14.01 Introduction: The concept of probability originated in 17th century in Europe. Their businessman tried to find the results of the business so that they get the maximum profit. They put up their problems to mathematicians Galileo Pascal forma cardeno etc. The mathematician developed methods to find the solutions of their problems and hence this stream of mathematics has been developed. The famous mathematicians of 18th and 19th centuary, Laplace, Gauses, Bermouli etc. have more developed this principle. In 20th centuary decision theory selection, theory etc. methods based on the principle of probability has been developed whose credit goes to R.S. Fisher and Cary Pearson. We have used even probability or even possible results to define probability. This definition is logically not proper. So another mathematician of Russia. A.N. Kolomigrove has discovered another principle of probability. That is called as axiomatic based probability principle. He decided some proved facts in his book foundation of probability published in 1993 to explain the probability. In modern era the principle of probability is being used to get the decision related to future in various field. For example to make the budget of any state or country, insurance companies, games based on co-incidence, agriculture, economy, scientific research, soldier security terms widely in business field, field of natural science and physics and for the society and state system. Previously we have stutied the life concept of probability based on the uncertainty of various cases. Various events happens in front of us in daily, they may have infinite and more than one definite results. A person takes the profit byexpecting the results. Find the probability of results based on the conditions and prior information of any event, the principle is called as probability. At present we use two methods to find the probability. One of them is called as classical theory of probability in this to find the probability of any event we find the ratio of number of favourable outcomes with number of total outcomes another method is called as axiomatic approach to probability, in this method to find the probability rules or axioms are depicted. To understand both the methods we need to understand some important words in detail. In further sections these are defined as classical theory of probability and axiomatic approach. #### 14.02 Definations: ## (A) A Classical approach to Probality - 1. Random experiment: An experiment is called random experiment if it has more than one possible outcomes or it is not possible to predict the outcome in advance. For example; when a coin is tossed it may turn up as a head, or a tail, but we are not sure which one of these results will actually happened. Such experiment are called random experiments. - **2. Trial and event**: An experiment is considered as trial if it surely gives result and the possible results are called events, for example: - (i) Tossing a coin is a trial and getting. head (H) of Tail (T) is an event. - (ii) Rolling a die is a trial and getting any one mumber out of 1, 2, 3, 4, 5, 6 is an event. - (iii) Selecting 2 cards from a deck of cards is a trial and from all possible 52 C $_2$ results, outcomes getting both cards are king that is 4 C $_2$ is an event. - **3. Simple Event**: If an event has only one sample point of a sample space, it is called a simple event. For example, getting an even prime number on rolling a die is a simple event. - **4.** Exhaustive events or total number of cases: Total number of possible outcomes (cases) of a trial is exhaustive events of the trial. - (i) Tossing a coin is an experiment and we may get head (H) or tail (T). Thus there are two exhaustive events in this experiment. - (ii) Throwing a die, 1, 2, 3, 4, 5, or 6 outcomes can orccur. Hence in this trial total cases are 6. - **5. Favourable events or cases :** Favourablecases of a trial is number of results of occurrence of some specific event. For example - (i) Getting even numbers 2, 4, 6 in rolling a die i.e. here the favourable cases are 3. - (ii) Selecting a card from a deck of cards and that card is of kind so favourable cases are ⁴C₁ i.e. 4 - (iii) Throwing two dice and getting sum 5 has 4 favourable conditions i.e. (1,4), (2,3), (3,2), (4,1) ### 6. Independent and dependent events: (i) Two events are said to be independent events if the occurrence or non-occurrence of one event does not affect the occurrence of another event. Example: If a coin is tossed and a die is rolled then getting a tail on coin and 4 on die are two independent events. (ii) Dependent events: Two events are said to be dependent events if the occurance of one event affects the occurence of another event. Example: If a card is drawn is heared without replacement followed by card of space is drawn from a well shuffeled deck of cards then both events are said to be dependent events. - **7. Mutually exclusive or disjoint events**: Two or more events are called mutually exclusive events if the occurrence of any one of them excludes the occurrence of the other event, i.e. if they can not occur simultaneously and if two events do not have any common element then they are said to be disjoint events. - (i) Tossing a coin and getting head (H) or tail (T) are equally likely events. - (ii) Selecting one card from a deck of card and having its king or queen is mutually exclusive events. - **8. Equally likely events**: In an experiment if there is equal possibility of events to occur then these events are called equally likely events. For example - - (i) Getting a head (H) or tail (T) in tossing a coin are equally likely events. - (ii) Selecting a card from a deck of card and it is red or black are equally likely events. - **9.** Compound events: If an event has more than one sample point, it is called a compound event. For example, there are some blue and some red balls in two bags selecting a ball from a bag is a compound event because selecting one bag and then select one ball from that bag are events occurring together. ## (B) Required definitions of Probability in Axiomatic View **1.** Sample point and sample space: The set of all possible outcomes a random experiment is called the sample space associated with the experiment. Sample space is denoted by the symbol S. Each element of the sample space is called a sample point. In other words, each outcome of the random experiment is also called sample point. Generally it is denoted as S for example. - (i) Sample points in throwing two coins is (H,H), (H,T), (T,H), (T,T) and $S=\{(H,H), (H,T), (T,H), (T,T)\}$ is sample space. - (ii) From 3 boys and 2 girls two are selected. The sample space in this trial will be (Boys, B_1, B_2, B_3 , Girls G_1, G_2): $$S = \{B_1B_2, B_2B_3, B_3B_4, B_1G_4, B_1G_5, B_2G_4, B_2G_5, B_3G_4, B_3G_5, G_1G_5\}$$ **2.** Elementary events: A subset of having one element of sample space related to random experiment is called as elementary events. Clearly, with each result of random experiment, *n* elementary event is related and conversely. For example: Sample space of tossing a coin two times is $S=\{HH, HT, TH, TT,\}$ here, four elementary events in sample space $E_1 = \{HH\}$, $E_2 = \{HT\}$, $E_3 = \{TH\}$ here, $E_4 = \{TT\}$ **3.** Compound event: The subsets of sample space S of an experiment which are made of combination of subsets of elements of sample space S. For example, think on throwing one die. In this sample space $S = \{1, 2, 3, 4, 5, 6\}$ elementary events $$E_1 = \{1\}$$, $E_2 = \{2\}$,..., $E_6 = \{6\}$ here, $A_1 = \{2, 4, 6\}$, $A_2 = \{1, 3, 5\}$ etc. are compound events. - **4. Impossible and certain events**: The empty set ϕ and the sample space S being subset of S describe events. In fact ϕ is called an impossible event and S, i.e., the whole sample space is called the sure event. Example: Getting a number 7 in rolling a die is an impossible event. - **5.** Occurrence of an event: Subset A of any sample space S represents a trial if ω is the result of that random experiment and $\omega \in A$ can be said that an event has occur and if an event does not occur then it is said that $\omega \notin A$ For example, A random experiment of throwing a die, let event of getting even number is A that is $A = \{2, 4, 6\}$ - . If 6 is obtained in on trial and $6 \in A$ then we can say that an event has occured in this experiment if result obtained is 5 then we will say that event does not occur in experiment. - **6.** Algebra of events: The algebra can understood by the following table - | Event | Symbol | |-------------------------------|--| | A Not | \overline{A} | | A or B | $A \cup B$ | | A and B | $A \cap B$ | | A but not B | $A \! \cap \! \overline{B}$ | | neither A nor B | $\overline{A} \cap \overline{B} = \left(\overline{A \cup B}\right)$ | | any one out of A and B | $\big(A \cap \overline{B}\big) \! \cup \! \big(\overline{A} \cup B\big)$ | | any two out of A, B and C | $\big(A \cap B \cap \overline{C}\big) \cup \big(A \cap \overline{B} \cap C\big) \cup \big(\overline{A} \cap B \cap C\big)$ | | atleast one out of A, B and C | $A \cup B \cup C$ | | all of A, B and C | $A \cap B \cap C$ | 7. Mutually exclusive or disjoint event: Let S is the sample space of a random experiment A_1 and A_2 are two events then A_1 and A_2 are mutually exclusive if $A_1 \cap A_2 = \emptyset$ clearly, the elementary events related to random experiment are mutually exclusive. The events which are not mutually exclusive that are known as favourable events. **8.** Mutually exclusive and exhaustive system of events: Let $A_1, A_2, ... A_n$, S be n number of events of sample space S then (i) $$A_i \cap A_j = \emptyset$$, $i \neq j$ and (ii) $A_1 \cup A_2 \cup ... \cup A_n = S$ Such events are mutually exclusive and exhaustive
events. ## Exercise 14.1 - 1. 3 bulls are randomly taken form a box. Each bulb is tested and classified as defective (D) and non defective (N). Write the sample space. - 2. 4 cards are drawn from a pack of cards. Find n(E) where E is the event of drawing a king, a queen, a jack and an ace. - 3. A die is rolled. If getting 4 shows an event E and getting an even number shows event F then E and F mutually exclusive events? - 4. Two dice are rolled. Write the sample space of - (i) Getting a doublet - (ii) Getting a sum 8 ## 14.03 Defination of Probability: ### Classical defination of probability: If an experiment n outcomes are equally likely, mutually exclusive and exhaustive and out of which m outcomes are favourable to event A then the probability of A is defined as the ratio m/n and written as P(A) $$\therefore P(A) = \frac{\text{Favourable cases of A}}{\text{Total cases of A}} = \frac{m}{n}, \text{(numerical value)}$$ If event A is sure then m = n hence $$P(A) = \frac{n}{n} = 1,$$ If the event A is impossible then m = 0 and $$P(A) = \frac{0}{n} = 0,$$ Thus for any event $0 \le P(A) \le 1$ thus probability of an event cannot be less then 0 and greater than 1. If an event A does not occur then it is denoted by $P(\overline{A})$ $$P(\overline{A}) = \frac{\text{Unfavourable cases of A}}{\text{Total cases of A}} = \frac{n-m}{n} = 1 - \frac{m}{n}$$ $$\Rightarrow P(\bar{A}) = 1 - P(A)$$ ## Defination of probability in axiomatic approach: Let us consider a random experiment with sample space S and let A be the subset of S then the probability of event A is $$P(A) = \frac{\text{No. of elements in A}}{\text{No. of elements in S}} = \frac{n(A)}{n(S)} = \frac{\text{Number of elementry events in A}}{\text{Number of elementry events in S}}$$ Clearly $$P(\phi) = 0$$, $P(S) = 1$ and $0 \le P(A) \le 1$. #### 14.04 Odds: In an experiment if the total cases are n and favourable cases are m then for any event A then unfavourable cases will be n-m. The odds in favour of A will be m:(n-m) and against will be (n-m):m Odds in favour of $$A = \frac{m}{n-m} = \frac{\frac{m}{n}}{\frac{n-m}{n}} = \frac{P(A)}{P(\overline{A})}$$ Odds in against of $A = \frac{n-m}{m} = \frac{\frac{n-m}{n}}{\frac{m}{n}} = \frac{P(\overline{A})}{P(A)}$ **Theorem :** In a random experiment for any event A, prove that $P(\bar{A}) = 1 - P(A)$ **Proof:** In an experiment if the total cases are n and for any event A the favourable cases are m then the unfavourable cases are n-m Proability of non-occurance of an event A is $$P(\overline{A}) = \frac{n-m}{n} = 1 - \frac{m}{n} = 1 - P(A)$$ Again using axiomatic approach $$P(\overline{A}) = \frac{\text{The number of elementry events } \overline{A}}{\text{The number of elementry events } S}$$ $$= \frac{n(S) - n(A)}{n(S)} = 1 - \frac{n(A)}{n(S)} = 1 - P(A)$$ ## **Illustrative Examples** **Example 1:** Find the probability of getting an even number in rolling a dice. **Solution:** Total cases = 6, Favourable number of cases = 3 i.e. 2, 4, 6 $\therefore Required probability = 3/6 = 1/2$ Example 2: Find the probability of getting a sum 7 in rolling two dice. **Solution :** Total cases $6 \times 6 = 36$ Following are possibilities of getting a sum 7 \therefore Favourable number of cases = 6 $\therefore Required probability = 6/36 = 1/6$ **Example 3:** Find the probability of getting 53 Mondays in a leap year. **Solution:** We know that a leap year has 366 days. Thus having 52 complete weeks and 2 days. These two days have the following possibilities. Monday & Tuesday 2. Tuesday & Wednusday 3. Wednusday & Thursday 4. Thursday & Friday 5. Friday & Saturday 6. Saturday & Sunday 7. Sunday & Monday. Total cases: 7, Favourable number of cases: 2 (as there are two possibilities contains monday) \therefore Required probability = 2/7 **Example 4:** Twelve tickets are marked numbers 1 to 12. A ticket is selected at random. Find the probability of it being a multiple of 2 or 3. **Solution:** The number multiple of 2 or 3 are 2, 3, 4, 6, 8, 9, 10, 12 Total cases = 12 and favourable number of cases = 8 $\therefore \quad \text{Required probability } = \frac{8}{12} = \frac{2}{3}$ Example 5: Two cards are drawn from the well shuffled deck of 52 cards. Show that the probability of getting both jacks is $\frac{1}{221}$ **Solution:** Total cases = ${}^{52}C_{3}$ Favourable cases = 4C₂ $\therefore \quad \text{Required probability} = \frac{{}^{4}\text{C}_{2}}{{}^{52}\text{C}_{2}} = \frac{\frac{4 \times 3}{2 \times 1}}{\frac{52 \times 51}{2 \times 1}} = \frac{4 \times 3}{2 \times 1} \times \frac{2 \times 1}{52 \times 51} = \frac{1}{221}$ Example 6: Three coins are tossed, find the probability of getting (i) exactly two tails (ii) atleast two tails **Solution:** Total cases = $2^3 = 8$ [HHH, HHT, HTH, THH, HTT, THT, TTH, TTT] (i) Favourable cases(Exactly two tails) = 3 :. Required probability = 3/8 (ii) Favourable cases(Atleast two tails) = 4 $\therefore Required probability = 4/8 = 1/2$ **Example 7:** A bag contains 3 white balls and 5 black balls. Two balls are drawn at random from the bag, what is the odds favourable of drawing both black balls. **Solution**: Total No. of balls in a bag = 3+5 = 8 Total cases 2 balls drawn from a bag containing 8 balls = ${}^{8}C_{2}$ = 28 Favourable cases 2 black balls drawn from a bag containing 5 black balls = ${}^{5}C_{2}$ = 10 ∴ Unfavourable cases = 28-10 = 18 Ratio in favour of drawing the ball = favourable cases : unfavourable cases : = 10:18=5:9 **Example 8:** 4 persons are selected randomly from a group of 4 men, 3 women and 5 children. Find the probability of selecting with exactly two children. **Solution:** total person = 4+3+5 = 12 Total cases for selection 4 person from $12 = {}^{12}C_{4}$ In such selection 2 should be children, their selection can be done in 5C_2 ways with 2 children remaining 2 person will be selected from 4 men + 3 women = 7 person hence their selection is 7C_2 . Hence, total favourable conditions = ${}^5C_2 \times {}^7C_2$ $$\therefore \text{ Required probability} = \frac{{}^{5}C_{2} \times {}^{7}C_{2}}{{}^{12}C_{4}} = \frac{\frac{5 \times 4 \times 7 \times 6}{2 \times 1 \times 2 \times 1}}{\frac{12 \times 11 \times 10 \times 9}{4 \times 3 \times 2 \times 1}} = \frac{5 \times 7 \times 6}{11 \times 5 \times 9} = \frac{14}{33}$$ ## Exercise 14.2 - 1. Find the probability of getting a number greater than 4 in rolling a die. - 2. A coin is tossed twice. Find the probability of getting head both the times. - 3. A number is choosen from a set of natural numbers 1 to 17. Find the probability that is is a prime number. - 4. A coin is tossed three times. Find the probability of getting a head or tail. - 5. A die is rolled, find the probability of getting a doublet or a sum 9 on the die. - 6. Find the probability of getting only 52 Sundays in an ordinary year. - 7. One card is drawn from a well-shuffled deck of 52 cards, find the odds in favour of getting an Ace. - 8. In a class of 12 students there are 5 boys and rest are girl. A student is selected, find the odds not in favour (unfavourable) of getting a girl. - 9. In people are sitting on a round table. Find the odds not in favour (unfourable) of two special people sitting together. - 10. Three letters are dictated to three persons and an envelope is addressed to each of them, the letters are inserted into the envelopes at random so that each envelope contains exactly one letter. Find the probability that none of the letter is in its proper envelope. - 11. A number is selected from first 200 integers. Find the probability that it is divisible by 6 or 8. - 12. Three dice are thrown once. Find the probability of getting a number greater than 15. - 13. The letters of the word ANGLE are arranged at random. Find the probability of geting all vowels to occur together. - 14. One card is drawn from a well-shuffled deck of 52 cards. Find the probability of it being a king or a queen or an ace. - 15. A bag contains 6 white, 7 red and 5 black balls. Three balls are drawn one after other. Find the probability of drawing a white ball if the ball drawn is not replaced. ## 14.05 Addition theorem of probability or theorem of total probability: #### When events are mutually exclusive - **Theorem 1:** Let A and B be two mutually exclusive events with respective probabilities P(A) and P(B). Then, probability of occurrence of at least one of these two events is given by the sum of the individual probabilities- $$P(A+B) = P(A) + P(B)$$ and $$P(A \cup B) = P(A) + P(B)$$ **Proof:** Let the total number of cases be n and the favourable cases for event A and B be m_1 and m_2 respectively. $$P(A) = \frac{m_1}{n}, P(B) = \frac{m_2}{n}$$ Since A and B are mutually exclusive events therefore occurrence of one event will be $m_1 + m_2$ $$P(A+B) = \frac{m_1 + m_2}{n} = \frac{m_1}{n} + \frac{m_2}{n} = P(A) + P(B)$$ $$P(A+B) = P(A) + P(B)$$ #### **Proof using the set Theory:** Let S be a sample space A and B be two mutually exclusive events, then the number of elements in $(A \cup B)$ is equal to the sum of numbers of elements present in A and B individually. So, $$n(A \cup B) = n(A) + n(B)$$ $$P(A \cup B) = P(A + B) = \frac{n(A \cup B)}{n(S)} = \frac{n(A) + n(B)}{n(S)}$$ $$P(A \cup B) = \frac{n(A)}{n(S)} + \frac{n(B)}{n(S)}$$ $$\Rightarrow P(A \cup B) = P(A) + P(B)$$ fig. 14.01 **Generalisation:** Let there be n mutually exclusive events, then probability of occurence of any one event is equal to the sum of individual probabilities, i.e. $$P(A_1 + A_2 + A_3 + \dots + A_n) = P(A_1) + P(A_2) + P(A_3) + \dots + P(A_n)$$ ### When events are not mutually exclusive: **Theorem 2:** Let A and B are not two mutually exclusive events then probability of occurrence of any one is - $$P(A + B) = P(A) + P(B) - P(AB)$$ $$\Rightarrow P(A \cup B) = P(A) + P(B) - P(A \cap B)$$ **Proof:** Let the total number of cases be n and the favourable cases for event A and B be m_1 and m_2 respectively. $$P(A) = \frac{m_1}{n}, \quad P(B) = \frac{m_2}{n}$$ Since A and B are not
mutually exclusive events therefore, let m_3 be a vourable event of A and B $$P(AB) = \frac{m_3}{n}$$ favourable events of (A+B) are $m_1 + m_2 - m_3$ $$P(A+B) = \frac{m_1 + m_2 - m_3}{n} = \frac{m_1}{n} + \frac{m_2}{n} - \frac{m_3}{n}$$ $$P(A+B) = P(A) + P(B) - P(AB)$$ $$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$ ## **Proof using Set Theory:** Let denotes a sample space, set A represents the event A and set B represents the event B and these events are not mutually exclusive, thus the common events of A and B are shown as $A \cap B$ $$(A \cup B) = (A - B) \cup (A \cap B) \cup (B - A)$$ $A = (A - B) \cup (A \cap B)$ and $B = (B - A) \cup (A \cap B)$ $\therefore P(A) = P(A - B) + P(A \cap B)$ $P(B) = P(B - A) + P(A \cap B)$ $P(A \cup B) = P[(A - B) \cup (A \cap B) \cup (B - A)]$ $P(A \cup B) = P[(A \cap B) + P(B \cap A)$ $P(A \cup B) + P(A \cap B) + P(B \cap A)$ $P(A \cup B) + P(A \cap B) + P(B \cap B)$ $P(A \cup B) + P(A \cap B) + P(B \cap B)$ $P(A \cup B) + P(A \cap B) + P(B \cap B)$ $P(A \cup B) + P(A \cap B) + P(B \cap B)$ $P(A \cup B) + P(A \cap B) + P(B \cap B)$ $P(A \cup B) + P(A \cap B) + P(B \cap B)$ $P(A \cup B) + P(A \cap B) + P(B \cap B)$ $P(A \cup B) + P(A \cap B) + P(B \cap B)$ $P(A \cup B) + P(A \cap B) + P(B \cap B)$ $P(A \cup B) + P(A \cap B) + P(B \cap B)$ $P(A \cup B) + P(A \cap B) + P(A \cap B)$ $P(A \cup B) + P(A \cap B) + P(B \cap B)$ $P(A \cup B) + P(A \cap B) + P(B \cap B)$ $P(A \cup B) + P(A \cap B) + P(B \cap B)$ $P(A \cup B) + P(A \cap B) + P(B \cap B)$ $P(A \cup B) + P(A \cap B) + P(B \cap B)$ $P(A \cup B) + P(A \cap B) + P(B \cap B)$ $P(A \cup B) + P(B \cap B)$ $P(A \cup B) + P(A $$\therefore P(A \cup B) = P(A) + P(B) - P(A \cap B)$$ $$\Rightarrow$$ P(A + B) = P(A) + P(B) - P(AB) **Sub theorem**: If the events are mutually exclusive then $$A \cap B = \emptyset$$ and $P(A \cap B) = 0$ $$\therefore P(A \cup B) = P(A) + P(B)$$ $$\Rightarrow$$ $P(A+B) = P(A) + P(B)$ ## 14.06 Multiplication theorem of probability or theorem of compound probability: The probability of occurence of two events A and B is equal to the product of probability of event A and B conditional probability of event B (When A has alreacy occured) (or equal to the product of probability of B and conditional probability of (A) i.e. and $$P(AB) = P(A) \cdot P\left(\frac{B}{A}\right)$$ or $P(A \cap B) = P(A) \cdot P\left(\frac{B}{A}\right)$ $$P(AB) = P(B) \cdot P\left(\frac{A}{B}\right) \quad \text{ort} \ P(A \cap B) = P(B) \cdot P\left(\frac{A}{B}\right)$$ **Proof:** Let the total number of mutually exclusive and exhaustive events are n out of which m events are favourable to event A and m_1 events are favourable to both the events A and B, then $$P(AB) = \frac{m_1}{n} = \frac{m_1}{m} \times \frac{m}{n}$$ but $$P(A) = \frac{m}{n}$$ $$P\left(\frac{B}{A}\right) = \frac{\text{Events favourable to A and B}}{\text{Events favourable to A}} = \frac{m_1}{m}$$ $$P(AB) = P(A). P\left(\frac{B}{A}\right)$$ Or $$P(AB) = P(\frac{B}{A}). P(A)$$ similarly we can prove that $$P(AB) = P(B). P\left(\frac{A}{B}\right)$$ or $P(AB) = P\left(\frac{A}{B}\right). P(B)$ $$\Rightarrow$$ $P(AB) = P(B)$. $P\left(\frac{A}{B}\right)$ or $P(AB) = P(A)$. $P\left(\frac{B}{A}\right)$ **Sub theorem**: If the events A and B are independent then $$P\left(\frac{B}{A}\right) = P(B)$$ $$P(AB) = P(A). P(B)$$ Generalisation: If $A_1, A_2, ..., A_n$ are independent events $$P(A_1 A_2 A_3 \dots A_n) = P(A_1) \cdot P(A_2) \cdot P(A_3) \cdot \dots P(A_n)$$ ## 14.07 Probability of Atleast one event: If the probabilities of n independent events are $p_1, p_2, ..., p_n$ then we have to find the probability of atleast one of the event to occur. Let $A_1, A_2, ..., A_n$ are independent events with probabilities $p_1, p_2, ..., p_n$ then $P(A_1) = p_1, P(A_2) = p_2, \dots P(A_n) = p_n$ and $$P(\overline{A}_1) = 1 - p_1, \quad P(\overline{A}_2) = 1 - p_2, \dots, P(\overline{A}_n) = 1 - p_n$$ since $A_1, A_2, ..., A_n$ are independent events therefore $\overline{A}_1, \overline{A}_2, ..., \overline{A}_n$ are also independent Therefore by multiplication theorem of probability of none of the events to occur. = $$P(\overline{A}_1, \overline{A}_2,....\overline{A}_n)$$ = $P(\overline{A}_1) P(\overline{A}_2) P(\overline{A}_n)$ = $(1-p_1) (1-p_2) (1-p_n)$ Thus probability of occurence of atleast one event = 1- (Probability of none of the events to occur) = $$1-P(\bar{A}_1) P(\bar{A}_2) \dots P(\bar{A}_n)$$ $$= 1 - \{(1-p_1)(1-p_2).....(1-p_n)\}$$ ## **Illustrative Examples** **Example 10:** If the die is tossed twice then find the probability of getting a sum of 7 or 11. **Solution:** Total outcomes by throwing two dice $$=6 \times 6 = 36$$ Favourable outcomes to get a sum of 7 are (6,1), (5,2), (4,3), (3,4), (2,5), (1,6) = 6 $$P(7) = \frac{6}{36}$$ Favourable outcomes to get a sum of 11 are (6,5), (5,6) = 2 $$P(11) = \frac{2}{36}$$ Since the events are mutually exclusive hence the probability is $$P(7+11)=P(7) + P(11) = \frac{6}{36} + \frac{2}{36} = \frac{8}{36} = \frac{2}{9}$$ **Example 10:** A bag contains 2 white, 4 black and 5 red balls. Three balls are drawn at random. Find the probability that the balls drawn are of same colour. **Solution :** Total no, of balls in a bag 2+4+5=11, no. of ways of drawing 3 balls are $= {}^{11}C_3$ All the three balls can be red or black Probability of the three balls to be red = $\frac{{}^{5}C_{3}}{{}^{11}C_{3}} = \frac{10}{165}$ Probability of the three balls to be black = $\frac{{}^{4}C_{3}}{{}^{11}C_{3}} = \frac{4}{165}$ \therefore both the events are mutually exclusive hence the required probability $=\frac{10}{165}+\frac{4}{165}=\frac{14}{165}$ **Example 11:** One card is drawn from the well shuffled deck of 52 cards, find the probability that it is an ace or a card of heart. **Solution:** Let event A denotes 'a card is an ace and event B denotes' a card is an heart. Here A and B are not mutually exclusive events, as the card drawn may be an ace of heart thus by addition theorem of probability. $$P(A+B) = P(A) + P(B) - P(AB)$$ Total outcomes for event $A = {}^{52}C_1 = 52$ Drawing one ace out of 4 whose favourable condition= ${}^4C_1 = 4$ $$P(A) = \frac{4}{52} = \frac{1}{13}$$ total coutcomes for event= ${}^{52}C_{1} = 52$ favourable outcomes for event= ${}^{13}C_{1} = 13$ (13 cards of each suit) $$\therefore P(B) = \frac{13}{52}$$ Favourable condition of event A and B to occur = 1 $$\therefore P(AB) = \frac{1}{52} \text{ (when it is an ace of heart)}$$ $$\Rightarrow$$ $P(A+B) = P(A) + P(B) - P(AB)$ $$P(A+B) = \frac{4}{52} + \frac{13}{52} - \frac{1}{52} = \frac{16}{52} = \frac{4}{13}$$ **Example 12:** A, B, C participate in different competitions. Probability of A's success is 2/5, B's success is 1/68 and C is 5/8. Find the Probability that - (i) All the three succeded - (ii) Atleast one of them succeded Solution: here $$P(A) = \frac{2}{5}$$ $$P(A) = \frac{2}{5}$$: $P(\bar{A}) = 1 - \frac{2}{5} = \frac{3}{5}$ $$P(B) = \frac{1}{8} ...$$ $$P(B) = \frac{1}{8}$$.. $P(\bar{B}) = 1 - \frac{1}{8} = \frac{7}{8}$ $$P(C) = \frac{5}{8}$$ $$P(C) = \frac{5}{8}$$.. $P(\overline{C}) = 1 - \frac{5}{8} = \frac{3}{8}$ (i) All the events independent event hence their probability = $P(ABC) = P(A) \cdot P(B) \cdot P(C)$ $$=\frac{2}{5}\cdot\frac{1}{8}\cdot\frac{5}{8}=\frac{1}{32}$$ (ii) Probability of atleast one of them to succeed = $$1 - P(\bar{A} \bar{B} \bar{C})$$ = $1 - P(\bar{A}) \cdot P(\bar{B}) \cdot P(\bar{C})$ = $1 - \frac{3}{5} \cdot \frac{7}{8} \cdot \frac{3}{8} = 1 - \frac{63}{320} = \frac{257}{320}$ **Example 13:** Mohan speaks truth in 60% of the cases whereas Sohan speak truth 80% of the cases. Find the probability of both of them to be contradictory of each other for some statement. **Solution:** Let events A and B denotes Mohan and Sohan's speaking truth $$P(A) = \frac{60}{100} = \frac{3}{5} \implies P(\overline{A}) = 1 - \frac{3}{5} = \frac{2}{5}$$ $$P(B) = \frac{80}{100} = \frac{4}{5} \implies P(\overline{B}) = 1 - \frac{4}{5} = \frac{1}{5}$$ - (i) Mohan is speaking truth and Sohan is not speaking the truth = $A\overline{B}$ - (ii) Sohan is speaking truth and Mohan is not speaking the truth = $\bar{A}B$ Since A, \overline{B} and \overline{B} , A are independent events $$P(\overline{A}B) = P(\overline{A}). \ P(B) = \frac{2}{5} \times \frac{4}{5} = \frac{8}{25}$$ $$P(A\overline{B}) = P(A). \ P(\overline{B}) = \frac{3}{5} \times \frac{1}{5} = \frac{3}{25}$$ Also $A\overline{B}$ and $\overline{A}B$ are mutually exclusive events $$\therefore \text{ Required Probability } P(\overline{A}B + A\overline{B}) = P(\overline{A}). P(B) + P(A). P(\overline{B}) = \frac{8}{25} + \frac{3}{25} = \frac{11}{25}$$ **Example 14:** Analysis the result of a class it is observed that 40 % students pass in maths, 25 % students pass in physics and 15 % students pass in maths and physics. A student is selected at randim then if he passes in maths then, find the probability that he passes in physics also. Solution: Let A be the event 'a student passes in maths' and B denotes 'a student passes in Physics' then $$P(A) = \frac{40}{100} = \frac{2}{5}$$ and $P(B) = \frac{25}{100} = \frac{1}{4}$ and $P(AB) = \frac{15}{100} = \frac{3}{20}$ Now we have to find $P\left(\frac{B}{A}\right)$ thus $$P(AB) = P(A) \cdot P\left(\frac{B}{A}\right)$$ or $$\frac{3}{20} = \frac{2}{5} \cdot P\left(\frac{B}{A}\right)$$ Required probability $$P\left(\frac{B}{A}\right) = \frac{3}{20} \times \frac{5}{2} = \frac{3}{8}$$ **Example 15:** Three critics review a book odds in favour of the book are 5:2, 4:3 and 3:4 respectively for three critics. Find the probability that the majority are in favour of the book. **Solution:** Let E_1 , E_2 and E_3 denoted the events that the book will be reviewed favoured by the first, second and third critic respectively. $$P(E_1) = \frac{5}{7},$$ $P(E_2) = \frac{4}{7},$ $P(E_3) = \frac{3}{7}$ $P(\overline{E}_1) = \frac{2}{7},$ $P(\overline{E}_2) = \frac{3}{7},$ $P(\overline{E}_3) = \frac{4}{7}$ Different cases in favour of book by
the critics are 1. $$E_1E_2E_3$$ 2. $\overline{E}_1E_2E_3$ 3. $E_1\overline{E}_2E_3$ 4. $E_1E_2\overline{E}_3$ Probability are $$P(E_1E_2E_3) = P(E_1) P(E_2) P(E_3) = \frac{5}{7} \times \frac{4}{7} \times \frac{3}{7} = \frac{60}{343}$$ $$P(\bar{E}_1E_2E_3) = P(\bar{E}_1) P(E_2) P(E_3) = \frac{2}{7} \times \frac{4}{7} \times \frac{3}{7} = \frac{24}{343}$$ $$P(E_1\bar{E}_2E_3) = P(E_1) P(\bar{E}_2) P(E_3) = \frac{5}{7} \times \frac{3}{7} \times \frac{3}{7} = \frac{45}{343}$$ $$P(E_1E_2\bar{E}_3) = P(E_1) P(E_2) P(\bar{E}_3) = \frac{5}{7} \times \frac{4}{7} \times \frac{4}{7} = \frac{80}{343}$$ Above cases are mutually exclusive, hence the probability are $$P(E_1E_2E_3) + P(\overline{E}_1E_2E_3) + P(E_1\overline{E}_2E_3) + P(E_1E_2\overline{E}_3)$$ $$=\frac{60}{343} + \frac{24}{343} + \frac{45}{343} + \frac{80}{343} = \frac{209}{343}$$ ## Exercise 14.3 - 1. If the probability of event A is 2/11 then find the probability of 'Not A'. - 2. In a gram panchayat there are 4 men and 6 women. If a member is selected for a committee randomly, find the probability that it is a women. - 3. A die is rolled. Find the probability of- - (i) Getting a prime number, (ii) Getting a number less than or equal to 1 (iii) Getting a number less than 6 - 4. A coin is tossed four times. Find the probability of getting head atleast three times. - 5. If a coin and a die is tossed together then find the probability of getting Head on the coin and even number on the die. - 6. Out of 20 people 5 are graduates. If 3 people are selected at random. What is the probability that he is a graduate? - 7. To solve a problem, the odds unfavourable to event A is 4 : 3 and odds in favour of event B is 7 : 5. What is the probability that - (i) The problem is solved (ii) The problem is not solved (iii) It is sloved by only one. - 8. An instrument will work only if its three components A, B and C work properly. Within a year the probability of a getting faulty is 0.15, of B it is 0.05 and C it is 0.10. What is the probability that the instrument gets faulty at the end of the year? - 9. Two cards are drawn in two turns at random from a pack of 52 cards. If in first turn the drawn card is not replaced then find the probability of getting two aces in first turn and two kings in second turn. - 10. A and B are two events such that $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{4}$ and $P(AB) = \frac{1}{12}$ then find $P(\frac{B}{A})$, - 11. Imagine that the ratio of men and children is 1:2. In a family of 5 children find the probability that (i) all are boys (ii) 3 are boys and 2 are girls. - 12. A hits a target correctly 3 out of 6 and B hits 2 out of 4 correctly and C hits 1 out of 4 correctly. What is the probability that atleast two people hit target correctly? ## **Miscellaneous Examples** **Example 16:** Two dice A and B are rolled simultaneously. A wins if he first gets 6 before B gets 7 and B wins if he rolls and gets 7 before A gets 6. If a starts rolling then prove that the probability of A's winning is 30/61. **Solution:** Let E_1 : getting a sum 6 on the two dice Total outcomes for event $E_1 = 6^2 = 36$ and favourable cases = (1,5), (2,4), (3,3), (4,2) and (5,1) Hence total favourable cases = 5 Required probability $$\therefore P(E_1) = \frac{5}{36}$$ and $P(\overline{E}_1) = 1 - \frac{5}{36} = \frac{31}{36}$ Again let E_2 : geting a sum 7 on the two dice Total coutcomes for event $E_2 = 36$ and favourable cases = (6,1), (5,2), (4,3), (3,4), (2,5) and (1,6) Required probability $$\therefore P(E_2) = \frac{6}{36} = \frac{1}{6}$$ and $P(\overline{E}_2) = 1 - \frac{1}{6} = \frac{5}{6}$ Probability of A's winning if he rolles first $P(E_1) = \frac{5}{36}$ (ii) Let the events \bar{E}_1 , \bar{E}_2 , E_1 represents A not getting 6 in first throw, B not getting 7 in the first throw and A getting 6 in the second throw, with probability $P(\bar{E}_1\bar{E}_2E_1) = P(\bar{E}_1)$. $P(\bar{E}_2)$. $P(E_1) = \frac{31}{36} \times \frac{5}{6} \times \frac{5}{36}$ (iii) Similarly probability of A's winning in the third throw $$P(\overline{E}_1\overline{E}_2\overline{E}_1\overline{E}_2E_1) = P(\overline{E}_1). P(\overline{E}_2). P(\overline{E}_1). P(\overline{E}_2). P(E_1) = \frac{31}{36} \times \frac{5}{6} \times \frac{31}{36} \times \frac{5}{6} \times \frac{5}{36}$$ Similarly probability can be found for n number fo throws. Now probability of A's winning $$= \frac{5}{36} + \frac{31}{36} \times \frac{5}{6} \times \frac{5}{36} + \frac{31}{36} \times \frac{5}{6} \times \frac{31}{36} \times \frac{5}{6} \times \frac{5}{36} + \dots = \frac{5/36}{1 - \frac{31}{36} \times \frac{5}{6}} = \frac{30}{61}$$ (Sum of infinite G.P.) **Example 17:** There are 6 red and 4 white balls in a bag. Two balls are chosen two times from the bag, find the probability of getting 2 red ball first time and 2 white balls second time but taking balls first time and again. (i) Put into the bag (ii) Don't put into the bag **Solution:** (i) When balls are placed into the bag: Total balls in bag = 6 + 4 = 10 Taking two balls from by = ${}^{10}C_2$ Total way to take 2 balls from 6 red balls = ${}^{6}C_2$ $\therefore \quad \text{First time probability of getting two red balls} = \frac{{}^{6}\text{C}_{2}}{{}^{10}\text{C}_{2}}$ Ways to take out 2 balls from 4 white balls= ${}^{4}C_{2}$ \therefore Second time probability of getting two white balls = $\frac{{}^{4}C_{2}}{{}^{10}C_{2}}$ The above events are independent, so required probability = $\frac{{}^{6}C_{2}}{{}^{10}C_{2}} \times \frac{{}^{4}C_{2}}{{}^{10}C_{2}} = \frac{1}{3} \times \frac{2}{15} = \frac{2}{45}$ (ii) When balls are not put into the bag: Second time 10-2 = 8 balls left in bag. Second time, probability of getting two white balls $=\frac{{}^{4}C_{2}}{{}^{8}C_{2}}$ Hence, required probability = $\frac{{}^6C_2}{{}^{10}C_2} \times \frac{{}^4C_2}{{}^8C_2} = \frac{1}{3} \times \frac{3}{14} = \frac{1}{14}$ Example 18: If A, B C are three events associated with a random experiment, prove that $$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) + P(A \cap B \cap C)$$ **Solution**: Consider $E = B \cup C$ so that $$P(A \cup B \cup C) = P(A \cup E)$$ $$= P(A) + P(E) - P(A \cap E)$$ $$= P(A) + P(E) - P(B \cap C)$$ $$(Using distribution property of intersection of sets over the union) Thus $$A \cap E = A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$ $$\Rightarrow P(A \cap E) = P(A \cap B) + P(A \cap C) - P(A \cap B) \cup (A \cap C)$$ $$\Rightarrow P(A \cap E) = P(A \cap B) + P(A \cap C) - P(A \cap B \cap C)$$ $$Example 19 : Find the probability that when 5 cards is drawn from a well shuffled deck of 52 cards, it contains (i) All kings (ii) Atleast 3 kings $$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap C) - P(A \cap B) - P(A \cap C) + P(A \cap B \cap C)$$ $$Example 19 : Find the probability that when 5 cards is drawn from a well shuffled deck of 52 cards, it contains (i) All kings (ii) Atleast 3 kings $$Solution : Total number of possible events = {}^{52}C_{5}$$ (ii) Number of events with 4 kings = ${}^{4}C_{4} \times {}^{48}C_{1}$ $$\therefore P(all kings) = {}^{4}C_{4} \times {}^{48}C_{1}$$ $$\therefore P(all kings) = {}^{4}C_{4} \times {}^{48}C_{1}$$ $$\frac{1}{{}^{52}C_{5}} + \frac{1}{{}^{54}145} = \frac{1}{54145} = \frac{19}{10829}$$ $$\frac{19}{10829}$$ $$\frac{19}{108$$$$$$$$ (ii) 1. 2. 3. 4. 5. 6. 7. 8. 9. | | (A) $P(A)+P(B)$ | | (B) $P(A)+P(B)-P(A)$ | A∩B) | | | | | | | | | | | |-----|--|--|--|--|--|--|--|--|--|--|--|--|--|--| | | (C) $P(A) \cdot P(B)$ | | (D) $P(A) \cdot P(B/A)$ | | | | | | | | | | | | | 10. | | g a question by three studer | , , , , , | and 11/4 then the probability | | | | | | | | | | | | | that atleast one will solve | | and the second of the second s | <i>y</i> . | | | | | |
| | | | | | | (A) 1/24 | (B) 1/4 | (C) 3/4 | (D) 1/9 | | | | | | | | | | | | 11. | Two dice are rolled, the | | ference of 1 on the dice is: | | | | | | | | | | | | | | (A) 5/18 | (B) 1/4 | (C) 2/9 | (D) 7/36 | | | | | | | | | | | | 12. | A card is drawn from a c | leck of cards, the probabi | ility of it being a red or bla | ck card is: | | | | | | | | | | | | | (A) 1/4 | (B) 1/2 | (C) 3/4 | (D) 26 / 51 | | | | | | | | | | | | 13. | Two dice are rolled, the probability of getting a sum of digit is multiple 4 is: | | | | | | | | | | | | | | | | (A) 1/4 | (B) 1/3 | (C) 1/9 | (D) 5/9 | | | | | | | | | | | | 14. | The probability of gettin | g even numbers on both th | ne ends of a five digit numb | er which is formed by using | | | | | | | | | | | | | the digits 1, 2, 3, 4, 5, 6 | and 8 : | | | | | | | | | | | | | | | (A) $5/7$ | (B) 4/7 | | (D) 2/7 | | | | | | | | | | | | 15. | Three dice are rolled, the | e probability of getting san | ne number on all the three o | lice is: | | | | | | | | | | | | | (A) 1/36 | (B) 3/22 | (C) 1/6 | (D) 1/18 | | | | | | | | | | | | 16. | | | | ourable to B is 4:1 then the | | | | | | | | | | | | | probability of winning the race by either of A or B is: | | | | | | | | | | | | | | | | (A) 1/5 | (B) 2/5 | (C) 3 / 5 | (D) 4/5 | | | | | | | | | | | | 17. | | | no two special students sitti | | | | | | | | | | | | | | (A) 1/5 | (B) 2/5 | (C) 3/5 | (D) 4/5 | | | | | | | | | | | | 18. | There are 12 bulbs in a box of which 4 are defective. 3 bulbs are drawn at random without replacement, the | | | | | | | | | | | | | | | | | probability of them being non-defective is : | | | | | | | | | | | | | | | (A) 3/55 | (B) 13/55 | (C) 14/55 | (D) 17/55 | | | | | | | | | | | | 19. | The probability of a sure | | F2X | | | | | | | | | | | | | | (A) 0 | (B) 1/2 | (C) 1 | (D) 2 | | | | | | | | | | | | 20. | | en of atleast one is a boy th | en find the probability of ha | aving 2 boys and 1 girl in the | | | | | | | | | | | | | family: | (D) 1/2 | (6) | (B) 2/4 | | | | | | | | | | | | | (A) 1/2 | (B) 1/3 | (C) 1/4 | (D) 3/4 | | | | | | | | | | | | 21. | The probability of taking | g exam in a class by a teac | ther is $\frac{1}{5}$ if a student rema | ins absent 2 times, then the | | | | | | | | | | | | | probability of not giving | atleast one exam is: | | | | | | | | | | | | | | | (A) 9/25 | (B) 11/25 | (C) 13 / 25 | (D) 23 / 25 | | | | | | | | | | | | 22. | Find the probability of ge | etting 53 Sundays in a non | -leap year. | | | | | | | | | | | | | 23. | If A and B are two mutua | ally exclusive events and I | P(A) = 0.3, P(B) = K and 1 | $P(A \cup B) = 0.5$ then find the | | | | | | | | | | | | | value of K. | | | | | | | | | | | | | | | 24. | Find the probability of bo | oth 'E' occuring together in | the word'PEACE', | | | | | | | | | | | | | 25. | | g. What is the probability t | | Ils drawn in the first attempt st attempt are red and in the | | | | | | | | | | | 26. probability that he speaks the truth. A man speaks truth 3 out of 5 times. He states that in tossing 6 coins, two times head appear. What is the - 27. Two dice are rolled. What is the probability that neither the same digit appear nor the sum of the digits is 9 on them? - 28. Three coins are tossed, find the probability of getting. - (1) Exactly two heads (2) Atleast two heads (3) Almost two heads - (4) All the three are heads - 29. In jockey race four horses A, B, C, D run. The ratio in favour of A, B, C and D is 1:3, 1:4, 1:5 and 1:6. Find the probability of winning by any one of them. - 30. In the next 25 years the probability of a person to remain alive is 3 / 5 while of his wife is 2 / 3 then find the following probability: - (1) both of them alive (2) both of them are not alive (3) atleast one of them is alive - (4) only the wife remains alive - 31. A and B are two independent speakers. The probability of A speaking the truth is x of B speaking the truth is y. If both A and B agrees on a statement then prove that the probability of the statement to be true is $$= \frac{xy}{1 - x - y + 2xy}$$ - 32. A,B,C tosses a coin one by one. The person wins if head appear at first. If A's turn is first, what is the probability that he wins? - 33. Sulakshna and Sunayna toss a coin simulteneously. The person wins if head appears at first. If Sulakshna's turn comes first then what is the probability of their winning. - 34. One one number is selected from a group of numbers: (1, 2, 3, 4, 5, 6, 7, 8, 9), (1, 2, 3, 4, 5, 6, 7, 8, 9) If p_1 , denotes the probability of sum of both the digits is 10 and p_2 denotes the probability of sum of both the digits is 8 then find $p_1 + p_2$, - 35. If P(A)=0.4, P(B)=0.8, P(B/A)=0.6 then find P(A/B) and $P(A \cup B)$, - 36. If P(E) = 0.35, P(F) = 0.45, $P(E \cup F) = 0.65$ then find P(F/E), - 37. A die is thrown 5 times, find the probability of getting a number 1. ## Important Points - 1. An experiment in any contect may result in any one of the sevens possible outcomes. Performing an experiment is known as a trial and outcomes of the experiment are known as events. - 2. Exhaustive events or total number of cases: In any experiment, the total possible outcomes is called exhaustive events or total number of cases. - 3. Favourable events or cases: In any experiment, favourable events or cases are the number in which that specific events occurs. - 4. Mutually exclusive or disjoint events: Two or more than two events are scid to be mutually exclusive events, if the occurrence of any one of them excludes the occurrence of the other event. - (i) Independent events: Two or more than two events are said to be independent events if the occurrence of one event does not affects the occurrence of another event. - (ii) Dependent events: Two or more than two events are said to be dependent events if the occurrence of one event affects the occurrence of another event. - 6. Sample point and sample space: The set of all possible outcomes of a random experiment is called sample space associated with the experiment; sample space is denoted by the symbol 'S'. Each element of the sample space is called a sample point. - Elementry event: A subset only one element of sample space related to random experiment is called as elementry events. - 8. Compound event: The subsets of sample space S of an experiment which are made of combination of subsets of elementary of sample space S. - 9. Impossible and certain events: The empty set ϕ and the sample space S describe events being subsets of S. In fact ϕ is called impossible event and S, i.e. the whole sample space is called sure event. - 10. Probability: Probability of favourable event A is $$P(A) = \frac{\text{Favourable cases of A}}{\text{Total cases of A}} = \frac{m}{n} \quad \text{(numerical value)}$$ or $$P(A) = \frac{\text{No. of elements in A}}{\text{No. of elements in S}} = \frac{n(A)}{n(S)}$$ Probability of not A $$P(\overline{A}) = \frac{\text{Unfavourable cases of A}}{\text{Total cases of A}} = \frac{n-m}{n}$$ 11. $$P(\bar{A}) = 1 - P(A)$$ or $P(A) + P(\bar{A}) = 1$ - 12. The range of probability A, $0 \le P(A) \le 1$ - 13. Odds in favour of event $A = \frac{m}{n-m} = \frac{P(A)}{P(\overline{A})}$ - 14. Odds against event $A = \frac{n-m}{m} = \frac{P(\overline{A})}{P(A)}$ - 15. Addition theorem of Probability: - (1) If the events are not mutually exclusive $$P(A+B) = P(A) + P(B)$$ or $P(A \cup B) = P(A) + P(B)$ $P(A+B+C+...) = P(A) + P(B) + P(C) + ... = P(A \cup B \cup C...)$ (2) If the events are not mutually exclusive $$P(A+B) = P(A) + P(B) - P(AB)$$ or $$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$ 16. Multiplication theorem of Probability: Probability of happening of any two events A and B together $$P(AB) = P(A)$$. $P\left(\frac{B}{A}\right)$ or $P(A \cap B) = P(A)$. $P\left(\frac{B}{A}\right)$ or $$P(AB) = P(B)$$. $P\left(\frac{A}{B}\right)$ or $P(A \cap B) = P(B)$. $P\left(\frac{A}{B}\right)$ if A, B are independent events $$P(AB) = P(A)$$. $P(B)$ or $P(A \cap B) = P(A)$. $P(B)$ If $$A_1, A_2, \dots, A_n$$ are independent events, then $P(A_1A_2A_3, \dots, A_n) = P(A_1) \cdot P(A_2) \cdot P(A_3) \cdot \dots \cdot P(A_n)$ - 17. If A_1, A_2, \dots, A_n are independent events whose probabilities are respectively p_1, p_2, \dots, p_n . Probability of occurence of at least one is - = 1 -None of the events occur - $= 1 P(\overline{A}_1) P(\overline{A}_2) ... P(\overline{A}_n)$ - $= 1 \{(1 p_1) (1 p_2) \dots (1 p_n)\}\$ ### Answers ## Exercise 14.1 - 1. {DDD, DDN, DND, NDD, DNN, NDN, NND, NNN} - 2.256 - 3. Not - **4.** (i) {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)} (ii) {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)} #### Exercise 14.2 - 1. 1/3 2. 1/4 - **3.** 7 / 17 - 4. 1/4 - **5.** 5 / 18 - **6.** 6/7 - 7. 1:12 - **8.** 5:7 **9.** $\frac{n-3}{2}$ **10.** 5/6 **11.** 1/4 - **12.** 5 / 108 - **13.** 2 / 5 **14.** 3 / 13 - **15.** 5 / 204 ## Exercise 14.3 - **2.** 3 / 5 1.9/11 - **3.** (i) 1/2; (ii) 1/6; (iii) 5/6 **4.** 5/16 - 5.1/4 - **6.** 137 / 228 - 7. (i) 16/21; (ii) 5/21; (iii) 43/84 - **8.** 0.27325 - **9.** 6 / 270725 **10.** 1 / 4 11. (i) 1/32; (ii) 5/16 12. 3/8 ## Miscellaneous Exercise 14 - 1. (B) - 2. (D) 9. (A) - 3. (A) - 4. (C) - 5. (C) - 6. (D) - 7. (B) - 8. (B) 15. (A) - **10.** (C) - 11. (A) - 12. (B) - 13. (A) - 14. (D) - 16. (C) - 17. (D) - 18. (C) - 19. (C) - 20. (B) - 21. (A) - 22. $\frac{1}{7}$ - **23.** 0.2 - **24.** 2 / 5 **25.** (i) $\frac{150}{143143}$ - **26.** $\frac{45}{143}$ **27.** $\frac{13}{18}$ - **28.** $\frac{3}{8}, \frac{1}{2}, \frac{7}{8}, \frac{1}{8}$ - **29.** $\frac{319}{420}$ **30.** $\frac{2}{5}, \frac{2}{15}, \frac{13}{15}, \frac{4}{15}$ **32.** $\frac{4}{7}, \frac{2}{7}, \frac{1}{7}$ **33.** $\frac{2}{3}, \frac{1}{3}$ - **34.** $\frac{16}{81}$ **35.** 0.3, 0.96 - **36.** $\frac{3}{7}$ **37.** $5\left(\frac{1}{6}\right)^5$ ## Appendix A # Logarithms | | 0 | 1.0 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | | M | lean | Diff | eren | ces | | The state of s | |----------------------------
--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------|----------------------------|--------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--| | | U | | Z i | 11 | | | | 市 数 | 0 | 9 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | 10 | 0000 | 0043 | 0086 | 0128 | 0170 | 0212 | 0253 | 0294 | 0334 | 0374 | 4 | 8 | 12 | 17 | 21 | 25 | 29 | 33 | 37 | | 11
12
13
14
15 | 0414
0792
1139
1461
1761 | 0453
0828
1173
1492
1790 | 0492
0864
1206
1523
1818 | 0531
0899
1239
1553
1847 | 0569
0934
1271
1584
1875 | 0607
0969
1303
1614
1903 | 0645
1004
1335
1644
1931 | 0682
1038
1367
1673
1959 | 0719
1072
1399
1703
1987 | 0755
1106
1430
1732
2014 | 4 3 3 3 3 | 8
7
6
6
6 | 11
10
10
9
8 | 15
14
13
12
11 | 19
17
16
15
14 | 23
21
19
18
17 | 26
24
23
21
20 | 30
28
26
24
22 | 34
31
29
27
25 | | 16
17
18
19
20 | 2041
2304
2553
2788
3010 | 2068
2330
2577
2810
3032 | 2095
2355
2601
2833
3054 | 2122
2380
2625
2856
3075 | 2148
2405
2648
2878
3096 | 2175
2430
2672
2900
3118 | 2201
2455
2695
2923
3139 | 2227
2480
2718
2945
3160 | 2253
2504
2742
2967
3181 | 2279
2529
2765
2989
3201 | 3 2 2 2 2 2 | 5
5
5
4
4 | 8
7
7
7
6 | 11
10
9
9
8 | 13
12
12
11
11 | 16
15
14
13
13 | 18
17
16
16
15 | 21
20
19
18
17 | 24
22
21
20
19 | | 21
22
23
24
25 | 3222
3424
3617
3802
3979 | 3243
3444
3636
3820
3997 | 3263
3464
3655
3838
4014 | 3284
3483
3674
3856
4031 | 3304
3502
3692
3874
4048 | 3324
3522
3711
3892
4065 | 3345
3541
3729
3909
4082 | 3365
3560
3747
3927
4099 | 3385
3579
3766
3945
4116 | 3404
3598
3784
3962
4133 | 2
2
2
2
2 | 4
4
4
4
3 | 6
6
6
5
5 | 8
8
7
7
7 | 10
10
9
9 | 12
12
11
11
10 | 14
14
13
12
12 | 16
15
15
14
14 | 18
17
17
16
15 | | 26
27
28
29
30 | 4150
4314
4472
4624
4771 | 4166
4330
4487
4639
4786 | 4183
4346
4502
4654
4800 | 4200
4362
4518
4669
4814 | 4216
4378
4533
4683
4829 | 4232
4393
4548
4698
4843 | 4249
4409
4564
4713
4857 | 4265
4425
4579
4728
4871 | 4281
4440
4594
4742
4886 | 4298
4456
4609
4757
4900 | 2 2 2 1 1 | 3 3 3 3 3 | 5
5
5
4
4 | 7
6
6
6
6 | 8
8
8
7
7 | 10
9
9
9 | 11
11
11
10
10 | 13
13
12
12
11 | 15
14
14
13
13 | | 31
32
33
34
35 | 4914
5051
5185
5315
5441 | 4928
5065
5198
5328
5453 | 4942
5079
5211
5340
5465 | 4955
5092
5224
5353
5478 | 4969
5105
5237
5366
5490 | 4983
5119
5250
5378
5502 | 4997
5132
5263
5391
5514 | 5011
5145
5276
5403
5527 | 5024
5159
5289
5416
5539 | 5038
5172
5302
5428
5551 | 1 1 1 1 1 | 3 3 3 2 | 4 4 4 4 | 6 5 5 5 5 | 7
7
6
6
6 | 8
8
8
8
7 | 10
9
9
9 | 11
10
10
10 | 12
12
12
11
11 | | 36
37
38
39
40 | 5563
5682
5798
5911
6021 | 5575
5694
5809
5922
6031 | 5587
5705
5821
5933
6042 | 5599
5717
5832
5944
6053 | 5611
5729
5843
5955
6064 | 5623
5740
5855
5966
6075 | 5635
5752
5866
5977
6085 | 5647
5763
5877
5988
6096 | 5658
5775
5888
5999
6107 | 5670
5786
5899
6010
6117 | 1 1 1 1 1 | 2
2
2
2
2
2 | 3 | 5 4 | 6
6
6
5
5 | 7
7
7
7
6 | 88888 | 10
9
9
9 | 11
10
10
10 | | 41
42
43
44
45 | 6128
6232
6335
6435
6532 | 6243
6345 | 6149
6253
6355
6454
6551 | 6160
6263
6365
6464
6561 | 6170
6274
6375
6474
6571 | 6180
6284
6385
6484
6580 | 6191
6294
6395
6493
6590 | 6201
6304
6405
6503
6599 | 6212
6314
6415
6513
6609 | | 1 1 1 1 1 1 | 2 2 2 2 2 | 3 | 4 | 5 | 6
6
6
6 | 7 7 7 | 8
8
8
8 | | | 46
47
48
49
50 | 6628
6721
6812
6902
6990 | 6911 | 6646
6739
6830
6920
7007 | 6656
6749
6839
6928
7016 | 6665
6758
6848
6937
7024 | 6675
6767
6857
6946
7033 | 6684
6776
6866
6955
7042 | 6693
6785
6875
6964
7050 | 6702
6794
6884
6972
7059 | 6803
6893
6981 | 1 1 1 1 1 1 | 2 2 2 2 2 2 | 3 | 4 | 5
4
4 | 5
5
5 | 6 | 7
7
7 | 8 8 8 | | 51
52
53
54 | 7076
7160
7243
7324 | 7251 | 7177
7259 | 7101
7185
7267
7348 | 7110
7193
7275
7356 | 7118
7202
7284
7364 | 7126
7210
7292
7372 | 7135
7218
7300
7380 | 7226 | 7235
7316 | 1 1 1 1 | 2 2 2 2 | 2 | 3 | 4 | 5 | 6 | 7 | 7 | ## Appendix A # Logarithms | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Mean Differences | | | | | | | | | | | |----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------|------------------|------------------|-----------|----------------------------|-----------------------|-----------------------|-----------------------|-----------------------|--|--| | 8 | | | | | | 3 | | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | | | 55 | 7404 | 7412 | 7419 | 7427 | 7435 | 7443 | 7451 | 7459 | 7466 | 7474 | 1 | 2 | 2 | 3 | 4 | 5 | 5 | 6 | 7 | | | | 56
57
58
59
60 | 7482
7559
7634
7709
7782 | 7490
7566
7642
7716
7789 | 7497
7574
7649
7723
7796 | 7505
7582
7657
7731
7803 | 7513
7589
7664
7738
7810 | 7520
7597
7672
7745
7818 | 7528
7604
7679
7752
7825 | 7536
7612
7686
7760
7832 | 7543
7619
7694
7767
7839 | 7551
7627
7701
7774
7846 | 1 1 1 1 1 | 2 2 1 1 1 | 2 2 2 2 2 | 3 3 3 3 3 | 4 4 4 4 | 5
5
4
4
4 | 55555 | 6 6 6 6 | 7
7
7
7
6 | | | | 61
62
63
64
65 | 7853
7924
7993
8062
8129 | 7860
7931
8000
8069
8136 | 7868
7938
8007
8075
8142 | 7875
7945
8014
8082
8149 | 7882
7952
8021
8089
8156 | 7889
7959
8028
8096
8162 | 7896
7966
8035
8102
8169 | 7903
7973
8041
8109
8176 | 7910
7980
8048
8116
8182 | 7917
7987
8055
8122
8189 | 1 1 1 1 1 | 1
1
1
1 | 2 2 2 2 2 | 3 3 3 3 3 | 4 3 3 3 3 | 4
4
4
4 | 5 5 5 5 5 | 6 6 5 5 5 | 6 6 6 6 | | | | 66
67
68
69
70 | 8195
8261
8325
8388
8451 | 8202
8267
8331
8395
8457 | 8209
8274
8338
8401
8463 |
8215
8280
8344
8407
8470 | 8222
8287
8351
8414
8476 | 8228
8293
8357
8420
8482 | 8235
8299
8363
8426
8488 | 8241
8306
8370
8432
8494 | 8248
8312
8376
8439
8500 | 8254
8319
8382
8445
8506 | 1 1 1 1 1 | 1 1 1 1 1 | 2 2 2 2 2 | 3 3 2 2 | 3 3 3 3 | 4
4
4
4 | 5
5
4
4
4 | 5 5 5 5 5 | 6 6 6 | | | | 71
72
73
74
75 | 8513
8573
8633
8692
8751 | 8519
8579
8639
8698
8756 | 8525
8585
8645
8704
8762 | 8531
8591
8651
8710
8768 | 8537
8597
8657
8716
8774 | 8543
8603
8663
8722
8779 | 8549
8609
8669
8727
8785 | 8555
8615
8675
8733
8791 | 8561
8621
8681
8739
8797 | 8567
8627
8686
8745
8802 | 1 1 1 1 1 | 1 1 1 1 1 | 2 2 2 2 2 | 2 2 2 2 2 | 3 3 3 3 3 | 4
4
4
4
3 | 4 4 4 4 4 | 55555 | 555555 | | | | 76
77
78
79
80 | 8808
8865
8921
8976
9031 | 8814
8871
8927
8982
9036 | 8820
8876
8932
8987
9042 | 8825
8882
8938
8993
9047 | 8831
8887
8943
8998
9053 | 8837
8893
8949
9004
9058 | 8842
8899
8954
9009
9063 | 8848
8904
8960
9015
9069 | 8854
8910
8965
9020
9074 | 8859
8915
8971
9025
9079 | 1 1 1 1 1 | 1 1 1 1 | 2 2 2 2 2 | 2 2 2 2 2 | 3 3 3 3 3 | 3 3 3 3 | 4 4 4 4 4 | 5
4
4
4
4 | 5555 | | | | 81
82
83
84
85 | 9085
9138
9191
9243
9294 | 9090
9143
9196
9248
9299 | 9096
9149
9201
9253
9304 | 9101
9154
9206
9258
9309 | 9106
9159
9212
9263
9315 | 9112
9165
9217
9269
9320 | 9117
9170
9222
9274
9325 | 9122
9175
9227
9279
9330 | 9128
9180
9232
9284
9335 | 9133
9186
9238
9289
9340 | 1 1 1 1 1 | 1 1 1 1 1 | 2 2 2 2 2 | 2 2 2 2 2 | 33333 | 3.33333 | 4 4 4 4 | 4
4
4
4
4 | 2000 | | | | 86
87
88
89
90 | 9345
9395
9445
9494
9542 | 9350
9400
9450
9499
9547 | 9355
9405
9455
9504
9552 | 9360
9410
9460
9509
9557 | 9365
9415
9465
9513
9562 | 9370
9420
9469
9518
9566 | 9375
9425
9474
9523
9571 | 9380
9430
9479
9528
9576 | 9385
9435
9484
9533
9581 | 9390
9440
9489
9538
9586 | 1 0 0 0 0 | 1 1 1 1 1 | 2
1
1
1 | 2 2 2 2 2 | 3
2
2
2
2 | 3 3 3 3 3 | 4 3 3 3 3 3 | 4
4
4
4
4 | 4 4 4 | | | | 91
92
93
94
95 | 9590
9638
9685
9731
9777 | 9595
9643
9689
9736
9782 | 9600
9647
9694
9741
9786 | 9605
9652
9699
9745
9791 | 9609
9657
9703
9750
9795 | 9614
9661
9708
9754
9800 | 9619
9666
9713
9759
9805 | 9624
9671
9717
9763
9809 | 9628
9675
9722
9768
9814 | 9633
9680
9727
9773
9818 | 0 0 0 0 0 | 1 1 1 1 1 | 1
1
1
1 | 2 2 2 2 2 | 2
2
2
2
2
2 | 3 3 3 3 3 | 3 3 3 3 3 | 4
4
4
4
4 | 4 4 4 | | | | 96
97
98
99 | 9823
9868
9912
9956 | 9827
9872
9917
9961 | 9832
9877
9921
9965 | 9836
9881
9926
9969 | 9841
9886
9930
9974 | 9845
9890
9934
9978 | 9850
9894
9939
9983 | 9854
9899
9943
9987 | 9859
9903
9948
9991 | 9863
9908
9952
9996 | 0000 | 1 1 1 1 | 1
1
1 | 2 2 2 2 | 2 2 2 2 | 3 3 3 3 | 3 3 3 3 | 4 4 4 3 | 4 4 4 | | | ## Appendix B # Antilogarithms | | 21 489 | ext U | ossM. | , | 1. | 5 | 6 | 7 | | 0 | | 21 | M | ean | Diffe | erenc | es | 1 | | |----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------|------------------|-----------------------|-------------|-----------|-----------------------|------------------|-----------------------|---| | 10, | 0 | a 1 | 2 | 3 | 4 | 3 | | | 8 | 9 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | 00 | 1000 | 1002 | 1005 | 1007 | 1009 | 1012 | 1014 | 1016 | 1019 | 1021 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | | 01
02
03
04
05 | 1023
1047
1072
1096
1122 | 1026
1050
1074
1099
1125 | 1028
1052
1076
1102
1127 | 1030
1054
1079
1104
1130 | 1033
1057
1081
1107
1132 | 1035
1059
1084
1109
1135 | 1038
1062
1086
1112
1138 | 1040
1064
1089
1114
1140 | 1042
1067
1091
1117
1143 | 1045
1069
1094
1119
1146 | 0 0 0 0 | 0 0 0 1 1 | 1 1 1 1 1 | 1 1 1 1 | 1 1 1 1 1 | 1 1 1 2 2 | 2 2 2 2 2 | 2 2 2 2 2 | 2 2 2 2 2 2 | | 06
07
08
09 | 1148
1175
1202
1230
1259 | 1151
1178
1205
1233
1262 | 1153
1180
1208
1236
1265 | 1156
1183
1211
1239
1268 | 1159
1186
1213
1242
1271 | 1161
1189
1216
1245
1274 | 1164
1191
1219
1247
1276 | 1167
1194
1222
1250
1279 | 1169
1197
1225
1253
1282 | 1172
1199
1227
1256
1285 | 0 0 0 0 | 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 | 2 2 2 2 2 | 2 2 2 2 2 | 2 2 2 2 2 | Name | | 11
12
13
14
15 | 1288
1318
1349
1380
1413 | 1291
1321
1352
1384
1416 | 1294
1324
1355
1387
1419 | 1297
1327
1358
1390
1422 | 1300
1330
1361
1393
1426 | 1303
1334
1365
1396
1429 | 1306
1337
1368
1400
1432 | 1309
1340
1371
1403
1435 | 1312
1343
1374
1406
1439 | 1315
1346
1377
1409
1442 | 0 0 0 0 0 | 1 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 2 2 2 2 2 | 2 2 2 2 2 | 2 2 2 2 2 | 2 2 3 3 3 | Caroling Contract | | 16
17
18
19
20 | 1445
1479
1514
1549
1585 | 1449
1483
1517
1552
1589 | 1452
1486
1521
1556
1592 | 1455
1489
1524
1560
1596 | 1459
1493
1528
1563
1600 | 1462
1496
1531
1567
1603 | 1466
1500
1535
1570
1607 | 1469
1503
1538
1574
1611 | 1472
1507
1542
1578
1614 | 1476
1510
1545
1581
1618 | 0 0 0 0 0 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 1 | 2 2 2 2 2 | 2 2 2 2 2 | 2 2 2 3 3 | 3 3 3 3 | *************************************** | | 21
22
23
24
25 | 1622
1660
1698
1738
1778 | 1626
1663
1702
1742
1782 | 1629
1667
1706
1746
1786 | 1633
1671
1710
1750
1791 | 1637
1675
1714
1754
1795 | 1641
1679
1718
1758
1799 | 1644
1683
1722
1762
1803 | 1648
1687
1726
1766
1807 | 1652
1690
1730
1770
1811 | 1656
1694
1734
1774
1816 | 0 0 0 0 0 | 1 1 1 1 1 | 1 1 1 1 1 | 2 2 2 2 2 | 2 2 2 2 2 | 2 2 2 2 2 | 3 3 3 3 3 | 3 3 3 3 3 | | | 26
27
28
29
30 | 1820
1862
1905
1950
1995 | 1824
1866
1910
1954
2000 | 1828
1871
1914
1959
2004 | 1832
1875
1919
1963
2009 | 1837
1879
1923
1968
2014 | 1841
1884
1928
1972
2018 | 1845
1888
1932
1977
2023 | 1849
1892
1936
1982
2028 | 1854
1897
1941
1986
2032 | 1858
1901
1945
1991
2037 | 0 0 0 0 0 | 1 1 1 1 | 1 1 1 1 1 | 2 2 2 2 2 | 2 2 2 2 2 | 3 3 3 3 | 33333 | 3 4 4 4 | | | 31
32
33
34
35 | 2042
2089
2138
2188
2239 | 2046
2094
2143
2193
2244 | 2051
2099
2148
2198
2249 | 2056
2104
2153
2203
2254 | 2061
2109
2158
2208
2259 | 2065
2113
2163
2213
2265 | 2070
2118
2168
2218
2270 | 2075
2123
2173
2223
2275 | 2080
2128
2178
2228
2280 | 2084
2133
2183
2234
2286 | 0 0 0 1 1 1 | 1
1
1
1 | 1
1
1
2
2 | 2 2 2 2 2 | 2 2 2 3 3 | 33333 | 3
3
4
4 | 4
4
4
4 | | | 36
37
38
39
40 | 2291
2344
2399
2455
2512 | 2296
2350
2404
2460
2518 | 2301
2355
2410
2466
2523 | 2307
2360
2415
2472
2529 | 2312
2366
2421
2477
2535 | 2317
2371
2427
2483
2541 | 2323
2377
2432
2489
2547 | 2328
2382
2438
2495
2553 | 2333
2388
2443
2500
2559 | 2339
2393
2449
2506
2564 | 1 1 1 1 1 | 1
1
1
1 | 2 2 2 2 2 | 2 2 2 2 2 | 3 3 3 3 | 3 3 3 4 | 4 4 4 4 | 4
4
4
5
5 | | | 41
42
43
44
45 | 2570
2630
2692
2754
2818 | 2576
2636
2698
2761
2825 | 2582
2642
2704
2767
2831 | 2588
2649
2710
2773
2838 | 2594
2655
2716
2780
2844 | 2600
2661
2723
2786
2851 | 2606
2667
2729
2793
2858 | 2612
2673
2735
2799
2864 | 2618
2679
2742
2805
2871 | 2624
2685
2748
2812
2877 | 1 1 1 1 1 | 1
1
1
1 | 2 2 2 2 2 | 2 2 3 3 3 3 | 3 3 3 3 | 4
4
4
4
4 | 4 4 4 5 | 5 5 5 5 5 | | | 46
47
48
49 | 2884
2951
3020
3090 | 2891
2958
3027
3097 | 2897
2965
3034
3105 | 2904
2972
3041
3112 | 2911
2979
3048
3119 | 2917
2985
3055
3126 | 2924
2992
3062
3133 | 2931
2999
3069
3141 | 2938
3006
3076
3148 | 2944
3013
3083
3155 | 1 1 1 1 | 1 1 1 | 2 2 2 2 | 3 3 3 3 | 3 4 4 | 4
4
4
4 | 5 5 5 5 | 5 6 6 | | ## Appendix B # Antilogarithms | Degrees | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Mean Differences | | | | | | | | | | |--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------
--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------|-----------------------|-----------------------|------------------|---------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--| | Deg | V III | ind less | | , | 88- | | | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | | 50 | 3162 | 3170 | 3177 | 3184 | 3192 | 3199 | 3206 | 3214 | 3221 | 3228 | 1 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 | | | 51
52
53
54
55 | 3236
3311
3388
3467
3548 | 3243
3319
3396
3475
3556 | 3251
3327
3404
3483
3565 | 3258
3334
3412
3491
3573 | 3266
3342
3420
3499
3581 | 3273
3350
3428
3508
3589 | 3281
3357
3436
3516
3597 | 3289
3365
3443
3524
3606 | 3296
3373
3451
3532
3614 | 3304
3381
3459
3540
3622 | 1 1 1 1 1 | 2 2 2 2 2 | 2 2 2 2 2 | 33333 | 4 4 4 4 | 55555 | 55666 | 6
6
6
6
7 | | | | 56
57
58
59
60 | 3631
3715
3802
3890
3981 | 3639
3724
3811
3899
3990 | 3648
3733
3819
3908
3999 | 3656
3741
3828
3917
4009 | 3664
3750
3837
3926
4018 | 3673
3758
3846
3936
4027 | 3681
3767
3855
3945
4036 | 3690
3776
3864
3954
4046 | 3698
3784
3873
3963
4055 | 3707
3793
3882
3972
4064 | 1 1 1 1 1 | 2 2 2 2 2 | 3 3 3 3 | 3 4 4 4 | 4 4 5 5 | 55556 | 66666 | 7 7 7 7 7 | 8 8 8 8 | | | 61
62
63
64
65 | 4074
4169
4266
4365
4467 | 4083
4178
4276
4375
4477 | 4093
4188
4285
4385
4487 | 4102
4198
4295
4395
4498 | 4111
4207
4305
4406
4508 | 4121
4217
4315
4416
4519 | 4130
4227
4325
4426
4529 | 4140
4236
4335
4436
4539 | 4150
4246
4345
4446
4550 | 4159
4256
4355
4457
4560 | 1 1 1 1 1 | 2 2 2 2 2 | 3 3 3 3 | 4 4 4 4 | 5 5 5 5 5 | 66666 | 7 7 7 7 7 | 88888 | 0,0,0,0 | | | 66
67
68
69
70 | 4571
4677
4786
4898
5012 | 4581
4688
4797
4909
5023 | 4592
4699
4808
4920
5035 | 4603
4710
4819
4932
5047 | 4613
4721
4831
4943
5058 | 4624
4732
4842
4955
5070 | 4634
4742
4853
4966
5082 | 4645
4753
4864
4977
5093 | 4656
4764
4875
4989
5105 | 4667
4775
4887
5000
5117 | 1 1 1 1 1 | 2 2 2 2 2 | 3 3 3 4 | 4 4 5 5 | 5 6 6 6 | 6 7 7 7 7 | 7
8
8
8
8 | 9 9 9 9 | 10
10
10
10
10 | | | 71
72
73
74
75 | 5129
5248
5370
5495
5623 | 5140
5260
5383
5508
5636 | 5152
5272
5395
5521
5649 | 5164
5284
5408
5534
5662 | 5176
5297
5420
5546
5675 | 5188
5309
5433
5559
5689 | 5200
5321
5445
5572
5702 | 5212
5333
5458
5585
5715 | 5224
5346
5470
5598
5728 | 5236
5358
5483
5610
5741 | 1
1
1
1 | 2 2 3 3 3 | 4
4
4
4
4 | 5 5 5 5 5 | 6
6
6
6
7 | 7
7
8
8
8 | 89999 | 10
10
10
10
10 | 1: 1: 1: 1: | | | 76
77
78
79
80 | 5754
5888
6026
6166
6310 | 5768
5902
6039
6180
6324 | 5781
5916
6053
6194
6339 | 5794
5929
6067
6209
6353 | 5808
5943
6081
6223
6368 | 5821
5957
6095
6237
6383 | 5834
5970
6109
6252
6397 | 5848
5984
6124
6266
6412 | 5861
5998
6138
6281
6427 | 5875
6012
6152
6295
6442 | 1 1 1 1 1 | 3 3 3 3 3 | 4 4 4 4 | 5 5 6 6 6 | 7
7
7
7
7 | 88899 | 9
10
10
10
10 | 11
11
11
11
12 | 1: 1: 1: 1: | | | ·81
·82
·83
·84
·85 | 6457
6607
6761
6918
7079 | 6471
6622
6776
6934
7096 | 6486
6637
6792
6950
7112 | 6501
6653
6808
6966
7129 | 6516
6668
6823
6982
7145 | 6531
6683
6839
6998
7161 | 6546
6699
6855
7015
7178 | 6561
6714
6871
7031
7194 | 6577
6730
6887
7047
7211 | 6592
6745
6902
7063
7228 | 2 2 2 2 2 2 | 3 3 3 3 3 | 5 5 5 5 | 6
6
6
7 | 8 8 8 8 8 | 9
9
9
10
10 | 11
11
11
11
11 | 12
12
13
13
13 | 14 14 14 14 | | | · 86
· 87
· 88
· 89
· 90 | 7244
7413
7586
7762
7943 | 7261
7430
7603
7780
7962 | 7278
7447
7621
7798
7980 | 7295
7464
7638
7816
7998 | 7311
7482
7656
7834
8017 | 7328
7499
7674
7852
8035 | 7345
7516
7691
7870
8054 | 7362
7534
7709
7889
8072 | 7379
7551
7727
7907
8091 | 7396
7568
7745
7925
8110 | 2
2
2
2
2
2 | 3 3 4 4 4 4 | 5 5 5 5 6 | 7 7 7 7 7 | 89999 | 10
10
11
11
11 | 12
12
12
13
13 | 13
14
14
14
15 | 19 10 10 11 | | | ·91
·92
·93
·94
·95 | 8128
8318
8511
8710
8913 | 8147
8337
8531
8730
8933 | 8166
8356
8551
8750
8954 | 8185
8375
8570
8770
8974 | 8204
8395
8590
8790
8995 | 8222
8414
8610
8810
9016 | 8241
8433
8630
8831
9036 | 8260
8453
8650
8851
9057 | 8279
8472
8670
8872
9078 | 8299
8492
8690
8892
9099 | 2 2 2 2 2 | 4
4
4
4
4 | 6 6 6 6 | 88888 | 9
10
10
10
10 | 11
12
12
12
12 | 13
14
14
14
15 | 15
15
16
16
17 | 1:
1:
1:
1:
1: | | | ·96
·97
·98
·99 | 9120
9333
9550
9772 | 9141
9354
9572
9795 | 9162
9376
9594
9817 | 9183
9397
9616
9840 | 9204
9419
9638
9863 | 9226
9441
9661
9886 | 9247
9462
9683
9908 | 9268
9484
9705
9931 | 9290
9506
9727
9954 | 9311
9528
9750
9977 | 2
2
2
2
2 | 4
4
4
5 | 6
7
7
7 | 8 9 9 9 | 11
11
11
11 | 13 | 15
15
16
16 | 17
17
18
18 | 1: 2: 2: 2: 2: | |