CHAPTER 12

RADIATION

§12.01 General considerations

There are several alternative ways of approach to the thermodynamics of
radiation. We shall choose the one according to which the radiation is
regarded as a collection of photons. Each photon is characterized by a
frequency, a direction of propagation, and a plane of polarization. In empty
space all photons have equal speeds ¢. Each photon has an energy U, related
to its frequency v; by Planck’s relation

U,=hy, 12.01.1

and a momentum of magnitude Av;/c. It is convenient to group together all
the species of photons having equal frequencies, and so equal energies, but
different directions of propagation and planes of polarization. We denote
by g; the number of distinguishable kinds of photons having frequencies v,
and energies U,. More precisely g;dv; denotes the number of distinguishable
kinds of photons having frequencies between v; and v;+dv, and energies
between U; and U;+dU,. By purely geometrical considerations it can be
shown* that in an enclosure of volume V

g:dv; =2 x4nV e *vidy, 12.01.2

the factor 2 being due to the two independent planes of polarization.

§12.02 Energy and entropy in terms of g;’s

We denote by N; the number of photons having energy U; and frequency
v, interrelated by (12.01.1). Then the total energy U is given by

U=Z Nl' Ul' 12.02.1

* Brillouin, Die Quantenstatistik, Springer 1931 ch. 2; Fowler and Guggenheim, Statistical
Thermodynamics, Cambridge University Press 1939 §§ 401-403.
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From the fact that photons obey Bose-Einstein statistics it can be shown*
that the entropy S of the system is given by

Slk=Y. In{(g;+ N))!/g:! N;!}. 12.02.2
Differentiating (1) and (2) at constant g;, that is to say constant ¥V, we have

dU=Z UldN, 12-02.3
dS/k=Y In{(g;+ N))/N}dN,. 12.02.4
i

The condition for equilibrium is according to (1.35.1) that S should be a
maximum for given U, V. Hence for the most general possible variation,
the expressions (3) and (4) must vanish simultaneously. It follows that

Ui/ln{(g:+ N))/N;} = Ui/in{(ge+ Ni)/ Ni} (all i, k) 12.02.5
and consequently using (3) and (4)
U,/In{(g;+ N;)/N;} =Z UidNi/; In{(g;+ N;)/N;}dN;

=kdU/dS=kT 12.02.6
since at constant volume
dU=TdS (V const.). 12.02.7
From (6) we have
N/(gi+ N;)=exp(—U,/kT) 12.02.8
and so
N;=gi/{exp(U,/kT)—1}. 12.02.9
Substituting (9) into (1), we obtain
U=} g Uif{exp(U/kT)—-1}. 12.02.10

For the entropy we obtain from (2), using Stirling’s approximation for the
factorials, and by use of (8)

S=). Ni/In{(g;+ N)/N;} +Z g In{(g;+ N))/g:}
=Y N;U/kT -} g In{l—exp(—U/kT)}. 12.02.11

For the Helmholtz function # we deduce from (1) and (11)
F=kTY g In{l—exp(—U,/kT)}. 12.02.12

* Brillouin, Die Quantenstatistik, Springer 1931 ch. 6.
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§12.03 Thermodynamic functions

In the previous section we obtained formulae for the energy, the entropy,
and the Helmholtz function in terms of the U;’s and g;’s without making
any use of (12.01.1) or (12.01.2). If we now substitute the values of U; and
g, given by these formulae, into the relations of the previous section we
obtain

AF=8nVe kT f In{1—exp(—hv/kT)}v*dv 12.03.1
o

U=8nVc'3f hv*{exp(hv/kT)—1}""dv. 12.03.2
o
We can write (2) in the form

o]
U=f U,dv 12.03.3
0

U,=8nVc *hv3{exp(hv/kT)—1}"! 12.03.4

which is Planck’s formula from which quantum theory originated.

§12.04 FEvaluation of integrals

We can rewrite (12.03.1) as
F=—8nVik*T*h 3™l 12.04.1

where I is the integral defined by
I=~ f &2 In{1—exp(—¢&)}dé. 12.04.2
0o

Using the power series for the logarithm and then integrating term by term,
we obtain

I=| Y n ' exp(—né)dé= ;ln_4fowﬂ2 exp(—n)dy

0 n=1

=2Y n"*=n%/45. 12.04.3
n=1

Substituting (3) into (1) we obtain finally
F=—(8n°k*/45¢>h*)T*V. 12.04.4



360 RADIATION

§12.05 Stefan-Boltzmann law

We could obtain formulae analogous to (12.04.4) for U and S by evaluation
of the relevant integrals, but it is more convenient to obtain these formulae
by differentiation of (12.04.4).

We first abbreviate (12.04.4) to

F=—-%aT*v 12.05.1

where @ is a universal constant defined by
a=8n’k*/15¢’n>=7.5646 x 10" '1¢ Jm 3 K™%, 12.05.2

From (1) we deduce immediately

S=%aT?V 12.05.3
U=aT*V 12.05.4
P=3}aT*=1UV 12.05.5
G=U~TS+PV=0. 12.05.6

Formula (5) can be derived from classical electromagnetic theory. Formula
(4) was discovered by Stefan and derived theoretically by Boltzmann.
It is called the Stefan—Boltzmann law.

From (4) we see that aT* is the equilibrium value of the radiation per unit
volume in an enclosure. If a small hole is made in such an enclosure then
it can be shown by geometrical considerations that the radiation emitted
through the hole per unit area and per unit time is ¢7*, where o is given by

6=%ac=5.670x10"3IJm 2s ' K¢ 12.05.7

in which ¢ denotes the speed of light. This constant ¢ is called the Stefan—
Boltzmann constant.

§12.06 Adiabatic changes

Suppose that radiation is confined by perfectly reflecting walls and that the
volume of the container is altered by moving a piston. If the radiation
remains in thermal equilibrium its temperature will change. For such a
reversible adiabatic change, we have

S =const. 12.06.1
From (12.05.3) and (1) it follows that
VT?=const. (adiabatic). 12.06.2
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From (12.05.4) and (12.05.5) we have

P|T*=const. 12.06.3
so that
PV|T=const. (adiabatic) 12.06.4
and
PVi=const. (adiabatic). 12.06.5

From (2), (3), (4), (5) it appears that the relations for a reversible adiabatic
change in radiation are formally similar to those for a perfect gas such that
the ratio Cp/Cy has the constant value 4. This apparent resemblance is
however accidental, for the ratio Cp/Cy of radiation is not %. In fact for
radiation
Cy=(0U/[dT), =T(3S/3T),=4aT?*V 12.06.6
while
Cp=T(0S/0T)p—> 0 12.06.7

since no increase in S, however great, can increase T without increasing P.



