Long Answer Type Questions

[4 MARKS]

Que 1. Using Basic proportionality Theorem, prove that a line drawn through the mid-point of one side of a triangle parallel to another side bisects the third side.

Sol. Given: A \triangle ABC in which D is the mid-point of AB and DE is drawn parallel to BC, which meets AC at E.

To prove: AE = EC **Proof:** In $\triangle ABC$, $DE \parallel BC$ \therefore By Basic proportionality Theorem, we have

$$\frac{AD}{DB} = \frac{AE}{EC} \qquad \dots (i)$$

Now, since D is the mid-point of AB \Rightarrow AD = BD ...(ii)

From (i) and (ii), we have

$$\frac{BD}{BD} = \frac{AE}{EC} \quad \Rightarrow \quad 1 = \frac{AE}{EC}$$

 \Rightarrow AE = EC

Hence, E is the mid-point of AC.

Que 2. ABCD is a trapezium in which AB || DC and its diagonals intersect each other at the point O. Show that $\frac{AO}{BO} = \frac{CO}{DO}$.

Sol. Given: ABCD is a trapezium, in which AB || DC and its diagonals intersect each other at the point O.

To prove: $\frac{AO}{BO} = \frac{CO}{DO}$

Construction: Through O, draw OE || AB i.e., OE || DC.

Proof: In ∆ADC, we have OE || AB (Construction) ∴ By Basic proportionality Theorem, we have

$$\frac{ED}{AE} = \frac{DO}{BO} \qquad \dots (i)$$

Now, in $\triangle ABD$, we have OE || AB (Construction) \therefore By Basic proportionality Theorem, we have

$$\frac{ED}{AE} = \frac{DO}{BO} \implies \frac{AE}{ED} = \frac{BO}{DO} \qquad \dots (ii)$$

From (i) and (ii), we have

 $\frac{AO}{CO} = \frac{BO}{DO} \qquad \Rightarrow \qquad \frac{AO}{BO} = \frac{CO}{DO}$

Que 3. If AD and PM are medians of triangles ABC and PQR respectively, where $\triangle ABC \sim \triangle PQR$, prove that $\frac{AB}{PQ} = \frac{AD}{PM}$.

Sol. In $\triangle ABD$ and $\triangle PQM$, we have $\angle B = \angle Q$ ($\because \ \Delta ABC \sim \triangle PQR$) ...(i) $\frac{AB}{PQ} = \frac{BC}{QR} (\because \ \triangle ABC \sim \triangle PQR)$

$$\Rightarrow \quad \frac{AB}{PQ} = \frac{\frac{2}{2}BC}{\frac{1}{2}QR} \qquad \Rightarrow \quad \frac{AB}{PQ} = \frac{BD}{QM} \qquad \qquad \dots (ii)$$

[Since AD and PM are the medians of \triangle ABC and \triangle PQR respectively]

From (i) and (ii) it is proved that $\Delta ABD \sim \Delta PQM$ (By SAS criterion of similarity)

$$\Rightarrow \quad \frac{AB}{PQ} = \frac{BD}{QM} = \frac{AD}{PM} \qquad \Rightarrow \quad \frac{AB}{PQ} = \frac{AD}{PM}$$

Que 4. In Fig. 7.38, ABCD is a trapezium with AB || DC. If \triangle AED is similar to \triangle BEC, prove that AD = BC.

Sol. In \triangle EDC and \triangle EBA, we have

$\angle 1 = \angle 2$ $\angle 3 = \angle 4$ and $\angle CED = \angle AEB$ $\therefore \Delta EDC \sim \Delta EBA$	[Alternate angles] [Alternate angles] [Vertically opposite angles] [By AA criterion of similarity]
$\Rightarrow \frac{ED}{EB} = \frac{EC}{EA} \Rightarrow \frac{ED}{EC} =$	<i>EB</i> <i>EA</i> (i)

It is given that $\triangle AED \sim \triangle BEC$

$$\therefore \qquad \frac{ED}{EC} = \frac{EA}{EB} = \frac{AD}{BC} \qquad \qquad \dots (ii)$$

From (i) and (ii), we get

$$\frac{EB}{EA} = \frac{EA}{EB} \quad \Rightarrow \quad (EB)^2 = (EA)^2 \quad \Rightarrow \quad EB = EA$$

Substituting EB = EA in (ii), we get

$$\frac{EA}{EA} = \frac{AD}{BC} \quad \Rightarrow \quad \frac{AD}{BC} = 1 \quad \Rightarrow \quad AD = BC$$

Que 5. Prove that the area of an equilateral triangle described on a side of a right-angled isosceles triangle is half the area of the equilateral triangle describe on its hypotenuse.

Sol. Given: $\triangle ABC$ in which $\angle ABC = 90^{\circ}$ and AB = BC. $\triangle ABD$ and $\triangle ACE$ are equilateral triangles.

To Prove: ar $(\Delta ABD) = \frac{1}{2} \times ar(\Delta CAE)$

Proof: Let AB = BC = x units.

 \therefore hyp. $CA = \sqrt{x^2 + x^2} = x\sqrt{2}$ units.

Each of the $\triangle ABD$ and $\triangle CAE$ being equilateral, has each angle equal to 60°

$$\therefore \qquad \Delta ABD \sim \Delta CAE$$

But, the ratio of the areas of two similar triangles in equal to the ratio of the squares of their corresponding sides.

$$\therefore \qquad \frac{ar(\Delta ABD)}{ar(\Delta CAE)} = \frac{AB^2}{CA^2} = \frac{x^2}{\left(x\sqrt{2}\right)^2} = \frac{x^2}{2x^2} = \frac{1}{2}$$

Hence, ar ($\triangle ABD$) = $\frac{1}{2} \times ar(\triangle CAE)$

Que 6. If the areas of two similar triangles are equal, prove that they are congruent.

Sol. Given: Two triangles ABC and DEF, such that $\Delta ABC \sim \Delta DEF$ and area (ΔABC) = area (ΔDEF) **To prove:** $\Delta ABC \cong \Delta DEF$ **Proof:** $\Delta ABC \sim \Delta DEF$ $\Rightarrow \qquad \angle A = \angle D, \angle B = \angle C = \angle F$

And

$$\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$$

Now, ar $(\Delta ABC) = ar (\Delta DEF)$ (Given)

$$\frac{ar(\Delta ABC)}{ar(\Delta DEF)} = 1 \qquad \qquad \dots (ii)$$

And

:.

$$\frac{AB^2}{DE^2} = \frac{BC^2}{EF^2} = \frac{AC^2}{DF^2} = \frac{ar(\Delta ABC)}{ar(\Delta DEF)} (:: \Delta ABC - \Delta DEF) \qquad \dots (ii)$$

From (i) and (ii), we have

$$\frac{AB^2}{DE^2} = \frac{BC^2}{EF^2} = \frac{AC^2}{DF^2} = 1 \quad \Rightarrow \quad \frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF} = 1$$

Hence, $\triangle ABC \cong \triangle DEF$ (By SSS criterion of congruency)

Que 7. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.

Sol. Let $\triangle ABC$ and $\triangle PQR$ be two similar triangles. AD and PM are the medians of $\triangle ABC$ and $\triangle PQR$ resopectively.

To prove: $\frac{ar(\Delta ABC)}{ar(\Delta PQR)} = \frac{AD^2}{PM^2}$

Proof: Since $\triangle ABC \sim \triangle PQR$

$$\therefore \qquad \frac{ar(\Delta ABC)}{ar(\Delta PQR)} = \frac{AB^2}{PQ^2} \qquad \dots (i)$$

In $\triangle ABD$ and $\triangle PQM$

$$\frac{AB}{PQ} = \frac{BD}{QM} \qquad \qquad \left(\because \frac{AB}{PQ} = \frac{BC}{QR} = \frac{1/2 BC}{1/2 QR} \right)$$

And
$$\angle B = \angle Q$$
 (:: $\triangle ABC \sim \triangle PQR$)

Hence, $\triangle ABD \sim \triangle PQM$ (By SAS Similarity criterion)

 $\therefore \qquad \frac{AB}{PQ} = \frac{AD}{PM} \qquad \dots (ii)$

From (i) and (ii), we have

$$\frac{ar(\Delta ABC)}{ar(\Delta PQR)} = \frac{AD^2}{PM^2}$$

Que 8. In Fig.7.42, O is a point in the interior of a triangle ABC, OD \perp BC, OE \perp AC and OF \perp AB. Show that (i) OA² + OB² + OC² - OD² - OE² - OF² = AF² + BD² + CE²

(ii) $AF^2 + BD^2 + CE^2 + AE^2 + CD^2 + BF^2$.

Sol. Join OA, OB and OC. (i) In right Δ 's OFA, ODB and OEC, we have $OA^2 = AF^2 + OF^2$...(i) $OB^2 = BD^2 + OD^2$...(ii) and $OC^2 = CE^2 + OE^2$...(iii) Adding (i), (ii) and (iii), we have $OA^2 + OB^2 + OC^2 = AF^2 + BD^2 + CE^2 + OF^2 + OD^2 + OE^2$ $\Rightarrow OA^2 + OB^2 + OC^2 - OD^2 - OE^2 - OF^2 = AF^2 + BD^2 + CE^2$ (ii) We have, $OA^2 + OB^2 + OC^2 - OD^2 - OE^2 - OF^2 = AF^2 + BD^2 + CE^2$

$$\Rightarrow \qquad (OA^2 - OE^2) + (OB^2 - OF^2) + (OC^2 - OD^2) = AF^2 + BD^2 + CE^2$$

$$\Rightarrow \qquad AE^2 + CD^2 + BF^2 = AF^2 + BD^2 CE^2$$

[Using Pythagoras Theorem in $\triangle AOE$, $\triangle BOF$ and $\triangle COD$]

Que 9. The perpendicular from A on side BC of a \triangle ABC intersects BC at D such that DB = 3CD

(see Fig. 7.43). Prove that $2 AB^2 = 2 AC^2 + BC^2$.

Sol. We have,	DB = 3 CD
Now,	BC = BD + CD
⇒	BC = 3 CD + CD = 4 CD
	$CD = \frac{1}{4}BC$

(Given DB = 3 CD)

And $DB = 3 CD = \frac{3}{4}BC$

Now, in right-angled triangle ABD, we have $AB^2 = AD^2 + DB^2$...(i) Again, in right- angled triangle $\triangle ADC$, we have $AC^2 = AD^2 + CD^2$...(ii) Subtracting (ii) from (i), we have $AB^2 - AC^2 = DB^2 - CD^2$

$$\Rightarrow AB^{2} - AC^{2} = \left(\frac{3}{4}BC\right)^{2} - \left(\frac{1}{4}BC\right)^{2} = \left(\frac{9}{16} - \frac{1}{16}\right)BC^{2} = \frac{8}{16}BC^{2}$$

$$\Rightarrow AB^{2} - AC^{2} = \frac{1}{2}BC^{2}$$

$$\therefore 2AB^{2} - 2AC^{2} = BC^{2} \Rightarrow 2AB^{2} = 2AC^{2} + BC^{2}$$