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NOTATION: E,  = 10~/47rc~ ; 

(CGS) D = E + 4n-P = EE = ( 1  + 4 v ) E  ; 

= 1.9 x 10-18 esu-cm 

Figure 1 The permanent dipole moment of a molecule of water has the 
magnitude 1.9 X lo-'' esu-cm and is directed from the 0'- ion toward 
the midpoint of the line connecting the H+ ions. (To convert to SI units, 
multiply p by f X lo".) 

Figure 2 Electrostatic potential and field components in CGS at position r,  0 for a dipole p 
directed along the z axis. For 0 = 0, we have E, = Ey = 0 and E, = 2p/r3; for 0 = ~ / 2  we have 
Ex = Ey = 0 and E ,  = TO convert to SI, replace p by pl47rq,. (After E. M .  Purcell.) 



First we relate the applied electric field to the internal electric field in a 
dielectric crystal. The study of the electric field within dielectric matter arises 
when we ask: 

What is the relation in the material between the dielectric polarization P 
and the macroscopic electric field E in the Maxwell equations? 
What is the relation between the dielectric polarization and the local 
electric field which acts at the site of an atom in the lattice? The local field 
determines the dipole moment of the atom. 

Maxwell Equations 

Polarization 

The polarization P is defined as the dipole moment per unit 
volume, averaged over the volume of a cell. The total dipole moment is 
defined as 

where r, is the position vector of the charge q,. The value of the sum will be 
independent of the origin chosen for the position vectors, provided that the 
system is neutral: Let ri = r, + R; then p = Xq,rL = RXq, + Zq,r, = Zqnr,. 
The dipole moment of a water molecule is shown in Fig. 1. 

The electric field at a point r from a dipole moment p is given by a stan- 
dard result of elementary electrostatics: 

3 ( p .  r)r - pp 
(CGS) E(r) = 

15 

The lines of force of a dipole pointing along the z axis are shown in Fig. 2 



MACROSCOPIC ELECTRIC FIELD 

One contribution to the electric field inside a body is that of the applied 
electric field, defined as 

where e ( r )  is the microscopic electric field at the point r. The field E is a 
much smoother quantity than the microscopic field e. \.Ve could well have 

E, = field produced by fxed charges external to the body . 

written the dipole field (2) a. e(r) because it is a microscopic urisrnoothed 
field. 

\Ve call E the macroscopic electric field. It is adequate for all problems 
in the electrodylla~nics of crystals provided that we know thc connection be- 
tween E, the polarization P, and the current density j, and provided that thc 
wavelengths of interest are long in comparison with the lattice spacing.' 

To find the contribution of the polarization to the macroscopic field, we 

(3) 

can simplify the sum over all the dipoles in the specimen. By a famous theo- 
rem of electrostaticsZ the macroscopic electric field caused by a uniform polar- 

The other contribution to the electric field is the sum of the fields of all 
charges that constitute the body. If the body is neutral, the contribution to the 
average field may be expressed in terms of the sum of the fields of atomic 
dipoles. 

We define the average electric field E(r,) as the average field over t he  
volume of t h e  crystal cell that contains the lattice point r,: 

ization is equal to the electric field in vacuum of a fictitious surface charge 

'A detailed derivation oC thc Maxwell equations fur the macroscopic fields E and B, starting 
from the Maxlvell equations in terms of the microscopic fields e and h, is given by E. M. Purcell, 
Elsrtrlcit!y and magnetism, 2nd ed., McGrawHill, 1985. 

'The electrostatic potential in CGS units of a dipole p is ~ ( r )  = p . grad(1ir). For a volume 
distribution of polarization P we have 

which by a vcctor identity becomes 

If P is constant, then div P = 0 and by the Gaurs theorem we have 

where udS is an element of charge on the surface of the body. This completes the proof. 



16 Dielectrics and Ferroelectrics 457 

Figure 3 (a) A uniformly polarized dielectric slab, with the polarization vector P normal to the 
plane of the slab. (b) A pair of uniformly charged parallel plates which give rise to the identical 
electric field E, as in (a) The upper plate has the surface charge density u = +P, and the lower 
plate has u = -P .  

density u  = fi . P on the surface of the body. Here fi is the unit normal to the 
surface, drawn outward from the polarized matter. 

We apply the result to a thin dielectric slab (Fig. 3a) with a uniform vol- 
ume polarization P. The electric field El(r)  produced by the polarization is 
equal to the field poduced by the fictitious surface charge density u  = fi . P 
on the surface of the slab. On the upper boundary the unit vector ii is directed 
upward and on the lower boundary fi is directed downward. The upper bound- 
ary bears the fictitious charge u  = fi . P = P per unit area, and the lower 
boundary bears -P per unit area. 

The electric field E l  due to these charges has a simple form at any point 
between the plates, but comfortably removed from their edges. By Gauss's law 

(CGS) E, = -4~1~1 = - 4 ~ p  ; ( 4 4  

We add E, to the applied field E, to obtain the total macroscopic field 
inside the slab, with i the unit vector normal to the plane of the slab: 

We define 

E, = field of the surface charge denisty fi . P on the boundary . 

This field is smoothly varying in space inside and outside the body and satisfies 
the Maxwell equations as written for the macroscopic field E. The reason E l  is 
a smooth function when viewed on an atomic scale is that we have 
replaced the discrete lattice of dipoles pi with the smoothed polarization P. 



Depolariaation Field, El  

If the polarization is uniform within the body, the only contributions to the 
macroscopic field are from E, and El: 

Here Eo is the applied field and El is the field due to the uniform polarization. 
The field E,  is called the depolarization field, for within the body it 

tends to oppose the applied field E, as in Fig. 4. Specimens in the shape of 
ellipsoids, a class that includes spheres, cylinders, and discs as limiting forms, 
have an advantageous property: a uniform polarization produces a uniform de- 
polarization field inside the body. This is a famous mathematical result demon- 
strated in classic texts on electricity and magnet i~m.~ 

If P,, Py, P, are the components of the polarization P referred to the principal 
axes of an ellipsoid, then the components of the depolarization field are written 

Here N,, N,, Nz are the depolarization factors; their values depend on the 
ratios of the principal axes of the ellipsoid. The N's are positive and satisfy the 
s u m r n l e N , + N y + N z = 4 ~ i n C G S , a n d N , + N y + N z = 1 i n S I .  

Values of N parallel to the figure axis of ellipsoids of revolution are plotted 
in Fig. 5. Additional cases have been calculated by Oshorn4 and by Stoner. In 
limiting cases N has the values: 

Shape Axis 

Sphere 4 ~ / 3  113 
Thin slab normal 4 ~  1 
Thin slab in plane 0 0 
Long circular cylinder longitudinal 0 0 
Long circular cylinder transverse 271 1/2 

We can reduce the depolarization field to zero in two ways, either by working 
parallel to the axis of a long fine specimen or by making an electrical connection 
between electrodes deposited on the opposite surfaces of a thin slab. 

3R. Becker, Electromagneticfields and interactions, Blaisdell, 1964, pp. 102-107. 
'J. A. Osborn, Phys. Rev. 67,351 (1945); E. C. Stoner, Philosophical Magazine 36,803 (1945). 
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CGS SI 

Figure 4 The depolarization field El is op- 
posite to P. The fictitious surface charges are 
indicated: the field of these charges is El 
within the ellipsoid. 

Figure 5 Depolarizatiou factor N 
parallel to the figure axis of ellip- 
soids of revolution, as a function 
of the axial ratio c/a. 

A uniform applied field E, will induce uniform polarization in an ellipsoid. 
We introduce the dielectric susceptibility x such that the relations 

(CGS)  P = XE : 

connect the macroscopic field E inside the ellipsoid with the polarization P. 
Here ,ysl = 4?rxccs 

If E,  is uniform and parallel to a principal axis of the ellipsoid, then 

(CGS)  E = E , + E , = E , - N P ;  

by (8), whence 

(CGS)  
X 

P = x(E, - NP) ; P = - 1 + N ~ ~ ~  ' 

The value of the polarization depends on the depoIarization factor N. 



LOCAL ELECTRIC FIELD AT AN ATOM 

The value of the local electric field that acts at the site of an atom is signif- 
icantly different from the value of the macroscopic electric field. We can con- 
vince ourselves of this by consideration of the local field at a site with a cubic 
arrangement of neighbors5 in a crystal of spherical shape. The macroscopic 
electric field in a sphere is 

. . . . , . .. , . - :.- . , . 
1 E = E,, + El = E,, - 3E, P ' 

by (10). 
But consider the field that acts on the atom at the center of the sphere 

(this atom is not unrepresentative). If all dipoles are parallel to the z axis and 
have magnitude p, the z component of the field at the center due to all other 
dipoles is, from (2), 

In SI we replace p by p/4rreO. The x, y, z directions are equivalent because of 
the symmetry of the lattice and of the sphere; thus 

whence = 0. 
The correct local field is just equal to the applied field, El,,,, = E,, for an 

atom site with a cubic environment in a spherical specimen. Thus the local 
field is not the same as the macroscopic average field E .  

We now develop an expression for the local field at a general lattice site, 
not necessarily of cubic symmetry. The local field at an atom is the sum of the 
electric field E, from external sources and of the field from the dipoles within 
the specimen. It is convenient to decompose the dipole field so that part of the 
summation over dipoles may be replaced by integration. 

We write 

'Atom sites in a cubic crystal do not necessarily have cubic syrnmetly. thus the 0'- sites in the 
barium titanate structure of Fig. 10 do not have a cubic environment. However, the Nat and C1- 
sites in the NaCl structure and the Cs+ and C1- sites in the CsCl structure have cubic symmetry 
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L E3 from dipoles 
inside sphere 

Figure 6 The internal electric field on an atom in a clystal is the sum of the external applied field 
E, and of the field due to the other atoms in the crystal. The standard method of summing the di- 
pole fields of the other atoms is first to sum individually over a moderate number of neighboring 
atoms inside an imaginary sphere concentric with the reference atom: this defines the field E,, 
which vanishes at a reference site with cubic symmetry The atoms outside the sphere can be 
treated as a uniformly polarized dielectric. Their contribution to the field at the reference point is 
El + E,, where El is the depolarization field associated with the outer boundary and E, is the 
field associated with the surface of the spherical cavity. 

Here 
E, = field produced by fixed charges external to the body; 
E, = depolarization field, from a surface charge density ii . P on the outer 

surface of the specimen; 
E, = Lorentz cavity field: field from polarization charges on inside of a 

spherical cavity cut (as a mathematical fiction) out of the specimen with the 
reference atom as center, as in Fig. 6; El + E, is the field due to uniform po- 
larization of the body in which a hole has been created; 

E, = field of atoms inside cavity. 
The contribution El + E, + E, to the local field is the total field at one 

atom caused by the dipole moments of all the other atoms in the specimen: 

and in SI we replace p, by p , / 4 ~ € ~ .  
Dipoles at distances greater than perhaps ten lattice constants from the 

reference site make a smoothly varying contribution to this sum, a contribu- 
tion which may be replaced by two surface integrals. One surface integral is 
taken over the outer surface of the ellipsoidal specimen and defines E,, as in 
Eq. (6). The second surface integral defines E2 and may be taken over 
any interior surface that is a suitable distance (say 50 A) from the reference 
site. We count in E, any dipoles not included in the volume bounded by 
the inner and outer surfaces. It is convenient to let the interior surface be 
spherical. 



Figure 7 Calculation of the field in a spherical cavity in Charge on ring = 

a uniformly polarized medium. 2.irasinB.adB.PcosB 

Lorentz Field, E, 

The field E,  due to the polarization charges on the surface of the fictitious 
cavity was calculated by Lorentz. If 0  is the polar angle (Fig. 7 )  referred to the 
polarization direction, the surface charge density on the surface of the cavity is 
-P cos 0 .  The electric field at the center of the spherical cavity of radius a  is 

4%- 
( c G S )  E ,  = /or(a-~)(2%-o sin @)(a  ~ o ) ( P  cos B ) (  cos 0 )  = -P ; 

3  (16)  

This is the negative of the depolarization field E ,  in a polarized sphere, so that 
E ,  + E, = 0 for a sphere. 

Field of Dipoles Inside Cavity, E, 

The field E, due to the dipoles within the spherical cavity is the only term 
that depends on the crystal structure. We showed for a reference site with 
cubic surroundings in a sphere that E,  = 0 if all the atoms may be replaced by 
point dipoles to each other. The total local field at a cubic site is, from 
(14)  and (16), 

This is the Lorentz relation: the field acting at an atom in a cubic site is the 
macroscopic field E of Eq. (7 )  plus 4?rP/3 or P / ~ E ,  from the polarization of the 
other atoms in the specimen. Experimental data for cubic ionic crystals sup- 
port the Lorentz relation. 
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DIELECTRIC CONSTANT AND POLARIZABILITY 

The dielectric constant of an isotropic or cubic medium relative to vac- 
uum is defined in terms of the macroscopic field E: 

Remember that x,, = 43-r,yCGs, by definition, but esI = cCGS. 
The susceptibility (9) is related to the dielectric constant by 

P E - 1  (CGS) , y = ~ = - .  
4 a  ' 

In a noncubic crystal the dielectric response is described by the components 
of the susceptibility tensor or of the dielectric constant tensor: 

The polarizability a of an atom is defined in terms of the local electric 
field at the atom: 

p = aE~ocd . (21) 

where p is the dipole moment. This definition applies in CGS and in SI, but 
as* = The polarizability is an atomic property, but the dielectric 
constant will depend on the manner in which the atoms are assembled to form 
a crystal. For a nonspherical atom a will be a tensor. 

The polarization of a crystal may be expressed approximately as the prod- 
uct of the polarizabilities of the atoms times the local electric field: 

where N, is the concentration and aj the polarizability of atomsj, and El,,(j) is 
the local field at atom sites j. 

We want to relate the dielectric constant to the polarizabilities; the result 
will depend on the relation that holds between the macroscopic electric field 
and the local electric field. We give the derivation in CGS units and state the 
result in both systems of units. 



If the local field is given by the Lorentz relation (17), then 

and we solve for P to find the susceptibility 

By definition = 1 + 47rx in CGS; we may rearrange (23) to obtain 

(CGS) - - - 
€ + 2  

the Clausius-Mossotti relation. This relates the dielectric constant to the 
electronic polarizability, but only for crystal structures for which the Lorentz 
local field (17) obtains. 

Electronic Polaritability 

The total polarizability may usually be separated into three parts: elec- 
tronic, ionic, and dipolar, as in Fig. 8. The electronic contribution arises from 
the displacement of the electron shell relative to a nucleus. The ionic contri- 
bution comes from the displacement of a charged ion with respect to other 
ions. The dipolar polarizability arises from molecules with a permanent elec- 
tric dipole moment that can change orientation in an applied electric field. 

Total polarizability (real part) 

I 
UHF to Ultra- 

ImicroWaveS 1 i m r a d  1 1 violet 1 

Figure 8 Frequency dependence of the several contributions to the polarizability. 
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In heterogeneons materials there is usually also an interfacial polarization 
arising from the accumulation of charge at structural interfaces. This is of little 
fundamental interest, but it is of considerable practical interest because com- 
mercial insulating materials are usually heterogeneo~is.~ 

The dielectric constant at optical frequencies arises almost entirely from 
the electronic polarizability. The dipolar and ionic contributions are small at 
high frequencies because of the inertia of the molecules and ions. In the opti- 
cal range (24) reduces to 

here we have used the relation n2 = e,  where n is the refractive index. 
By applyng (25)  to large numbers of crystals we determine in Table 1 em- 

pirical values of the electronic polarizabilities that are reasonably consistent 
with the observed values of the refractive index. The scheme is not entirely 
self-consistent, because the electronic polarizability of an ion depends 
somewliat on the environment in which it is placed. The negative ions are 
highly polarizable because they are large. 

Table 1 Electronic polarizabilities of atoms a n d  ions, i n  cm3 

Pauling 0.201 0.029 0.008 0.003 0.0013 

0'- F - Ne NaC ~ g ~ +  AP+ Si4+ 
Pauli~rg 3.88 1.04 0.390 0.179 0.094 0.052 0.0165 
JS-(TKS) (2.4) 0.858 0.290 

S2- CI- Ar Ki Ca2+ Se3+ Ti4+ 
Pauling 10.2 3.66 1.62 0.83 0.47 0.286 0.185 
JS-(TKS) (5.5) 2.947 1.133 (1.1) (0.19) 

se2- Br- Kr Rbt S?' y3 + Zr4+ 
Pauling 10.5 4.77 2.46 1.40 0.86 0.55 0.37 
JS-(TKS) (7.) 4.091 1.679 (1.6) 

Te2- I- Xe Csf Ba2+ ~ . 3 +  Ce4' 
Pauling 14.0 7.10 3.99 2.42 1.55 1.04 0.73 
JS-(TKS) (9.) 6.116 2.743 (2.5) 

Values from L. Pauling, Proc. K. Soc. London A114, 181 (1927); S. S.  Jaswal and T. P. 
Sharma, J. Phys. Chern. Solids 34, 509 (1973): and J. Tessman, A. Kahn, and \V. Shhackley, Phys. 
Rev 92, 890 (19.53). The TKS polarizabilities are at the frequcncy of the D lines of sodium. The 
valucs arc in CGS; to convert to SI, multiply by 9 X 

'For rcfcrc~~ces see D. E. Aspnes, Am. J .  Phys. 50, 704 (1982) 



Clossicol Theory of Electronic Polarizability. AII electron bound har- 
monically to an atom will show resonance absorption at a frequency wo = 

(Plm)'", where p is the force constant. The displacemcnt x of the electron 
occasioned by the application of a field El,, is given by 

so that the static electronic polarizability is 

The electronic polarizability will depend on frequency, and it is shown in 
the following example that for frequency w 

but in the visible region the frequency dependence (dispersion) is not usually 
very important in most tramparent materials. 

EXAMPLE:  Frequency dependence. Find the frerlue~rt:y dependence of the elec- 
tronic polarizalrility of an electror~ having tlre resorrarlce frequency wn, treating the sys- 
tem as a simple harrnonic oscillator. 

The equation of motion in the local electric field El,, sin wt is 

d2x nt- + moix  = -eEl,, sin wt , 
dt2 

so that, for x = x, sin wt, 

m(-w2 + wi)x, = -eEl,,, 

The dipole mnment has the amplit~~de 

from which (28) follows 

In quantum theory the expression corresponding to (28) is 

(CGS) 

whercf;, is called the oscillator strength of the electric dipole transition be- 
tween the atomic states i and j. Near a transition the polarizability changes 
sign (Fig. 8). 
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STRUCTURAL PHASE TRANSITIONS 

It is not uncommon for crystals to transfor111 fro111 one crystal structure to 
another as the temperature or pressure is varied. The stablc s t r~~cture  A at 
absolute zero generally has the lowest accessible internal energy of all the pos- 
sible structures. Even this selection of a structure A can he varied with appli- 
cation of pressure, because a low atomic volllme will favor closest-packed or 
even metallic structures. Hydrogen and xenon, for example, becor~ie rnetallic 
under extreme pressure. 

Some other structiire B may have a softer or lower frequency phonon 
spectrum than A. As the temperature is increased the phonons in B will be 
more highly excited (higher thermal average occupancies) than the phonons in 
A. Recanse the entropy increases with the occupancy, the entropy of B will be- 
come higher than the entropy of A as the temperature is increased. 

It is thereby possible for the stable structure to transfonn fro111 A to B as 
the temperature is increased. The stable structure at a temperature T is deter- 
n~ined by the minimum of the free energy F = U - TS. There will be a transi- 
tion from A to B if a temperature T, exists (below the nlelting point) such that 

FA(T,) = FLAT,). 
Often several structures have nearly the same intcrnal energy at absolute 

zero. The phonon dispersion relations for the structures may, however, be rather 
different. The phonorl energies are sensitive to the mrmber and arrangement of 
nearby atoms; these are the quantities that change as the structure is changed. 

Sorne structural phase transitions have only small effects on the macro- 
scopic physical properties of the material. However, if the transition is influ- 
enced by an applied stress, the crystal may yield nlechanically quite easily near 
the transition temperature because the relative proportions in the two phases 
will change under stress. Some other structural phase transitions may have 
spectacular effects on the macroscopic electrical properties. 

Ferroelectric transitions are a subgroup of structural phase transitions, a 
subgroup marked by the appearance of a spontaneous dielectric polarization in 
the crystal. Ferroelcctrics are of theoretical and technical interest bccause 
they often have nni~si ial l~ high and unusually temperature-dependent values 
of the dielectric constant, the piezoelectric effect, the pyroclcctric effect, and 
clectro-optical effects, including optical frequency doubling. 

FERROELECTRIC CRYSTALS 

A ferroelectric crystal exhibits an electric dipolc moment even in the ab- 
sence of an external electric field. In the ferroclectric state the center of posi- 
tive charge of the crystal does not coincide with the center of negative charge. 

The plot of polarization versus electric field for the ferroelectric state 
sltows a hysteresis loop. A crystal in a normal dielectric state usually does not 



Temperature ("C) 

Figure 9 The temperature variation of (a) thc dielectric constant E, (b) the pyroelectlic coeffi- 
cient dPldT, and ( c )  the specific heat c,, of PhTiO,. (After Remeika and Class.) 

show significant hysteresis when the electric field is increased and then re- 
versed, both slowly. 

Ferroelectricity usually disappcars ahove a certain temperature called the 
transition temperature. Above the transition the crystal is said to be in a para- 
electric state. The term paraelectric suggests an analogy with paramagnetism: 
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there is usually a rapid drop in the dielectric constant as the tenlperature 
increases. 

In some crystals the ferroelectric dipole nlonlent is not changed by an 
electric field of the maximum intensity which it is possible to apply before 
causing electrical breakdown. In these crystals we are often able to observe a 
change in thr spontaneoi~s moment when the temperature is changed (Fig. 9). 
Such cvstals are called pyroelectric. Lithium niobate, LiNbO,, is pyroelec- 
tric at room temperature. It has a high transition terr~perature (2; = 1480 K) 
and a high saturation polarizatio~~ (50 pC/c~n2). It can be "poled," which 
means giver1 a rerriarlerlt polarization, by an electric field applied over 1400 K. 

Classi$cation of Ferroelectric Crystals 

We list in Tablc 2 somc of the crystals commonly considered to be ferroelec- 
tric, along with the transition temperature or Curie point T, at which the crystal 
changes from the low-temperature ~olarized state to the high-tttlnperaturel-terrl~erature 
unpolarized state. Thermal motion tends to destroy the ferroelectric order. 
Some ferroelectric crystals lrave no Curie point because they melt before leaving 
the ferroelectric phase. The table also includes values of the spontaneous polar- 
ization P,?. Ferroelectric crystals may be classified into two main groups, order- 
disorder or displacive. 

One may dcfinc thc character of the transition in terms of the dynamics of 
the lowest frequency ("soft") optical phonon modes. If a soft mode can propa- 
gate in the crystal at the transition, then the transition is displacive. If the soft 
mode is only diffusive (non-propagating) t l~ere  is really not a phonon at all, 

Table 2 Ferroelectric crystal6 

To obtain the spontaneous polarization P, in the CGS unit of esu cm-" multiply the 
valuc givcn in PC. cm-2 by 3 X lo3. 

'I-. in K P,. in fiC: cm ', at T K 

KDP type KH,PO, 123 4.75 1961 
KD,PO, 213 4.83 [I801 
RbH,PO, 147 5.6 [go] 
KH2hs0, 97 5.0 

- 
[781 

GeTe 670 
TGS t p e  Tri-glycinr sulfate 322 2.8 [291 

Tri-glycine selenate 295 3.2 12831 
Perovskites BaTiO,, 408 26.0 12961 

KNbO? 708 30.0 15231 
PbTiO, 765 >50 [296] 
T.iTa0, 938 50 
LiNbO, 1480 71 [296l 



but is only a large amplitude hopping motion between the wells of the order- 
disorder system. Many ferroelectrics have soft modes that fall between these 
two extremes. 

The order-disorder class of ferroelectrics includes crystals with hydrogen 
bonds in which the motion of the protons is related to the ferroelectric 
properties, as in potassium dihydrogen phosphate (KH,PO,) and isomorphous 
salts. The substitution of deuterons for protons nearly doubles T,, although the 
fractional change in the molecular weight of the compound is less than 2 
percent: 

KH,P04 KD,PO, KH,AsO, KD,As04 
Curie temperature 123 K 213 K 97 K 162 K 

This extraordinarily large isotope shift is believed to be a quantum effect in- 
volving the mass-dependence of the de Broglie wavelength. Neutron diffraction 
data show that above the Curie temperature the proton distribution along the 
hydrogen bond is symmetrically elongated. Below the Curie temperature the 
lstribution is more concentrated and asymmetric with respect to neighboring 
ions, so that one end of the hydrogen bond is preferred by the proton over the 
other end, giving a polarization. 

The displacive class of ferroelectrics includes ionic crystal structures 
closely related to the perovskite and ilmenite structures. The simplest ferro- 
electric crystal is GeTe with the sodium chloride structure. We shall devote 
ourselves primarily to crystals with the perovskite structure, Fig. 10. 

Consider the order of magnitude of the ferroelectric effects in barium 
titanate: the observed saturation polarization P, at room temperature (Fig. 11) 

Figure 10 (a) The crystal structure of barium titanate. The prototype crystal is calcium titanate 
(perovskite). The structure is cubic, with ~ a ' +  ions at the cube corners, 02- ions at the face cen- 
ters, and a Ti4+ ion at the body center. (b) Below the Curie temperature the structure is slightly 
deformed, with Ba2+ and Ti4+ ions displaced relative to the 02- ions, thereby developing a dipole 
moment. The upper and lower oxygen ions may move downward slightly. 
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Temperature ('C) 

Figure 11 Spontaneous polarization projected on cube edge of barium titanate, as a function of 
temperature. (After W J. Merz.) 

is 8 X lo4 esu cm-'. The volume of a cell is (4 X = 64 X cm3, SO 

that the dipole moment of a cell is 

(CGS) p (8 X lo4 esu cm-')(64 X lo-" ~ m - ~ )  5 X lo-'' esu cm ; 

If the positive ions Ba2+ and Ti4+ were moved by 8 = 0.1 k with respect to the 
negative 0'- ions, the dipole moment of a cell would be 6e8 -̂. 3 X lo-'' esu 
cm. In LiNbO, the displacements are considerably larger, being 0.9 k and 0.5 k 
for the lithium and niobum ions respectively, giving the larger P,. 

DISPLACNE TRANSITIONS 

Two viewpoints contribute to an understanding of a ferroelectric displacive 
transition and by extension to displacive transitions in general. We may speak of 
a polarization catastrophe in which for some critical condition the polarization 
or some Fourier component of the polarization becomes very large. Equally, we 
may <peak of the condensation of a transverse optical phonon. Here the word 
condensation is to be understood in the Bose-Einstein sense (TP, p. 199) of a 
time-independent displacement of finite amplitude. This can occur when the 
corresponding TO phonon frequency vanishes at some point in the Brillouin 
zone. LO phonons always have higher frequencies than the TO phonons of the 
same wavevector, so we are not concerned with LO phonon condensation. 



In a polarization catastrophe the local electric field caused by the ionic 
displacement is larger than the elastic restoring force, thereby giving an asym- 
metrical shift in the positions of the ions. Higher order restoring forces will 
limit the shift to a finite displacement. 

The occurrence of ferroelectricity (and antiferroelectricity) in many 
perovskite-structure crystals suggests that this structure is favorably disposed 
to a displacive transition. Local field calculations make clear the reason for the 
favored position of this structure: the 0'- ions do not have cubic surround- 
ings, and the local field factors turn out to be unusually large. 

We give first the simple form of thc catashophc thcoly, supposing that the 
local field at all atoms is eqnal to E + 47rP/3 in CGS or E + P/3<, in SI. The 
theoty given now leads to a second-order transition; the physical ideas can be car- 
ried over to a first-order transition. In a second-order transition there is no latent 
heat; the order parameter (in this instance, the polarization) is not discorltiriuous 
at the transition temperature. In a first-order transition there is a latent heat; the 
order parameter changes discontinuously at the transition temperature. 

We rewrite (24) for the diclcctric constant in thc form 

where a, is the electronic plus ionic p~larizabilit~ of an ion of t,ype i and N ,  is 
the number of ions i per unit volume. The dielectric constant becomes infinite 
and permits a finite polarization in zero applied field when 

This is the condition for a polarization catastrophe. 
The value o f t  in (30) is sensitive to small departures of Z N,a, from the 

critical value 3/4z-. If we write 

(CGS) (4~/3)8N,(u, = 1 - 3s , (32) 

where s < 1, the dielectric constant in (30) becorries 

E = ~ / s .  (33) 

Slippose near the critical temperatures varies linearly with temperature: 

s = (T - T,)/< , (34) 

where (is a constant. Such a variation of s or X N,a* might come from normal 
thermal expansion of thc lattice. The dielectric constant has the form 

close to the ohserved temperature variation in the paraelectric state, Fig. 12. 
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Figure 12 Dielectric constant versus 1/(T - TJ in the paraelectric state (T > T,) of perovskites, 
after G. R~lpprecht and R.  0. Bell. 

Soft Optical Phonons 

The Lyddane-Sachs-Teller relation (Chaptcr 14) is 

The static dielectric constant increases when the transverse optical phonon fre- 
quency decreases. When the static dielectric constant ~ ( 0 )  has a high value, 
such as 100 to 10,000, we find that w, has a low value. 

When w, = 0 the crystal is unstable and ~ ( 0 )  is infinite because there is no 
effective restorirlg force. The ferroelectric BaTi03 at 24OC has a TO mode at 
12 cm-', a low frequency for an optical mode. 

If the transition to a ferroelectric state is first order, we do not find w,. = 0 
or ~ ( 0 )  = w at the transition. The LST relation suggests only that e(0) extrapo- 
lates to a singularity at a temperature To below T,. 

The association of a high static dielectric constant with a low-frequency 
optical mode is supported by experiments on strontium titanate, SrTiO,. 
According to the LST relation, if the reciprocal of the static dielectric constant 
has a temperature dependence l/<(O) (T - To), then the square of the 
optical mode frequency will have a similar temperature dependence: 
02, a (T - To), if w, is independent of temperature. The result for w$ is 
very well confirmed by Fig. 13. Measurements of w, versus 1' for another 
ferroelectric crystal, SbSI, are shown in Fig. 14. 



Temperahlre, K 

Figure 13 Plot of the square of the frequency of the zero wavevector transverse optical mode 
against temperature, fur SrTiO,, as ubserved in ncutron diffraction cxpcriolents by Cowley The bro- 
ken line is the reciprocal of the dielectric constant from the mea~nrem~nts  of Mitsni and Westphal. 
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Figure 14 Decrease of a transverse phonon frequency as the Curie temperature is appruachcd 
from below, in the ferroelectric clystal antimony sulphoiodide, SbSI. (After Raman scattering 
experiments by C. H. Peny and D. K. Agrawal.) 

Landau Theory of the Phase Transition 

A ferroelectric with a first-order phase transition between the ferroelec- 
tric and the paraelectric state is distinguished by a discontirluous change of the 
saturation polarization at the transition temperature. The transition hctween 
the normal and superconducting states is a second-ordcr transition, as is the 
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transition hetween the ferromagnetic and paramagnetic states. In these transi- 
tions the degree of order goes to zero without a discor~tir~uous change as the 
temperature is increased. 

\'e can obtain a consistent formal thermodylamic theory of thc behavior 
of a ferroelectric crystal by considering thc form of the expansion of the en- 
ergy as a lunction of the polarization P. \Ve assnme that the ~ a n d a u '  free en- 
ergy density fi in one dimension may he expanded formally as 

where the coefficients g, depend on the temperature. 
The series does not contain terms in odd powers of P if the unpolarized 

crystal has a center of inversion syrrlnletry, but crystals are known in which odd 
powers are i~nportant. Power series expansio~ls of the Gee energy do not al- 
ways exist, for nonanalytic terms are known to occur. especially when very near 
a transition. For example, the transition in KH,P04 appears to have a logarith- 
mic singularity in the heat capacity at the transition, which is not classifiable as 
either first or second order. 

The value of P in thermal equilibrium is given by the minimum of k as a 
function of P; the value of k at this minirnurn defines the Helniholtz free en- 
ergy F ( T , E ) .  The equilibriu~r~ polarization in an applied electric field E satis- 
fies the extrernurrl condition 

In this section uTe assume that the specimen is a long rod with the external ap- 
plied field E parallel to the long axis. 

To obtain a ferroelectric state we must suppose that the coefficient of the 
term in P%n (37)  passes through zero at some temperature To: 

g, = y(T - To) > (39) 

whcrc y is taken as a positive constant and T,  may be equal to or lower than 
the transition temperature. h small positive value of g, means that the lattice is 
"soft" and is close to instability. A negative value of g, means that the unpolar- 
ized lattice is unstable. The variation of g, with temperature is accounted for 
by thermal expar~sior~ and other effects of anharillonic lattice interactions. 

Second-Order Transition 

If g4 in (37)  is positive, nothing new is added by the term in g,, and this 
may then he neglected. The polarization for zero applied electric field is found 
from (38): 

'In TP. see pp. 69 and 298 for a discussion of the Landau function. 



TITc - 
Figure  15 Spontaneous polarization versus temperature, for a second-order phase transition. 

Figure  16 Teniperaturc variation 01 the polar-axis static dielectric constant of LiTaO, (After 
Glass.) 

so that either P, = 0 or P: = (y/g4)(T0 - T) .  For T 2 To the only real root of (40) 
is at P, = 0, because y and g4 are positive. Thus To is the Curie temperature. For 
T < To the minim~im of the Landau free energy in zero applied field is at 

IPS 1 = ( Y ~ ~ . J ' ~ ( T o  - T)'I2 , (41) 

as plotted in Fig. 15. The phase transition is a second-order transition because 
the polarization goes cor~tir~uousl~ to zero at the transition temperature. The 
transition in LiTaO? is an exanlple (Fig. IF)  of a second-ordcr transition. 



16 Dielectrics und Ferroelectrics 477 

First-Order Transition 

The transition is first order if g4 i11 (37) is negative. We must now retain g6 
and take it positive in order to restrain k from going to minus infinity (Fig. 17). 
The equilibrium condition for E = 0 is given hy (38): 

so that either P, = 0 or 

At  the transition temperature T, the free energies of the paraelectric and 
ferroelectric phases will be equal. That is, the value of k for P, = 0 will be equal 
to the value of k at the nli~li~nu~rl given by (43). In Fig. 18 we show the charac- 
teristic variation with temperature of P, for a first-order phase transition; 

Figure 17 Landau free energy function versus (polariaation)2 in a fxst-order transition, at reprc- 
sentative ternperaturas. At T, thc Landau function has equal minima at P = 0 and at a finite P as 
shown. For T below T,  the ahsolnte minimum is at larger valucs of P; as T passes through T, there 
is a discontinuous change in the position of the absolute minimum. The arrows mark the minima. 

Figure 18 Calculated values 
of the spontaneous polar- 
ization as a function of tem- 
perature, with parameters as 
for barium titanate. (After 
W. Cochran.) 



contrast this with the variation shown in Fig. 15 for a second-order phase tran- 
sition. The transition in BaTiO, is first order. 

The dielectric constant is calculated from the equilibrium polarization in 
an applied electric field E and 1s found from (38) .  In equilibrium at tcmpera- 
tures over the transition, the terms in P4 and P%ay he neglected; thus E = 

y(T - T O E  or 

(CGS) E(T > T,) = 1 + 4 d / E  = 1 + 4.rr/y(T - To) , (44)  

of the for111 of (36).  The result applies whether the transition is of the first or 
second order, but if second order we have To = T,; if first order, then To < ?;. 
Equation (39) defines To, but T, is the transition temperature. 

Applied field 
Ferrodistnrtive 

Antidistortive 

yloelectric 

Ferroelectric 

@ @ Charged atoms or poups 

0 IJncharged atnrns or groups 

Figure 19 Schematic representation of fundamental types nf stroctr~ral phase transitinna from a 
centrospmetric prototype. (After Lines and Glass.) 
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A ferroelectric displacement is not the only type of instability that may 
develop in a &electric crystal. Other deformations occur, as in Fig. 19. These 
deformations, even if they do not give a spontaneous polarization, may be ac- 
companied by changes in the dielectric constant. One type of deformation is 
called antiferroelectric and has neighboring lines of ions displaced in oppo- 
site senses. The perovskite structure appears to be susceptible to many types of 
deformation, often with little difference in energy between them. The phase 
diagrams of mixed perovshte systems, such as the PbZr0,-PbTiO, system, 
show transitions between para-, ferro-, and antiferroelectric states (Fig. 20). 
Several crystals believed to have an ordered nonpolar state are listed in Table 3. 

Ferroelectric Domains 

Considcr a ferroelectric crystal (such as barium titanate in the tetragonal 
phase) in which the spontaneous polarization may be either up or down the c 
axis of the crystal. A ferroelectric crystal generally consists or  regions called 
domains within each of which the polarization is in the same direction, but in 
adjacent domains the polarization is in different directions. In Fig. 21 the po- 
larization is in opposite directions. The net polarization depends on the differ- 
ence in the volumes of the upward- and downward-directed domains. The 

PbZrO, Mole percent PbTiO, PhTiO, 

Figure 20 Ferroelectric F, antiferroelectric A, and paraelectric P phascs of the lead zirconate-lead 
titanate solid solution system. The subscript T denotes a tetragonal phase; C a cubic phase; R a 
rho~nboliedrd phasc, of u41ich there are high-temperature (HT) and low-temperature (LT) forms. 
Near the rhomhhedral-tetragon ~ h a s e  boundaries one finds \,cry high piezoelectric coupling 
coefficients. (After Jaffe.) 



Table 3 Antiferroelectric crystals 

Crystal 
Trans~t~on temperature to 
ant~ferroelectnc state, in K 

From a compilation by Walter J. Merz 

(a) (b) 

Figure 21 (a) Schematic drawing of atomic displacements on either side of a boundary between 
domains polarized in opposite directions in a ferroelectric crystal: (b) view of a domain structure, 
showing 180" boundalies between domains polarized in opposite directions. 

crystal as a whole will appear to be unpolarized, as measured by the charge on 
electrodes covering the ends, when the volumes of domains in opposite senses 
are equal. The total dipole moment of the crystal may be changed by the 
movement of the walls between domains or by the nucleation of new domains. 

Figure 22 is a series of photomicrographs of a single crystal of barium 
titanate in an electric field normal to the plane of the photographs and parallel 
to the tetragonal axis. The closed curves are boundaries between domains 
polarized into and out of the plane of the photographs. The domain bound- 
aries change size and shape when the intensity of the electric field is altered. 
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Figure 22 Ferroelectric domains on the face of a single crystal of barium titanate. The face is 
normal to the tetragona! or c axis. The net polarization of the crystal as judged by domain volumes 
is increased markedly as the electric field intensity parallel to the axis is increased from 550 
volts/cm to 980 V/cm. The domain boundaries are made visible by etching the crystal in a weak 
acid solution. (R. C. Miller.) 

Piezoelectricity 

All crystals in a ferroelectric state are also piezoelectric: a stress Z applied 
to the crystal will change the electric polarization (Fig. 23). Similarly, an elec- 
tric field E applied to the crystal will cause the crystal to become strained. In 
schematic one-dimensional notation, the piezoelectric equations are 

(CGS) P = Z d + E x ;  e = Z s + E d ,  (45) 

where P  is the polarization, Z the stress, d the piezoelectric strain constant, 
E  the electric field, ,y the dielectric susceptibility, e  the elastic strain, and s the 
elastic compliance constant. To obtain (45) in SI, replace x by cox. These rela- 
tions exhibit the development of polarization by an applied stress and the de- 
velopment of elastic strain by an applied electric field. 

A crystal may be piezoelectric without being ferroelectric: a schematic ex- 
ample of such a structure is given in Fig. 24. Quartz is piezoelectric, but not 
ferroelectric; barium titanate is both. For order of magnitude, in quartz d = 

cm/statvolt and in barium titanate d  = cm/statvolt. The general defi- 
nition of the piezoelectric strain constants is 

where i - x, y, z and k = xx, yy, zz, yz, zx, xy. To convert to cm/stat-V from 
values of dtk given in mN, multiply by 3 X lo4. 

The lead zirconate-lead titanate system (called the PZT system), Fig. 20, 
is widely used in polycrystalline (ceramic) form with compositions of very high 
piezoelectric coupling. The synthetic polymer polyvinylidenfluoride (PVF2) is 
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Figure 23 (a) Unstressed ferroelectric crystal and (b) stressed ferroelectric crystal. The stress 
changes the polarization by AP, the induced piezoelectric polarization. 

Figure 24 (a) The unstressed crystal has a threefold symmetry axls The arrows represent dipole 
moments; each set of three arrows represents a planar group of ions denoted by A $ - ,  with a 
B3- ion at each vertex. The sum of the three dipole moments at each vertex 1s zero. (b) The crystal 
when stressed develops a polarization in the direction indicated. The sum of the dipole moments 
about each vertex is no longer zero. 

five times more strongly piezoelectric than crystalline quartz. Thin stretched 
films of PVF, are flexible and as ultrasonic transducers are applied in medicine 
to monitor blood pressure and respiration. 

SUMMARY 
(In CGS Units) 

The electric field averaged over the volume of the specimen defines the 
macroscopic electric field E of the Maxwell equations. 

The electric field that acts at the site rJ of an atom j is the local electric field, 
El,,. I t  is a sum over all charges, grouped in terms as El0,(q) = E, + E, + 
E, + E3(rJ), where only E3 varies rapidly within a cell. Here: 
E, = external electric field; 
El  = depolarization field associated with the boundary of the specimen; 
E, = field from polarization outside a sphere centered about rJ; 
E,(q) = field at r, due to all atoms inside the sphere. 
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The macroscopic field E of the Maxwell equations is equal to E ,  + El ,  
which, in general, is not equal to Eloc(ri). 

The depolarization field in an ellipsoid is E,, = -N,$,, where N,,, is the 
depolarization tensor; the polarization P is the dipole moment per unit vol- 
ume. In a sphere N = 4 ~ 1 3 .  

The Lorentz field is E,  = 4 ~ P l 3 .  

The polarizability a of an atom is defined in terms of the local electric field 
as p = aEl,,. 

The dielectric susceptibility x and dielectric constant E are defined in terms 
of the macroscopic electric field E as D = E + 4wP = EE = ( 1  + 47rx)E, 
or x = PIE. In SI, we have x = PIE&. 

An atom at a site with cubic symmetry has El,, = E + (4wI3)P and satisfies 
the Clausius-Mossotti relation ( 2 4 ) .  

Problems 

1.  Polaritability of atomic hydrogen. Consider a semiclassical model of the ground 
state of the hydrogen atom in an electric field normal to the plane of the orbit 
(Fig. 25), and show that for this model a = a;, where a, is the radius of the un- 
perturbed orbit. Note: If the applied field is in the x direction, then the x compo- 
nent of the field of the nucleus at the displaced position of the electron orbit must 
be equal to the applied field. The correct quantum-mechanical result is larger than 
this by the factor g. (We are speaking of a, in the expansion a = a, + alE + . . ..) 
We assume x 4 a,. One can also calculate al on this model. 

Figure 25 An electron in a circular orbit of radius an 
is displaced a distance x on application of an electric 
field E in the -x direction. The force on the electron 
due to the nucleus is e2/ai in CGS or e 2 / 4 ~ c a i  in SI. 
The problem assumes x an. 



2. Polariaability of conducting sphere. Show that the polarizability of a conduct- 
ing metallic sphere of radius a is a = a3. This result is most easily obtained by not- 
ing that E = 0 inside the sphere and then using the depolarization factor 4 ~ 1 3  for a 
sphere (Fig. 26). The result gives values of a of the order of magnitude of the ob- 
served polarizabilities of atoms. A lattice of N conducting spheres per unit volume 
has dielectric constant E = 1 + 47rNa3, for Nu3 < 1. The suggested proportionality 
of a to the cube of the ionic radius is satisfied quite well for alkali and halogen 
ions. To do the problem in SI, use 5 as the depolarization factor. 

3. Effect of air gap. Discuss the effect of an air gap (Fig. 27) between capacitor 
plates and dielectric on the measurement of high dielectric constants. What is the 
highest apparent dielectric constant possible if the air gap thickness is of the 
total thickness? The presence of air gaps can seriously distort the measurement of 
high dielectric constants. 

4 .  Zntelfacial polarization. Show that aparallel-plate capacitor made up of two par- 
allel layers of material-one layer with dielectric constant E ,  zero conductivity, and 
thickness d, and the other layer with E = 0 for convenience, finite conductivity u, 

Figure 26 The total field inside a conduchng sphere is zero. If 
a field E, is applied externally, then the field E, due to surface 
charges on the sphere must just cancel E,, so that E, + El = 0 
within the sphere. But E, can be simulated by the depolariza- 
tion field -4?rP/3 of a uniformly polarized sphere of polariza- 
tion P. Relate P to E, and calculate the dipole moment p of the 
sphere. In SI the depolarization field is -P/~E,. 

v 

Figure 27 An air gap of thickness qd is in series Air 
in a capacitor with a dielectric slab of thickness d. qd f 0 
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and thickness qd-behaves as if the space between the condenser platcs were 
filled with a homogeneous dielectric with dielectric constant 

where w is the a~~gular  freqnency. Valucs of ceir as high as lo4 or lo5 caused largely 
by this Maxwell-Wagner riiechanism are sometimes found, but the high values are 
always accompa~~iecl by largr ac losses. 

5. Polarization of sphere. A sphere of dielectric constant E is placed in a uniform ex- 
ternal electric field E,. (a) What is the vnlrirne avcrage electric field E in the sphere? 
(b) Show that the polarization in the sphere is P = ,yEo/[l + ( 4 ~ x / 3 ) ] ,  where ,y = 

( E  - 1 ) / 4 ~ .  Hint: You do not need to calculate El,, in this problem; in fact it is con- 
fusing to do so, because s and ,y are defined so that P = xE. We require E, to be un- 
changed by insertion of the sphere. We can produce a fxcd Eo by placing positive 
charges on one thin plate of an insulator arid negative charges on an opposite plate. If 
the plates are always far from the sphere, the field or the plates will remain un- 
changed when the sphere is inserted between them. The results abovc are in CGS. 

6. Ferroelectric criterion for atoms. Consider a systenl of hvo neritral atoms sepa- 
rated by a fured distance a, each atom having a polarizability a. Find the rclation 
between a and a for such a system to be ferroelectric. Hint: The dipolar field is 
strongest along the axis of the dipole. 

7.  Saturation polarization at Curie point. In a first-order transition the equilibrium 
condition (43)  with T set equal to T ,  gives one equation for the polarization P,(T,). 
A further condition at the Curie point is that F(P,, T,) = $(o, T,). (a) Corrlbirli~lg 
these two conditions, show that P:(T,) = 3Ig4l/4g,. (b) Using this result, show that 
T,  = To + 3&16yg6. 

8. Dielectric constant below transition temperature. In terms of the parameters 
in the Landau frcc energy expansion, show that for a second-order phase transition 
tlir dielectric constant below the transition temperature is 

This result may he cnmparcd with (44)  above the transition. 

9. Soft modes and lattice transformations. Sketch a monatomic linear lattice of 
lattice constant a. (a) Add to cach of six atoms a vector to indicate the direction of 
the displacement at a givcn timc caused by a longitudinal phonon with wavevector 
at the zone bonndary. (b) Skctch the c~ystal structure that results if this zone 
boundary phonon becomes nnstablc (o + 0) as the crystal is cooled through T,. 
(c) Sketch on orie graph the essential aspccts of the longitudinal phonon dispersion 
relation for the rnorratornic lattice at T wcll above T, and at T = T,. Add to the 
graph the same irrforrrratinn for phonons in the new structure at T well below T,. 

10. Ferroelectric linear array. Consider a linc of atoms of polarizability a and sepa- 
ration a. Show that the array can polarizc spontaneously if a 2 a3/4Zn 3 ,  where 
the sum is over all positive integers and is given in tables as 1.202. . . . 


