PHYSICAL OPTICS

SYNOPSIS

WAVE FRONT:

• A continuous locus of all the points which are in the same phase or state of vibration.

A Point source of light produces a spherical wave front.

A linear source of light produces a cylindrical wave front

• Any wave front from a distant source is a plane wave front

- Huygens enunciated a principle to explain how a wave front advances in a medium.
- HUYGENS' PRINCIPLE: Every point on the wave front becomes a source of secondary disturbance and generates wavelets which spread out in the medium with the same velocity as that of light in the forward direction only.

• The envelope of these secondary waves at any instant of time gives the position of the new wave front at that instant.

• The wave front in medium is always perpendicular to the direction of wave propagation.

• **SUPERPOSITION PRINCIPLE:** When two or more waves travelling in the same region of space superpose one on the other, the total displacement at any point is equal to the vector sum of their individual displacements.

 $Y = y_1 + y_2 + \dots + \dots$

INTERFERENCE:

When two light waves of same frequency travelling in the same direction superpose with each other, the modification in the distribution of intensity of light

in the region of superposition is called Interference.

• Interference of light is a wave phenomenon when light added to light under suitable conditions may either produce no light or more light depending on the phase difference between the interfering beams. For a steady interference <u>Coherent Sources</u> are required.

• The source of light emitting wave of same frequency and travelling with either same phase or constant phase difference are called <u>Coherent Sources.</u>

• Two virtual sources derived from a single source can be used as identical <u>Coherent Sources.</u>

• The source producing the light wave travelling with rapid and random phase changes are called Incoherent Sources.

Ex: 1. Light emitted by two candles 2. Light emitted by two lamps.

PATH DIFFERENCE: The difference in the paths traversed by two light waves emitted by two coherent sources is called path difference.

• If the path difference is zero or n/, where n is an integer, they produce constructive interference.

If the path difference is $(2n+1)\frac{1}{2}$, where n is an

integer, they produce destructive inteference.

PHASE DIFFERENCE: The difference in angles expressed in radians between the waves at the time of arrival at a point is called phase difference.

• For constructive interference, the phase difference must be 2np (where n is an integer)

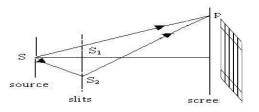
• For destructive interference, the phase difference must be n p [where n is a non zero integer]

phase difference = $\frac{2\pi}{\lambda}$ (path difference).

• The phase difference between any two points on a wave front is always zero.

CONDITIONS FOR STEADY INTERFERENCE:

- The two sources must be coherent.
- Two sources must be narrow.


• Two sources must be close together.

NOTE: The two sources must be mono chromatic, otherwise the fringes of different colours overlap and hence cannot be observed.

YOUNG'S DOUBLE SLIT EXPERIMENT:

• Young with his experiment measured the most important characteristic of the light wave i.e wavelength (*J*)

• Young's experiment conclusively established the wave nature of light.

When source illuminates the two slits, the pattern observed on the screen consists of large number of equally spaced bright and dark bands called "interference fringes"

• Two light waves of same amplitude a, same angular frequency ω and differing in phase by ' δ ' have the displacements

 $Y_1 = a \sin \omega t$; $y_2 = a \sin (\omega t + \delta)$

• When two such light waves superpose with each other the resultant amplitude of two waves is

R = 2a cos
$$\frac{\delta}{2}$$

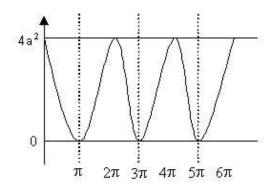
SR.PHYSICS

The resultant intensity of two waves is

$$I = R^2 = 4a^2 \cos^2 \frac{\delta}{2}$$

• When phase difference $\delta = 0, 2\pi, 4\pi, 6\pi$,

...2n π and path difference x= 0, λ , 2 λ , 3 λ ...n λ the resultant intensity I = 4a² which is maximum produces bright point. It is the condition for constructive interference.


• When phase difference $\delta = \pi$, 3π , 5π , (2n+1) π and path difference

$$\mathbf{x} = \frac{\lambda}{2}, \frac{3\lambda}{2}, \frac{5\lambda}{2}...(2n+1)\frac{\lambda}{2}$$

are observed between the waves the resultant intensity I = 0 which is minimum produces dark point. It is the condition for destructive interference.

• The resultant intensity is 4a² at bright points and minimum at dark points.

• Energy is transferred from the points of minimum intensity to the points of maximum intensity.

• **INTERFERENCE DUE TO UNEQUAL AMPLITUDES:** If two light waves of amplitudes A_1 and A_2 with intensities I_1 and I_2 superpose with each other.

> Maximum intensity $I_{max} \alpha (\sqrt{I_1} + \sqrt{I_2})^2$ (or) $I_{max} \alpha (A_1 + A_2)^2$

> Minimum intensity $I_{min} \alpha (\sqrt{I_1} - \sqrt{I_2})^2$

(or) $I_{min} \alpha (A_1 - A_2)^2$

APPLICATIONS OF INTERFERENCE:

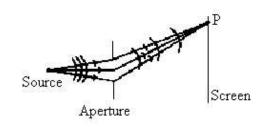
• It is used to determine the wave length of light (λ) precisely.

• To find the thickness or refractive index of transparent sheets.

- To test the flatness and parallelism of plane surfaces.
- In "Holography" to produce three dimensional images.

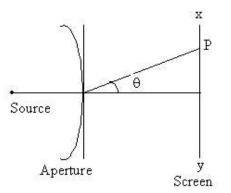
• In calibrating standard meter in terms of wave length of light.

• To minimize the reflective losses in lenses and solar cells by coating them with thin film of MgF_2 and SiO respectively.


• In Michelson Morley experiment to disprove the existence of ether medium.

DIFFRACTION:

- Bending of wave around obstacles is called diffraction
- Diffraction is a characteristic wave property.
- Diffraction is an effect exhibited by all electromagnetic waves, water waves and sound waves
- Dittraction takes place with very small moving particles such as atoms, neutrons and electrons which show wavelike properties.
- An obstacle kept in between a point source of light and screen produces a dark shadow on screen. The observations of the shadow reveals that
 - a. the shadow is not completely dark
 - b. edges of shadow are not perfectly black
 - c. some light encroaches into the dark zone.
 - d. dark fringes are observed in the illuminated zone of the shadow.
- When light passes through a narrow aperture some light is found to be encroached into shadow regions.
- When slit width is larger the encroachment of light is small and negligible.
- When slit width is comparable to wavelength of light the encroachment of light is more
- If the size of obstacle or aperture is comparable with the wave length of light, light deviates from rectilinear propagation near edges of obstacle or aperture and encroaches into geometrical shadow.
- The bending of light around edges of an obstacle on the encroachment of light within geometrical shadow is known as <u>"diffraction of light"</u>
- Diffraction phenomenon is classified into two types a)Fresnel diffraction


b) Fraunhoffer diffraction

 FRESNEL DIFFRACTION: The source or screen or both are at finite distances from diffracting device (obstacle or aperture)

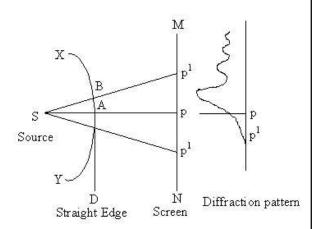
- In Fresnel diffraction, the effect at any point on the screen is due to exposed wave front which may be spherical or cylindrical in shape.
- Fresnel diffraction does not require any lens to modify the beam.

- Fresnel diffraction can be explained in terms of "half period zones or strips"
- FRAUNHOFER DIFFRACTION: The source and the screen are at infinite distance
 - from diffracting device (aperture or obstacle).
 - In Fraunhofer diffraction the wave front meeting the obstacle is plane wave front.
 - Fraunhofer diffraction requires lenses to modify the beam.
- The phenomenon of diffraction was explained by Fresnel combining Huygens' principle and interference of light.
- FRESNEL'S DIFFRACTION AT A SMALL APERTURE:
 - Fresnel's diffraction occurs when spherical or cylindrical wave fronts pass through a small aperture
 - The intensity at a point on the screen in front of the aperture depends on
 - 1. Number of Fresnel's half period zones to which the point is exposed
 - 2. The distance between point and aperture and
 - 3. Obliquity factor
 - The obliquity factor α (1+cos θ) where " θ " is the angle between the normal drawn to the screen passing through pole of wave front and the line joining the pole of wave front and the point of interest on the screen

• When $\theta = 0$, obliquity factor α 2. Hence intensity becomes maximum.

• When $\theta = 180^{\circ}$, obliquity factor = 0. Hence intensity is maximum in forward direction and zero in backward direction.

- The concept of obliquity factor clearly indicates that secondary wave intensity is maximum in forward direction and zero in backward direction
- Fresnel's explanation of diffraction strengthens Huygens' principle which states that THERE IS NO BACK WAVE IN PROPAGATION OF LIGHT.
- According to Fresnel wave front is made up of number of zones(strips or elements) divided in such a way that the path difference between


secondary waves coming from corresponding points in adjacent zones is half of the wave length

" $\frac{\lambda}{2}$ ". Hence these zones are called half period

zones or half period strips or half period elements.

• The area of Fresnel's strips on cylindrical wave front decreases with increasing order of strip

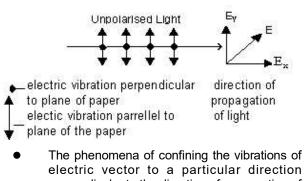
DIFFRACTION AT A STRAIGHT EDGE:

- Fresnel diffraction occurs when a cylindrical wave front strikes the straight edge and diffraction pattern forms on the screen in front of it.
- The intensity at any point on the screen will be maximum when odd number of Fresnel zones are present between straight edge and pole of wave front and minimum when even number of zones are present.
- If light exhibits rectilinear propogation the region on the screen below the point "p" i.e., geometrical shadow region must be completely dark. But this region is illuminated with decreasing intensity as the distance from the point "p" increases.
- The intensity of illumination in the geometrical shadow decreases gradually as more and more half period zones are cut off with increasing distance from the point p¹
- The encroachment of light in geometrical shadow shows that light undergoes diffraction and rectilinear propagation of light is only approximately true.

APPLICATIONS OF DIFFRACTION:

- i. diffraction gratings are used to measure wavelength of light.
- ii. to measure X- ray wavelength
- iii. crystal structure is determined by X-ray diffraction
- iv. Velocity of sound in liquids can be determined by ultra sound diffraction.
- v. Ultra sound scans make use of diffration to estimate the size & shape of tumors, ulcers etc.,

EXAMPLES OF DIFFRACTION:

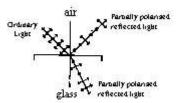

- i. A mountain profile just before the sun rise appears to have a silver lining.
- ii. Light streaks observed when we look at a strong source through half closed eyelids.
- NOTE-1: Interference is due to interaction between two separate wave fronts originating from the two coherent sources while diffraction is due to interaction between the secondary wavelets originating from different points of same wave front.
- NOTE-2: The fringe width in interference may or may not be equal while in diffraction fringe width is never equal.
- NOTE-3: In an interference pattern all the maxima are of same intensity but in a diffraction pattern they are of varying intensity.

POLARISATION:

- The properties of light, like interference and diffraction demonstrate the wave nature of light.
- Both longitudinal and transverse waves can exhibit interference and diffraction effects.
- The properties like polarization can be exhibited only by transverse waves.
- The peculiar feature of polarized light is that human eye cannot distinguish between polarised and unpolarised light.
- As light is an electromagnetic wave, among its electric and magnetic vectors only electric vector is mainly responsible for optical effects.
- The electric vector of wave can be identified as a "light vector"
- Ordinary light is unpolarised light in which electric vector is oriented randomly in all directions perpendicular to the direction of propagation of light.

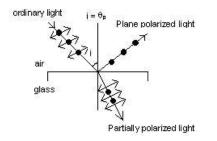
The average amplitude is same in all directions perpendicular to the direction of propagation. Hence the ordinary light is "symmetrical about the direction of propagation."

 The electric vector is resolved into two components vibrations E_x and E_y such that the component E_y vibrates perpendicular to the plane of paper.



 The phenomena of confining the vibrations of electric vector to a particular direction perpendicular to the direction of propagation of light is called "Polarisation". Such polarised light is called linearly polarised or plane polarised light.

- The plane in which vibrations are present is called the "plane of vibration."
- The plane in which vibrations are absent is called "plane of polarisation."
- The vibrations of electric vector occur at right angles to the plane of polarisation.
- Both planes of vibration and polarisation are at right angles to each other.
- The combination of two plane polarised lights which are at right angles to each other can be considered as "ordinary light".
- Plane polarised light can be produced by different methods like
 - i. reflection ii. refraction
 - iii. double refraction iv. Polaroids.


POLARISATION BY REFLECTION:

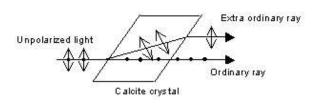
- Malus discovered the polarisation of light by reflection.
- The ordinary light beam is incident on transparent surface like glass or water. Both reflected and refracted beams get partially polarised.

- The degree of polarisation changes with angle of incidence.
- At a particular angle of incidence called "polarising angle" the reflected beam gets completely plane polarised. The reflected beam has vibrations of electric vector perpendicular to the plane of paper.
- The polarising angle depends on the nature of reflecting surface.
- Law of Malus was later modified by Brewster.
- According to Brewster when angle of incidence is equal to "polarising angle" the reflected and refracted rays will be perpendicular to each other.
- Brewster's law states that "The refractive index of a medium is equal to the tangent of polarising

angle θ_{p} ".

PHYSICAL OPTICS

- The refractive index of the medium changes with wave length of incident light and so polarising angle will be different for different wave lengths.
- The complete polarisation is possible when incident light is monochromatic.
- From Brewster's law μ = Tan i.
 - If $i = \theta_p$, the reflected light is completely polarised and the refracted light is partially polarised.
 - If $i = \theta_p$, both the reflected and refracted light rays are perpendicular to each other.
 - If $i < \theta_p$ or $i > \theta_p$, both reflected and refracted rays get partially polarised.
 - For glass $\theta_{\rm p} = \tan^{-1}(1.5) \approx 57^{\circ}$

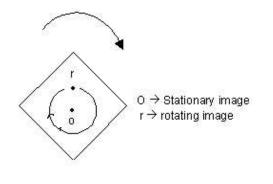

For water θ_n = tan⁻¹(1.33) $\approx 53^\circ$

• POLARISATION BY REFRACTION:

- The unpolarised light when incident on a glass plate at an angle of incidence equal to the polarising angle, the reflected light is completely plane polarised, but the refracted light is partially polarised.
- The refracted light gets completely plane polarised if incident light is allowed to pass through number of thin glass plates arranged parallel to each other. Such an arrangement of glass plates is called "pile of plates".
- The refracted light emerging from the pile of plates will have vibrations in the plane of paper.
- A pile of plates consists of about 15 20 thin glass plates arranged in a tube such that each plate is at angle of 32.5° to the axis of the tube.

• POLARISATION BY DOUBLE REFRACTION:

- Bartholinus discovered that when light is incident on a calcite crystal two refracted rays are produced. It is called "double refraction" or "birefringence"
- When a light ray is incident on the face of a calcite crystal (Iceland spar) the refracted light splits into two refracted rays within the crystal.
 1. ordinary ray 2. extra ordinary ray



 Calcite crystal is a colourless transparent crystal. It is also known as Iceland spar. It belongs to the rhombohedral class of hexagonal system.

- A plane which contains the optic axis and is perpendicular to the two opposite faces is called the principal section of crystal
- The ordinary ray emerging from the calcite crystal obey the laws of refraction and vibrations are perpendicular to the principal section of the crystal.
- The image due to ordinary ray is called ordinary image.
- The refractive index of calcite crystal with respect to ordinary ray remains constant.

$$\mu_0 = \frac{Sini}{Sinr_0}$$

- The extra ordinary ray does not obey the laws of refraction and the vibrations are in the plane of principal section of crystal.
- The image due to extra ordinary ray is called extra ordinary image.
- The refractive index of calcite crystal with respect to extraordinary ray is not constant for a given pair of media and for a given colour of light. The refractive index of crystal for extra ordinary ray when it travels perpendicular to optic axis is known as μ_{e} .
- In the case of calcite crystal $\mu_0 > \mu_e$ because $r_0 < r_e$.
- Both ordinary and extraordinary rays are plane polarised.
- An ink dot made on the paper when viewed through calcite crystal two images are seen due to double refraction. On rotating the crystal one image remains stationary and the other image rotates around the stationary image.
- The rotating image revolves round the stationary image in circular path.
- The stationary image is formed due to ordinary ray and revolving image is formed by extraordinary ray.
- The distance between the two images depend on thickness of crystal.

- μ_0 for the calcite crystal is same for all the angles of incidence. Hence ordinary ray travels with same speed in all directions.
- μ_e for the calcite crystal changes with changing angle of incidence. Hence the extraordinary ray has different speeds in different directions.

• POLAROID :

- Polaroid is an optical device used to produce plane polarised light making use of the phenomenon of "selective absorption".
- Certain crystals and minerals which can produce double refraction for incident light have a peculiar property of absorbing one of the double refracting beams. This property of selective absorption is known as "Dichorism".
- More recent type of polaroids are H-polaroids.
- H-polaroids are prepared by stretching a film of polyvinyl alcohol three to eight times to original length.
- When the planes of transmission of two polaroids are parallel the light transmitted by first can also be transmitted by the second and emergent beam is plane polarized.
- When two polaroids are crossed the transmission of light is not possible. i.e., light gets extinguished.

Crossed polaroids

Parallel polaroids

• USES OF POLAROIDS:

They are used to produce and analyse plane polarised light.

- They are used as polarisers and analysers
- They are used in sun glasses to protect the eyes from glare.
- The window panes of trains and aeroplanes are made of polaroids in order to control the light entering through windows.
- They are used as filters in photography.
- The pictures taken by a stereoscopic camera, when seen through Polaroid produces 3-D effect.
- They are used to prove the colour contrast in old paintings.

• APPLICATIONS OF POLARISATION:

- It is used to test and measure the optical activity of crystals like quartz.
- To measure the optical activity of organic substances like glucose.
- It is used to study the helical structure of nucleic acids.

- Light scattering studies estimate depolarisation of transversely scattered light and help to study size and shape of molecules.
- NOTE-1: The property of rotating the plane of vibration of plane polarized light about its direction of travel by some crystals is known as optical activity. This phenomenon is known as optical rotation.
- NOTE-2: The substances which show the phenomenon of optical rotation are said to be optically active.

CONCEPTUAL QUESTIONS WAVE FRONT

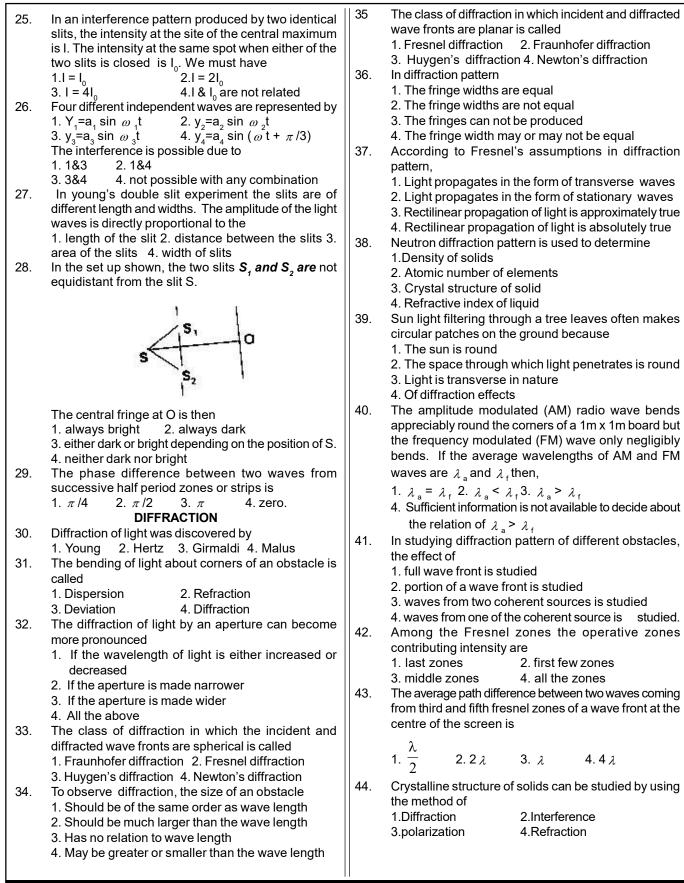
1. Which of the following statements are true for light waves but not for sound waves?

(I) The speed of waves is greater in vacuum than in a medium (II) Waves of different frequencies travel with different speeds in a medium (III) Waves travel with different speeds in different media. Choose your answer according to the code given below. 1. (I) and (II) 2. (I) and (III) 3. (II) and (III) 4. (I). (II) and (III) A plane wave front falls on a convex lens. The emergent wave front is 2. Cylindrical 1. Plane 3. Spherical diverging 4. Spherical converging When two light waves meet at a place 1. their displacements add up 2. their intensities add up 3. both will add up 4. Energy becomes zero Which one of the following phenomena is not explained by Huygens' construction of wave front 1.refraction 2.reflection 3.diffraction 4.origin of spectra INTERFERENCE When interference of light takes place 1. Energy is created in the region of maximum intensity 2. Energy is destroyed in the region of maximum intensity 3. Conservation of energy holds good and energy is redistributed 4. Conservation of energy doesn't hold good For constructive interference to take place between two monochromatic light waves of wavelength λ , the path difference should be 1. $(2n-1)\frac{\lambda}{4}$ 2. $(2n-1)\frac{\lambda}{2}$

3. n/ 4.
$$(2n+1)\frac{\lambda}{3}$$

SR.PHYSICS

2.


3.

4.

5.

6.

7.	For constructive interference between two waves of	15.	Interference was observed in interference chamber, when
	equal wavelength, the phase angle δ should be such		air was present. Now the chamber is evacuated, and
	that		if the same light is used, a careful observer will see
			1. no interference
	1. $\cos^2 \frac{\delta}{2} = -1$ 2. $\cos^2 \frac{\delta}{2} = 0$		2. interference with central bright band
	$\frac{1}{2}$		3. interference with central dark band
			4. interference in which breadth of the fringe will be
	3. $\cos^2 \frac{\delta}{2} = 1$ 4. $\cos^2 \frac{\delta}{2} = \text{infinite}$	10	slightly increased.
	3. $\cos^2 - \frac{1}{2} = 1$ 4. $\cos^2 - \frac{1}{2} = \text{infinite}$	16.	For the sustained interference of light, the necessary
	2 2		condition is that the two sources should
8.	Which of the following can give sustained interference? 1. Two independent laser sources		1. have constant phase difference
	2. Two independent light bulbs		2. be narrow
			3. be close to each other
	 Two sources must be of larger width Two sources must be far away from one other 	47	4. of same amplitude with constant phase difference
9.	In young's double slit experiment if one of the slits is	17.	Laser light is considered to be coherent because it
5.	covered with a thin transparent sheet.		consists of
	1. at maximum, intensity increases ; at minimum,		1. many wavelengths
	intensity increases		2. uncoordinated wavelengths
	2. at maximum, intensity decreases ; at minimum,		3. coordinated waves of exactly the same wavelength
	intensity decreases	10	4. divergent beams
	3. at maximum intensity increases; at minimum,	18.	In Young's double slit experiment, the intensity at the center of screen is
	intensity decreases		
	4. at maximum intensity decreases; at minimum		1. equal to the intensity of each source
	intensity increases		2. equal to twice the intensity of each source
10.	When viewed in white light, soap bubble show colours		3. half the intensity of each source
10.	because of	10	4. four times the intensity of each source
	1. Interference 2. Scattering	19.	Interference fringes in Young's double slit experiment are
	3. Diffraction 4. Dispersion		1. always equispaced 2. always unequally spaced
11.	When petrol drops from a vehicle fall over rain water		3. both equally and unequally spaced
	on road surface colours are seen because of		4. formed by a portion of the wave front.
	1. Dispersion of light 2. Interference of light	20.	In young's experiment with white light central fringe is
	3. Scattering of light 4. Absorption of light	20.	white. If now a transparent film is introduced in the
12.	Two coherent waves each of amplitude 'a' traveling		upper beam coming from the top slit, the white fringe
	with a phase difference δ when superpose with each		1. moves down ward 2. moves upward
	other the resultant intensity at a given point on the		3. remains at the same place
	screen is		4. totally disappears
		21.	In Young's double slit experiment
	1. $a^{2}(1 + \cos \delta)$ 2. $4a^{2}(1 + \cos \delta)$		1. only interference occurs
			2. only diffraction occurs
	3. $2a^2(1 + \cos \delta)$ 4. $(1 + \cos \delta)$		3. both interference and diffraction occurs
13.	Michelson's interferometer is used to		4. polarisation occurs
	1. Find density of a liquid	22.	Thickness of very thin films can be found by the
	2. Find energy of a photon		technique
	3. Find velocity of light		1.Dispersion 2.Interference
	4. Find critical angle of medium		3.polarization 4.Diffraction
14.	Interference is produced with two coherent sources of	23.	Two coherent waves are represented by $y_1 = a_1 \cos \theta$
	same intensity. If one of the sources is covered with		ω t and y ₂ = a ₂ sin ω t. The resultant intensity due to
	a thin film so as to reduce the intensity of light coming		interference will be
	out of it to half, then		1. $(a_1^2 - a_2^2)$ 2. $(a_1^2 + a_2^2)$
	1. Bright fringes will be less bright and dark fringes		
	will be less dark		$3.(a_1 - a_2)$ $4.(a_1 + a_2)$
	2. Bright fringes will be more bright and the dark	24.	The amplitude of two interfering waves are 'a' and '2a'
	fringes will be more dark		respectively. The resultant amplitude in constructive
	3. Brightness of both types of the fringes will remain		interference will be
	the same		1.5a 2.a 3.3a 4.2a
	4. Dark region will spread completely		

SR.PHYSICS

45.	One of the following statements is correct. Pick		1. (90+ ϕ) 2. 90°
	out the one		
	1.Diffraction can not take place without interference		3. $\sin^{-1}(4\cos\phi)$ 4. $\sin^{-1}\left(\frac{\sin\phi}{4}\right)$
	2.Interference will not take place with out diffraction.		3. $\sin^{-1}(4\cos\phi)$ 4. $\sin^{-1}\left(\frac{1}{4}\right)$
	3.Interference and diffraction are the result of		
	polarization	56.	In double refraction, the stationary image can be
	4. The fringe width in Young's double slit experiment		produced by
	does not depends on the wave length.		1. O-ray 2. E-ray
	POLARISATION		3. Both O-ray and E-ray combined together
46.	Waves that cannot be polarised are		4. None
	1. Longitudinal 2. Transverse	57.	In double refraction
	3. Electromagnetic 4. Light		1. The velocity of the E-ray varies with direction
47.	Human eye		E-ray does not obey Snell's law
	1. Can detect polarised light		3. m of E-ray is constant 4. 1 and 2
	2. Can not detect polarisation of light	58.	When two Polaroid sheets are crossed perpendicular
	3. Can detect only circularly polarised light		to each other
	Can detect only linearly polarised light		1. Light gets completely transmitted
48.	Polarisation of light was first successfully explained		2. Light gets completely extinguished
	by		3. Light causes harm to the human eye
	1. Corpuscular theory		4. Alternate bright and dark bands can be seen
	2. Huygens' wave theory	59.	The helical structures of nucleic acids can be studied
	3. Electromagnetic wave theory		by using
	4. Planck's theory		1. Interference phenomenon
49.	Plane of polarisation is		2. Diffraction pattern 3. Polarised light
	1. The plane in which vibrations of the electric vector		4. Photoelectric effect
	takes place	60.	In the light emerging from calcite crystal
	2. A plane perpendicular to the plane in which		1. Both O-ray and E-ray are partially polarised
	vibrations of the electric vector takes place		2. Both O-ray and E-ray are completely polarised
	3. Is perpendicular to the plane of vibration		3. O-ray is partially polarised and E-ray is completely
	4. 2 and 3		polarised.
50.	The Polaroid is		4. O-ray is completely polarised and E-ray is partially
	1. Celluloid film 2. Big crystal		polarised.
	3. Cluster of small crystal arranged in a regular way	61.	A calcite crystal is placed over a dot on a piece of
	4. Cluster of small crystals arranged in a haphazard		paper and rotated, on seeing through the calcite, one
	way		will see
51.	In the propagation of polarised light waves, the angle		1. One dot 2. Two stationary dots
	between the plane of vibration and the plane of		3. Two rotating dots
	polarization is	62.	4. One dot rotating about the other
50	1.0° 2.90° 3.45° 4.180°	02.	Polaroid glass is used in sun glasses because 1. It reduced the light intensity to half on account of
52.	Bartholinus discovered		polarisation
	1. Interference by splitting the wave front		2. It is fashionable
	2. Polarisation by reflection		3. It has good colour 4. It is cheaper
	3. Polarisation by refraction	63.	In Plane polarized light the orientation of electric field
50	4. Polarisation by double refraction	00.	vector is,
53.	Pile of plates can be used to produce completely		1.symmetrical about the direction of propagation
	polarised light due to		2. asymmetric about the direction of propagation
	1. Reflection2. Refraction3. Double refraction4. 1 and 2		3. Parallel to the direction of propagation
51	A pile of plates to produce polarised light by refraction		4. Unsteady
54.	contains the glass plates kept inclined to the axis of	64.	when unpolarised light passes through a Polaroid
	tube at an angle	• '.	sheet the beam that emerges from it is plane polarized.
	1. 57.5° 2. 67° 3. 90° 4. 32.5°		This is due to selective
55.	A ray of light is incident on the surface of a glass plate		1.absorption of the O-Ray
00.			2.absorption of the E-Ray
	at an angle of incidence equal to Brewster's angle ϕ .		3.absorption of the E & O Rays
	If μ represents index of glass with respect to air the		4.reflection of one of the rays
	angle between the reflected and the refracted rays is		·· / -
	· · · · · · · · · · · · · · · · · · ·		
	PHYSICS	Tel	PHYSICAL OPTICS

SR.PHYSICS

65. In propagation of electromagnetic waves the angle				
	between the direction of propagation and plane of			
	polarization is			
	1.)0° 2.45° 3.90° 4.180°			
66.	When an unpolarised light is polarized, then the			
	intensity of light of the polarized wave			
	1.remains same 2.doubled			
	3.halved 4.depends on the colour of the light.			
67.	The wavelength of light play no role in			
07.				
	-			
~~	4.resolving power			
68.	Choose the correct statement.			
	1.the Brewster's angle is independent of wavelength			
	of light.	1.		
	2.the Brewster's angle is independent of the nature	''		
	of reflecting surface			
	3.the Brewster's angle is different for different	2.		
	wavelengths	∠.		
	4.Brewster's angle depends on wavelength but not			
	on the nature of reflecting surface.	_		
69.	Unpolarising light falls on two polarizing sheets so	3.		
	oriented that no light is transmitted. If a third polarizing			
	sheet is placed between them; not parallel to either			
	of two sheets in question			
	1.no light is transmitted.	4.		
	2.some light is transmitted			
	3.light may or may not be transmitted			
	4.certainly 50% light is transmitted.			
70.	Plane polarized light is passed through a Polaroid.	5.		
	Now the Polaroid is given one complete rotation about	J.		
	the direction of light propagation. When viewed			
	through the Polaroid, one of the following is observed.			
	1.The intensity of light gradually decreases to zero			
	and then remains as zero.			
	2. The intensity of light becomes maximum twice and zero twice			
	3.The intensity of light becomes maximum and stays			
	maximum.			
	4.Intensity of light does not change.			
71.	O-beam and E-beam, if superpose			
<i>(</i> 1.	1. Can produce interference			
	 Cannot produce interference Diffraction fringes will result. 			
	•	7.		
70	4. Partially polarized light will be produced	' ·		
72.	The polarising angle for glass is			
	1. same for different kinds of glass			
	2. different for different kinds of glass			
	3. same for lights of all colours	8.		
	4. varies with time			
	KEY			
	1. 1 2. 4 3. 1 4. 4 5. 3			
	6. 3 7. 3 8. 1 9. 4 10. 1			
	11. 2 12. 3 13. 3 14. 1 15. 2	9.		
	16.4 17.3 18.4 19.1 20.2	Ŭ.		
	21.3 22.2 23.2 24.3 25.3			
	26.4 27.3 28.3 29.3 30.3			
	PHYSICS			

31.4	32.2	33. 2	34. 1	35. 2	
36.2	37.3	38.3	39.4	40.3	
41.2	42.4	43.3	44.1	45. 1	
46. 1	47.2	48.3	49.4	50.3	
51.2	52.4	53.2	54.4	55.2	
56. 1	57.4	58.2	59.3	60.2	
61.4	62. 1	63.2	64. 1	65. 1	
66.3	67.3	68.3	69.2	70.2	
71.2	72.2				

NUMERICAL QUESTIONS

LEVEL-I

Two interfering waves have amplitudes in the ratio 5:1. The ratio of the maximum to the minimum intensity is 1.25:1 2. 4:9 4. 9:4 3.6:4 Ratio of intensities of two coherent waves are given by 4:1. The amplitudes of the two waves is 4.1:4 1.2:1 2. 1:2 3. 4:1 In Young's experiment, the ratio of maximum and minimum intensities in the fringe system is 9:1. The ratio of amplitudes of coherent sources is 1.9:1 2.3:1 3.2:1 4.1:1 At the polarising angle ($\theta_{\rm B}$), angle of refraction is given by 2.90+ $\theta_{\rm B}$ 3.90- $\theta_{\rm B}$ 4. $\frac{90}{\theta_{\rm D}}$ 1.900 If the critical angle of a medium is 30°, the polarizing angle for the medium is about 1. $\tan^{-1}(\sqrt{2})$ 2. $\tan^{-1}(2)$ 3. $\tan^{-1}(\frac{1}{2})$ 4. $\sin^{-1}(\frac{1}{2})$ Sun light is reflected from a calm lake. The reflected light is 100% polarized at a certain instant. The angle between the sun light and the surface of lake $is\left(\tan^{-1}\left(\frac{4}{3}\right) = 53^{0}4'\right)$ 1. 90° 2. 53º 4' 3. 36° 56' 4. 45° A light ray is incident on a transparent medium of μ = 1.732 at the polarising angle. The angle of refraction is 1.60° 2. 30° 3.45° 4.90° Young's double slit experiment is conducted with light of wavelength λ . The intensity of the bright fringe is I_0 . The intensity at a point where path difference is $\lambda/$ 4 is given by 1. Zero 2. l_o/8 3. I₀/4 4. l_o/2 A ray of light in air is incident on a glass plate at polarising angle of incidence. It suffers a deviation of 22° on entering glass. The angle of polarization is

1.90°

2.56°

3.68°

4. Zero

10.	In Young's double slit experiment with monochromatic source of light of wavelength 6000 A° if the path	1.	A: The phase difference between any two points on a wave front is zero
	source of light of wavelength 6000 A^0 , if the path		R: From the source light reaches every point on the
	difference at a point on the screen is 6×10^{-6} m, the		wave front in the same time
	number of the bright band formed at that point is 1. 2 2. 4 3. 6 4. 10		1. A 2. B 3. C 4. D
11.	1. 2 2. 4 3. 6 4. 10 In the above problem, if the path difference is	2.	A: In interference pattern intentensity of successive
'''			fringes is not same
	1.5×10^{-6} m, the point becomes		R: In interference, only redistribution of energy takes place
	1. bright band 2. dark band		1. B 2. C 3. D 4. A
	 sometimes bright and sometimes dark data insufficient. 	3.	A: In Young's double slit experiment white light is used
10			and slits are covered with red and blue filters respec-
12.	Two light waves are represented by $y_1 = 3 \sin \omega t$ and		tively. The phase difference at any point on the screen
	$A = i\pi \left(-\frac{\pi}{2} \right)$		will continuously change and unifrom illumination is produced on the screen
	$y_2 = 4 \sin \left(\omega t + \frac{\pi}{3} \right)$. The resultant amplitude due to		R: Two independent sources of light would no longer
	interference will be		act as coherent sources [2004E]
			1. B 2. A 3. C 4. D
	1. $\sqrt{21}$ 2. $\sqrt{26}$ 3. $\sqrt{37}$ 4. $\sqrt{41}$	4.	A: When a tiny circular obstacle is placed in the path
13.	Two light waves are represented by $y_1 = a \sin \omega t$ and		of light coming from some distance, a bright spot is seen at the center of the shadow of the obstacle
	$y_2 = a \sin(\omega t + \delta)$. The phase of the resultant wave		R: Disrtuctive interference occurs at the center of the
	is		shadow [AIIMS 2002]
			1. A 2. D 3. B 4. C
	1. 2δ 2. $\frac{\delta}{2}$ 3. $\frac{\delta}{3}$ 4. $\frac{\delta}{4}$	5.	A:Coloured spectrum is seen when we look through
	2 0 4		a muslin cloth R: Diffraction of light takes place when light is
14.	The amplitudes of two interfering waves are 4 cm and		travelling through the pores of cloth
	3 cm respectively. If the resultant amplitude is 1 cm then the interference becomes		1. D 2. B 3. C 4. A
	1. constructive 2. Destructive	6.	A: When unpolarized light is incident on a glass plate
	3. Both constructive and destructive		the reflected and refracted rays are perpendicular
	4. given data is insufficient		R: The angle of incidence is equal to the polarizing angle
15.	The intensities of two light waves are 9 unit and 4		1. A 2. C 3. D 4. B
	unit respectively. The ratio of maximum intensity to		E THAN ONE ANSWER:
	the minimum intensity is 1. 9:4 2. 4:9 3. 25:1 4. 1:25	7.	When two coherent waves interfere, the maximum and
	KEY		minimum intensities are in the ratio 16 : 25, then
	1. 4 2. 1 3. 3 4. 3 5. 2		a) the maximum and minimum amplitudes are in the rartio 5 : 4
	6. 3 7. 2 8. 4 9. 2 10. 4		b) the amplitues of individual waves are in the ratio 9 : 1
	11. 2 12. 3 13. 2 14. 2 15. 3		c) the intensities of individual waves are in the ratio 41:9
			d) the intensities of individual waves are in the ratio 81:1
	LEVEL - 4		1) a, b and c are true2) a, b and d are true3) a and b are true4) b and c are true
	NEW MODEL QUESTIONS	。	A light of wavelength λ is incident on an object of
		8.	A light of wavelength λ is incident on an object of size b. If a screen is at a distance D from the object.
ASS	ERTION - REASON TYPE QUESTIONS:		identify the correct condition for the observation of dif-
	tions:		ferent phenomenon
Thes	e questions consist of two statements as Aseertion		a) if $b^2 = D\lambda$, Fresnel diffraction ios observed
	(A), and Reason(R). While answering these ques-		,
	tions you are required to choose any of the fol-		b) if $b^2 >> D\lambda$, Fraunhoffer diffraction is observed
	lowing four responses. A) Both A and R are true and R is the correct		c) $b^2 << D\lambda$, Fraunhoffer diffraction is observed
explanation of A			
	B) Both A and R are true but R is not a correct		d) $b^2 >> D\lambda$, the approximation of geometrical
	explanation of A		optics is applicable
	C) A is true R is false		1) a, b and d are true 2) a, c and d are true
	D) A is false and R is true		3) a and c are true 4) a and d are true
QD D	HYSICS	70	PHYSICAL OPTICS
SK.P		U	PHYSICAL UPTICS

9. When light is incident on a glass block at polarizing	KEY
angle	1. 1 2. 4 3. 2 4. 4 5. 4
a) reflected ray is plane polarized	6. 1 7. 2 8. 2 9. 2 10. 1
b) reflected and refracted rays are perpendicular	11.1 12.2 13.1 14.1 15.1
c) reflected and refracted rays are partially polarized	
d) refracted ray is partially polarised	
1) a, c and d are correct 2) a, b and d are correct	PREVIOUS EAMCET QUESTIONS
3) b, c and d are correct 4) a, b and c are correct	1. In Young's double slit interference experiment the
40 If you and you are the refrective indiana of a double re-	wavelength of light used is 6000A ⁰ . If the path difference
10. If μ_o and μ_e are the refractive indices of a double re-	between Waves reaching a point P on the screen is
fracting crystal, then	(2002E)
a) $\mu_o < \mu_e$, for quartz crysatal	1.5 micron, then at that point P
$= \int \mu_0 \cdot \mu_e, \cdots + \mu_e \to \int \mu_0 \cdot \mu_e$	1. Second bright band occurs
b) $\mu_o > \mu_e$, for calacite crystal	2. Second dark band occurs
	3. Third dark band occurs
c) $\mu_o: \mu_e$ is maximum for quartz crystal, when the	4. Third bright band occurs
extrodinary ray moves perpendicular to the optic axis	2. Consider the following statements A & B. Identify the
	correct choice in the given answers.
d) μ_{o} : μ_{e} is maximum for calacite crystal when the	(A) The refractive Index of the extra-ordinary ray
extrodinaryt ray moves perpendicular to the optic axis	depends on the angle of incidence in double
1) a, b and c are true 2) a, b and d are true	refraction.
3) a, c and d are true 4) b, c and d are true	(B) The vibrations of light waves acquire one
TRUE OR FALSE TYPE QUESTIONS:	sidedness for both ordinary and extraordinary
11. A: Primary waves can travel in all directions in	rays in double refaraction. (2002E)
eather	1. A & B are Wrong
B: Secondary waves can travel only in backword in	2.A & B are correct
eather	3. A is correct B is wrong
1) A is true, B is false 2) Both A and B are true	
3) A is false, B is true 4) Both A and B are false	4. A is wrong B is correct.
12. A: Radio wave can diffract at the edges of buildings	3. When two coherent monochromatic light beams of in- tensities I and 4 I are superposed, the ratio between
B: X-rays can diffract at the interiors of a cryustal	maximum and minimum intensities in the resultant
1) A is true, B is false 2) Both A and B are true	
3) A is false, B is true 4) Both A and B are false	beam is (2002 M)
13. A: Fresnel diffraction occurs when the source of	1.9:1 2.1:9 3. 4:1 4.1:4
light or the screen or both are at a finite distance	4. Consider the following statements A & B and identify
from the diffracting device	correct choice in the given answers
B: Diffracted light can be used to estimate the	(A) When light falls on two polaroid sheets having their axes mutually perpendicular, it is com-
helical structure of nuclic acids [2004 E]	pletely extinguished.
1) A is true, B is false 2) Both A and B are true 3) A is false, B is true 4) Both A and B are false	
3) A is false, B is true4) Both A and B are false14. A: In the phenomenon of double refraction ordinary	(B) When polyvinyl alchol is subjected to a large strain the molecules get oriented parallelto the
ray obeys snell's law where as extrodinary ray does	direction of strain and material becomes double
not obey snell's law	refractive. (2002 M)
B: Velocity of extrodinary ray in the negative crystal	1. A & B are correct 2. Both A& B are wrong
is greater than for ordinary ray in the same crystal	3. A correct B wrong 4. A wrong B correct
1) A is true, B is false 2) Both A and B are true	5. Light waves producing interference have their
3) A is false, B is true 4) Both A and B are false	amplitudes in the ratio 3:2. The intensity ratio
MATCH THE FOLLOWING TYPE	maximum and minimum of interference fringes is
15. Match list A and list B accurately	(2001E)
LIST A LIST B	1. 36:1 2. 9:4 3. 25:1 4. 6:4
a) spherical wave front e) linear souce	
b) plane wave front f) point light source	6. Two light sources are said to be coherent if they emit waves of the same 1. and constant
c) cylindrical wave front g) at infinite distance	2. between them. Choose the
d) electric bulb h) at finite distance	appropriate words.
1) (a, f); (b, g); (c, e); (d, h)	
2) (a, f); (b, g); (c, e); (d, f)	(1993, 96, 99E&M)
3) (a, g); (b, f); (c, h); (d, e)	1. 1. intensity, 2.wave length
4) (a, h); (b, g); (c, f); (d, e)	2. 1. wave length, 2. phase difference
	3. 1. phase, 2. intensity
	4. 1. intensity, 2. phase difference
SR.PHYSICS 7	21 PHYSICAL OPTICS

7.	If the critical angle of a crystal is 45 ⁰ , the polarising		
1.			
	angle is (1988E)		
	-1(1)		
	1. $\tan^{-1}\sqrt{2}$ 2. $\tan^{-1}\left(\frac{1}{\sqrt{2}}\right)$ 3. 45° 4. 37°		
8.	In a Laser beam the photons emitted are all (1988E)		
	1. incoherent 2. coherent		
	3. of same velocity 4. of same wavelength		
9.	Two waves having the same wave length and amplitude		
	but having a constant phase difference with time are		
	known as (1987E & M)		
	1. identical waves 2. incoherent waves		
	3. coherent waves 4. collateral waves		
10.	Huygen's wave theory is used (1987E & M)		
	1. to determine the velocity of light		
	2. to find the position of the wave front		
	3. to determine the wavelength of light		
	4. to find the focal length of a lens.		
	OTHER ENTRANCE QUESTIONS		
11.	Light waves spreading from two sources produce		
	interference only if they have (1987)		
	1. congruence 2. coherence		
	3. same intensity 4. same amplitude		
12.	In young's experiment of double slit the intensity of		
	the central bright band is how many times the		
	individual intensity of the interfering waves?		
	(1987.		
	1. 2 2. 4 3. 6 4. 16		
13.	Light travels in a straight line because		
1. it is not absorbed by atmosphere			
	2. its velocity is very high		
	3. diffraction effect is negligible		
	4. none (Raj PMT 1997)		
14.	Which of the following is conserved when light waves		
	interfere (AIIMS 2000)		
	1. momentum 2. amplitude		
	3. energy 4. intensity		
	KEY		
	1. 3 2. 2 3. 1 4. 1 5. 3		
	6. 2 7. 1 8. 2 9. 3 10. 2		
	11. 2 12. 2 13.3 14.3		
SR.F	PHYSICS 7		