Short Answer Type Questions – I

[2 marks]

Que 1. In which of the following situations, does the list of numbers involved to make an AP? If yes, give reason.

(*i*) The cost of digging a well after every metre of digging, when it costs ₹ 150 for the first metre and rises by ₹ 50 for each subsequent metre.

(*ii*) The amount of money in the account every year, when ₹ 10,000 is deposited at simple interest at 8% per annum.

Sol. (i) The numbers involved are 150, 200, 250, 300, ...

- Here 200 150 = 250 200 = 300 250 and so on
- \therefore It forms an AP with a = 150, d = 50
- (*ii*) The numbers involved are 10,800, 11,600, 12,400, ... which forms an AP with a = 10,800 and d = 800.

Que 2. Find the 20th term from the last term of the AP, 3, 8, 13,..., 253.

Sol. We have, last term = I = 253

And, common difference = d = 2nd term - 1st term = 8 - 3 = 5Therefore, 20th term from end = I - (20 - 1) x d = 253 - 19 x 5 = 253 - 95 = 158.

Que 3. If the sum of the first p terms of an AP is $ap^2 + bp$, find its common difference.

Sol.
$$a_p = S_{p-1} = (ap^2 + bp) - [a (p - 1)^2 + b (p - 1)]$$

$$= ap^2 + bp - (ap^2 + a - 2ap + bp - b)$$

$$= ap^2 + bp - ap^2 - a + 2ap - bp + b = 2ap + b - a$$

∴ $a_1 = 2a + b - a = a + b$ and $a_2 = 4a + b - a = 3a + b$

$$\Rightarrow d = a_2 - a_1 = (3a + b) - (a + b) = 2a$$

Que 4. The first and the last terms of an AP are 5 and 45 respectively. If the sum of all its terms is 400, find its common difference.

Sol. Let the first term be 'a' and common difference be 'd'.

Given, a = 5, T_n , = 45, $S_n = 400$ $T_n = a + (n - 1)d \implies 45 = 5 + (n - 1)d$ $\Rightarrow (n - 1)d = 40 \qquad \dots (i)$ $S_n = \frac{n}{2}(a + T_n) \implies 400 = \frac{n}{2}(5 + 45)$ $\Rightarrow n = 2 \times 8 = 16$ Substituting the value of n in (i) $(16 - 1)d = 40 \implies d = \frac{40}{15} = \frac{8}{3}$ Que 5. Find the number of natural number between 101 and 999 which are divisible by both 2 and 5.

Sol. Given:
$$a_1 = 110$$
, $d = 10$, $a_n = 990$
We know, $a_n = a_1 + (n - 1) d$
 $990 = 110 + (n - 1) 10$
 $(n - 1) = \frac{990 - 110}{10} \implies n = 88 + 1 = 89$

Que 6. The sum of the first n terms of an AP is $3n^2 + 6n$. Find the nth terms of the AP.

Sol. Given: $S_n = 3n^2 + 6n$

$$S_{n-1} = 3(n-1)^2 + 6(n-1) = 3(n^2 + 1 - 2n) + 6n - 6$$

$$= 3n^2 + 3 - 6n + 6n - 6 = 3n^2 - 3$$

The nth terms will be an

$$Sn = S_{n-1} + a_n$$

$$a_n = S_n - S_{n-1} = 3n^2 + 6n - 3n^2 + 3 = 6n + 3$$

Que 7. How many terms of the AP 18, 16, 14, be taken so that their sum is zero?

Sol. Here, a = 18, d = -2, S_n = 0 Therefore, $\frac{n}{2}[36 + (n - 1) - 2] = 0$ ⇒ n (36 - 2n + 2) = 0 ⇒ n =19

Que 8. The 4th term of an AP is zero. Prove that the 25th term of the AP is three times its 11th term.

Sol.
$$\therefore$$
 $a_4 = 0$ (Given)
 $\Rightarrow a + 3d = 0 \Rightarrow a = -3d$
 $a_{25} = a + 24d = - 3d + 24d = 21d$
 $3a_{11} = 3(a + 10d) = 3(7d) = 21d$
 $\therefore a_{25} = 3a_{11}$ Hence proved.

Que 9. If the ratio of sum of the first m and n term of an AP is $m^2 : n^2$, show that ratio of its *mth* and nth terms is (2m - 1) : (2n - 1).

Sol. $\frac{s_m}{s_n} = \frac{m^2}{n^2} = \frac{\frac{m}{2}}{\frac{n}{2}} \frac{(2a+(m-1)d)}{(2a+(n-1)d)}$

⇒	$\frac{m}{n} = \frac{2a + (m-1)d}{2a + (n-1)d} \qquad \Rightarrow \qquad$	2am ·	+ <i>mnd</i> – md =	= 2an + <i>mnd – nd</i>
⇒	a (2m – 2n) = d (m – n)	⇒	2a = d	
	$\frac{a_m}{a_n} = \frac{a + (m-1)d}{a + (n-1)d} = \frac{a + 2(m)}{a + 2(n)}$			Hence proved.