th}$ term can be predicted easily just by looking at the series.

If
$$T_n = \alpha n^3 + \beta n^2 + \gamma n + \delta$$

Then
$$S_n = \sum_{n=1}^n T_n = \sum_{n=1}^n (\alpha n^3 + \beta n^2 + \gamma n + \delta) = \alpha \sum_{n=1}^n n^3 + \beta \sum_{n=1}^n n^2 + \gamma \sum_{n=1}^n n + \delta \sum_{n=1}^n 1$$

$$= \alpha \left(\frac{n(n+1)}{2} \right)^2 + \beta \left(\frac{n(n+1)(2n+1)}{6} \right) + \gamma \left(\frac{n(n+1)}{2} \right) + \delta n$$

Wote

: 🛭 Sum

of squares of

of first

first

n natural

numbers

$$= 1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \sum_{r=1}^{n} r^{2} = \frac{n(n+1)(2n+1)}{6}$$

□ Sum

of cubes

of

n

natural

numbers

=
$$1^3 + 2^3 + 3^3 + 4^3 + \dots + n^3 = \sum_{r=1}^{n} r^3 = \left[\frac{n(n+1)}{2}\right]^2$$

3.23 V_n Method

(1) To find the sum of the series
$$\frac{1}{a_1 a_2 a_3 \dots a_r} + \frac{1}{a_2 a_3 \dots a_{r+1}} + \dots + \frac{1}{a_n a_{n+1} \dots a_{n+r-1}}$$

Let *d* be the common difference of A.P. Then $a_n = a_1 + (n-1)d$.

Let S_n and T_n denote the sum to n terms of the series and nth term respectively.

$$S_n = \frac{1}{a_1 a_2 \dots a_r} + \frac{1}{a_2 a_3 \dots a_{r+1}} + \dots + \frac{1}{a_n a_{n+1} \dots a_{n+r-1}}$$

$$\therefore T_n = \frac{1}{a_n a_{n+1} \dots a_{n+r-1}}$$

Let
$$V_n = \frac{1}{a_{n+1}a_{n+2}....a_{n+r-1}}$$
; $V_{n-1} = \frac{1}{a_na_{n+1}....a_{n+r-2}}$

$$\Rightarrow V_n - V_{n-1} = \frac{1}{a_{n+1}a_{n+2}.....a_{n+r-1}} - \frac{1}{a_na_{n+1}....a_{n+r-2}} = \frac{a_n - a_{n+r-1}}{a_na_{n+1}....a_{n+r-1}}$$

$$= \frac{[a_1 + (n-1)d] - [a_1 + \{(n+r-1)-1\}d]}{a_na_{n+1}....a_{n+r-1}} = d(1-r)T_n$$

$$\therefore T_n = \frac{1}{d(r-1)} \{V_{n-1} - V_n\}, \quad \therefore S_n = \sum_{n=1}^n T_n = \frac{1}{d(r-1)} (V_0 - V_n)$$

$$S_n = \frac{1}{(r-1)(a_2 - a_1)} \left\{ \frac{1}{a_1a_2....a_{r-1}} - \frac{1}{a_{n+1}a_{n+2}.....a_{n+r-1}} \right\}$$

$$Example: \text{ If } a_1, a_2,a_n \text{ are in A.P., then}$$

$$\frac{1}{a_1a_2a_3} + \frac{1}{a_2a_3a_4} + ... + \frac{1}{a_na_{n+1}a_{n+2}} = \frac{1}{2(a_2 - a_1)} \left\{ \frac{1}{a_1a_2} - \frac{1}{a_{n+1}a_{n+2}} \right\}$$

$$(2) \text{ If } S_n = a_1a_2....a_r + a_2a_3.....a_{r+1}.... + a_na_{n+1}...a_{n+r-1}}$$

$$T_n = a_na_{n+1}....a_{n+r-1}$$

$$Example: a_na_{n+1}....a_{n+r-1}(a_{n+r} - a_{n-1}) = T_n \{[a_1 + (n+r-1)d] - [a_1 + (n-2)d]\} = T_n(r+1)d$$

$$\therefore T_n = \frac{V_n - V_{n-1}}{(r+1)d}$$

$$S_n = \sum_{n=1}^n T_n = \frac{1}{(r+1)d} \sum_{n=1}^n (V_n - V_{n-1}) = \frac{1}{(r+1)d} (V_n - V_0) = \frac{1}{(r+1)d} \{(a_na_{n+1}....a_{n+r}) - (a_0a_1....a_r)\}$$

$$= \frac{1}{(r+1)(a_2 - a_1)} \{a_na_{n+1}....a_{n+r} - a_0a_1....a_r\}$$

$$Example: 1.2.3.4 + 2.3.4.5 + + n(n+1)(n+2)(n+3) = \frac{1}{5.1} \{n(n+1)(n+2)(n+3)\}$$

The sum of $1^3 + 2^3 + 3^3 + 4^3 + \dots + 15^3$ is Example: 49

[MP PET 2003]

 $S = 1^3 + 2^3 + 3^3 + \dots + 15^3$; For n = 15, the value of $\left(\frac{n(n+1)}{2}\right)^2 = \left(\frac{15 \times 16}{2}\right)^2 = 14400$ Solution: (c)

A series whose n^{th} term is $\left(\frac{n}{x}\right) + y$, the sum of r terms will be Example: 50

[UPSEAT 1999]

(a)
$$\left\{\frac{r(r+1)}{2x}\right\} + ry$$

(b)
$$\left\{ \frac{r(r-1)}{2x} \right\}$$

(a)
$$\left\{\frac{r(r+1)}{2r}\right\} + ry$$
 (b) $\left\{\frac{r(r-1)}{2r}\right\} - ry$ (c) $\left\{\frac{r(r-1)}{2r}\right\} - ry$

(d)
$$\left\{ \frac{r(r+1)}{2x} \right\} - r^2$$

Solution: (a) $S_r = \sum_{r=0}^{r} t_n = \sum_{r=0}^{r} \left(\frac{n}{x} + y\right) = \frac{1}{x} \sum_{r=0}^{r} n + y \sum_{r=0}^{r} 1 = \frac{1}{x} \frac{r(r+1)}{2} + yr = \frac{r(r+1)}{2x} + ry$

Example: 51 If $(1^2 - t_1) + (2^2 - t_2) + \dots + (n^2 - t_n) = \frac{1}{3} n(n^2 - 1)$, then t_n is

(a)
$$\frac{n}{2}$$

(c)
$$n+1$$

Solution: (d) $\frac{1}{3}n(n^2-1) = (1^2+2^2+....+n^2)-(t_1+t_2+.....+t_n)$

$$\Rightarrow t_1 + t_2 + \dots + t_n = 1^2 + 2^2 + 3^2 + \dots + n^2 - \frac{1}{3}n(n^2 - 1) = \frac{n(n+1)(2n+1)}{6} - \frac{1}{3}n(n^2 - 1) = \frac{n(n+1)}{6}[2n+1-(2n-2)]$$

$$\therefore t_1 + t_2 + t_3 + \dots + t_n = \frac{n(n+1)}{2} \implies S_n = \frac{n(n+1)}{2}$$

$$t_n = S_n - S_{n-1} = \frac{n(n+1)}{2} - \frac{(n-1)n}{2} = n$$

Example: 52 The sum of the series $\frac{1}{3 \times 7} + \frac{1}{7 \times 11} + \frac{1}{11 \times 15} +$ is

[MNR 1984; UPSEAT 2000]

(a)
$$\frac{1}{3}$$

(b)
$$\frac{1}{6}$$

(c)
$$\frac{1}{9}$$

(d)
$$\frac{1}{12}$$

Solution: (d) $S = \left(\frac{1}{3 \times 7} + \frac{1}{7 \times 11} + \frac{1}{11 \times 15} + \dots\right) = \frac{1}{4} \left[\left(\frac{1}{3} - \frac{1}{7}\right) + \left(\frac{1}{7} - \frac{1}{11}\right) + \left(\frac{1}{11} - \frac{1}{15}\right) + \dots \frac{1}{\infty} \right] = \frac{1}{4} \left[\frac{1}{3} - \frac{1}{\infty}\right] = \frac{1}{4} \left[\frac{1}{3} - 0\right] = \frac{1}{12} \left[\frac{1}{3} - \frac{1}{3}\right] = \frac{1}{4} \left[\frac{1}{3} -$

Example: 53 The sum of the series 1.2.3 + 2.3.4 + 3.4.5 + to *n* terms is

[Kurukshetra CEE 1998]

(a)
$$n(n+1)(n+2)$$

(b)
$$(n+1)(n+2)(n+3)$$

(c)
$$\frac{1}{4}n(n+1)(n+2)(n+3)$$

(d)
$$\frac{1}{4}(n+1)(n+2)(n+3)$$

Solution: (c) $T_n = n(n+1)(n+2) = n^3 + 3n^2 + 2n$

$$S = 1.2.3 + 2.3.4 + 3.4.5 + \dots \text{ to } n \text{ terms} = \sum_{n=1}^{n} (n^3 + 3n^2 + 2n) = \sum_{n=1}^{n} n^3 + 3\sum_{n=1}^{n} n^2 + 2\sum_{n=1}^{n} n^2$$

$$S = \left(\frac{n(n+1)}{2}\right)^2 + 3\frac{n(n+1)(2n+1)}{6} + 2\frac{n(n+1)}{2} = \frac{1}{4}n(n+1)[n(n+1) + 2(2n+1) + 4]$$

$$= \frac{1}{4} n(n+1)[n^2 + 5n + 6] = \frac{1}{4} n(n+1)(n+2)(n+3)$$

3.24 Properties of Arithmetic, Geometric and Harmonic means between Two given Numbers

Let A, G and H be arithmetic, geometric and harmonic means of two numbers a and b.

Then,
$$A = \frac{a+b}{2}$$
, $G = \sqrt{ab}$ and $H = \frac{2ab}{a+b}$

These three means possess the following properties:

(1)
$$A \ge G \ge H$$

$$A = \frac{a+b}{2}$$
, $G = \sqrt{ab}$ and $H = \frac{2ab}{a+b}$

$$\therefore A - G = \frac{a+b}{2} - \sqrt{ab} = \frac{(\sqrt{a} - \sqrt{b})^2}{2} \ge 0$$

$$\Rightarrow A \ge G$$

$$G - H = \sqrt{ab} - \frac{2ab}{a+b} = \sqrt{ab} \left(\frac{a+b-2\sqrt{ab}}{a+b} \right) = \frac{\sqrt{ab}}{a+b} (\sqrt{a} - \sqrt{b})^2 \ge 0$$

$$\Rightarrow G \ge H$$

....(ii)

From (i) and (ii), we get $A \ge G \ge H$

Note that the equality holds only when a = b

(2) A, G, H from a G.P., i.e. $G^2 = AH$

$$AH = \frac{a+b}{2} \times \frac{2ab}{a+b} = ab = (\sqrt{ab})^2 = G^2$$

Hence, $G^2 = AH$

(3) The equation having a and b as its roots is $x^2 - 2Ax + G^2 = 0$

The equation having *a* and *b* its roots is $x^2 - (a+b)x + ab = 0$

$$\Rightarrow x^2 - 2Ax + G^2 = 0$$

$$\therefore A = \frac{a+b}{2} \text{ and } G = \sqrt{ab}$$

The roots a, b are given by $A \pm \sqrt{A^2 - G^2}$

(4) If A, G, H are arithmetic, geometric and harmonic means between three given numbers a, b and c, then the equation having a, b, c as its roots is $x^3 - 3Ax^2 + \frac{3G^3}{R}x - G^3 = 0$

$$A = \frac{a+b+c}{3}$$
, $G = (abc)^{1/3}$ and $\frac{1}{H} = \frac{\frac{1}{a} + \frac{1}{b} + \frac{1}{c}}{3}$

$$\Rightarrow a+b+c=3A, abc=G^3 \text{ and } \frac{3G^3}{H}=ab+bc+ca$$

The equation having a, b, c as its roots is $x^3 - (a+b+c)x^2 + (ab+bc+ca)x - abc = 0$

$$\Rightarrow x^3 - 3Ax^2 + \frac{3G^3}{H}x - G^3 = 0$$

3.25 Relation between A.P., G.P. and H.P.

(1) If *A*, *G*, *H* be A.M., G.M., H.M. between *a* and *b*, then $\frac{a^{n+1} + b^{n+1}}{a^n + b^n} = \begin{cases} A \text{ when } n = 0 \\ G \text{ when } n = -1/2 \\ H \text{ when } n = -1 \end{cases}$

$$\frac{a^{n+1} + b^{n+1}}{a^n + b^n} = \begin{cases} A \text{ when } n = 0\\ G \text{ when } n = -1/2\\ H \text{ when } n = -1 \end{cases}$$

(2) If A_1, A_2 be two A.M.'s; G_1, G_2 be two G.M.'s and H_1, H_2 be two H.M.'s between two numbers a and b then $\left| \frac{G_1 G_2}{H_1 H_2} = \frac{A_1 + A_2}{H_1 + H_2} \right|$

(3) **Recognization of A.P., G.P., H.P.**: If a, b, c are three successive terms of a sequence.

Then if, $\frac{a-b}{b} = \frac{a}{c}$, then a, b, c are in A.P.

If, $\frac{a-b}{b} = \frac{a}{b}$, then a, b, c are in G.P.

If,
$$\frac{a-b}{b-c} = \frac{a}{c}$$
, then a, b, c are in H.P.

- (4) If number of terms of any A.P./G.P./H.P. is odd, then A.M./G.M./H.M. of first and last terms is middle term of series.
- (5) If number of terms of any A.P./G.P./H.P. is even, then A.M./G.M./H.M. of middle two terms is A.M./G.M./H.M. of first and last terms respectively.
 - (6) If p^{th} , q^{th} and r^{th} terms of a G.P. are in G.P. Then p, q, r are in A.P.
 - (7) If a, b, c are in A.P. as well as in G.P. then a = b = c.
 - (8) If a, b, c are in A.P., then x^a, x^b, x^c will be in G.P. $(x \neq \pm 1)$
- If the A.M., G.M. and H.M. between two positive numbers a and b are equal, then [Rajasthan PET 2003] Example: 54
 - (a) a = b
- (b) ab = 1
- (c) a > b
- (d) a < b

Solution: (a) :: A.M. = G.M.

$$\Rightarrow \frac{a+b}{2} = \sqrt{ab} \Rightarrow \frac{(\sqrt{a})^2 - 2\sqrt{a}\sqrt{b} + (\sqrt{b})^2}{2} = 0 \Rightarrow \frac{(\sqrt{a} - \sqrt{b})^2}{2} = 0 \Rightarrow a = b$$

$$\Rightarrow \sqrt{ab} = \frac{2ab}{a+b} \Rightarrow a+b-2\sqrt{ab} = 0 \Rightarrow (\sqrt{a}-\sqrt{b})^2 = 0 \Rightarrow \sqrt{a} = \sqrt{b} : a=b$$

Thus A.M. =(G.M.) (H.M.) So a = b

- Example: 55 Let two numbers have arithmetic mean 9 and geometric mean 4. Then these numbers are the roots of the quadratic equation
 - (a) $x^2 18x 16 = 0$
- (b) $x^2 18x + 16 = 0$
- (c) $x^2 + 18x 16 = 0$ (d) $x^2 + 18x + 16 = 0$
- **Solution:** (b) A = 9, G = 4 are respectively the A.M. and G.M. between two numbers, then the quadratic equation having its roots as the two numbers, is given by $x^2 - 2Ax + G^2 = 0$ i.e. $x^2 - 18x + 16 = 0$
- **Example: 56** If $\frac{a}{b}$, $\frac{b}{c}$, $\frac{c}{a}$ are in H.P., then

[UPSEAT 2002]

(a) a^2b, c^2a, b^2c are in A.P.

(b) $a^2b.b^2c.c^2a$ are in H.P.

(c) $a^2b.b^2c.c^2a$ are in G.P.

(d) None of these

Solution: (a) $\frac{a}{b}, \frac{b}{c}, \frac{c}{a}$ are in H.P.

$$\Rightarrow \frac{b}{a}, \frac{c}{b}, \frac{a}{c} \text{ are in A.P.} \Rightarrow abc \times \frac{b}{a}, abc \times \frac{c}{b}, abc \times \frac{a}{c} \text{ are in A.P.} \Rightarrow b^2c, ac^2, a^2b \text{ are in A.P.}$$

 $\therefore a^2b, c^2a, b^2c$ are in A.P.

If a, b, c are in G.P., then $\log_a x, \log_b x, \log_c x$ are in Example: 57

[Rajasthan PET 2002]

- (a) A.P.
- (b) G.P.
- (c) H.P.
- (d) None of these

Solution: (c) a, b, c are in G.P.

$$\Rightarrow \log_x a, \log_x b, \log_x c$$
 are in A.P. $\Rightarrow \frac{1}{\log_a x}, \frac{1}{\log_b x}, \frac{1}{\log_c x}$ are in A.P.

 $\log_a x, \log_b x, \log_c x$ are in H.P.

If A_1, A_2 ; G_1, G_2 and H_1, H_2 be two A.M.'s, G.M.'s and H.M.'s between two quantities, then the value of

$$\frac{G_1G_2}{H_1H_2}$$
 is

[Roorkee 1983; AMU 2000]

(a)
$$\frac{A_1 + A_2}{H_1 + H_2}$$
 (b) $\frac{A_1 - A_2}{H_1 + H_2}$ (c) $\frac{A_1 + A_2}{H_1 - H_2}$

(b)
$$\frac{A_1 - A_2}{H_1 + H_2}$$

(c)
$$\frac{A_1 + A_2}{H_1 - H_2}$$

(d)
$$\frac{A_1 - A_2}{H_1 - H_2}$$

Let a and b be the two numbers Solution: (a)

$$\therefore A_1 = a + \left(\frac{b-a}{3}\right) = \frac{2a+b}{3}, A_2 = a + 2\left(\frac{b-a}{3}\right) = \frac{a+2b}{3}$$

$$G_1 = a \left(\frac{b}{a}\right)^{1/3} = a^{2/3} b^{1/3}$$
, $G_2 = a \left(\left(\frac{b}{a}\right)^{1/3}\right)^2 = a^{1/3} b^{2/3}$

$$H_1 = \frac{1}{\frac{1}{a} + \left(\frac{1}{b} - \frac{1}{a}\right)\frac{1}{3}} = \frac{3}{\frac{2}{a} + \frac{1}{b}} = \frac{3ab}{a + 2b}, \ H_2 = \frac{3ab}{2a + b}$$

$$\therefore \frac{G_1 G_2}{H_1 H_2} = \frac{(a^{2/3} b^{1/3})(a^{1/3} b^{2/3})}{\frac{3ab}{a+2b} \cdot \frac{3ab}{2a+b}} = \frac{(a+2b)(2a+b)}{9ab}$$

$$A_1 + A_2 = \frac{2a+b}{3} + \frac{a+2b}{3} = a+b$$

$$H_1 + H_2 = \frac{3ab}{a+2b} + \frac{3ab}{2a+b} = 3ab \left(\frac{2a+b+a+2b}{(a+2b)(2a+b)} \right) = \frac{9ab(a+b)}{(a+2b)(2a+b)}$$

$$\therefore \frac{A_1 + A_2}{H_1 + H_2} = \frac{(a+2b)(2a+b)}{9ab} = \frac{G_1 G_2}{H_1 H_2}$$

- If the ratio of H.M. and G.M. of two quantities is 12:13, then the ratio of the numbers is [Rajasthan PET 1990] Example: 59 (a) 1:2 (b) 2:3 (d) None of these
- Solution: (d) Let *x* and *y* be the numbers

$$\therefore \text{ H.M.} = \frac{2xy}{x+y}, \text{ G.M.} = \sqrt{xy}$$

$$\therefore \frac{\text{H.M.}}{\text{G.M.}} = \frac{2\sqrt{xy}}{x+y} = \frac{2\sqrt{x/y}}{\frac{x}{y}+1} \implies \frac{12}{13} = \frac{2r}{r^2+1}, \ (\because \ r = \sqrt{\frac{x}{y}} \) \implies 12r^2 - 26r + 12 = 0 \implies 6r^2 - 13r + 6 = 0$$

$$\therefore r = \frac{13 \pm \sqrt{13^2 - 4.6.6}}{2 \times 6} = \frac{13 \pm 5}{12} = \frac{18}{12}, \frac{8}{12} = \frac{3}{2}, \frac{2}{3}$$

:. Ratio of numbers =
$$\frac{x}{y} = r^2 : 1 = \frac{9}{4} : 1$$
 or $\frac{4}{9} : 1 = 9 : 4$ or $4 : 9$

- If the A.M. of two numbers is greater than G.M. of the numbers by 2 and the ratio of the numbers is 4 Example: 60 : 1, then the numbers are [Rajasthan PET 1988]
 - (a) 4, 1
- (b) 12, 3
- (c) 16, 4
- (d) None of these

Solution: (c) Let *x* and *y* be the numbers

$$\therefore$$
 A.M. = G.M. + 2 $\Rightarrow \frac{x+y}{2} = \sqrt{xy} + 2$

Also,
$$\frac{x}{y} = 4:1 \implies x = 4y$$

$$\therefore \frac{4y+y}{2} = \sqrt{4y \cdot y} + 2 \implies \frac{5y}{2} = 2y+2 \implies y=4 \implies x=4\times 4=16$$

... The numbers are 16, 4.

If the ratio of A.M. between two positive real numbers a and b to their H.M. is m:n, then a:b is

(a)
$$\frac{\sqrt{m-n} + \sqrt{n}}{\sqrt{m-n} - \sqrt{n}}$$

(b)
$$\frac{\sqrt{n} + \sqrt{m-n}}{\sqrt{n} - \sqrt{m-n}}$$

(a)
$$\frac{\sqrt{m-n}+\sqrt{n}}{\sqrt{m-n}-\sqrt{n}}$$
 (b) $\frac{\sqrt{n}+\sqrt{m-n}}{\sqrt{n}-\sqrt{m-n}}$ (c) $\frac{\sqrt{m}+\sqrt{m-n}}{\sqrt{m}-\sqrt{m-n}}$ (d) None of these

Solution: (c) We have,
$$\frac{m}{n} = \frac{(a+b)/2}{2ab/(a+b)} \Rightarrow \frac{m}{n} = \frac{(a+b)^2}{4ab} = \frac{\left(\frac{a}{b}+1\right)^2}{4\frac{a}{b}} \Rightarrow 4\frac{m}{n}\left(\frac{a}{b}\right) = \left(\frac{a}{b}+1\right)^2 \Rightarrow 2\frac{\sqrt{m}}{\sqrt{n}}\sqrt{\frac{a}{b}} = \left(1+\frac{a}{b}\right)$$

Let
$$\frac{a}{b} = r^2$$
, $\therefore \frac{2\sqrt{m}}{\sqrt{n}} r = (1 + r^2) \Rightarrow 2\sqrt{m} r = \sqrt{n} + \sqrt{n} r^2 \Rightarrow \sqrt{n} r^2 - 2\sqrt{m} r + \sqrt{n} = 0$

$$\therefore r = \frac{2\sqrt{m} \pm \sqrt{4m - 4n}}{2\sqrt{n}} = \frac{\sqrt{m} \pm \sqrt{m - n}}{\sqrt{n}}$$

Considering +ve sign,
$$r = \frac{\sqrt{m} + \sqrt{m-n}}{\sqrt{n}} = \frac{(\sqrt{m} + \sqrt{m-n})(\sqrt{m} - \sqrt{m-n})}{\sqrt{n}(\sqrt{m} - \sqrt{m-n})} = \frac{m - (m-n)}{\sqrt{n}(\sqrt{m} - \sqrt{m-n})} = \frac{\sqrt{n}}{\sqrt{m} - \sqrt{m-n}} = \frac{\sqrt{n}}{\sqrt{m} - \sqrt{m-n}} = \frac{\sqrt{n}}{\sqrt{m} - \sqrt{m-n}} = \frac{\sqrt{n}}{\sqrt{n}} = \frac$$

$$\therefore r^2 = \frac{\sqrt{m} + \sqrt{m-n}}{\sqrt{n}} \cdot \frac{\sqrt{n}}{\sqrt{m} - \sqrt{m-n}} \cdot \text{Hence, } \frac{a}{b} = \frac{\sqrt{m} + \sqrt{m-n}}{\sqrt{m} - \sqrt{m-n}}.$$

3.26 Applications of Progressions

There are many applications of progressions is applied in science and engineering. Properties of progressions are applied to solve problems of inequality and maximum or minimum values of some expression can be found by the relation among A.M., G.M. and H.M.

Example: 62 If $x = \log_5 3 + \log_7 5 + \log_9 7$ then

(a)
$$x \ge \frac{3}{2}$$

(b)
$$x \ge \frac{1}{\sqrt[3]{2}}$$

(c)
$$x \ge \frac{3}{\sqrt[3]{2}}$$

(d) None of these

Solution: (c) $x = \log_5 3 + \log_7 5 + \log_9 7$

$$\frac{\log_5 3 + \log_7 5 + \log_9 7}{2} \ge (\log_5 3. \log_7 5. \log_9 7)^{1/3}$$

$$[A.M. \geq G.M.]$$

$$\Rightarrow \frac{x}{3} \ge (\log_9 3)^{1/3} \Rightarrow x \ge 3(\log_9 9^{1/2})^{1/3} \Rightarrow x \ge 3\left(\frac{1}{2}\right)^{1/3}. \text{ Hence } x \ge \frac{3}{\sqrt[3]{2}}$$

If a, b, c, d are four positive numbers then Example: 63

(a)
$$\left(\frac{a}{b} + \frac{b}{c}\right) \left(\frac{c}{d} + \frac{d}{e}\right) \ge 4 \cdot \sqrt{\frac{a}{e}}$$

(b)
$$\left(\frac{a}{b} + \frac{c}{d}\right) \left(\frac{b}{c} + \frac{d}{e}\right) \ge 4 \cdot \sqrt{\frac{a}{e}}$$

(c)
$$\frac{a}{b} + \frac{b}{c} + \frac{c}{d} + \frac{d}{a} + \frac{e}{a} \ge 5$$

(d)
$$\frac{b}{a} + \frac{c}{b} + \frac{d}{c} + \frac{e}{d} + \frac{a}{e} \ge \frac{1}{5}$$

Solution: (a,b,c) We have
$$\frac{\frac{a}{b} + \frac{b}{c}}{2} \ge \left(\frac{a}{b} \cdot \frac{b}{c}\right)^{1/2}$$
;

$$(::A.M. \geq G.M.)$$

$$\Rightarrow \frac{a}{b} + \frac{b}{c} \ge 2\sqrt{\frac{a}{c}}$$

Similarly,
$$\frac{c}{d} + \frac{d}{e} \ge 2\sqrt{\frac{c}{e}}$$
(ii)

Multiplying (i) by (ii).

$$\left(\frac{a}{b} + \frac{b}{c}\right) \left(\frac{c}{d} + \frac{d}{e}\right) \ge 4\sqrt{\frac{a}{c}}\sqrt{\frac{c}{e}} \implies \left(\frac{a}{b} + \frac{b}{c}\right) \left(\frac{c}{d} + \frac{d}{e}\right) \ge 4\sqrt{\frac{a}{e}}, \quad \therefore \text{ (a) is true}$$

Next,
$$\left(\frac{a}{b} + \frac{c}{d}\right) \left(\frac{b}{c} + \frac{d}{e}\right) \ge 2 \left(\frac{a}{b} \cdot \frac{c}{d}\right)^{1/2} \cdot 2 \left(\frac{b}{c} \cdot \frac{d}{e}\right)^{1/2} \Rightarrow \left(\frac{a}{b} + \frac{c}{d}\right) \left(\frac{b}{c} + \frac{d}{e}\right) \ge 4\sqrt{\frac{a}{e}}$$
, ... (b) is true

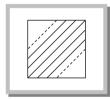
$$\frac{\frac{a}{b} + \frac{b}{c} + \frac{c}{d} + \frac{e}{e} + \frac{e}{a}}{5} \ge \left(\frac{a}{b} \cdot \frac{b}{c} \cdot \frac{c}{d} \cdot \frac{d}{e} \cdot \frac{e}{a}\right)^{1/5} \Rightarrow \frac{a}{b} + \frac{b}{c} + \frac{c}{d} + \frac{d}{e} + \frac{e}{a} \ge 5, \quad \therefore \text{ (c) is true}$$

Now,
$$\frac{b}{a} + \frac{c}{b} + \frac{d}{c} + \frac{e}{d} + \frac{a}{e} \ge 5 \left(\frac{b}{a} \cdot \frac{c}{b} \cdot \frac{d}{c} \cdot \frac{e}{d} \cdot \frac{a}{e} \right)^{1/5} \implies \frac{b}{a} + \frac{c}{b} + \frac{d}{c} + \frac{e}{d} + \frac{a}{e} \ge 5$$
, \therefore (d) is false

Example: 64

(a)
$$n^n \ge a_n$$

(b)
$$\left(\frac{n+1}{2}\right)^n \ge n!$$


$$(c) \quad n^n \ge a_n + 1$$

(d) None of these

Solution: (a,b) We have $a_n = 1.2.3..... = n!$, $n^n = n.n.n...$ to n times

$$\frac{1+2+3+.....+n}{n} \ge (1.2.3.....n)^{1/n} \implies \frac{n(n+1)}{2n} \ge (n!)^{1/n} \implies \frac{n+1}{2} \ge (n!)^{1/n} \cdot \therefore \left(\frac{n+1}{2}\right)^n \ge n! \cdot \text{So (b) is true.}$$

In the given square, a diagonal is drawn and parallel line segments joining points on the adjacent Example: 65 sides are drawn on both sides of the diagonal. The length of the diagonal is $n\sqrt{2}$ cm. If the distance between consecutive line segments be $\frac{1}{\sqrt{2}}$ cm then the sum of the lengths of all possible line segments and the diagonal is

(a)
$$n(n+1)\sqrt{2} \ cm$$

(b)
$$n^2 cm$$

(c)
$$n(n+2)cm$$

(d)
$$n^2 \sqrt{2} \ cm$$

Let us consider the diagonal and an adjacent parallel line Solution: (d)

Length of the line
$$PQ = RS = AC - (AR + SC) = AC - 2AR$$

$$= AC - 2.PR$$

$$= n\sqrt{2} - 2 \cdot \frac{1}{n} - n\sqrt{2} - \sqrt{2} - (n-1)\sqrt{2}$$

$$(:: AR = PR)$$

$$= n\sqrt{2} - 2 \cdot \frac{1}{\sqrt{2}} = n\sqrt{2} - \sqrt{2} = (n-1)\sqrt{2} \ cm$$

Length of line adjacent to PQ, other than AC, will be $((n-1)-1)\sqrt{2} = (n-2)$

: Sum of the lengths of all possible line segments and the diagonal

$$= 2 \times [n\sqrt{2} + (n-1)\sqrt{2} + (n-2)\sqrt{2} + \dots] - n\sqrt{2}, \qquad n \in \mathbb{N}$$

$$= 2 \times \sqrt{2}[n + (n-1) + (n-2) + \dots + 1] - n\sqrt{2} = 2\sqrt{2} \times \frac{n(n+1)}{2} - n\sqrt{2} = n\sqrt{2}\{n + 1 - 1\} = n^2\sqrt{2} cm$$

Let $f(x) = \frac{1 - x^{n+1}}{1 - x}$ and $g(x) = 1 - \frac{2}{x} + \frac{3}{x^2} - \dots + (-1)^n \frac{n+1}{x^n}$. Then the constant term in $f'(x) \times g(x)$ is equal to Example: 66

(a)
$$\frac{n(n^2-1)}{6}$$
 when *n* is even (b)

 $\frac{n(n+1)}{2}$ when n is odd (c) $-\frac{n}{2}(n+1)$ when n is even

(d)
$$-\frac{n(n-1)}{2} \text{ when } n \text{ is odd}$$

Solution: (b,c) $f(x) = \frac{1-x^{n+1}}{1-x} = \frac{(1-x)(1+x+x^2+.....+x^n)}{(1-x)} = 1+x+x^2+.....+x^n$; $f'(x) = 1+2x+3x^2+.....+n$

$$f'(x).g(x) = (1 + 2x + 3x^{2} + \dots + nx^{n-1}) \times \left(1 - \frac{2}{x} + \frac{3}{x^{2}} - \dots + (-1)^{n} \frac{n+1}{x^{n}}\right)$$

 \therefore constant term in $f'(x) \times g(x)$ is

$$c = 1^{2} - 2^{2} + 3^{2} - 4^{2} + \dots + n^{2}(-1)^{n-1} = [1^{2} + 2^{2} + 3^{2} + 4^{2} + \dots + n^{2}] - 2[2^{2} + 4^{2} + 6^{2} + \dots]$$
when
$$n \qquad is \qquad odd,$$

$$c = [1^{2} + 2^{2} + \dots + n^{2}] - 2[2^{2} + 4^{2} + 6^{2} + \dots + (n-1)^{2}] = \left[\frac{n(n+1)(2n+1)}{6} - 2 \cdot 2^{2}[1^{2} + 2^{2} + 3^{2} + \dots + \left(\frac{n-1}{2}\right)^{2}\right]$$

$$= \frac{n(n+1)(2n+1)}{6} - 8 \frac{\left(\frac{n-1}{2}\right) \cdot \left(\frac{n-1}{2} + 1\right)\left(2\frac{n-1}{2} + 1\right)}{6} = \frac{n(n+1)(2n+1)}{6} - \frac{n(n-1)(n+1)}{3}$$

$$= \frac{n(n+1)}{6}(2n+1-2(n-1)) = \frac{n(n+1)}{6} \times 3 = \frac{n(n+1)}{2}$$

when *n* is even,
$$c = [1^2 + 2^2 + \dots + n^2] - 2[2^2 + 4^2 + \dots + n^2] = \frac{n(n+1)(2n+1)}{6} - 2 \cdot 2^2 \left[1^2 + 2^2 + \dots + \left(\frac{n}{2}\right)^2 \right]$$

$$= \frac{n(n+1)(2n+1)}{6} - 8\frac{\left(\frac{n}{2}\right) \cdot \left(\frac{n}{2} + 1\right)\left(2 \cdot \frac{n}{2} + 1\right)}{6} = \frac{n(n+1)(2n+1)}{6} - \frac{1}{3}n(n+1)(n+2)$$

$$= \frac{1}{6}n(n+1)(2n+1 - 2(n+2)) = -\frac{1}{2}n(n+1)$$

General term of an Arithmetic progression

				The terminette progression
		Basic L	evel	
1.	The sequence $\frac{5}{\sqrt{7}}, \frac{6}{\sqrt{7}}, \frac{1}{\sqrt{7}}$	√7 is		
	(a) H.P.	(b) G.P.	(c) A.P.	(d) None of these
2.	p^{th} term of the series	$\left(3 - \frac{1}{n}\right) + \left(3 - \frac{2}{n}\right) + \left(3 - \frac{3}{n}\right) + \dots \text{will}$	l be	
	(a) $\left(3 + \frac{p}{n}\right)$	(b) $\left(3-\frac{p}{n}\right)$	(c) $\left(3+\frac{n}{p}\right)$	(d) $\left(3-\frac{n}{p}\right)$
3.	If the 9 th term of an A.	P. be zero, then the ratio of its 2	29 th and 19 th term is	
	(a) 1:2	(b) 2:1	(c) 1:3	(d) 3:1
4.	Which of the following	sequence is an arithmetic sequ	ence	
	(a) $f(n) = an + b; n \in \mathbb{N}$	(b) $f(n) = kr^n; n \in N$	(c) $f(n) = (an+b)kr^n$; $n \in N$	(d) $f(n) = \frac{1}{a\left(n + \frac{b}{n}\right)}; n \in \mathbb{N}$
5.	If the p^{th} term of an A	.P. be q and q^{th} term be p , then	its $r^{ m th}$ term will be	[Rajasthan PET 1999
	(a) $p+q+r$	(b) $p+q-r$	(c) $p+r-q$	(d) $p-q-r$
6.	If the 9 th term of an A.	P. is 35 and 19 th is 75, then its 2	o th term will be	[Rajasthan PET 1989
	(a) 78	(b) 79	(c) 80	(d) 81
7•	If $(a+1)$, $3a$, $(4a+2)$ are	in A.P. then 7^{th} term of the serie	es is	
	(a) $10a+4$	(b) - 33	(c) 33	(d) 10 a - 4
8.	It x, y, z are in A.P., the	en its common difference is		
	(a) $\sqrt{x^2 - yz}$	(b) $\sqrt{y^2 - xz}$	(c) $\sqrt{z^2-xy}$	(d) None of these
9.	The 10 th term of the se	quence $\sqrt{3}$, $\sqrt{12}$, $\sqrt{27}$,is		
	(a) $\sqrt{243}$	(b) $\sqrt{300}$	(c) $\sqrt{363}$	(d) $\sqrt{432}$
10.	Which term of the sequ	uence (- 8 + 18i), (- 6+15i), (- 4	1 + 12 <i>i</i>),is purely imagi	inary
	(a) 5 th	(b) 7 th	(c) 8 th	(d) 6 th
11.	If $(m + 2)^{th}$ term of an M	A.P. is $(m+2)^2-m^2$, then its com	mon difference is	
	(a) 4	(b) - 4	(c) 2	(d) - 2

12.	For an A.P., T_2	$T_5 - T_3 = 10$, $T_2 + T_9 = 17$, then	common difference is			
	(a) O	(b) 1	(c) - 1	(d) 13		
			Advance Level			
13.	If $\tan n\theta = \tan m$	θ , then the different values θ	of θ will be in	[Karnata	aka CET 1998]	
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of the	ese	
14.	If the p^{th}, q^{th} and $(p-q) = (p-q)$		sequence are <i>a</i> , <i>b</i> and <i>c</i> respect			
				1	MP PET 1985]	
	(a) 1	(b) - 1	(c) 0	(d) $\frac{1}{2}$		
15.	If n^{th} terms of the	wo A.P.'s are $3n + 8$ and $7n +$	15, then the ratio of their 12 th t	erms will be [MP PET 1986]	
	(a) $\frac{4}{9}$	(b) $\frac{7}{16}$	(c) $\frac{3}{7}$	(d) $\frac{8}{15}$		
16.	The 6 th term of an A.P. is equal to 2, the value of the common difference of the A.P. which makes the product $a_1a_4a_5$ least is given by					
	(a) $\frac{8}{5}$	(b) $\frac{5}{4}$	(c) $\frac{2}{3}$	(d) None of the	ese	
17.	If p times the p^{th} term of an A.P. is equal to q times the q^{th} term of an A.P., then $(p+q)^{th}$ term is					
				[MP PET 1997; Karnata	ka CET 2002]	
	(a) o	(b) 1	(c) 2	(d) 3		
18.	The numbers $t(t^2+1)$, $-\frac{1}{2}t^2$ and 6 are three consecutive terms of an A.P. If t be real, then the next two terms of					
	A.P. are	(b) 14, 6	(a) 14 22	(d) None of th	200	
	(a) -2, -10		(c) 14, 22	(d) None of the	-5 -	
19.	If the p^{th} term of the series 25, $22\frac{3}{5}$, $20\frac{1}{2}$, $18\frac{1}{4}$, is numerically the smallest, then $p=$					
	(a) 11	(b) 12	(c) 13	(d) 14		
20.	The second term of an A.P. is $(x - y)$ and the 5 th term is $(x + y)$, then its first term is [AMU 1989]					
	(a) $x - \frac{1}{3}y$	(b) $x - \frac{2}{3}y$	(c) $x - \frac{4}{3}y$	(d) $x - \frac{5}{3}y$		
21.	The number of common terms to the two sequences 17, 21, 25,417 and 16, 21, 26, 466 is					
	(a) 21	(b) 19	(c) 20	(d) 91		
22.	In an A.P. first t	term is 1. If $T_1 T_3 + T_2 T_3$ is min	imum, then common difference	is		
	(a) -5/4	(b) -4/5	(c) 5/4	(d) 4/5		
23.			9, 12,}, and $n(A) = 200$, $n(B) = 66$		204	
	(a) $n(A \cap B) = 0$	67 (b) $n(A \cup B) = 450$	(c) $n(A \cap B) = 66$	(d) $n(A \cup B) =$	304	

24.	The sum of first n nat	cural numbers is		MP PET 1984; Rajasthan PET 1	1995]		
	(a) $n(n-1)$	(b) $\frac{n(n-1)}{2}$	(c) $n(n+1)$	(d) $\frac{n(n+1)}{2}$			
25.	The sum of the series	$\frac{1}{2} + \frac{1}{3} + \frac{1}{6} + \dots$ to 9 terms is		[MNR 1	1985]		
	(a) $-\frac{5}{6}$	(b) $-\frac{1}{2}$	(c) 1	(d) $-\frac{3}{2}$			
26.	The sum of all natura	l numbers between 1 and 100	which are multiples of 3 is	[MP PET 1	1984]		
	(a) 1680	(b) 1683	(c) 1681	(d) 1682			
27.	The sum of 1+3+5+7+	upto <i>n</i> terms is		[MP PET 1	1984]		
	(a) $(n+1)^2$	(b) $(2n)^2$	(c) n^2	(d) $(n-1)^2$			
28.	If the sum of the serie	es 2+ 5+ 8+11 is 60100,	then the number of terms ar	E [MNR 1991; DCE 2	2001]		
	(a) 100	(b) 200	(c) 150	(d) 250			
29.	If the first term of an are [Rajasthan PET 198		and the sum of all the terms i	s 300, then the number of te	erms		
	(a) 5	(b) 8	(c) 10	(d) 15			
о.	The sum of the number	ers between 100 and 1000 w	hich is divisible by 9 will be	[MP PET 1	1982]		
	(a) 55350	(b) 57228	(c) 97015	(d) 62140			
1.	If the sum of three numbers are	numbers of a arithmetic se	quence is 15 and the sum o	f their squares is 83, then [MP PET 1			
	(a) 4, 5, 6	(b) 3, 5, 7	(c) 1, 5, 9	(d) 2, 5, 8			
2.	If the sum of three c numbers are	If the sum of three consecutive terms of an A.P. is 51 and the product of last and first term is 273, then the numbers are					
				[MP PET 1	1986]		
	(a) 21, 17, 13	(b) 20, 16, 12	(c) 22, 18, 14	(d) 24, 20, 16			
3.			its first term is 5 and their su		ЕЦМР		
	(a) 23	(b) 26	(c) 29	(d) 32			
4.	If $S_n = nP + \frac{1}{2}n(n-1)Q$, where S_n denotes the sum of the first n terms of an A.P. then the common difference is						
				[JEE West Bengal 1	1994]		
	(a) $P + Q$	(b) $2P + 3Q$	(c) 2Q	(d) Q			
5.		from 250 to 1000 which are		[Rajasthan PET 1	1997]		
_	(a) 135657	(b) 136557	(c) 161575	(d) 156375			
6.		arithmetic progression. The number of the series is	sum of first and last term is	[MP PET 2			
	(a) 4	(b) 3	(c) 2	(d) 1			
37•			be taken so that the sum is 4		2002]		
	(a) 5	(b) 10	(c) 12	(d) 14			
38.		ntegers whose sum is 45 ² - 2					
	(a) 43, 45,, 75	(b) 43, 45, 79	(c) 43, 45,, 85	(d) 43, 45,, 89			

1996

39.	If common difference $m^{\rm th}$ terms is	of m A.P.'s are respectively	$1, 2, \dots$ m and first term of	each series is 1, then sum of their		
	(a) $\frac{1}{2}m(m+1)$	(b) $\frac{1}{2}m(m^2+1)$	(c) $\frac{1}{2}m(m^2-1)$	(d) None of these		
40.	The sum of all those n	numbers of three digits which	ch leave remainder 5 after div	vision by 7 is		
	(a) 551 × 129	(b) 550 × 130	(c) 552 × 128	(d) None of these		
41.	If $S_n = n^2 p$ and $S_m = m$	$n^2 p, m \neq n$, in A.P., then S_p is				
	(a) p^2	(b) p^3	(c) p ⁴	(d) None of these		
42.	An A.P. consists of n (odd terms) and its middle t	erm is m . Then the sum of the			
	(a) 2 mn	(b) $\frac{1}{2}mn$	(c) mn	(d) mn ²		
43.	The minimum number	of terms of 1+3+5+7+	that add up to a number exc	eeding 1357 is		
	(a) 15	(b) 37	(c) 35	(d) 17		
		Adv	ance Level			
44.				atio of their 11 th terms will be[AMU		
45.	(a) 2: 3 The interior angles of	(b) 3: 4	(c) $4:3$	(d) 5 : 6		
45.	The interior angles of a polygon are in A.P. If the smallest angle be 120° and the common difference be 5, then the number of sides is					
				[IIT 1980]		
	(a) 8	(b) 10	(c) 9	(d) 6		
46.	_	rom 1 to 100 that are divisib	-	[IIT 1984]		
	(a) 3000	(b) 3050	(c) 4050	(d) None of these		
47•	If the sum of first n terms of an A.P. be equal to the sum of its first m terms, ($m \ne n$), then the sum of its first $(m + n)$ terms will be					
	(m + n) terms win be			[MP PET 1984]		
	(a) 0	(b) <i>n</i>	(c) m	(d) $m + n$		
48.	If a_1, a_2, \ldots, a_n are in A.P. with common difference d , then the sum of the following series is					
	$\sin d$ (coses a_1 . cosec $a_2 + c$	$cosec \ a_2.cosec \ a_3 + \dots + cosec \ a_n$	a_{n-1} cosec a_n)	[Rajasthan PET 2000]		
	(a) $\sec a_1 - \sec a_n$	(b) $\cot a_1 - \cot a_n$	(c) $\tan a_1 - \tan a_n$	(d) cosec a_1 – cosec a_n		
49.	The odd numbers are	divided as follows				
	1 3 5 7 9 ¹¹ 13 15 17 19 21 2	23 •				
		•				
	Then the sum of n^{th} re	· · ow is				
	(a) $2^{n-2}[2^n + 2^{n-1} - 1]$	(b) $\frac{1}{2}(2n+1)$	(c) 2n	(d) $4n^3$		

are

о.	If the sum of <i>n</i> term	ns of an A.P. is $2n^2 + 5n$, then	the n^{th} term will be	[Ra	jasthan PET 1992]	
	(a) $4n+3$	(b) $4n+5$	(c) $4n+6$	(d) $4n+7$		
ι.	The n th term of an	A.P. is $3n-1$. Choose from the	ne following the sum of its first fi	ve terms	[MP PET 1983]	
	(a) 14	(b) 35	(c) 80	(d) 40		
2.		xtreme numbers of an A.P. w umber of the series will be	ith four terms is 8 and product of	f remaining tw	o middle term is [Roorkee 1965]	
	(a) 5	(b) 7	(c) 9	(d) 11		
•	The ratio of sum of	m and n terms of an A.P. is n	$n^2:n^2$, then the ratio of $m^{ ext{th}}$ and n^2	th term will be[Roorkee 1963; MI	
	(a) $\frac{m-1}{n-1}$	(b) $\frac{n-1}{m-1}$	(c) $\frac{2m-1}{2n-1}$	(d) $\frac{2n-1}{2m-1}$		
	n-1	m-1	2n-1	2m-1		
ļ.	The value of <i>x</i> satis	fying $\log_a x + \log_{\sqrt{a}} x + \log_{\sqrt[3]{a}} x +$	$-\dots + \log_{\sqrt[a]{a}} x = \frac{a+1}{2} $ will be			
	(a) $x = a$	(b) $x = a^a$	(c) $x = a^{-1/a}$	(d) $x = a^{1/a}$		
	Sum of first <i>n</i> term	s in the following series cot ⁻¹	$3 + \cot^{-1} 7 + \cot^{-1} 13 + \cot^{-1} 21 + \dots$ i	s given by		
	(a) $\tan^{-1}\left(\frac{n}{n+2}\right)$	(b) $\cot^{-1}\left(\frac{n+2}{n}\right)$	(c) $\tan^{-1}(n+1) - \tan^{-1} 1$	(d) All of t	hese	
5.	Let S_n denotes the	sum of n terms of an A.P. If	$S_{2n} = 3S_n$, then ratio $\frac{S_{3n}}{S_n} =$	[MNR 19	93; UPSEAT 2001	
	(a) 4	(b) 6	(c) 8	(d) 10		
· .	If the sum of the fir	est <i>n</i> terms of a series be $5n^2$	+2n, then its second term is		[MP PET 1996]	
	(a) 7	(b) 17	(c) 24	(d) 42		
3.		A.P. are natural numbers. Then the common difference i	The sum of its first nine terms lies	es between 200	o and 220. If the	
	(a) 2	(b) 3	(c) 4	(d) None o	of these	
•	If $S_1 = a_2 + a_4 + a_6 + \dots$ up to 100 terms and $S_2 = a_1 + a_3 + a_5 + \dots$ up to 100 terms of a certain A.P. then its common difference d is					
	(a) $S_1 - S_2$	(b) $S_2 - S_1$	(c) $\frac{S_1 - S_2}{2}$	(d) None o	f these	
٠.	_	•	lifference is non-zero, the sum o um of the first 2 <i>n</i> terms to the next		is is equal to the	
	(a) $\frac{1}{5}$	(b) $\frac{2}{3}$	(c) $\frac{3}{4}$	(d) None o	f these	
	If the sum of n term	If the sum of <i>n</i> terms of an A.P. is $nA + n^2B$, where <i>A</i> , <i>B</i> are constants, then its common difference will be [MNR 197]				
	(a) A - B	(b) $A + B$	(c) 2A	(d) 2B		
				Arit	hmetic mean	
			Sasic Level			
			asic Level			

rogi	essio	ns 131

[Rajasthan PET 1986]

[MP PET 1985]

(d) n

	(a) 5, 9, 11, 13	(b) 7, 11, 15, 19	(c) 5, 11, 15, 22	(d) 7, 15, 19, 21
55.	The mean of the series a	a, a + nd, a + 2nd is		[DCE 2002]
	(a) $a + (n-1)d$	(b) $a+nd$	(c) $a + (n+1)d$	(d) None of these
66.	If n A.M. s are introduce the value of n is	ed between 3 and 17 such that t	the ratio of the last mean to	the first mean is 3:1, then
	(a) 6	(b) 8	(c) 4	(d) None of these
		Advance 1	Level	
57.	The sum of n arithmetic	means between a and b, is		[Rajasthan PET 1986]
	(a) $\frac{n(a+b)}{2}$	(b) $n(a+b)$	$(c) \frac{(n+1)(a+b)}{2}$	(d) $(n+1)(a+b)$
58.	Given that n A.M.'s are	inserted between two sets of n	umbers a, 2b and 2a, b, who	ere $a, b \in R$. Suppose further
	that m^{th} mean between	these sets of numbers is same, t	then the ratio $a:b$ equals	
	(a) $n - m + 1 : m$	(b) $n - m + 1 : n$	(c) $n: n-m+1$	(d) $m: n-m+1$
69.	Given two number a and S/A depends on	d b. Let A denote the single A.M	. and S denote the sum of n	A.M.'s between a and b , then
				[Pb. CET 1992]
	(a) <i>n</i> , <i>a</i> , <i>b</i>	(b) <i>n</i> , <i>b</i>	(c) n, a	(d) n
70.	The A.M. of series $a+(a-1)$	+d)+(a+2d)++(a+2nd) is		[Pb. CET 1998]
	(a) $a + (n-1)d$	(b) $a+nd$	(c) $a + (n-1)d$	(d) None of these
71.	If 11 AM's are inserted b	etween 28 and 10, then three m	nid terms of the series are	[MNR 1997]
	(a) $\frac{41}{2}$, 19, $\frac{35}{2}$	(b) $20, \frac{41}{2}, \frac{43}{2}$	(c) $20, \frac{61}{2}, \frac{62}{3}$	(d) 20, 22, 24
72.	If $f(x+y, x-y) = xy$, then	the arithmetic mean of $f(x, y)$	and $f(y, x)$ is	[AMU 2002]
	(a) x	(b) y	(c) 0	(d) 1
73.	If A.M. of the roots of	a quadratic equation is $\frac{8}{5}$ and	the A.M. of their reciproca	als is $\frac{8}{7}$, then the quadratic
		3		1

If $a_1=0$ and a_1 , a_2 , a_3 ,.... a_n are real numbers such that $|a_i|=|a_{i-1}+1|$ for all i, then A.M. of the numbers a_1 , a_2 ,

(c) $5x^2 - 16x + 7 = 0$

(c) $x \ge -\frac{1}{2}$

(d) $5x^2 - 8x + 7 = 0$

(d) $x = \frac{1}{2}$

(c) $\frac{2}{5}, \frac{5}{2}$

(c) $\frac{n}{2}$

(b) $\frac{3}{4}, \frac{4}{3}$

The arithmetic mean of first n natural number

The four arithmetic means between 3 and 23 are

(a) $\frac{1}{4}, \frac{4}{1}$

63.

64.

73.

74.

75.

equation is

(a) x<1

(a) $7x^2 + 16x + 5 = 0$ (b) $7x^2 - 16x + 5 = 0$

(b) $x < -\frac{1}{2}$

If A.M. of the numbers 5^{1+x} and 5^{1-x} is 13 then the set of possible real values of x is

 $\dots a_n$ has the value x where

(a)	$\{5, \frac{1}{5}\}$
(a)	$\{5, \frac{1}{5}\}$

(b)
$$\{1,-1\}$$

(c)
$$\{x \mid x^2 - 1 \mid = 0, x \in R\}$$

(d) None of these

Properties of A.P.

Basic Level

If 2x, x+ 8, 3x + 1 are in A.P., then the value of x will be

[MP PET 1984]

(c) 5

(d) - 2

If $\log_3 2$, $\log_3 (2^x - 5)$ and $\log_3 \left(2^x - \frac{7}{2}\right)$ are in A.P., then x is equal to

[IIT 1990]

(a) $1, \frac{1}{2}$

(b) $1, \frac{1}{2}$

(c) $1, \frac{3}{2}$

(d) None of these

If a_m denotes the m^{th} term of an A.P., then $a_m =$

(a)
$$\frac{a_{m+k} + a_{m-k}}{2}$$
 (b) $\frac{a_{m+k} - a_{m-k}}{2}$

(b)
$$\frac{a_{m+k} - a_{m-k}}{2}$$

(c)
$$\frac{2}{a_{m+k} + a_{m-k}}$$

(d) None of these

If 1, $\log_y x$, $\log_z y$, – 15 $\log_x z$ are in A.P., then

(a)
$$z^3 = x$$

(b)
$$x = y^{-1}$$

(c)
$$z^{-3} = y$$

(d) $x = v^{-1} = z^3$

(e) All of these

80. If $\frac{1}{n+a}, \frac{1}{r+n}, \frac{1}{a+r}$ are in A.P., then

[Rajasthan PET 1995]

(a) p, q, r are in A.P. (b) p^2, q^2, r^2 are in A.P.

(c) $\frac{1}{n}, \frac{1}{n}, \frac{1}{r}$ are in A.P.

(d) None of these

If a, b, c, are in A.P., then $b^2 - ac$ is equal to 81.

[Roorkee 1975]

(a) $\frac{1}{4}(a+c)^2$

(b)
$$\frac{1}{4}(a-c)^2$$

(c)
$$\frac{1}{2}(a+c)^2$$

(d) $\frac{1}{2}(a-c)^2$

If $a_1, a_2, a_3,...$ are in A.P. then a_p, a_q, a_r are in A.P. if p, q, r are in

(a) A.P.

(b) G.P.

(c) H.P.

(d) None of these

Advance Level

If the sum of the roots of the equation $ax^2 + bx + c = 0$ be equal to the sum of the reciprocals of their squares, 83. then bc^2 , ca^2 , ab^2 will be in [IIT 1976]

(b) G.P.

(c) H.P.

(d) None of these

If $\frac{1}{b-c}$, $\frac{1}{c-a}$, $\frac{1}{a-b}$ be consecutive terms of an A.P., then $(b-c)^2$, $(c-a)^2$, $(a-b)^2$ will be in

(a) G.P.

(c) H.P.

(d) None of these

If a^2 , b^2 , c^2 are in A.P., then $(b+c)^{-1}$, $(c+a)^{-1}$ and $(a+b)^{-1}$ will be in

[Roorkee 1968; Rajasthan PET 1996]

				Floglessions 133
	(a) H.P.	(b) G.P.	(c) A.P.	(d) None of these
86.	If the sides of a right	angled triangle are in A	.P., then the sides are proportiona	l to [Roorkee 1974]
	(a) 1, 2, 3	(b) 2, 3, 4	(c) 3, 4, 5	(d) 4, 5, 6
87.	If a, b, c are in A.P.,	then the straight line ax	c + by + c = 0 will always pass thro	ugh the point [IIT 1984]
	(a) $(-1, -2)$	(b) $(1,-2)$	(c) (-1, 2)	(d) (1, 2)
88.	If <i>a</i> , <i>b</i> , <i>c</i> are in A.P. t	then $\frac{(a-c)^2}{(b^2-ac)} =$		[Roorkee 1975]
	(a) 1	(b) 2	(c) 3	(d) 4
89.	If a, b, c, d, e, f are in	n A.P., then the value of e	e – c will be	[Pb. CET 1989, 91]
	(a) $2(c-a)$	(b) $2(f-d)$	(c) $2(d-c)$	(d) $d - c$
90.	If p , q , r are in A.P. a	and are positive, the root	s of the quadratic equation $px^2 + qx$	c + r = 0 are all real for [IIT 1995]
	(a) $\left \frac{r}{p} - 7 \right \ge 4\sqrt{3}$	(b) $\left \frac{p}{r} - 7 \right < 4\sqrt{3}$	(c) All p and r	(d) No p and r
91.	If $a_1, a_2, a_3, \dots a_n$ ar	re in A.P., where $a_i > 0$ for	or all <i>i</i> , then the value of $\frac{1}{\sqrt{a_1} + \sqrt{a_2}}$	$+\frac{1}{\sqrt{a_2}+\sqrt{a_3}}+\dots+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_n}}=$ [II
	(a) $\frac{n-1}{\sqrt{a_1} + \sqrt{a_n}}$	(b) $\frac{n+1}{\sqrt{a_1} + \sqrt{a_n}}$	$(c) \frac{n-1}{\sqrt{a_1} - \sqrt{a_n}}$	(d) $\frac{n+1}{\sqrt{a_1} - \sqrt{a_n}}$
92.	Given $a+d>b+c$ wh	iere <i>a, b, c, d</i> are real nu	imbers, then	[Kurukshetra CEE 1998]
	(a) a, b, c, d are in A	A.P.	(b) $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}, \frac{1}{d}$ are in A	P.
	(c) $(a+b), (b+c), (c+d)$), $(a+d)$ are in A.P.	(d) $\frac{1}{a+b}, \frac{1}{b+c}, \frac{1}{c+d}, \frac{1}{a}$	$\frac{1}{d+d}$ are in A.P.
93.	If <i>a, b, c</i> are in A.P., t	then $(a + 2b - c) (2b + c)$	-a) ($c + a - b$) equals	[Pb. CET 1999]
	(a) $\frac{1}{2}abc$	(b) abc	(c) 2 abc	(d) 4 abc
94.	If the roots of the eq	uation $x^3 - 12x^2 + 39x - 28$	B = 0 are in A.P., then their common	n difference will be
			[UPSEAT 19	994, 99, 2001; Rajasthan PET 2001]
	(a) ± 1	(b) ± 2	(c) ± 3	(d) ± 4
95.	If 1, $\log_9(3^{1-x} + 2)$, \log	$_{3}(4.3^{x}-1)$ are in A.P., the	en <i>x</i> equals	[AIEEE 2002]
	(a) $\log_3 4$	(b) $1 - \log_3 4$	(c) $1 - \log_4 3$	(d) log ₄ 3
96.	If <i>a, b, c, d, e</i> are in <i>A</i>	A.P. then the value of $a+b$	b+4c-4d+e in terms of a , if possi	ble is [Rajasthan PET 2002]
	(a) 4a	(b) 2a	(c) 3	(d) None of these
97.	If $a_1, a_2, a_3, \dots a_{2n+1}$ and	re in A.P. then $\frac{a_{2n+1} - a_1}{a_{2n+1} + a_1} +$	$-\frac{a_{2n}-a_2}{a_{2n}+a_2}+\dots +\frac{a_{n+2}-a_n}{a_{n+2}+a_n}$ is equal to	
	(a) $\frac{n(n+1)}{2} \cdot \frac{a_2 - a_1}{a_{n+1}}$	(b) $\frac{n(n+1)}{2}$	(c) $(n+1)(a_2-a_1)$	(d) None of these
98.	If the non-zero numb	pers x , y , z are in A.P. and	d $tan^{-1} x$, $tan^{-1} y$, $tan^{-1} z$ are also in A	.P., then
	(a) $x = y = z$	(b) $xy = yz$	(c) $x^2 = yz$	(d) $z^2 = xy$
99.	If three positive real	numbers a, b, c are in A	.P. such that $abc = 4$, then the minimum.	mum value of <i>b</i> is

(a) $2^{1/3}$

(a) $\frac{3}{4}$

(b) $2^{2/3}$

100. If $\sin \alpha$, $\sin^2 \alpha$, 1, $\sin^4 \alpha$ and $\sin^5 \alpha$ are in A.P., where $-\pi < \alpha < \pi$, then α lies in the interval

(b) $\frac{1}{2}$ (c) $\frac{1}{3}$

111. If the 10th term of a geometric progression is 9 and 4th term is 4, then its 7th term is

	(a) $(-\pi/2, \pi/2)$	(b) $(-\pi/3, \pi/3)$	(c) $(-\pi/6, \pi/6)$	(d) None of these
101.	If the sides of a triangle of the sides of the triang	are in A.P. and the greatest an le is	gle of the triangle is double	the smallest angle, the ratio
	(a) 3:4:5	(b) 4:5:6	(c) 5:6:7	(d) 7:8:9
102.	If a , b , c of a $\triangle ABC$ are in	A.P., then $\cot \frac{c}{2} =$		[T.S. Rajendra 1990]
	(a) $3 \tan \frac{A}{2}$	(b) $3 \tan \frac{B}{2}$	(c) $3 \cot \frac{A}{2}$	(d) $3 \cot \frac{B}{2}$
103.	If a, b, c are in A.P. then	the equation $(a-b)x^2 + (c-a)x +$	(b-c)=0 has two roots which	ch are
	(a) Rational and equal	(b) Rational and distinct	(c) Irrational conjugates	(d) Complex conjugates
104.	The least value of 'a' for	which $5^{1+x} + 5^{1-x}$, $\frac{a}{2}$, $25^x + 25^{-x}$	are three consecutive terms	of an A.P. is
	(a) 10	(b) 5	(c) 12	(d) None of these
105.	$\alpha, \beta, \gamma, \delta$ are in A.P. and	$\int_{0}^{2} f(x)dx = -4, \text{ where } f(x) = \begin{vmatrix} x + \alpha \\ x + \beta \\ x + \gamma \end{vmatrix}$	$\begin{vmatrix} x+\beta & x+\alpha-\gamma \\ x+\gamma & x-1 \\ x+\delta & x-\beta+\delta \end{vmatrix}$, then the con-	mmon difference d is
	(a) 1	(b) -1	(c) 2	(d) - 2
106.	If the sides of a right ang	gled triangle form an A.P. then		
	(a) $\frac{3}{5}, \frac{4}{5}$	(b) $\sqrt{3}, \frac{1}{3}$	(c) $\sqrt{\frac{\sqrt{5}-1}{2}}$, $\sqrt{\frac{\sqrt{5}+1}{2}}$	(d) $\frac{\sqrt{3}}{2}, \frac{1}{2}$
107.	If x, y, z are positive nur	mbers in A.P., then		
	(a) $y^2 \ge xz$		(b) $y \ge 2\sqrt{xz}$	
	(c) $\frac{x+y}{2y-x} + \frac{y+z}{2y-z}$ has the	ne minimum value 2	(d) $\frac{x+y}{2y-x} + \frac{y+z}{2y-z} \ge 4$	
			General term of	Geometric progression
		Basic Le		
108.	If the $4^{th}.7^{th}$ and 10^{th} ter	rms of a G.P. be <i>a, b, c</i> respectiv	ely, then the relation betwe	en a. b. c is
	,	1	-	NR 1995; Karnataka CET 1999]
	(a) $b = \frac{a+c}{2}$	(b) $a^2 = bc$	(c) $b^2 = ac$	(d) $c^2 = ab$
109.	7 th term of the sequence	$\sqrt{2}, \sqrt{10}, 5\sqrt{2}, \dots$ is		
	(a) $125\sqrt{10}$	(b) $25\sqrt{2}$	(c) 125	(d) $125\sqrt{2}$
110.	If the 5 th term of a G.P. i	s $\frac{1}{3}$ and 9 th term is $\frac{16}{243}$, then t	the 4 th term will be	[MP PET 1982]

(c) $2^{1/2}$

(d) $2^{3/2}$

[MP PET 1996]

(d) $\frac{2}{5}$

				Progressions 135
	(a) 6	(b) 36	(c) $\frac{4}{9}$	(d) $\frac{9}{4}$
l 12.	The third term of a G.P.	is the square of first term. If the	e second term is 8, then the	e 6 th term is [MP PET 1997]
	(a) 120	(b) 124	(c) 128	(d) 132
13.	The 6^{th} term of a G.P. is	32 and its 8^{th} term is 128, then	the common ratio of the G.	P. is [Pb. CET 1999]
	(a) - 1	(b) 2	(c) 4	(d) - 4
114.	The first and last terms this G.P. is	of a G.P. are a and l respectivel	y, r being its common ratio	o; then the number of term in
	(a) $\frac{\log l - \log a}{\log r}$	(b) $1 - \frac{\log l - \log a}{\log r}$	(c) $\frac{\log a - \log l}{\log r}$	$(d) 1 + \frac{\log l - \log a}{\log r}$
115.	If first term and common	n ratio of a G.P. are both $\frac{\sqrt{3}+i}{2}$.	The absolute value of n^{th} to	erm will be
	(a) 2 ⁿ	(b) 4 ⁿ	(c) 1	(d) 4
16.	In any G.P. the last term	is 512 and common ratio is 2, t	hen its 5 th term from last to	erm is
	(a) 8	(b) 16	(c) 32	(d) 64
17.	Given the geometric pro	gression 3, 6, 12, 24, the te	rm 12288 would occur as tl	ne [SCRA 1999]
	(a) 11 th term	(b) 12 th term	(c) 13 th term	(d) 14 th term
18.	Let $\{t_n\}$ be a sequence of	f integers in GP in which $t_4:t_6=$	1:4 and $t_2 + t_5 = 216$. Then	t_1 is
	(a) 12	(b) 14	(c) 16	(d) None of these
		Advance 1	Level	
119.	α, β are the roots of the form an increasing G.P.,	equation $x^2 - 3x + a = 0$ and γ, δ then $(a, b) =$	are the roots of the equat	ion $x^2 - 12x + b = 0$. If $\alpha, \beta, \gamma, \delta$ [DCE 2000]
	(a) (3, 12)	(b) (12, 3)	(c) (2, 32)	(d) (4, 16)
120.	If $(p+q)^{th}$ term a G.P. be	m and $(p-q)^{\text{th}}$ term be n , then	the p^{th} term will be [Rajas	than PET 1997; MP PET 1985, 99]
	(a) <i>m / n</i>	(b) \sqrt{mn}	(c) mn	(d) O
l 21.	If the third term of a G.I	P. is 4 then the product of its fire	st 5 terms is	[IIT 1982; Rajasthan PET 1991]
	(a) 4^3	(b) 4 ⁴	(c) 4^5	(d) None of these
122.	If the first term of a G.P	a_1, a_2, a_3, \dots is unity such that	t $4a_2 + 5a_3$ is least, then the	common ratio of G.P. is
	(a) $-\frac{2}{5}$	(b) $-\frac{3}{5}$	(c) $\frac{2}{5}$	(d) None of these
123.	Fifth term of a G.P. is 2,	then the product of its 9 terms	is	[Pb. CET 1990, 94; AIEEE 2002]
	(a) 256	(b) 512	(c) 1024	(d) None of these
124.	If the nth term of geome	etric progression $5, -\frac{5}{2}, \frac{5}{4}, -\frac{5}{8}, \dots$	is $\frac{5}{1024}$, then the value of	n is [Kerala (Engg.) 2002]
	(a) 11	(b) 10	(c) 9	(d) 4
			Sum to n terms o	f Geometric progression

125.	The sum of 100 terms of	the series .9+ .09 + .009 w	ill be	
	(a) $1 - \left(\frac{1}{10}\right)^{100}$	(b) $1 + \left(\frac{1}{10}\right)^{106}$	(c) $1 - \left(\frac{1}{10}\right)^{106}$	(d) $1 + \left(\frac{1}{10}\right)^{100}$
126.	If the sum of three terms	s of G.P. is 19 and product is 216	s, then the common ratio of	the series is [Roorkee 1972]
	(a) $-\frac{3}{2}$	(b) $\frac{3}{2}$	(c) 2	(d) 3
127.	If the sum of first 6 term series will be	ns is 9 times to the sum of first	3 terms of the same G.P., t	hen the common ratio of the
				[Rajasthan PET 1985]
	(a) - 2	(b) 2	(c) 1	(d) $\frac{1}{2}$
128.	If the sum of <i>n</i> terms of	a G.P. is 255 and $n^{\rm th}$ term is 128	and common ratio is 2, then	n first term will be[Rajasthan PET 1
	(a) 1	(p) 3	(c) 7	(d) None of these
129.	The sum of 3 numbers in	n geometric progression is 38 an	d their product is 1728. The	e middle number is[MP PET 1994]
	(a) 12	(b) 8	(c) 18	(d) 6
130.	The sum of few terms o series will be	f any ratio series is 728, if con	nmon ratio is 3 and last ter	rm is 486, then first term of
	series will be			[UPSEAT 1999]
	(a) 2	(b) 1	(c) 3	(d) 4
131.	The sum of n terms of a	G.P. is $3 - \frac{3^{n+1}}{4^{2n}}$, then the common	n ratio is equal to	
	(a) $\frac{3}{16}$	(b) $\frac{3}{256}$	(c) $\frac{39}{256}$	(d) None of these
132.	The value of n for which	the equation $1 + r + r^2 + r^n = (1 - r^n)^n$	$+r$)(1+ r^2)(1+ r^4)(1+ r^8) holds i	s
	(a) 13	(b) 12	(c) 15	(d) 16
133.	The value of the sum $\sum_{n=1}^{13}$	$(i^n + i^{n+1})$, where $i = \sqrt{-1}$, equals		[IIT 1998]
	(a) i	(b) <i>i</i> – 1	(c) - i	(d) O
134.	For a sequence a_1, a_2	a_n given $a_1 = 2$ and $\frac{a_{n+1}}{a_n} = \frac{1}{3}$. T	Then $\sum_{r=1}^{20} a_r$ is	
	(a) $\frac{20}{2}[4+19\times3]$	(b) $3\left(1-\frac{1}{3^{20}}\right)$	(c) 2(1 - 3 ⁻²⁰)	(d) None of these
135.	The sum of $(x+2)^{n-1} + (x+1)^{n-1}$	$(x-2)^{n-2}(x+1)+(x+2)^{n-3}(x+1)^2+(x+1)^n$	+1) ^{$n-1$} is equal to	[IIT 1990]

Progres	sions	127

	(a) $2^{n} - n - 1$	(b) 1-2 "	(c) $n+2^{-1}-1$	(a) $2^{m} - 1$
137.	If the product of three on numbers will be	consecutive terms of G.P. is 216	and the sum of product of	pair - wise is 156, then the
				[MNR 1978]
	(a) 1, 3, 9	(b) 2, 6, 18	(c) 3, 9, 27	(d) 2, 4, 8
138.	If $f(x)$ is a function satisfied	sfying $f(x + y) = f(x)f(y)$ for all x	$y \in N$ such that $f(1) = 3$ and	$\sum_{x=1}^{n} f(x) = 120.$ Then the value
	of n is			
				[IIT 1992]
	(a) 4	(b) 5	(c) 6	(d) None of these
139.	The first term of a G.P. i	is 7, the last term is 448 and sur	n of all terms is 889, then t	he common ratio is [MP PET 2003]
	(a) 5	(b) 4	(c) 3	(d) 2
140.	The sum of a G.P. with c	common ratio 3 is 364, and last t	term is 243, then the numbe	er of terms is [MP PET 2003]
	(a) 6	(b) 5	(c) 4	(d) 10
141.	A G.P. consists of 2n ter	ms. If the sum of the terms occ	upying the odd places is S_1 ,	, and that of the terms in the
	even places is S_2 , then S_2	S_2/S_1 is		
	(a) Independent of a	(b) Independent of r	(c) Independent of a and n	r (d) Dependent on r
142.	Sum of the series $\frac{2}{3} + \frac{8}{9}$	$+\frac{26}{27} + \frac{80}{81} + \dots$ to <i>n</i> terms is		[Karnataka CET 2001]
	(a) $n - \frac{1}{2}(3^n - 1)$	(b) $n + \frac{1}{2}(3^n - 1)$	(c) $n + \frac{1}{2}(1 - 3^{-n})$	(d) $n + \frac{1}{2}(3^{-n} - 1)$
143.	If the sum of the <i>n</i> terms	s of G.P. is S product is P and su	m of their inverse is R, then	\mathbf{P}^2 is equal to[IIT 1966; Roorkee 19
	(a) $\frac{R}{c}$	(b) $\frac{S}{R}$	(c) $\left(\frac{R}{S}\right)^n$	(d) $\left(\frac{S}{R}\right)^n$
	S	R	(s)	(R)
144.	The minimum value of n	a such that $1+3+3^2++3^n > 100^n$	00 is	
	(a) 7	(b) 8	(c) 9	(d) None of these
145.	If every term of a G.P. v series is	with positive terms is the sum of	of its two previous terms, the	hen the common ratio of the
				[Rajasthan PET 1986]
	()	2	(c) $\frac{\sqrt{5}-1}{2}$	(d) $\frac{\sqrt{5}+1}{2}$
	(a) 1	(b) $\frac{2}{\sqrt{5}}$	(c) $\frac{}{2}$	(d) ${2}$

(b) $(x+2)^{n-1} - (x+1)^{n-1}$

[IIT 1988; MP PET 1996; Rajasthan PET 1996, 2000; Pb. CET 1994; DCE 1995, 96]

(d) None of these

Advance Level

(a) $(x+2)^{n-2} - (x+1)^n$

(c) $(x+2)^n - (x+1)^n$

136. The sum of the first *n* terms of the series $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16} + \dots$ is

(a) 208.34

is equal to

(a) $\frac{nr}{1-r^2}$

(a) $\frac{15}{23}$

o)

(a) For all values of r

146. If $(1.05)^{50} = 11.658$, then $\sum_{n=1}^{49} (1.05)^n$ equals

(b) 212.12

(b) $\frac{(n-1)^r}{1-r^2}$

155. If $3+3\alpha+3\alpha^2+\dots \infty = \frac{45}{8}$, then the value of α will be

(b) $\frac{7}{15}$

156. The sum can be found of a infinite G.P. whose common ratio is r

	(a) $1 < \alpha^2 < 3$	(b) $\frac{1}{3} < \alpha^2 < 1$	(c) $1 < \alpha < 3$	(d) $\frac{1}{3} < \alpha < 1$
				Sum to infinite terms
		Basic L	evel	
149.	If the sum of the series	$1 + \frac{2}{x} + \frac{4}{x^2} + \frac{8}{x^3} + \dots \infty$ is a finite	number, then	[UPSEAT 2002]
	(a) $x > 2$	(b) $x > -2$	(c) $x > \frac{1}{2}$	(d) None of these
150.	If $y = x - x^2 + x^3 - x^4 + \dots$	∞ , then value of x will be	[MNR 1975; Raja	sthan PET 1988; MP PET 2002]
	(a) $y + \frac{1}{y}$	(b) $\frac{y}{1+y}$	(c) $y - \frac{1}{y}$	(d) $\frac{y}{1-y}$
151.	If the sum of an infinite	G.P. be 9 and the sum of first to	wo terms be 5, then the com	mon ratio is
	(a) $\frac{1}{3}$	(b) $\frac{3}{2}$	(c) $\frac{3}{4}$	(d) $\frac{2}{3}$
152.	2.357 =			[IIT 1983; Rajasthan PET 1995]
	(a) $\frac{2355}{1001}$	(b) $\frac{2370}{997}$	(c) $\frac{2355}{999}$	(d) None of these
153.	The first term of a G.P.	whose second term is 2 and sum	n to infinity is 8, will be[MN	R 1979; Rajasthan PET 1992, 95]
	(a) 6	(b) 3	(c) 4	(d) 1
154.	The sum of infinite term ratio of this series is	ns of a G.P. is x and on squaring	g the each term of it, the sur	n will be y , then the common
	1 4410 01 4110 001100 10			[Rajasthan PET 1988]
	(a) $\frac{x^2 - y^2}{x^2 + y^2}$	(b) $\frac{x^2 + y^2}{x^2 - y^2}$	(c) $\frac{x^2 - y}{x^2 + y}$	(d) $\frac{x^2 + y}{x^2 - y}$

(c) $\frac{7}{8}$

(b) For only positive value of r (c) Only for 0 < r < 1

(c) 212.16

(c) $\frac{nr}{1-r}$

147. If $a_1, a_2, a_3, \dots, a_n$ are in G.P. with first term 'a' and common ratio 'r' then $\frac{a_1 a_2}{a_1^2 - a_2^2} + \frac{a_2 a_3}{a_2^2 - a_3^2} + \frac{a_3 a_4}{a_3^2 - a_n^2} + \dots + \frac{a_{n-1} a_n}{a_{n-1}^2 - a_n^2}$

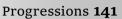
148. The sum of the squares of three distinct real numbers which are in G.P. is S^2 . If their sum is αS , then

[Roorkee 1991]

[Pb. CET 1989]

[AMU 1982]

(d) Only for $-1 < r < 1 (r \neq 1)$


(d) $\frac{15}{7}$

(d) $\frac{(n-1)r}{1-r}$

157.	The sum of infinity of a	geometric progression is $\frac{4}{3}$ and	I the first term is $\frac{3}{4}$. The co	mmon ratio is [MP PET 1994]
	(a) $\frac{7}{16}$	(b) $\frac{9}{16}$	(c) $\frac{1}{9}$	(d) $\frac{7}{9}$
158.	The value of $4^{1/3}.4^{1/9}.4^{1/9}$	²⁷ ∞ is		[Rajasthan PET 2003]
	(a) 2	(b) 3	(c) 4	(d) 9
159.	0.14189189189 can be	e expressed as a rational number	r	[AMU 2000]
	(a) $\frac{7}{3700}$	(b) $\frac{7}{50}$	(c) $\frac{525}{111}$	(d) $\frac{21}{148}$
160.	The sum of the series 5.0	$05 + 1.212 + 0.29088 + \infty$ is		[AMU 2000]
	(a) 6.93378	(b) 6.87342	(c) 6.74384	(d) 6.64474
161.	Sum of infinite number of	of terms in G.P. is 20 and sum o	f their square is 100. The co	mmon ratio of G.P. is [AIEEE 2002]
	(a) 5	(b) 3/5	(c) 8/5	(d) 1/5
162.	If in an infinite G.P. first	t term is equal to the twice of th	ne sum of the remaining terr	ns, then its common ratio is [Rajas
	(a) 1	(b) 2	(c) 1/3	(d) - 1/3
163.	The sum of infinite term	s of the geometric progression	$\frac{\sqrt{2}+1}{\sqrt{2}-1}, \frac{1}{2-\sqrt{2}}, \frac{1}{2}$ is	[Kerala (Engg.) 2002]
	(a) $\sqrt{2}(\sqrt{2}+1)^2$	(b) $(\sqrt{2}+1)^2$	(c) $5\sqrt{2}$	(d) $3\sqrt{2} + \sqrt{5}$
164.	If $x > 0$, then the sum of	the series $e^{-x} - e^{-2x} + e^{-3x} \infty$ i	s	[AMU 1989]
	(a) $\frac{1}{1 - e^{-x}}$	(b) $\frac{1}{e^x - 1}$	(c) $\frac{1}{1+e^{-x}}$	(d) $\frac{1}{1+e^x}$
165.	The sum of the series 0.4	$4 + 0.004 + 0.00004 + \dots \infty$ is		[AMU 1989]
	(a) $\frac{11}{25}$	(b) $\frac{41}{100}$	(c) $\frac{40}{99}$	(d) $\frac{2}{5}$
166.		a height of 120 m rebounds (4/5 is way. How far will it travel be	_	n it has fallen. If it continues
	(a) 240 m	(b) 140 m	(c) 1080 m	(d) ∞
167.	The series $C + \frac{C^2}{1+C} + \frac{C}{(1+C)^2}$	$\frac{C^3}{(C)^2} + \frac{C^4}{(1+C)^3} + \dots$ has a finite su	um if C is greater than	
	(a) - 1/2	(b) - 1	(c) - 2/3	(d) None of these
		Advance I	Level	
168.	If $A = 1 + r^z + r^{2z} + r^{3z} + \dots$	∞ , then the value of r will be		
	(a) $A(1-A)^z$	(b) $\left(\frac{A-1}{A}\right)^{1/z}$	$(c) \left(\frac{1}{A}-1\right)^{1/z}$	(d) $A(1-A)^{1/z}$
169.	The sum to infinity of th	e following series $2 + \frac{1}{2} + \frac{1}{3} + \frac{1}{2^2}$	$+\frac{1}{3^2}+\frac{1}{2^3}+\frac{1}{3^3}+\dots$, will be	[AMU 1984]
	(a) 3	(b) 4	(c) $\frac{7}{2}$	(d) $\frac{9}{2}$
170.	$x = 1 + a + a^2 + \dots \infty (a < 1)$	$y = 1 + b + b^2 + \dots \infty (b < 1)$. Then	1 the value of $1 + ab + a^2b^2 +$	∞ is[MNR 1980; MP PET 1985]

	(a) $\frac{xy}{x+y-1}$	(b) $\frac{xy}{x+y+1}$	(c) $\frac{xy}{x-y-1}$	(d) $\frac{xy}{x-y+1}$
171.	The value of $a^{\log_b x}$, when	re $a = 0.2, b = \sqrt{5}, x = \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{16}$	to ∞ is	
172.	(a) 1 The sum of an infinite g 3. First series will be	(b) 2 seometric series is 3. A series, w		\
	(a) $\frac{3}{2}, \frac{3}{4}, \frac{3}{8}, \frac{3}{16}, \dots$	(b) $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots$	_ •	9; Roorkee 1972; UPSEAT 1999] (d) $1, -\frac{1}{3}, \frac{1}{3^2}, -\frac{1}{3^3}, \dots$
173.	If $1 + \cos \alpha + \cos^2 \alpha + \dots$	$\infty = 2 - \sqrt{2}$, then α , $(0 < \alpha < \pi)$ is		[Roorkee 2000]
	(a) $\pi/8$	(b) $\pi/6$	(c) $\pi/4$	(d) $3\pi/4$
174.	Consider an infinite G.P	. with first term a and common		second term is 3/4 , then IIT Screening 2000; DCE 2001]
	(a) $a = \frac{7}{4}, r = \frac{3}{7}$	(b) $a = \frac{3}{2}, r = \frac{1}{2}$	(c) $a = 2, r = \frac{3}{8}$	(d) $a = 3, r = \frac{1}{4}$
175.	Let $n(>1)$ be a positive in	nteger, then the largest integer	m such that $(n^m + 1)$ divides	$(1+n+n^2++n^{127})$, is[IIT 1995]
	(a) 32	(b) 63	(c) 64	(d) 127
176.	If $ a < 1$ and $ b < 1$, then	the sum of the series $a(a+b)+a$	$a^{2}(a^{2}+b^{2})+a^{3}(a^{3}+b^{3})+$ upt	o ∞ is
	(a) $\frac{a}{1-a} + \frac{ab}{1-ab}$	(b) $\frac{a^2}{1-a^2} + \frac{ab}{1-ab}$	$(c) \frac{b}{a-b} + \frac{a}{1-a}$	(d) $\frac{b^2}{1-b^2} + \frac{ab}{1-ab}$
177.	If <i>S</i> is the sum to infinit	y of a G.P., whose first term is a	a, then the sum of the first n	terms is [UPSEAT 2002]
	(a) $S\left(1-\frac{a}{S}\right)^n$	(b) $S\left[1-\left(1-\frac{a}{S}\right)^n\right]$	(c) $a\left[1-\left(1-\frac{a}{S}\right)^n\right]$	(d) None of these
178.	If S denotes the sum	to infinity and S_n the sum	of n terms of the series	$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$, such that
	$S - S_n < \frac{1}{1000}$, then the le	east value of n is		
	(a) 8	(b) 9	(c) 10	(d) 11
179.	If exp. $\{(\sin^2 x + \sin^4 x - \sin^$	$+\sin^4x++\infty$) log _e 2} satisfies	s the equation $x^2 - 9x + 8$	8 = 0, then the value of
	$\frac{\cos x}{\cos x + \sin x}, 0 < x < \frac{\pi}{2} $ is			
	(a) $\frac{1}{2}(\sqrt{3}+1)$	(b) $\frac{1}{2}(\sqrt{3}-1)$	(c) O	(d) None of these
				Geometric mean
		Basic Le	evel	
180.	If G be the geometric me	ean of x and y, then $\frac{1}{G^2 - x^2} + \frac{1}{G^2}$	$\frac{1}{-y^2} =$	
	(a) C^2	(b) 1	(a) 2	$(4) 2G^2$

181. If n geometric means be inserted between a and b, then the nth geometric mean will be

(d) $a\left(\frac{b}{a}\right)^{\frac{1}{n}}$

(d) None of these

(d) $\frac{1}{3}$

(c) $\log_a(\log_e a) - \log_a(\log_e b)$ (d) $\log_a(\log_e b) - \log_a(\log_e a)$

(a) $k^{\frac{n}{n+1}}:1$	(0) 1.1	.,	Properties of G.P.
(a) $k^{n+1}:1$	(b) 1.k	` '	
n-1	(b) $1:k^{\frac{1}{n+1}}$	(c) 1:1	(d) None of these
and y is multiplied $\frac{1}{k}$	and then n G.M's. are inserted	d. The ratio of the n^m G.M's.	in the two cases is
If x and y be two real	numbers and n geometric me	eans are inserted between x	and y . now x is multiplied by k
(a) $G_1.G_2G_n = G$	(b) $G_1. G_2G_n = G^{1/n}$	(c) $G_1. G_2G_n = G^n$	(d) $G_1.G_2G_n = G^{2/n}$
If n geometric means l	between a and b be G_1, G_2, \dots	G_n and a geometric mean be	<i>G</i> , then the true relation is
	Advar	nce Level	
(a) 12	(b) - 12	(c) - 13	(d) None of these
	etween -9 and -16 is		
	(b) 2	(c) - 1	(d) 1
The product of three g	eometric means between 4 an	ad $\frac{1}{4}$ will be	
(a) 8	(b) 118	(c) 20	(d) 40
If 4 G.M's be inserted	between 160 and 5 them third	l G.M. will be	
(a) 4	(b) 6	(c) 12	(d) - 6
			[Rajasthan PET 1999
		(c) 2	[Rajasthan PET 1997 (d) 1
• •		(c) 1/2	(d) None of these
u i b			
	(a) 0 The G.M. of roots of the (a) 3 If five G.M.'s are inserted (a) 4 If 4 G.M's be inserted (a) 8 The product of three g (a) 4 The geometric mean be (a) 12 If n geometric means be (a) $G_1, G_2, \dots, G_n = G$ If $G_1, G_2, \dots, $	(a) 0 (b) 1 The G.M. of roots of the equation $x^2 - 18x + 9 = 0$ is (a) 3 (b) 4 If five G.M.'s are inserted between 486 and 2/3 then (a) 4 (b) 6 If 4 G.M's be inserted between 160 and 5 them third (a) 8 (b) 118 The product of three geometric means between 4 and (a) 4 (b) 2 The geometric mean between -9 and -16 is (a) 12 (b) -12 Advantage If n geometric means between a and a be a be a and a be a and a be two real numbers and a geometric means and a geometric means a and a is multiplied a and a and then a G.M's. are inserted and a is multiplied a and then a G.M's. are inserted	The G.M. of roots of the equation $x^2-18x+9=0$ is (a) 3 (b) 4 (c) 2 If five G.M.'s are inserted between 486 and 2/3 then fourth G.M. will be (a) 4 (b) 6 (c) 12 If 4 G.M's be inserted between 160 and 5 them third G.M. will be (a) 8 (b) 118 (c) 20 The product of three geometric means between 4 and $\frac{1}{4}$ will be (a) 4 (b) 2 (c) -1 The geometric mean between -9 and -16 is (a) 12 (b) -12 (c) -13 Advance Level If n geometric means between a and b be G_1, G_2, \ldots, G_n and a geometric mean be (a) $G_1, G_2, \ldots, G_n = G$ (b) $G_1, G_2, \ldots, G_n = G^{1/n}$ (c) $G_1, G_2, \ldots, G_n = G^n$ If x and y be two real numbers and y geometric means are inserted between y and y is multiplied $\frac{1}{k}$ and then y G.M's. are inserted. The ratio of the y G.M's.

191. If x is added to each of numbers 3, 9, 21 so that the resulting numbers may be in G.P., then the value of x will be [MP PI]

(c) 2

(a) $a(b^2 + a^2) = c(b^2 + c^2)$ (b) $a(b^2 + c^2) = c(a^2 + b^2)$ (c) $a^2(b+c) = c^2(a-b)$

(b) $\frac{1}{2}$

(b) $-\log_a(\log_a b)$

193. If $\sum_{n=1}^{n} n$, $\frac{\sqrt{10}}{3}$. $\sum_{n=1}^{n} n^2$, $\sum_{n=1}^{n} n^3$ are in G.P. then the value of n is

192. If $\log_x a, a^{x/2}$ and $\log_b x$ are in G.P., then x =

(c) $a\left(\frac{b}{a}\right)^{\frac{n}{n+1}}$

(b) $a\left(\frac{b}{a}\right)^{\frac{n-1}{n}}$

(a) $a\left(\frac{b}{a}\right)^{\frac{n}{n-1}}$

(a) 3

(a) $-\log_a(\log_b a)$

	(a) 2	(p) 3	(c) 4	(d) Nonexistent
194.	If p , q , r are in A.P., then	$p^{ m th}$, $q^{ m th}$ and $r^{ m th}$ terms of any G.P	. are in	
	(a) AP		(b) G.P.	
	(c) Reciprocals of these	terms are in A.P.	(d) None of these	
195.	If a, b, c are in G.P., then	l		[Rajasthan PET 1995]
	(a) a^2, b^2, c^2 are in G.P.		(b) $a^2(b+c), c^2(a+b), b^2(a+c)$	are in G.P.
	(c) $\frac{a}{b+c}$, $\frac{b}{c+a}$, $\frac{c}{a+b}$ are	in G.P.	(d) None of these	
196.		$x^2-3x+p=0$ and let c and d ? ratio of $(q+p):(q-p)$ is equal		0, where a, b, c, d form an
	(a) 8:7	(b) 11:10	(c) 17:15	(d) None of these
197.		equation $ax^3 + bx^2 + cx + d = 0$ are		
0,		(b) $ca^3 = bd^3$	(c) $a^3b = c^3d$	(d) $ab^3 = cd^3$
198.			common ratio, then the poir	ants $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3) [IIT 199
	(a) Lie on a straight line triangle		(c) Lie on a circle	(d) Are vertices of a
199.	Let $f(x) = 2x + 1$. Then the	e number of real values of x for	which the three unequal nu	imbers $f(x)$, $f(2x)$, $f(4x)$ are in
	GP is			
	(a) 1	(b) 2	(c) O	(d) None of these
200.	$S_{\rm r}$ denotes the sum of the	e first r terms of a G.P. Then S_n ,	$S_{2n} - S_n, S_{3n} - S_{2n}$ are in	
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these
201.	If $a^{1/x} = b^{1/y} = c^{1/z}$ and a ,	b, c are in G.P., then x, y, z will	be in	[IIT 1969; UPSEAT 2001]
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these
202.	If x , y , z are in G.P. and	$a^x = b^y = c^z$, then		[IIT 1966, 1968]
	(a) $\log_a c = \log_b a$	(b) $\log_b a = \log_c b$	(c) $\log_c b = \log_a c$	(d) None of these
			General term of	Harmonic progression
		Basic Le	evel	
203.	Three consecutive terms	of a progression are 30, 24, 20	. The next term of the progr	ression is
	(a) 18	(b) $17\frac{1}{7}$	(c) 16	(d) None of these
204.	The 5 th term of the H.P.,	$2, 2\frac{1}{2}, 3\frac{1}{3}, \dots$ will be		[MP PET 1984]
	(a) $5\frac{1}{5}$	(b) $3\frac{1}{5}$	(c) 1/10	(d) 10

_		
Pro	gressions	143

[Rajasthan PET 1987, 97]

[MP PET 1997]

[MP PET 1995]

(d) $\frac{11}{5}$

(d) $\frac{1}{70}$

(d) $\frac{1}{40}$

207. If 6^{th} term of a H.P. is $\frac{1}{61}$ and its tenth term is $\frac{1}{105}$, then first term of that H.P. is [Karnataka CET 2001] (b) $\frac{1}{30}$ (d) $\frac{1}{17}$ (c) $\frac{1}{6}$ (a) $\frac{1}{28}$ Advance Level **208.** The 9th term of the series 27+ 9 + $5\frac{2}{5}$ + $3\frac{6}{7}$ + will be [MP PET 1983] (a) $1\frac{10}{17}$ (b) $\frac{10}{17}$ (c) $\frac{16}{27}$ (d) $\frac{17}{27}$ **209.** In a H.P., p^{th} term is q and the q^{th} term is p. Then pq^{th} term is [Karnataka CET 2002] (a) o (d) pq(p+q)**210.** If *a*, *b*, *c* be respectively the p^{th} , q^{th} and r^{th} terms of a H.P., then $\Delta = \begin{vmatrix} bc & ca & ab \\ p & q & r \\ 1 & 1 & 1 \end{vmatrix}$ equals (d) None of these (a) 1 (b) o (c) - 1Harmonic mean **Basic Level 211.** If $\frac{a^{n+1} + b^{n+1}}{a^n + b^n}$ be the harmonic mean between a and b, then the value of n is [Assam PET 1986] (d) 2 **212.** If the harmonic mean between a and b be H, then $\frac{H+a}{H-a} + \frac{H+b}{H-b}$ [AMU 1998] (d) a + b**213.** If *H* is the harmonic mean between *p* and *q*, then the value of $\frac{H}{p} + \frac{H}{q}$ is [MNR 1990; UPSEAT 2000; 2001] (b) $\frac{pq}{p+q}$ (c) $\frac{p+q}{pq}$ (a) 2 (d) None of these

(c) $\frac{21}{20}$

205. If 5th term of a H.P. is $\frac{1}{45}$ and 11th term is $\frac{1}{69}$, then its 16th term will be

206. If the 7th term of a H.P. is $\frac{1}{10}$ and the 12th term is $\frac{1}{25}$, then the 20th term is

(b) $\frac{1}{85}$

214. H. M. between the roots of the equation $x^2 - 10x + 11 = 0$ is

(a) $\frac{1}{5}$

(b) $\frac{5}{21}$

(a) 7

(b) 6

215.	The harmonic mean of	$\frac{a}{1-ab}$ and $\frac{a}{1+ab}$ is		[MP PET 1996]
	(a) $\frac{a}{\sqrt{1-a^2b^2}}$	(b) $\frac{a}{1-a^2b^2}$	(c) a	$(d) \ \frac{1}{a-a^2b^2}$
216.	The sixth H.M. between	3 and $\frac{6}{13}$ is		[Rajasthan PET 1996]
	(a) $\frac{63}{120}$	(b) $\frac{63}{12}$	(c) $\frac{126}{105}$	(d) $\frac{120}{63}$
		Advance	Level	
217.	If there are n harmonic	means between 1 and $\frac{1}{31}$ and	the ratio of 7^{th} and $(n-1)^{th}$ h	armonic means is 9:5, then
	the value of n will be	51		
				[Rajasthan PET 1986]
	(a) 12	(b) 13	(c) 14	(d) 15
218.	If <i>m</i> is a root of the give	en equation $(1-ab)x^2 - (a^2 + b^2)x - (a^2 + b^2)x$	-(1+ab) = 0 and m harmonic r	neans are inserted between a
		ce between last and the first of	-	
	(a) $b - a$	(b) $ab(b-a)$	(c) $a(b-a)$	(d) $ab(a-b)$
				Λ
			Properties o	f Harmonic progression
		Basic L		f Harmonic progression
		Basic I		f Harmonic progression
219.	If $\frac{1}{b-a} + \frac{1}{b-c} = \frac{1}{a} + \frac{1}{c}$, th		sevel	f Harmonic progression 4; MP PET 1997; UPSEAT 2000]
219.			sevel	
		en <i>a, b, c</i> are in (b) G.P.	evel	4; MP PET 1997; UPSEAT 2000]
	(a) A.P.	en <i>a, b, c</i> are in (b) G.P.	evel	4; MP PET 1997; UPSEAT 2000] (d) In G.P. and H.P. both
220.	(a) A.P. If a, b, c are in H.P., the	en a , b , c are in (b) G.P. In $\frac{a}{b+c}$, $\frac{b}{c+a}$, $\frac{c}{a+b}$ are in (b) G.P.	(c) H.P.	4; MP PET 1997; UPSEAT 2000] (d) In G.P. and H.P. both [Roorkee 1980] (d) None of these
220.	(a) A.P. If a, b, c are in H.P., the	en a , b , c are in (b) G.P. n $\frac{a}{b+c}$, $\frac{b}{c+a}$, $\frac{c}{a+b}$ are in	(c) H.P.	4; MP PET 1997; UPSEAT 2000] (d) In G.P. and H.P. both [Roorkee 1980] (d) None of these
220. 221.	(a) A.P. If <i>a, b, c</i> are in H.P., the (a) A.P. If <i>a, b, c, d</i> are any four	en a , b , c are in (b) G.P. In $\frac{a}{b+c}$, $\frac{b}{c+a}$, $\frac{c}{a+b}$ are in (b) G.P. consecutive coefficients of any (b) G.P.	[MNR 198] (c) H.P. (c) H.P. expanded binomial, then $\frac{a}{a}$	4; MP PET 1997; UPSEAT 2000] (d) In G.P. and H.P. both [Roorkee 1980] (d) None of these $\frac{b+b}{a}, \frac{b+c}{b}, \frac{c+d}{c}$ are in
220. 221.	(a) A.P. If <i>a, b, c</i> are in H.P., the (a) A.P. If <i>a, b, c, d</i> are any four (a) A.P.	en a , b , c are in (b) G.P. In $\frac{a}{b+c}$, $\frac{b}{c+a}$, $\frac{c}{a+b}$ are in (b) G.P. consecutive coefficients of any (b) G.P.	[MNR 198] (c) H.P. (c) H.P. expanded binomial, then $\frac{a}{a}$	4; MP PET 1997; UPSEAT 2000] (d) In G.P. and H.P. both [Roorkee 1980] (d) None of these $\frac{b}{a}, \frac{b+c}{b}, \frac{c+d}{c}$ are in (d) None of these
220. 221. 222.	(a) A.P. If <i>a, b, c</i> are in H.P., then (a) A.P. If <i>a, b, c, d</i> are any four (a) A.P. $\log_3 2, \log_6 2, \log_{12} 2$ are in (a) A.P.	en a , b , c are in (b) G.P. In $\frac{a}{b+c}$, $\frac{b}{c+a}$, $\frac{c}{a+b}$ are in (b) G.P. consecutive coefficients of any (b) G.P.	(c) H.P. (c) H.P. (c) H.P. (c) H.P. (c) H.P. (d) H.P.	4; MP PET 1997; UPSEAT 2000] (d) In G.P. and H.P. both [Roorkee 1980] (d) None of these $\frac{b}{a}, \frac{b+c}{b}, \frac{c+d}{c}$ are in (d) None of these [Rajasthan PET 1993, 2001]
220. 221. 222.	(a) A.P. If <i>a, b, c</i> are in H.P., then (a) A.P. If <i>a, b, c, d</i> are any four (a) A.P. $\log_3 2, \log_6 2, \log_{12} 2$ are in (a) A.P.	en a , b , c are in (b) G.P. In $\frac{a}{b+c}$, $\frac{b}{c+a}$, $\frac{c}{a+b}$ are in (b) G.P. consecutive coefficients of any (b) G.P. In (b) G.P. In (b) G.P. In for all $n \in N$ the true statements	(c) H.P. (c) H.P. (c) H.P. (c) H.P. (c) H.P. (d) H.P.	4; MP PET 1997; UPSEAT 2000] (d) In G.P. and H.P. both [Roorkee 1980] (d) None of these $\frac{b+b}{a}, \frac{b+c}{b}, \frac{c+d}{c}$ are in (d) None of these [Rajasthan PET 1993, 2001] (d) None of these

(c) - 6

Advance Level

(d) - 7

[AMU 1974]

226	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these
226.	If a, b, c, d be in H.P., th	(b) $a^2 + d^2 > b^2 + c^2$	(a) $a_0 + b_1 + b_2^2 + a_2^2$	(d) $ac + bd > b^2 + d^2$
227		H.P., then $a_1a_2 + a_2a_3 + \dots + a_{n-1}a_n$		(u) $ac + ba > b + a$ [IIT 1975]
/.	(a) $a_1 a_2$	(b) na_1a_n	(c) $(n-1)a_1a_n$	(d) None of these
228	1 11	n the value of expression $\log(x +$		[Rajasthan PET 1985, 2000]
220.	(a) $\log(x-z)$	(b) $2\log(x-z)$	(c) $3 \log(x-z)$	(d) $4 \log(x - z)$
	-			
229.	If $\frac{x+y}{2}$, y , $\frac{y+z}{2}$ are in H.	.P., then <i>x, y, z</i> are in	[Raja	sthan PET 1989; MP PET 2003]
	(a)	A.P.(b)	G.P.	(c) H.P. (d)
230.	If <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> are in H.P., t		(a) Dath (a) and (b)	[Rajasthan PET 1991]
	(a) $a + d > b + c$	(b) <i>ad > bc</i>	(c) Both (a) and (b)	(d) None of these
			Arithmetio	-geometric progression (
		Basic Le	evel	
221	If v <1 then the cum of	of the series $1 + 2x + 3x^2 + 4x^3 +$	∞ will bo	
231.	1			1
	(a) $\frac{1}{1-x}$	(b) $\frac{1}{1+x}$	(c) $\frac{1}{(1+x)^2}$	(d) $\frac{1}{(1-x)^2}$
232.	The sum of 0.2+0.004 +	- 0.00006 + 0.0000008+ to	∞ is	
	(a) $\frac{200}{891}$	(b) $\frac{2000}{9801}$	(c) $\frac{1000}{9801}$	(d) None of these
	071	7001		(4)
233.	The n^{th} term of the sequ	ience 1.1, 2.3, 4.5, 8.7, will b		
	(a) $2^n(2n-1)$	(b) $2^{n-1}(2n+1)$	(c) $2^{n-1}(2n-1)$	(d) $2^n(2n+1)$
		Advance i	Level	
234.	The sum of infinite term	ns of the following series $1 + \frac{4}{5} +$	$\frac{7}{5^2} + \frac{10}{5^3} + \dots$ will be	
		3	3 3	Roorkee 1992; DCE 1996, 2000]
	(a) $\frac{3}{16}$	25	(c) $\frac{35}{4}$	(d) $\frac{35}{16}$
	10	O	$\frac{1}{4}$	$\frac{16}{16}$
235.		+ $3x + 6x^2 + 10x^3 + \dots \infty$ will be		
	(a) $\frac{1}{(1-x)^2}$	(b) $\frac{1}{1-x}$	(c) $\frac{1}{(1+x)^2}$	(d) $\frac{1}{(1-x)^3}$
236.	$2^{1/4}.4^{1/8}.8^{1/16}.16^{1/32}$ i	is equal to	[MNR 19	84; MP PET 1998; AIEEE 2002]
	(a) 1	(b) 2	(c) $\frac{3}{2}$	(d) $\frac{5}{2}$
			2	2
237.	The sum of $1 + \frac{2}{5} + \frac{3}{5^2} + \frac{4}{5}$	$\frac{4}{3}$ + upto <i>n</i> terms is		[MP PET 1982]
	(a) $\frac{25}{16} - \frac{4n+5}{16 \times 5^{n-1}}$	(b) $\frac{3}{2} - \frac{2n+5}{n}$	(c) $\frac{3}{7} - \frac{3n+5}{16 \times 5^{n-1}}$	(d) $\frac{1}{2} - \frac{5n+1}{3 \times 5^{n+2}}$
	10 10 \ 5	1 10 × 3	7 10 × 3	$\frac{\alpha}{2} \frac{1}{3 \times 5^{n+2}}$
238.	The sum of $i - 2 - 3i + 4$	+ upto 100 terms, where	$i = \sqrt{-1}$ is	

225. If b^2, a^2, c^2 are in A.P., then a + c, b + c, c + a will be in

(a) 50(1-i)

(b) 25 i

(c) 25(1+i)

(d) 100(1-i)

Basic Level

239. n^{th} term of the series 2+4+7+11+... will be

[Roorkee 1977]

(a)
$$\frac{n^2 + n + 1}{2}$$

(b)
$$n^2 + n + 2$$

(c)
$$\frac{n^2+n+2}{2}$$

(d)
$$\frac{n^2 + 2n + 2}{2}$$

240. If t_n denotes the n^{th} term of the series 2+3+6+11+18+... then t_{50} is

(a)
$$49^2 - 1$$

(b)
$$49^2$$

(c)
$$50^2 + 1$$

(d)
$$49^3 + 2$$

241. First term of the 11th group in the following groups (1), (2, 3, 4), (5, 6, 7, 8, 9), is

242. The sum of the series $6+66+666+\dots$ upto *n* terms is

(a)
$$(10^{n-1} - 9n + 10) / 81$$

(a)
$$(10^{n-1} - 9n + 10) / 81$$
 (b) $2(10^{n+1} - 9n - 10) / 27$

(c)
$$2(10^n - 9n - 10)/27$$

243. Sum of *n* terms of series $12 + 16 + 24 + 40 + \dots$ will be

[UPSEAT 1999]

(a)
$$2(2^n-1)+8n$$

(b)
$$2(2^n-1)+6n$$

(c)
$$3(2^n-1)+8n$$

(d)
$$4(2^n-1)+8n$$

244. If
$$|a| < 1$$
 and $|b| < 1$, then the sum of the series $1 + (1 + a)b + (1 + a + a^2)b^2 + (1 + a + a^2 + a^3)b^3 + \dots$ is

(a)
$$\frac{1}{(1-a)(1-b)}$$

(b)
$$\frac{1}{(1-a)(1-ab)}$$

(c)
$$\frac{1}{(1-b)(1-ab)}$$

(d)
$$\frac{1}{(1-a)(1-b)(1-ab)}$$

nth Term of Special series

Basic Level

245. n^{th} term of the series $\frac{1^3}{1} + \frac{1^3 + 2^3}{1 + 3} + \frac{1^3 + 2^3 + 3^3}{1 + 3 + 5} + \dots$ will be

[Pb. CET 2000]

(a)
$$n^2 + 2n + 1$$

(b)
$$\frac{n^2 + 2n + 1}{8}$$

(c)
$$\frac{n^2 + 2n + 1}{4}$$

(d)
$$\frac{n^2 - 2n + 1}{4}$$

246. The n^{th} term of series $\frac{1}{1} + \frac{1+2}{2} + \frac{1+2+3}{3} + \dots$ will be

[AMU 1982]

(a)
$$\frac{n+1}{2}$$

(b)
$$\frac{n-1}{2}$$

(c)
$$\frac{n^2+1}{2}$$

(d)
$$\frac{n^2-1}{2}$$

247. If $a_1 = a_2 = 2$, $a_n = a_{n-1} - 1(n > 2)$, then a_5 is

Advance Level

248. The number 111......1 (91 times) is a

- (a) Even number
- (b) Prime number
- (c) Not prime
- (d) None of these

249. The difference between an integer and its cube is divisible by

[MP PET 1999]

(b) 6

(c) 9

(d) None of these

250. In the sequence 1, 2, 2, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8,, where n consecutive terms have the value n, the 1025th term is

(a) 2^9

(c) 2¹¹

(d) 2^8

251. Observe that $1^3 = 1, 2^3 = 3 + 5, 3^3 = 7 + 9 + 11, 4^3 = 13 + 15 + 17 + 19$. Then n^3 as a similar series is

(a)
$$\left[2\left\{\frac{n(n-1)}{2}+1\right\}-1\right]+\left[2\left\{\frac{(n+1)n}{2}+1\right\}+1\right]+\dots+\left[2\left\{\frac{(n+1)n}{2}+1\right\}+2n-3\right]$$

(b)	$(n^2 + n +$	$+1)+(n^2+n^2+n^2+n^2+n^2+n^2+n^2+n^2+n^2+n^2+$	$+3)+(n^2+n+5)$	$+ \dots + (n^2 + 3n - 1)$
(0)	(11 111 1	1) (11 11	$(3) \cdot (n + n + 3)$) (11 511 1)

(c)
$$(n^2-n+1)+(n^2-n+3)+(n^2-n+5)+....+(n^2+n-1)$$

(d) None of these

Sum to n terms and infinite number of terms

Basic Level

252. The sum of the series $3.6 + 4.7 + 5.8 + \dots$ upto (n-2) terms

[EAMCET 1980]

(a)
$$n^3 + n^2 + n + 2$$

(b)
$$\frac{1}{6}(2n^3 + 12n^2 + 10n - 84)$$
 (c) $n^3 + n^2 + n$

(c)
$$n^3 + n^2 + n$$

(d) None of these

253. The sum of the series $1 + (1 + 2) + (1 + 2 + 3) + \dots$ upto *n* terms, will be

[MP PET 1986]

(a)
$$n^2 - 2n + 6$$

(b)
$$\frac{n(n+1)(2n-1)}{6}$$

(c)
$$n^2 + 2n + 6$$

(d)
$$\frac{n(n+1)(n+2)}{6}$$

254. The sum to *n* terms of the series $2^2 + 4^2 + 6^2 + \dots$ is

[MP PET 1994]

(a)
$$\frac{n(n+1)(2n+1)}{3}$$

(a)
$$\frac{n(n+1)(2n+1)}{3}$$
 (b) $\frac{2n(n+1)(2n+1)}{3}$

(c)
$$\frac{n(n+1)(2n+1)}{6}$$

(d)
$$\frac{n(n+1)(2n+1)}{9}$$

255.
$$11^2 + 12^2 + 13^2 + \dots + 20^2 =$$

[MP PET 1995]

(d) 2487

256. The sum to *n* terms of (2n-1)+2(2n-3)+3(2n-5)+... is

[AMU 2001]

(a)
$$(n+1)(n+2)(n+3)/6$$
 (b) $n(n+1)(n+2)/6$

(b)
$$n(n+1)(n+2)/6$$

(c)
$$n(n+1)(2n+3)$$

(d)
$$n(n+1)(2n+1)/6$$

257.
$$\frac{1^3 + 2^3 + 3^3 + 4^3 + \dots + 12^3}{1^2 + 2^2 + 3^3 + 4^2 + \dots + 12^2} =$$

[MP PET 1998]

(a)
$$\frac{234}{25}$$

(b)
$$\frac{243}{35}$$

(c)
$$\frac{263}{27}$$

(d) None of these

258. Sum of the squares of first n natural numbers exceeds their sum by 330, then n=

[Karnataka CET 1998]

(a)
$$8$$

(d) 20

259.
$$\frac{1}{1,2} + \frac{1}{2,3} + \frac{1}{3,4} + \dots + \frac{1}{n(n+1)}$$
 equals

[AMU 1995; Rajasthan PET 1996; UPSEAT 1999, 2001]

(a)
$$\frac{1}{n(n+1)}$$

(b)
$$\frac{n}{n+1}$$

(c)
$$\frac{2n}{n+1}$$

(d)
$$\frac{2}{n(n+1)}$$

260. The sum to *n* terms of the infinite series $1.3^2 + 2.5^2 + 3.7^2 + \infty$ is

[AMU 1982]

(a)
$$\frac{n}{6}(n+1)(6n^2+14n+7)$$
 (b) $\frac{n}{6}(n+1)(2n+1)(3n+1)$

(b)
$$\frac{n}{6}(n+1)(2n+1)(3n+1)$$

(c)
$$4n^3 + 4n^2 + n$$

(d) None of these

Advance Level

261. The sum of all the products of the first n natural numbers taken two at a time is

(a)
$$\frac{1}{24}n(n-1)(n+1)(3n+2)$$
 (b) $\frac{n^2}{48}(n-1)(n-2)$

(c)
$$\frac{1}{6}n(n+1)(n+2)(n+5)$$

(d) None of these

262. The sum of the series 1. 3. 5 + 2. 5. 8 + 3. 7. $11 + \dots$ up to 'n' terms is

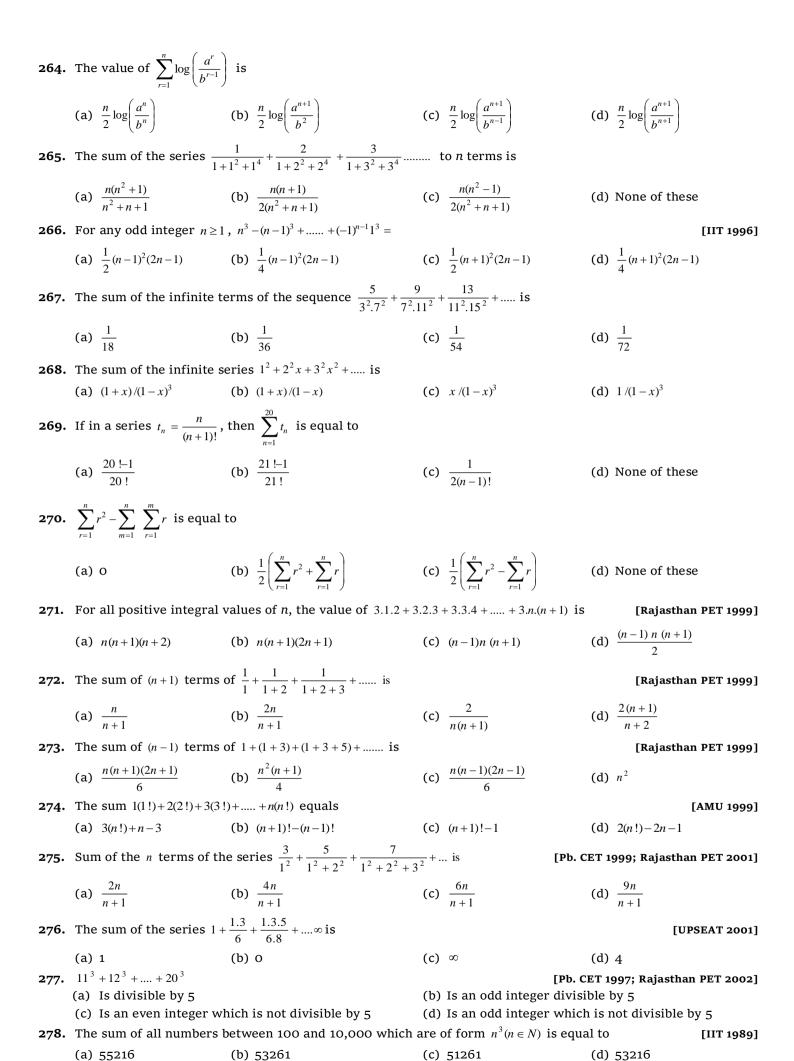
[Dhanbad Engg. 1972]

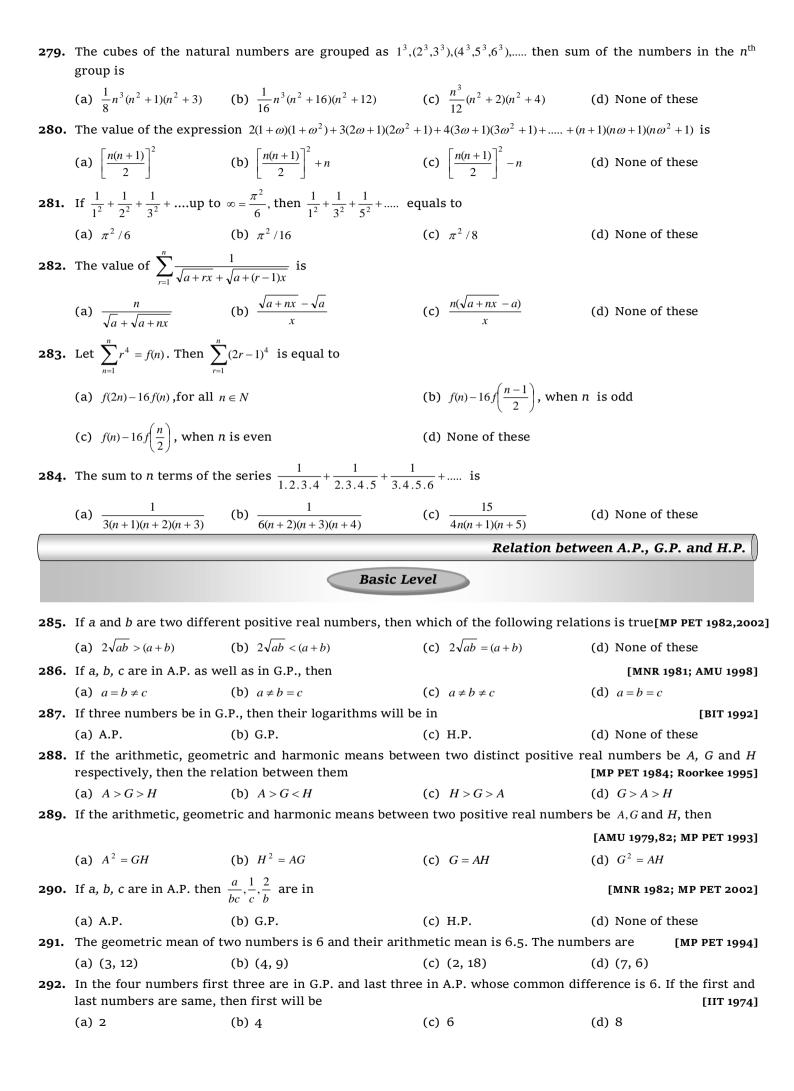
(a)
$$\frac{n(n-1)(9n^2+23n+13)}{6}$$
 (b) $\frac{n(n-1)(9n^2+23n+12)}{6}$ (c) $\frac{(n+1)(9n^2+23n+13)}{6}$ (d) $\frac{n(9n^2+23n+13)}{6}$

(b)
$$\frac{n(n-1)(9n^2+23n+12)}{6}$$

(c)
$$\frac{(n+1)(9n^2+23n+13)}{6}$$

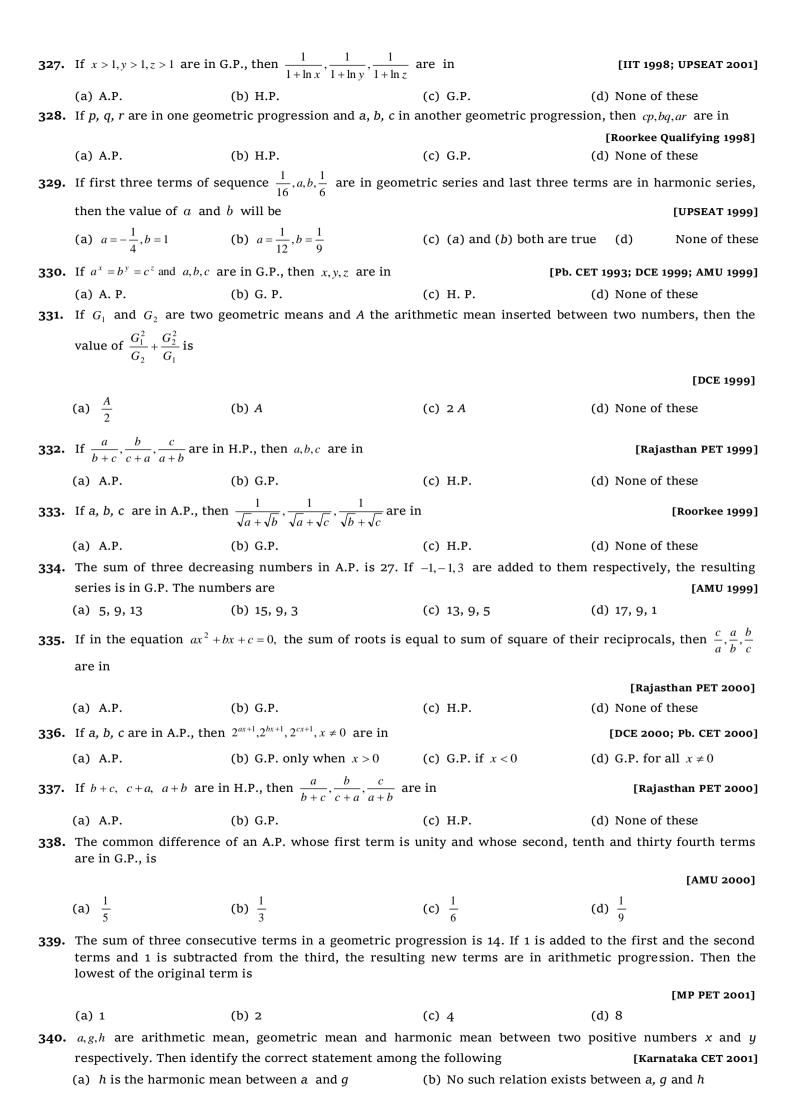
(d)
$$\frac{n(9n^2 + 23n + 13)}{6}$$


263. The sum of first *n* terms of the given series $1^2 + 2.2^2 + 3^2 + 2.4^2 + 5^2 + 2.6^2 + \dots$ is $\frac{n(n+1)^2}{2}$, when *n* is even. When *n* is odd, the sum will be [IIT 1988; AIEEE 2004]


(a)
$$\frac{n(n+1)^2}{2}$$

(b)
$$\frac{1}{2}n^2(n+1)$$

(c)
$$n(n+1)^2$$


(d) None of these

293.	If A_1, A_2 are the two A_1 numbers, then $\frac{A_1 + A_2}{G_1 \cdot G_2} =$	A.M.'s between two numbers of	a and b and G_1, G_2 be two	G.M.'s between same two
	$G_1.G_2$			
				[Roorkee 1983; DCE 1998]
	(a) $\frac{a+b}{ab}$	(b) $\frac{a+b}{2ab}$	(c) $\frac{2ab}{a+b}$	(d) $\frac{ab}{a+b}$
204	If the AM and HM of t	wo numbers is 27 and 12 respe	<i>u</i> 1 <i>b</i>	numbers will be [Rajasthan PET 19
234.	(a) 9	(b) 18	(c) 24	(d) 36
295.	The A.M., H.M. and G.N	I. between two numbers are $\frac{1}{2}$	$\frac{1}{15}$, 15 and 12, but necessari	ly in this order. Then H.M.,
	G.M. and A.M. respective	ely are		
	(a) $15,12,\frac{144}{15}$	(b) $\frac{144}{15}$,12,15	(c) $12,15,\frac{144}{15}$	(d) $\frac{144}{15}$,15,12
206	13	13	13	13
290.	If G.M. =18 and A.M.=27			[Rajasthan PET 1996]
	(a) $\frac{1}{18}$	(b) $\frac{1}{12}$	(c) 12	(d) $9\sqrt{6}$
297.	If sum of A.M. and H.M.	between two numbers is 25 and	d their G.M. is 12, then sum (of numbers is
	(a) 9	(b) 18	(c) 32	(d) 18 or 32
298.	If $\frac{a+bx}{a+bx} = \frac{b+cx}{a+bx} = \frac{c+dx}{a+bx}$	$(x \neq 0)$, then a, b, c, d are in		[Rajasthan PET 1986]
J	u ox o cx c ux	······································		<u> </u>
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these
299.		be three terms (not necessarily		
	(a) No A.P.	(b) Only one G.P.	(c) Infinite number of A.P	
300.	In a G.P. of alternately common ratio is	positive and negative terms, a	any terms is the A.M. of the	e next two terms . Then the
	(a) - 1	(p) - 3	(c) - 2	(d) $-\frac{1}{2}$
301.	If a, b, c are in A.P., then	$a + \frac{1}{bc}, b + \frac{1}{ca}, c + \frac{1}{ab}$ are in		
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these
302.		positive numbers is 2. If the land. M. of the given numbers. Then t	•	
	(a) $\frac{3}{2}$	(b) $\frac{2}{3}$	(c) $\frac{1}{2}$	(d) None of these
	2	3	2	
		Advance	Level	
303.	If $p^{ ext{th}}$, $q^{ m th}$, $r^{ m th}$ and $s^{ m th}$ te	rms of an A.P. be in G.P., the	en $(p-q),(q-r),(r-s)$ will be in
	(a) G.P.	(b) A.P.	(c) H.P.	(d) None of these
304.	If <i>a, b, c</i> are the positive	integers, then $(a+b)(b+c)(c+a)$	is	[DCE 2000]
	(a) $< 8abc$	(b) $> 8abc$	(c) $=8abc$	(d) None of these
305.	If a , b , c are in A.P., the	n $3^a, 3^b, 3^c$ shall be in		[Pb. CET 1990]
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these
306.	If <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> and <i>p</i> are dif <i>c</i> , <i>d</i> are in	ferent real numbers such that	$(a^2 + b^2 + c^2)p^2 - 2(ab + bc + cd)$	$p + (b^2 + c^2 + d^2) \le 0$, then a, b,
	(a) A D	(h)	(a) II D	[IIT 1987]
207	(a) A.P. If the first and $(2n-1)^{th}$	(b) G.P. terms of an A.P., G.P. and H.P.	(c) H.P.	(d) $ab = cd$
3U'/•	then $(2n-1)$	terms of an A.r., G.r. alla H.P.	are equal and their no term	[IIT 1985,88]
		(b) $a+c=b$	(c) $ac - b^2 = 0$	(d) (a) and (c) both
308.		d $(r+1)^{th}$ terms of an A.P. are in	` ,	
J - ·		to the terms of the A.P. is	, , ,	[MNR 1989; Roorkee 1994]

	(a) $-\frac{2}{n}$	(b) $\frac{2}{n}$	(c) $-\frac{n}{2}$	(d) $\frac{n}{2}$
309.	Given $a^{x} = b^{y} = c^{z} = d^{u}$ at (a) A.P.	nd a , b , c , d are in G.P., then x , (b) G.P.	y, z, u are in [Dhanbad Engg (c) H.P.	g. 1972; Roorkee 1984; Rajasthan PET (d) None of these
310.		$\log a - \log 2b, \log 2b - \log 3c$ and 1 is		
	(a) Acute angled	(b) Obtuse angled	(c) Right angled	(d) Equilateral
311.	If a, b, c are in A.P., b, c,	d are in G.P. and c, d, e are in I	H.P., then <i>a, c, e</i> are in	[AMU 1988,2001; MP PET 1993]
	(a) No particular order	(b) A.P.	(c) G.P.	(d) H.P.
312.	If a, b, c are in A.P. and	a^2,b^2,c^2 are in H.P., then		[MNR 1986,88; IIT 1977,2003]
	(a) $a = b = c$	(b) $2b = 3a + c$	(c) $b^2 = \sqrt{(ac/8)}$	(d) None of these
313.	The harmonic mean of $2A + G^2 = 27$, the number	f two numbers is 4 and the	arithmetic and geometric	means satisfy the relation
			[MNR 1987; UPSEAT 1999,2000]
	(a) 6, 3	(b) 5, 4	(c) 5, - 2.5	(d) - 3, 1
314.		ee numbers is 14, if 1 is added to then the greatest number is	o first two numbers and sul	[Roorkee 1973]
	(a) 8	(b) 4	(c) 24	(d) 16
315.		x, y are the arithmetic means b	between a , b and b , c respec	tively, then $\frac{a}{x} + \frac{c}{y}$ is equal to
	[Roorkee 1969]			1
	(a) 0	(b) 1	(c) 2	(d) $\frac{1}{2}$
316.	If <i>a, b, c</i> are in A.P. and (a) A.P.	a, b, d in G.P., then $a, a - b, d - b(b) G.P.$	c will be in (c) H.P.	[Ranchi BIT 1968] (d) None of these
317.	If x , 1, z are in A.P. and	x, 2, z are in G.P., then x, 4,	z will be in	[IIT 1965]
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these
318.	x + y + z = 15, if $9, x, y, z, a$	are in A.P.; while $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{5}{3}$	if $9, x, y, z, a$ are in H.P., then	n the value of a will be [IIT 1978]
	(a) 1	(b) 2	(c) 3	(d) 9
319.	If 9 A.M.'s and H.M.'s	are inserted between the 2 ar	nd 3 and if the harmonic	mean H is corresponding to
	arithmetic mean A, then	11		[Dhanbad Engg. 1987]
	(a) 1	(b) 3	(c) 5	(d) 6
320.				$+c(a-b)\log c = $ [Dhanbad Engg. 1976]
	(a) - 1	(b) 0	(c) 1	(d) Does not exist
321.	be in A.P., then the num	erms of G.P. is 512. If 8 added t bers are (b) 4, 8, 16	(c) 3, 6, 12	[Roorkee 1964] (d) None of these
322.	(a) 2, 4, 8, If the ratio of H M, and (. , . ,	e two numbers will be [IIT 1992; MP
3	(a) 1:2	(b) 2:1	(c) 4:1	(d) 1:4
323.		roots of a quadratic equations as		
	(a) $x^2 - 16x - 25 = 0$	(b) $x^2 - 8x + 5 = 0$	(c) $x^2 - 16x + 25 = 0$	(d) $x^2 + 16x - 25 = 0$
324.	Let a_1, a_2, a_{10} be in A.P.	and $h_1, h_2,, h_{10}$ be in H.P. If a_1	$a_1 = h_1 = 2$ and $a_{10} = h_{10} = 3$, t	then $a_4 h_7$ is [IIT 1999]
	(a) 2	(b) 3	(c) 5	(d) 6
325.	If $\ln(a+c)$, $\ln(c-a)$, $\ln(a-2b)$	+c) are in A.P., then		ning 1994; Rajasthan PET 1999]
		(b) a^2, b^2, c^2 are in A.P.		
326		H_1, H_2 be two A.M's, G.M's a		
٠٠٠.		1,112 00 000 11.111 0, 0.111 0	and mining of the control in the con	
	$\frac{G_1G_2}{H_1H_2} \times \frac{H_1 + H_2}{A_1 + A_2} \text{ equals}$			Poingthan BET 1005, AMU 2003
	(a) 1	(b) o	(c) 2	(d) 3
	•		•	

	(c) g is the geometric m	lean between a and h	(d) a is the arithmetic mean between g and h					
341.	Let the positive numbers	s a , b , c , d be in A.P., then abc , a	bd, acd, bcd are	[IIT Screening 2001]				
	(a) Not in A.P./G.P./H.P.	(b) In A.P.	(c) In G.P.	(d) In H.P.				
342.	If $(y - x)$, $2(y - a)$ and $(y - a)$	z) are in H.P., then $x - a, y - a, z - a$	a are in	[Rajasthan PET 2001]				
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these				
343.	If A and G are arithmetic	and geometric means and x^2 –	$2Ax + G^2 = 0 $, then	[UPSEAT 2001]				
	(a) $A = G$	(b) $A > G$	(c) $A < G$	(d) $A = -G$				
344.	If <i>A</i> is the A.M. of the $x^2 - 2bx + a^2 = 0$, then	roots of the equation $x^2 - 2ax +$	-b = 0 and G is the G.M. o	f the roots of the equation				
				[UPSEAT 2001]				
	(a) $A > G$	(b) $A \neq G$	(c) $A = G$	(d) None of these				
345.	If a,b,c are three unequ	al numbers such that a,b,c are i	n A.P. and $b - a$, $c - b$, a are	in G.P., then $a:b:c$ is [UPSEAT 2				
	(a) 1:2:3	(b) 2: 3:1	(c) 1:3:2	(d) 3:2:1				
346.	If a,b,c are in A.P. and a	$^2,b^2,c^2$ are in H.P., then		[UPSEAT 2001]				
	(a) $a \neq b \neq c$	(b) $a^2 = b^2 = \frac{c^2}{2}$	(c) a,b,c are in G.P.	(d) $\frac{-a}{2}$, b , c are in G.P.				
347.	Let a_1, a_2, a_3 be any posit	ive real numbers, then which of	the following statement is	not true [Orissa JEE 2002]				
0 1,		,						
	(a) $3a_1a_2a_3 \le a_1^3 + a_2^3 + a_3^3$		(b) $\frac{a_1}{a_2} + \frac{a_2}{a_3} + \frac{a_3}{a_1} \ge 3$					
	(c) $(a_1 + a_2 + a_3) \left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \frac{1}{a_4} + 1$	$\left(\frac{1}{a_3}\right) \ge 9$	(d) $(a_1 + a_2 + a_3) \left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} \right)$	$-\frac{1}{3}\right)^3 \le 27$				
348.	If a_1, a_2, a_n are positive $a_1 + a_2 + + a_{n-1} + 2a_n$ is	ve real numbers whose produc	ct is a fixed number c, th	nen the minimum value of				
				[IIT Screening 2002]				
	(a) $n(2c)^{1/n}$	(b) $(n+1)c^{1/n}$	(c) $2nc^{1/n}$	(d) $(n+1)(2c)^{1/n}$				
349.	Suppose a,b,c are in A.P	. and a^2, b^2, c^2 are in G.P. If $a < a^2$	$b < c \text{ and } a + b + c = \frac{3}{2}$, then	the value of a is				
			Z	[IIT Screening 2002]				
	(a) $\frac{1}{2\sqrt{2}}$	(b) $\frac{1}{2\sqrt{3}}$	(c) $\frac{1}{2} - \frac{1}{\sqrt{3}}$					
350.	Two sequences $\{t_n\}$ and	$\{s_n\}$ are defined by $t_n = \log\left(\frac{5^{n+1}}{3^{n-1}}\right)$	$s_n = \left[\log\left(\frac{5}{3}\right)\right]^n$, then	[AMU 2002]				
	(a) $\{t_n\}$ is an A.P., $\{s_n\}$ is	s a G.P.	(b) $\{t_n\}$ and $\{s_n\}$ are both	G.P.				
	(c) $\{t_n\}$ and $\{s_n\}$ are both		(d) $\{s_n\}$ is a G.P., $\{t_n\}$ is neg					
351.		$\alpha \neq 1/2$, then <i>a</i> , <i>b</i> , <i>c</i> are in						
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these				
352.	If x , y , z are in G.P. and	$\tan^{-1} x$, $\tan^{-1} y$, $\tan^{-1} z$ are in A.P., t	hen					
	(a) $x = y = z \text{ or } y \neq 1$		(b) $z = 1/x$					
		ommon value is not necessarily z		x = y = z = 0				
	. , , , , , , , , , , , , , , , , , , ,			•				

353.	If in a progression a_1 , progression are in	$(a_2, a_3,, etc., (a_r - a_{r+1}))$ bears	a constant ratio with a_r .	a_{r+1} then the terms of the
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these
354.	If $\frac{a_2 a_3}{a_1 a_4} = \frac{a_2 + a_3}{a_1 + a_4} = 3 \left(\frac{a_2 - a_3}{a_1 - a_4} \right)$	$\left(\frac{a_3}{a_4}\right)$ then a_1, a_2, a_3, a_4 are in		
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these
355.	If $a, a_1, a_2, a_3, \dots, a_{2n-1}, b$ a	re in A.P., $a, b_1, b_2, b_3, \dots, b_{2n-1}, b$ a	re in G.P. and a, c_1, c_2, c_3, c_n	$_{2n-1},b$ are in H.P., where a,b
	are positive, then the e	quation $a_n x^2 - b_n x + c_n = 0$ has its	roots	
	(a) Real and unequal	(b) Real and equal	(c) Imaginary	(d) None of these
356.	If <i>a</i> , <i>x</i> , <i>b</i> , are in A.P., <i>a</i> ,	y, b are in G.P. and a, z, b are i	n H.P. such that $x = 9z$ and a	a > 0, b > 0 then
	(a) $ y = 3z$	(b) $x = 3 y $	(c) $2y = x + z$	(d) None of these
357•	If <i>a</i> , <i>b</i> , <i>c</i> are in G.P. and is	l a , p , q in A.P. such that $2a$, b + a	p, c+q are in G.P. then the c	ommon difference of the A.P.
	(a) $\sqrt{2}a$	(b) $(\sqrt{2} + 1)(a - b)$	(c) $\sqrt{2}(a+b)$	(d) $(\sqrt{2}-1)(b-a)$
			Appl	ications of Progressions
		Basic L	evel	
358.	If x , y , z are positive th	en the minimum value of $x^{\log y - \log y}$	$y^{gz} + y^{\log z - \log x} + z^{\log x - \log y}$ is	
	(a) 3	(b) 1	(c) 9	(d) 16
359.	a, b, c are three positiv	re numbers and abc^2 has the gre	atest value $\frac{1}{64}$. Then	
	(a) $a = b = \frac{1}{2}, c = \frac{1}{4}$	(b) $a = b = \frac{1}{4}, c = \frac{1}{2}$	(c) $a = b = c = \frac{1}{3}$	(d) None of these
360.	If $a > 0$, $b > 0$, $c > 0$ and t	the minimum value of $a(b^2 + c^2)$	$+b(c^2+a^2)+c(a^2+b^2)$ is λabc ,	then the λ is
	(a) 2	(b) 1	(c) 6	(d) 3
361.	If x , y , z are three real	numbers of the same sign then	the value of $\frac{x}{y} + \frac{y}{z} + \frac{z}{x}$ lies in	the interval
	(a) $[2,+\infty)$	(b) [3,+∞)	(c) (3,+∞)	(d) $(-\infty,3)$
362.	The sum of the produc	ets of the ten numbers $\pm 1, \pm 2, \pm 3$	$\pm 4, \pm 5$ taking two at a time	is
	· · · · · · · · · · · · · · · · · · ·	, ,		
	(a) 165	(b) - 55	(c) 55	(d) None of these
363.	(a) 165			
363.	(a) 165 Let S_1, S_2 be squares	(b) - 55	ength of a side of S_n equals	the length of a diagonal of
363.	(a) 165 Let S_1, S_2 be squares	(b) - 55 such that for each $n \ge 1$, the le	ength of a side of S_n equals	the length of a diagonal of
363.	(a) 165 Let S_1, S_2 be squares S_{n+1} . If the length of a	(b) - 55 such that for each $n \ge 1$, the le	ength of a side of S_n equals	the length of a diagonal of es of n is the area of S_n less

(c) Rs. 20500

(d) Rs. 20700

(a) Rs. 21555 (b) Rs. 20475

365.	The sum of the integers	[MP PET 2000]				
	(a) 2489	(b) 4735	(c) 2317	(d) 2632		
366.	The product of n positive	ve numbers is unity. Their sum i	is			
	(a) A positive integer	(b) Equal to $n + \frac{1}{n}$	(c) Divisible by <i>n</i>	(d) Never less than <i>n</i>		
367.	If a,b,c,d are positive re	eal numbers such that $a+b+c+$	d = 2, then $M = (a+b)(c+d)$ s	atisfies the relation [IIT Screening		
	(a) $0 < M \le 1$	(b) $1 \le M \le 2$	(c) $2 \le M \le 3$	(d) $3 \le M \le 4$		
368.	The sum of all positive	divisors of 960 is		[Karnataka CET 2000]		
	(a) 3048	(b) 3087	(c) 3047	(d) 2180		
369.	$2^{\sin\theta} + 2^{\cos\theta}$ is greater th	an		[AMU 2000]		
	(a) $\frac{1}{2}$	(b) $\sqrt{2}$	(c) $2^{\frac{1}{\sqrt{2}}}$	(d) $2^{\left(1-\frac{1}{\sqrt{2}}\right)}$		
370.	If the altitudes of a tria	ngle are in A.P., then the sides o	of the triangle are in	[EAMCET 2002]		
	(a) A.P.		(b) H.P.			
	(c) G.P.		(d) Arithmetico-geometric	c progression		
371.	A boy goes to school from average speed is given by	om his home at a speed of $x km_0$	/hour and comes back at a s	speed of $y \ km/hour$, then the		
	(a) A.M.	(b) G.M.	(c) H.M.	(d) None of these		
372.		to reach the top of a pole height he pole. The number of jumps re				
	(a) 6	(b) 10	(c) 11	(d) 12		
373.	two balls and so on. If 6	ows to form an equilateral trian; 569 more balls are added then a ontains 8 balls less than each si	ll the balls can be arranged			
	(a) 1600	(b) 1500	(c) 1540	(d) 1690		
374.	If a, b and c are three po	ositive real numbers, then the m	ninimum value of the expres	ssion $\frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c}$ is		
	(a) 1	(b) 2	(c) 3	(d) 6		
375.	If $x_1 > 0, i = 1, 2, \dots, 50$ and	$1 x_1 + x_2 + \dots + x_{50} = 50$, then the 1	minimum value of $\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_2}$	+ $\frac{1}{x_{50}}$ equals to		
	(a) 50	(b) $(50)^2$	(c) $(50)^3$	(d) (50) ⁴		
376.	If a , b and c are positive	e real numbers, then least value	of $(a+b+c)(\frac{1}{a} + \frac{1}{b} + \frac{1}{c})$ is			
	(a) 9	(b) 3	(c) 10/3	(d) None of these		
377•	In the value of 100! the	e number of zeros at the end is				
	(a) 11	(b) 22	(c) 23	(d) 24		
378.	If $(1-p)(1+3x+9x^2+27x)$	$^3 + 81x^4 + 243x^5$) = $1 - p^6$, $p \ne 1$ then	the value of $\frac{p}{x}$ is			
	(a) 1/3	(b) 3	(c) 1/2	(d) 2		
379.	Let $f(n) = \left[\frac{1}{2} + \frac{n}{100}\right]$ where	re[x] denotes the integral part of	of x. Then the value of $\sum_{n=1}^{100} f(n)$	n) is		
	(a) 50	(b) 51	(c) 1	(d) None of these		
380.	$A_r; r = 1, 2, 3, \dots, n$ are n	points on the parabola y^2	x = 4x in the first quadr	rant. If $A_r = (x_r, y_r)$, where		
	$x_1, x_2, x_3,, x_n$ are in G.	P. and $x_1 = 1, x_2 = 2$, then y_n is eq	qual to			

n+1			
(a) $-2^{\frac{n+1}{2}}$	(b) 2^{n+1}	(c) $(\sqrt{2})^{n+1}$	(d) 2

381. The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is $216 cm^3$ and the total surface area is $252 cm^2$. The length of the longest edge is

(a) 12 cm (b) 6 cm (c) 18 cm (d) 3 cm

382. *ABC* is right-angled triangle in which $\angle B = 90^{\circ}$ and BC = a. If n points L_1, L_2, \dots, L_n on AB are such that AB is divided in n+1 equal parts and $L_1M_1, L_2M_2, \dots, L_nM_n$ are line segments parallel to BC and M_1, M_2, \dots, M_n are on AC then the sum of the lengths of $L_1M_1, L_2M_2, \dots, L_nM_n$ is

(a) $\frac{a(n+1)}{2}$

(c) $\frac{an}{2}$ (d) Impossible to find from the given data

a c

Assignment (Basic and Advance Level)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
c	b	b	a	b	b	a	b	b	a	a	c	a	c	a	c	a	c	b	d
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
c	a	c,d	d	d	b	c	b	c	a	b	a	b	d	d	d	d	d	b	a
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
b	c	b	c	c	b	a	b	d	a	d	b	c	d	d	b	b	c	d	a
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
d	d	b	b	b	b	a	d	d	b	a	c	c	c	b	c	d	a	e	b
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
b	a	a	b	c	с	b	d	c	a	a	b	d	с	b	d	a	a	b	d
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
b	a	a	с	a	a	a,d	С	d	b	a	с	b	b	c	С	С	a	с	b
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
С	a	b	a	a	b	b	a	a	a	a	С	b	b	с	С	b	a	d	a
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
d	d	d	d	d	с	b	a,b	a	d	d	с	С	с	b	d	a	a	d	d
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
b	С	a	d	с	С	a	b	с	a	d	a	d	d	С	b	b	с	b	b
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
С	С	a	b	С	d	b	С	a	b	a	С	С	b	a	С	a	a	С	b
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
a	b	b	d	a	d	С	a	b	b	b	b	a	d	С	a	С	b	С	c
221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
c	c	b	d	С	c	c	b	b	c	d	b	c	d	d	b	a	a	c	d
241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260
c	b	d	С	С	a	b	С	b	b	С	b	d	b	С	d	a	b	b	a
261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280
a	a	b	c	b	d	d	a	b	c	a	d	c	c	c	d	b	b	a	b
281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300
c	a,b	a	d	b	d	a	a	d	d	b	d	a	b	b	С	С	b	a	c
301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320
a	a	a	b	b	b	d	a	c	b	С	a	a	a	С	b	c c	a	c	b
321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340
b	c,d	c	d	d	a	b	c	c	c	c	c	a	d	a	d	a	b	b	c
341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360
d	b	b	c	a	d	d	a	d	a	b	a	c	c	c	b	b,d	a	b	c
361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380
b																			
	b	b,c,d	c	d	d	a	a	d	b	С	c	c	d	a	a	d	b	b	c