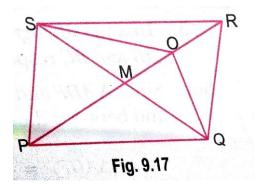
Short Answer Type Questions – II

[3 marks]

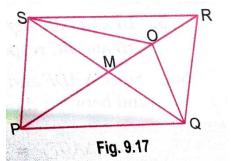
Que 1. O is any point on the diagonals PR of parallelogram PQRS. Prove that ar (Δ PSO) = ar (Δ PQO).



Sol. Join SQ. Since diagonals of a parallelogram bisect each other. Therefore, M is the mid-point of PR as well as SQ.

In Δ SOQ, OM is a median $\therefore (\Delta \text{ SOM}) = \text{ar} (\Delta \text{QOM}) \dots(i)$ In Δ SPQ, PM is the median $\therefore \text{ar} (\Delta PSM) = \text{ar} (\Delta PQM) \dots(ii)$ Adding (i) and (ii), we get $\text{ar} (\Delta \text{SOM}) + \text{ar} (\Delta \text{PSO}) = \text{ar} (\Delta \text{PQO})$ $\text{ar} (\Delta \text{PSO}) = \text{ar} (\Delta \text{PQO})$

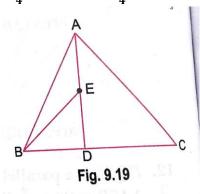
Que 2. In Fig. 9.18, x and Y are points on the side LN of the triangle LMN such that LX = XY = YN. Through X, a line is drawn parallel to LM to meet MN at Z. Prove that ar ($\triangle LZY$) = ar ($\square MZYX$).



Sol. Since, ΔLXZ and ΔMXY lie on the same base XZ and between the same parallels XZ and LM.

 $\begin{array}{ll} & \therefore & \text{ar } (\Delta LXZ) = \text{ar } (\Delta MXZ) \\ \text{Adding ar } (\Delta XYZ) \text{ to both sides, we get} \\ & \text{ar } (\Delta LXZ) + \text{ar } (\Delta XYZ) = \text{ar } (\Delta MXZ) + \text{ar } (\Delta XYZ) \\ \Rightarrow & \text{ar } (\Delta LYZ) = \text{ar } (\Box MZYX) \end{array}$

Que 3. In a triangle ABC, E is the mid-point of median AD. Show that ar (\triangle BED) = $\frac{1}{4}$ ar (\triangle BED) = $\frac{1}{4}$ ar (\triangle ABC).



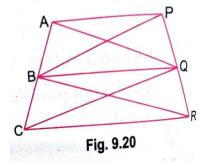
Sol. As median of a triangle divides it into two triangles of equal area and BE and AD are the is a medians of the \triangle ABD and \triangle ABC respectively

∴ ar (
$$\triangle ABD$$
) = ar ($\triangle ADC$)
⇒ ar ($\triangle BED$) = $\frac{1}{2}ar$ ($\triangle ABD$) (i)

And ar $(\Delta ABD) = \frac{1}{2} \operatorname{ar} (\Delta ABC)$ (ii) from (i) and (ii), we have

ar
$$(\Delta BED) = \frac{1}{2} \left(\frac{1}{2} ar (\Delta ABC) \right) = \frac{1}{4} ar (\Delta ABC)$$

Que 4. In Fig. 9.20, AP||BQ|| CR. Prove that ar (\triangle AQC) = ar (\triangle PBR).

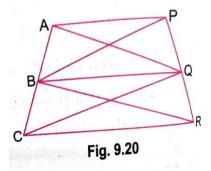


Sol. Since \triangle ABQ and \triangle PBQ are on the same base BQ and between the same parallels AP and BQ.

 \therefore ar (\triangle ABQ) = Ar (\triangle PBQ)(i)

Similarly, Δ BCQ and Δ BRQ are on the same base BQ and between the same parallels BQ and CR.

∴ ar (Δ BCQ) = ar (Δ BRQ)(ii) Adding (i) and (ii), we get ar (Δ ABQ) + ar (Δ BCQ) = ar (Δ PBQ) + ar (Δ BRQ) ⇒ ar (Δ AQC) = ar (Δ PBR) Que 5. In a parallelogram, ABCD, E, F are any two points on the sides AB and BC respectively. Show that ar (\triangle ADF) = ar (\triangle DCE)



Sol. Since \triangle ADF and parallelogram ABCD are on the same base AD and between the same parallels AD and BC.

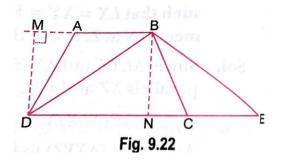
 $\therefore ar (\Delta ADF) = \frac{1}{2}ar (||^{gm} ABCD) \qquad \dots (i)$

Also, ΔDCE and $||^{gm}$ ABCD are on the same base DC and between the same parallels DC and AB.

 $\therefore \text{ ar } (\Delta \text{DCE}) = \frac{1}{2}ar (||^{gm} ABCD) \qquad \dots (\text{ii})$

From (i) and (ii), we get ar $(\Delta ADF) = ar (\Delta DCE)$

Que 6. ABCD is a trapezium in which AB || DC. DC is produced to E such that CE = AB, Prove that ar (\triangle ABD) = (\triangle BCE).



Sol. Produce BA to M Such that DM \perp BM and draw BN \perp DC.

Now, ar $(\triangle ABD) = \frac{1}{2}(AB \times DM)$ (i)

Ar (
$$\Delta BCE$$
) = $\frac{1}{2}$ (CE × BN)(ii)

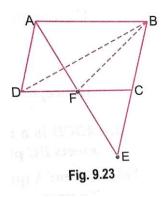
Since, triangle ABD and BCE are between the same parallels, Therefore,

DM = BN(iii) Also, AB = CE (Given)(iv) From (iii) and (iv), we get

$$\frac{1}{2}(AB \times DM) = \frac{1}{2}(CE \times BN)$$

 \Rightarrow ar (\triangle ABD) = ar (\triangle BCE) (Using (i) and (ii)

Que 7. In Fig. 9.23, ABCD is a parallelogram in which BC is produced to E such that CE = BC. AE intersects CD at F. If area of \triangle BDF = 3 cm², find the area of parallelogram ABCD.



Sol. In \triangle ADF and \triangle ECF, we have $\angle ADF = \angle ECF$ AD = CE $\angle DFA = \angle CFE$ $\Delta ADF \cong \Delta ECF$:. $ar(\Delta ADF) = ar(\Delta ECF)$ \Rightarrow DF = CFAlso, \Rightarrow BF is the median in \triangle BCD ar (Δ BCD) = 2 ar (Δ BDF) \Rightarrow ar (Δ BCD) = 2×3 cm² = 6 cm² ⇒ $ar(||^{gm} ABCD) = 2 ar (\Delta BCD)$ $2 \times 6 \text{ cm}^2 = 12 \text{ cm}^2$

(Alternate interior angles) (∵ AD=BC and =CE) (Vertically opposite angles) (AAS congruence criterion)

(CPCT)