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Zone 3 

Copper N u ~ ~ ~ i n n r n  

Figure 1 Free electron Fermi surfaces for fcc metals with one (Cu) and three (Al) valence elec 
trons per primitive cell. The Fermi surfacc shown for copper has been deformed from a sphert 
to agree wit11 the qe r imen ta l  resnlts. The second ;.one of aluminum is nearly half-filled wit1 
electrons. (A. R. Mackintosh.) 



CHAPTER 9: FERMI SURFACES AND METALS 

Few people would define a metal as "a solid 
with a Fermi surface." This may nevertheless be 
the most meaningful definition of a metal one 
can give today; it represents a profound advance 
in the understanding of why metals behave as 
they do. The concept of the Fermi surface, as 
developed by  quantum physics, provides a pre- 
cise explanation of the main physical properh'es 
of metals. 

A. R. Mackintosh 

Thc Fermi surface is the surface of constant energy E~ in k space. The 
Fcrmi surface separates the unfilled orbitals from the filled orbitals, at 
absolute zero. The electrical properties of thc metal are determined by the 
volume and shape of the Fermi surfacc, hecaiise the current is due to changes 
in the occupancy of states near thc Fcrmi sllrface. 

The shape may be vcry intricate as viewed in the reduced zone scheme 
below and yet havc a simple interpretation when reconstructed to lie near the 
surfacc of a sphere. Lie exhibit in Fig. 1 the free electron Ferrni surfaces con- 
striicted for two metals that have the face-centered cubic crystal strtictiire: 
copper, with one valence electron, and aluminum, with three. The free elec- 
tron Fermi surfaces were developed from spheres of radi~is k, determined by 
the valence electron concentration. The wrface for copper is deformed by in- 
teraction with the lattice. How do we construct these surfaces from a sphere? 
The constructions rcquire the reduced and also the periodic zone schemes. 

Reduced Zone Scheme 

It is always possible to select the wavevector index k of any Rloch function 
to lie within the first Brilloui~i zone. The procedurc is known as mapping the 
band in the reduced zone scheme. 

If we encounter a Bloch function written as Jik.(r) = ei""ut.(r), with k' 
outside the first zone, as in Fig. 2, we may always find a suitable reciprocal lat- 
tice vector G such that k = k' + G lies within the first Brillouin zone. Then 

where uk(r) = e - iC 'r t~k , (~ ) .  Rnth e-'G'r and uw(r) are periodic in the crystal lat- 
tice, so uk(r) is also, whence 4i(r) is of the Bloch form. 

Even with free electrons it is useful to work in the reduced zone scheme, 
as in Fig. 3. Any energy tk. for k' outside the first zone is equal to an ek in the 
first zone, where k = k' + G. Thus we necd solve for the energy only in the 



Figure 2 First Brillouin zone of a square lattice of 
side a .  The wavevector k' can he carried into the first 
zone by forming k' + G. The wavevector at a point A on 
the zone boundary is carried by G to the point A' on the 
opposite b o u n d q  of the same zone. Shall we count 
both A and A' as lying in the first zone? Because they 
can be connected by a reciprocal lattice vector, we 
count them as one identical point in the zone. 

Figure 3 Energy-wavevector relation q = &'k2/2rn for 
\ free electrons as drawn in the reduced zone scheme. \ 

This construction often gives a useful idea of the over- \ 
all appearance of the hand structure of a crystal. The \\ 
branch AC if displaced by -2'7r/a gives the usual free \ 
electron c u m  for negative k, as suggested by the \ 

\ 
dashed curve. The branch A'C if displaced by 2 d a  \ 
gives the usual curve for positive k.  A crystal potential \ 

\ 
U ( x )  will introduce hand gaps at the edges of the zone A' A 

(as at A and A') and at the center of the zone (as at C ) .  
The point C when viewed in the extended zone 
scheme falls at the edges of the second zone. The 

7r -- 0 '7r overall width and gross features of the hand structure - 
a 

are often indicated properly by such free electron k -  

bands in the reduced zone scheme. I- First Bdlouin zone 

first Brillouin zone, for each band. An energy band is a single branch of the el, 

versus k surface. In the reduced zone scheme we may find different energies 
at the same value of the wavevector. Each different energy characterizes a dif- 
ferent band. Two bands are shown in Fig. 3. 

Two wavefunctions at the same k but of different energies will be inde- 
pendent of each other: the wavefunctions will be made up of different combi- 
nations of the plane wave components exp[i(k + G) . r] in the expansion of 
(7.29). Because the values of the coefficients C(k + G) will differ for the 
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different bands, we should add a symbol, say n, to the C's to serve as a band 
index: C,(k + G) .  Thus the Bloch function for a state of wavevector k in the 
band n can be written as 

Periodic Zone Scheme 

We can repeat a given Brillouin zone periodically through all of wavevec- 
tor space. To repeat a zone, we translate the zone by a reciprocal lattice vector. 
If we can translate a band from other zones into the first zone, we can translate 
a band in the first zone into every other zone. In this scheme the energy ek of a 
band is a periodic function in the reciprocal lattice: 

Here E ~ + ~  is understood to refer to the same energy band as EL. 

0 k- 
Figure 4 Three energy bands of a linear lattice   lotted in (a)  the extended (Brillonin), 
(b) reduced, and (c) periodic zone schemes. 



The result of this construction is known as the periodic zone scheme. 
The periodic property of thr energy also can be seen easily from the central 
equation (7.27).  

Consider for example an energy band of a simple cubic lattice as calcu- 
lated in the tight-binding approximation in (13) below: 

~k = -a - 2 y  (COS kxa + cos k,a + cos k,a) , (3) 

where a and y are constants. One reciprocal lattice vector of the sc lattice is 
G = ( 2 ~ r l a ) i ;  if we add this vector to k the only change in ( 3 )  is 

cos kp -+ cos (k ,  + 2.rrla)a = cos (k,a + 27r) , 

but this is identically equal to cos k,a. The energy is unchanged when the 
wavevector is increased by a reciprocal lattice vector, so that the energy is a 
periodic function of the wavevector. 

Thrce different zone schemes are useful (Fig. 4): 

The extended zone scheme in which different bands are drawn in differ- 
ent zones in wavevector space. 
The reduced zone scheme in which all bands are drawn in the first 
Brillouin zone. 
The periodic zone scheme in which every hand is drawn in every zone. 

CONSTRUCTION OF FERMI SURFACES 

We consider in Fig. 5 the analysis for a square lattice. The equation of the 
zone boundaries is 2k.G + G~ = 0 and is satisfied if k terminates on the plane 
normal to G at thc midpoint of G. The first Brillouin zone of the square lattice 
is the area enclosed by the perpendicular bisectors of GI and of the three reci- 
procal lattice vectors equivalent by symmetry to G ,  in Fig. 5a. These four reci- 
procal lattice vectors are 2(2?r/a)& and ?(2 .da )$ .  

The second zone is constructed from G2 and the three vectors equivalent 
to it by syrn~netry, and similarly for the third zone. The pieces of the second 
and third zones are drawn in Fig. 5b. 

To determine the boundaries of some zones we have to co~lsider sets of 
several nonequivalent reciprocal lattice vectors. Thus the boundaries of sec- 
tion 3, of the third zone are formed from the perpendicular hisectors of three 
G's, namely (27r /a)k;  ( 4 d a ) k ;  and (27r/a)(& + 4). 

The free electron Fermi surface for an arbitrary electron concentration is 
shown in Fig. 6. It is inconvenient to have sections of the Fermi surface that 
belong to the same zone appear detached from one another. The detachment 
can be repaired by a transformation to the reduced zone scheme. 

We take the triangle labeled 2, and move it by a reciprocal lattice vector 
G = -(2?r/a)& such that the triangle reappears in the area of the first 
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Figure 5 (a) Construction in k space of the first three Brillouin zones of a square lattice. The 
three shortest forms of the reciprocal lattice vectors are indicated as G,, G,, and G3. The lines 
drawn are the perpendicular bisectors of these G's. (b) On constructing all lines equivalent by 
symmetly to the three lines in (a) we obtain the regions in k space which form the first three 
Brillouin zones. The numbers denote the zone to which the regions belong; the numbers here are 
ordered according to the length of the vector G involved in the construction of the outer boundary 
of the region. 

Figure 6 Brillouin zones of a square lattice in two 
dimensions. The circle shown is a surface of constant 
energy for free electrons; it will be the Fermi surface 
for some particular value of the electron concentra- 
tion. The total area of the filled region i n k  space de- 
pends only on the electron concentration and is inde- 
pendent of the interaction of the electrons with the 
lattice. The shape of the Fermi surface depends 
on the lattice interaction, and the shape will not be 
an exact circle in an actual lattice. The labels within 
the sections of the second and third zones refer to 
Fig. 7. 

1st zone 2nd zone 3rd zone 

Figure 7 Mapping of the first, second, and third Brillouin zones in the reduced zone scheme. 
The sections of the second zone in Fig. 6 are put together into a square by translation through an 
appropriate reciprocal lattice vector. A different G is needed for each piece of a zone. 



1st zone 2nd zone 3rd zone 

Figure 8 The free electron Fermi surface of Fig. 6, as viewed in the reduced zone scheme. The 
shaded areas represent occupied electron states. Parts of the Fermi surface fall in the second, 
third, and fourth zones. The fourth zone is not shown. The first zone is entirely occupied. 

Figure 9 The Ferm~ surface in the thlrd zone as 
drawn m the peno&c zone scheme. The fiwre was - 
constmcted by repeating the third zone of Fig. 8. 

I I I 
I I I 

Brillouin zone (Fig. 7). Other reciprocal lattice vectors will shift the triangles 
Z6,  2,, 2d to other parts of the first zone, completing the mapping of the second 
zone into the reduced zone scheme. The parts of the Fermi surface falling in 
the second zone are now connected, as shown in Fig. 8. 

A third zone is assembled into a square in Fig. 8, but the parts of the 
Fermi surface still appear disconnected. When we look at it in the periodic 
zone scheme (Fig. 9), the Fermi surface forms a lattice of rosettes. 

Nearly Free Electrons 

How do we go from Fermi surfaces for free electrons to Fermi surfaces 
for nearly free electrons? We can make approximate constructions freehand by 
the use of four facts: 

The interaction of the electron with the periodic potential of the crystal 
creates energy gaps at the zone boundaries. 
Almost always the Fermi surface will intersect zone boundaries perpendicu- 
larly. 
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2nd zone 3rd zone 

Figure 10 Qualitative impression of the effect of a weak periodic crystal potential on the Fermi 
surface of Fig. 8. At one point on each Fermi surface we have shown the vector gradk€. In the sec- 
ond zone the energy increases toward the interior of the figure, and in the third zone the energy 
increases toward the exterior. The shaded regions are filled with electrons and are lower in energy 
than the unshaded regions. We shall see that a Fermi surface like that of the third zone is elec- 
tronlike, whereas one like that of the second zone is holelike. 

Figure 11 Hanison construction of free elec- 
tron Fermi surfaces on the second, third, and 
fourth zones for a square lattice. The Fermi 
surface encloses the entire first zone, which 
therefore is filled with electrons. 

The crystal potential will round out sharp comers in the Fermi surfaces. 
The total volume enclosed by the Fermi surface depends only on the 
electron concentration and is independent of the details of the lattice 
interaction. 

We cannot make quantitative statements without calculation, but qualitatively 
we expect the Fermi surfaces in the second and third zones of Fig. 8 to be 
changed as shown in Fig. 10. 

Freehand impressions of the Fermi surfaces derived from free electron 
surfaces are useful. Fermi surfaces for free electrons are constructed by a pro- 
cedure credited to Harrison, Fig. 11. The reciprocal lattice points are deter- 
mined, and a free electron sphere of radius appropriate to the electron 
concentration is drawn around each point. Any point in k space that lies within 
at least one sphere corresponds to an occupied state in the first zone. Points 
within at least two spheres correspond to occupied states in the second zone, 
and similarly for points in three or more spheres. 

We said earlier that the alkali metals are the simplest metals, with weak in- 
teractions between the conduction electrons and the lattice. Because the 



alkalis have only one valence electron per atom, the first Brillouin zone bound- 
aries are distant from the approximately spherical Fermi surface that fills one- 
half of the volume of the zone. It is known by calculation and experiment that 
the Fermi surface of Na is closely spherical, and that the Fermi surface for Cs 
is deformed by perhaps 10 percent from a sphere. 

The divalent metals Be and Mg also have weak lattice interactions and 
nearly spherical Fermi surfaces. But because they have two valence electrons 
each, the Fermi surface encloses twice the volume in k space as for the alkalis. 
That is, the volume enclosed by the Fermi surface is exactly equal to that of a 
zone, but because the surface is spherical it extends out of the first zone and 
into the second zone. 

ELECTRON ORBITS, HOLE ORBITS, AND OPEN ORBITS 

We saw in Eq. (8.7) that electrons in a static magnetic field move on a 
curve of constant energy on a plane normal to B. An electron on the Fermi 
surface will move in a curve on the Fermi surface, because this is a surface of 
constant energy. Three types of orbits in a magnetic field are shown in Fig. 12. 

The closed orbits of (a) and (b) are traversed in opposite senses. Because 
particles of opposite charge circulate in a magnetic field in opposite senses, we 
say that one orbit is electronlike and the other orbit is holelike. Electrons in 
holelike orbits move in a magnetic field as if endowed with a positive charge. 
This is consistent with the treatment of holes in Chapter 8. 

In (c) the orbit is not closed: the particle on reaching the zone boundary 
at A is instantly folded back to B, where B is equivalent to B' because 

Hole orbit Electron orbit Ooen orbits 

Figure 12 Motion in a magnetic field of the wavevector of an electron on the Fermi surface, in 
(a) and (b) for Fermi surfaces topologically equivalent to those of Fig. 10. In (a) the wavevector 
moves around the orbit in a clockwise direction; in (b) the wavevector moves around the orbit in a 
counter-clockwise direction. The direction in (b) is what we expect for a free electron of charge 
-e; the smaller k values have the lower energy, so that the filled electron states lie inside the 
Fermi surface. We call the orbit in (b) electronlike. The sense of the motion in a magnetic field is 
opposite in (a) to that in (b), so that we refer to the orbit in (a) as holelike. A hole moves as a par- 
ticle of positive charge e .  In (c) for a rectangular zone we show the motion on an open orbit in the 
periodic zone scheme. An open orbit is topologically intermediate between a hole orbit and an 
electron orbit. 
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Figure 13 (a) Vacant states at the comers of 
an almost-filled band, drawn in the reduced 
zone scheme. (b) In the periodic zone scheme 
the various parts of the Fermi surface are con- 
nected. Each circle forms a bolelike orbit. The 
different circles are entirely equivalent to 
each other, and the density of states is that of a 
single circle. (The orbits need not he true cir- 
cles: for the lattice shown it is only required 
that the orbits have fourfold symmetry.) 

Figure 14 Vacant states near the top of an almost filled band in a two- 
dimensional crystal. This figure is equivalent to Fig. 12a. 

Figure I5 Constant energy surface in the Brillouin zone of a simple cubic lattice, for the assumed 
energy band E~ = -a - 2y(cos k,a + cos k,a + cos k,a). (a) Constant energy surface E = -a. 
The filled volume contains one electron per primitive cell. (b) The same surface exhibited in the 
periodic zone scheme. The connectivity of the orbits is clearly shown. Can you find electron, hole, 
and open orbits for motion in a magnetic field BP? (A. Sommerfeld and H. A. Bethe.) 

they are connected by a reciprocal lattice vector. Such an orbit is called an 
open orbit. Open orbits have an important effect on the magnetoresistance. 

Vacant orbitals near the top of an otherwise filled band give rise to hole- 
like orbits, as in Figs. 13 and 14. A view of a possible energy surface in three 
dimensions is given in Fig. 15. 



Orbits that enclose filled states are electron orbits. Orbits that en- 
close empty states are hole orbits. Orbits that move from zone to zone 
without closing are open orbits. 

CALCULATION OF ENERGY BANDS 

\Vigner and Seitz, who in 1933 performed the first serious band calcula- 
tions, refer to afternoons spcnt 011 thc mani~al desk calc~~lators of those days, 
l~sing one afternoon for a trial wavefunction. Here we limit ourselves to three 
introductory methods: the tight-binding method, useful for interpolation; tlie 
Wiper-Seitz method, useful for the visualization and ur~derstar~dirig of the 
alkali metals; and the pseudopoter~tial method, utilizing the general theory 
of Chapter 7, which shuws tlie simplicity of many problems. 

Tight Binding Method for Energy Bands 

Lct 11s start with nei~tral separated atoms and watch the changes in the 
atomic energy levels as the charge distributions of adjacent atoms overlap 
when the atoms are brought together to forrri a crystal. Consider twu hydrogen 
atoms, each wit11 a11 electron in the Is ground state. The wavefunctio~ls $,4, i,bB 
on tlie separated atoms are show~l in Fig. 16a. 

As the atoms are brought together, their wavcfunctions ovcrlap. 14Jc con- 
sider the two combinations clr, ? i,bB. Each cornhination shares an electron 
with thc hvo protons, hut an electron in the state i,bA + $, will have a some- 
what lower energy than in the state J/ ,  - I/J~. 

In I)* + i,bB the electron spends part of the time in the region rriidway 
between the two protons, and in this region it is in the attractive potential of 
both protons at once, thereby increasir~g tlie binding energy. I11 i,bA - i,bB the 

density \,anishes midway between the nuclei; an extra binding docs 
not appear. 

(b? (c! 

Figure 16 (a) Schematic drawing of wavefunctions of electrons on two hydrogen atoms at largr 
separatio11. (b! G r u u ~ ~ d  state waucfunctiorr at closcr separation. (c) Excited state wavefunction. 
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0 1 2 3 4 5 
Nearest-neighhor distan~x, in Bohr radii 

Figure 17 The Is band of a ring of 20 
hydrogen atoms; the one-electron energies 
are calculated in the tight-binding approxi- 
nlation with the nearest-neighbor overlap 
integral of Ey. (9). 

.4s two atoms arc brought together. two separated energy levels are 
formed for each lcvel of the isolated atom. For N atoms, N orbitals are formed 
for each orhital of the isolated atom (Fig. 17). 

As free atoms are brought together, the coulomb interaction between the 
aton1 cores and the electron splits the energy levcls, spreading them into 
bands. Each state of given quantum number of the free atom is spread in the 
cYstal into a band of energies. The width of the hand is proportional to the 
strength of the overlap interaction between neighboring atoms. 

There will also hc hands formed from p ,  d, . . . states (I = 1, 2, . . .) of the 
lree atoms. States degenerate in the free atom will form different bands. Each 
will not have the same energy as any other band over any substantial range of 
the wavevector. Bands nlay coincide in energy at ccrtain values of k in the 
Brillouin zone. 

The approximation that starts out from the wavefunctions of the free atoms 
is krlown as the tight-binding approximation or the LCAO (linear co~ribi~~ation 
of atomic orbitals) approximation. The approximation is quite good for the inner 
electrons of atoms: hut it is not often a good description of the conduction clec- 
trans themselves. It is used to describe approximately the d bands of the transi- 
tion metals and the valence bands of diamondlike and inert gm crystals. 

Suppose that the ground state of an electron moving in the potential 
U(r) of an isolated atom is p(r), an s state. The treatment of bands arising from 
degenerate (p, d, . . .) atomic levels is more complicated. If the influence of 
one atom on anothcr is small, we obtain an approximate wavefunction for one 
electron in the whole crystal by talang 



where the sum is over all lattice points. We assume the primitive hasis contains 
one atom. This function is of the Bloch form (7 .7 )  if Cki = N-l i2  e , which 
gives, for a crystal of N atoms, 

We prove (5) is of the Bloch form. Consider a translation T connecting 
two lattice points: 

exactly the Bloch condition. 
We find the first-order energy by calculating the diagonal matrix elements 

of the hamiltonian of the crystal: 

where q, - ~ ( r  - r,). Writing p ,  = r,,, - rj, 

We now neglect all integrals in (8) except those on the same atom and 
those between nearest neighbors connected by p. We write 

$ dV cpe(r)Hq(r) = -a ; J" dV p*(r - p)Hq(r)  = - y ; (9) 

and we have the first-order energy, provided (klk) = 1: 

The dependence of the overlap energy y on the interatomic separation p 
can be evaluated explicitly for two hydrogen atoms in Is states. In rydberg 
energy units, Ry = me4/2fi2, we have 

where no= fi2/nlnle? The overlap energy decreases exponentially with the 
separation. 
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For a simple cubic structure the nearest-neighbor atoms are at 

so that (10) becomes 

ck = -a - ~ ~ ( C O S  kp + cos kya + cos kg) . (13) 

Thus the energies are confined to a band of width 127. The weaker the over- 
lap, the narrower is the energy band. A constant energy surface is shown 
in Fig. 15. For ka << 1, ck = -a - 67 + yk2a2. The effective mass is m* = 
fi2/2ya2. When the overlap integral y is small, the band is narrow and the effec- 
tive mass is high. 

We considered one orbital of each free atom and obtained one band EL. 

The number of orbitals in the band that corresponds to a nondegenerate 
atomic level is 2N, for N atoms. We see this directly: values of k within the first 
Brillouin zone define independent wavefunctions. The simple cubic zone has 
-ria < k ,  < via, etc. The zone volume is 8n3/a3. The number of orbitals 
(counting both spin orientations) per unit volume of k space is V / 4 g ,  SO that 
the number of orbitals is 2vla3. Here V is the volume of the crystal, and l /a3 is 
the number of atoms per unit volume. Thus there are 2N orbitals. 

For the fcc structure with eight nearest neighbors, 

For the fcc structure with 12 nearest neighbors, 

ek = -a - ~ ~ ( C O S  i kya cos i k,a + cos $ k,a cos i kp + cos ;kg cos i k,a) . (15) 

A constant energy surface is shown in Fig. 18. 

Figure 18 A constant energy surface of an fcc crystal 
structure, in the nearest-neighbor tight-binding approx- 
imation. The surface shown has E = -a + 21yl. 



Wigner-Seitz Method 

Wigner and Seitz showed that for tlie alkali metals there is no inconsis- 
tency between the electron wa\d'unctions of frcc atoms and the nearly free 
electron model of the band structure of a crystal. Over most of a band the 
energy may depend on the wavevector nearly as for a free electron. However 
the Bloch wavefunction, unlike a plane wave, will pile up charge on the posi- 
tive ion cores as in the atomic wavefunction. 

A Blocli functiori satisfies the wave equation 

With p = -ih grad, we have 

p elk 'uk(r) = Rk e'kruk(r) + elhpuk(r) , 

p2ezhuk(r) = (hk)2e'"uk(r) + efk'(2hk .p)uk(r) + eZhp2uk(r) , 

thus tlie wave equation (16)  Irlay be written as an equation for uk: 

At k = 0 we have go = uo(r ) ,  where u,(r)  has the periodicity of the lattice, see: 
the ion cores, and near them will look like the wavefunction of the free atom. 

It is much easier to find a solution at k = 0 than at a general k, because at 
k = 0 a nondegenerate solution will have the full syrnmetry of Cir(r), that is, ol 
the crystal. We can then use uo(r )  to construct the approximate solution 

This is of the Bloch form, but u,  is not an exact solution of (17): it is a soliltion 
only if we drop the term in k.p. Often this term is treated as a perturbation, a: 
in Problem 8. The k.p perturbation theory developed there is especially useful 
in finding the effective mass m* at a band edge. 

Because it takes account of the ion core potential the function (18) is a 
much better approximation than a plane wave to the correct wavefunction 
The energy of the approximate solution depends on k as (hI~)~/2rn, exactly as 
for the plane wave, even though the modulation represented by uO(r)  may be 
very strong. Because u,  is a solution of 

the function (18) has the e n c r o  expectation valne E,+ (h2k2/27n). The 
function u,,(r) oftcn will give 11s a good picture of the charge distribution 
within a cell. 
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0 1 2 3 4 
r (Bohr units) 

Figure 19 Radial u~avefimctions for the 3y orbital of free sodium atom and for the 3s conduction 
band in sodium metal. The wavefunctions, which are nnt normalized here, are found by integrat- 
iug the Sclirodingcr equation for an electron in the potential urell of an Na' ion core. For the free 
atom the wavefunction i s  integrated subject to the usual Sctlrudinger bou~idary condition + ( r )  + 0 
as r + m; the energy eigenvalue is -5.15 eV. The wa\refunction for wavevector k = 0 in the metal 
is subject to the U'igner-Seitz boundary condition that d+/dr = 0 when r is midway between 
neighboring atoms; the energy of this orhital is 8 . 2  eV, considerably lower t l~an fur the free 
atom. The orbitals at the zone boundaly are not filled in sodium; their energy is +2.7 eV (After 
E. Wigner and F. Seitz.) 

W'igner and Seitz developed a simple and fairly accurate method of calcu- 
lating u,,(r). Figure 19 shows the Wigner-Seitz wavefunction for k = 0 in the 
3s conduction band of metallic sodium. The function is practically constant 
over 0.9 of the atomic volume. To the extent that the solutions for higher k 
may be approximaterl by exp(ik . r)u,(r), the wavefunctions in the conduction 
hand will he similar to plane waves over most of the atomic volume, but in- 
crease markedly and oscillate within the ion core. 

Cohesive Energy. The stability of the simple metals with respect to free 
atoms is caused by the loweri~~g of the energy of the Bloch orbital with k = 0 
in the crystal compared to the ground valence orbital of the free atom. The 
effect is illustrated in Fig. 19 for sodium and in Fig. 20 for a linear periodic - 
potential of attractive square wells. The ground orbital energy is much lower 
(because of lower kinetic energy) at the actual spacing in the metal than for 
isolated atoms. 

A decrease in ground orbikal energy will increase the binding. The decrease 
in ground orbital energy is a consequence of the change in the boundary condi- 
tion on the wavefu~lction: The Schrodinger boundary condition for the free 
atom is $(r) 4 0 as r 4 a. In thr crystal the k = 0 wavefunction u,(r) has the 
symmetry of the lattice and is symmetric about r = 0. To have this, the normal 
derivative of $ must vanish across every plane midway between adjacent atoms. 
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Figure 20 Ground orbital (k = 0) energy for an electron in a periodic square well potential of 
depth IUol = 2h21m2. The energy is lowered as the wells come closer together. Here a is held con- 
stant and b is varied. Large bla corresponds to separated atoms. (Courtesy of C. Y. Fong.) 

Figure 21 Cohesive energy of sodium metal is the dif- 
ference between the average energy of an electron in the 
metal (-6.3 eV) and the ground state energy (-5.15 eV) 
of the valence 3s electron in the free atom, referred to an 
Na+ ion plus free electron at infinite separation. 

Metal 
5.15 eV 

Cohesive energy 

---- ------ 4 , 3 e V  

-8.2 eV 
k = 0 state 

In a spherical approximation to the shape of the smallest Wigner-Seitz cell 
we use the Wigner-Seitz boundary condition 

where ro is the radius of a sphere equal in volume to a primitive cell of the lat- 
tice. In sodium, r - 3.95 Bohr units, or 2.08 A; the half distance to a nearest 

O. - 
neighbor is 1.86 A. The spherical approximation is not bad for fcc and bcc 
structures. The boundary condition allows the ground orbital wavefunction to 
have much less curvature than the free atom boundary condition. Much less 
curvature means much less kinetic energy. 

In sodium the other filled orbitals in the conduction band can be repre- 
sented in a rough approximation by wavefunctions of the form (18), with 
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Tlie Fer~ni  energy is 3.1 eV, from Table 6.1. The average kinetic energy per 
electron is 0.6 of the Fermi energy, or 1.9 eV. Bccause co = -8.2 eV at k = 0, 
the average clcctron cncrgy is ( E ~ )  = -8.2 + 1.9 = -6.3 eV, compared with 
-5.15 eV for the valence electron of the free atom, Fig. 21. 

\Ve therefore estimate that sodium metal is stable by about 1.1 eV with 
respect to the free atom. This result agrees well with the experimental value 
1.13 eV. 

Pseudopotential Methods 

Conduction electron wavefimctions are usually smoothly varying in the re- 
gion between the ion cores, but have a complicated nodal structure in the re- 
gion of the cores. This behavior is illustrated by the ground orbital of sodium, 
Fig. 19. It is helpful to view the nodes in the conduction electron wavefunction 
in the core regon as created by the requirement that the function be ortho- 
g o ~ ~ a l  to the wavefunctions of the core electrons. This all comes out of the 
Schrodinger equation, hut we can see that we nced the flexibility of two nodes 
in the 3s conduction orbital of La in order to be orthogonal both to the 1s core 
orbital with no nodes and the 2 7  core orhital with one node. 

Oiitside the core the potential energy that acts on the conduction electron 
is relatively weak: the potential energy is only the coulomb ~otential  of the 
singly-charged positive ion cores and is reduced markedly by the electrostatic 
screer~ing of tlie other conduction electrons, Chapter 14. In this outer region 
the conduction electron wavefunctions are as smoothly varying as plane waves. 

If the conduction orbitals in this outer rcgion arc approximately plane 
wavcs, thc cncrgy must dcpend on the wavevector approximately as 
ek = fi2k2/2m as for free electrons. But how do we treat the conduction orbitals 
in the core region where the orbitals are not at all like plane waves? 

What goes on in the core is largely irrelevant to the dependence of on k. 
Recall that we can calculate tlie energy by applying the liamiltonian operator 
to an orbital at any point in space. Applied in the outer region, this opcration 
will give an energy nearly cqual to thc frcc electron energy. 

This argument leads nati~rally to the idea that we might replace the actual 
potential energy (and filled shells) in the core region by an effective potential 
energy' that gives the same wavefunctions outside the core as are given 
by the actual ion cores. It is startling to find that tlie effective potential or 

'J. C. Phillips and L. Klci~i~nan,  Phys. Rcv. 116, 287 (1959); E. Antoncik, J. Phys. Chem. 
Solids 10, 314 (1959). The ~ene ra l  theory of pseudopotentials is disci~ssed by B. J. Anstin, 
V. Heine, and L. J. Sham, Phys. Rev. 127; 276 (1962); see also Vol. 24 of Solid state physics. The 
utility of the empty cure model has beer1 known fur niany years: it gocs back to E. Fcrmi, Nuovo 
Cimento 2, 157 (1934); H. Hellmann, Acta Physiochimica URSS 1, 91.3 (1935); and H. Hellmann 
a d  TV, K~assatotschkin, J. Chem. Phys. 4, 324 (1936), who wrote "Since the field of the ion 
determined in thls way runs a rather flat course, it is sofficicnt in thc first approximation to set the 
valence electron in the lattice equal to a plane wave." 



pseudopotential that satisfies this requirement is nearly zero. This co~lclusion 
about pseudopotentials is supported by a large amount of empirical experience 
as well as by theoretical arguments. The result is referred to as the cancella- 
tion theorem. 

The pseudopotential for a problem is not unique nor exact, but it may 
be very good. On the Empty Core Model (ECM) we can even take the uxi- 
screened pseudopotential to be zero inside some radius 8,: 

0 , f o r r < R , ;  
U(r) = 

-e2/r , for r > Re . 

This potential should now be screened as described in Chapter 10. Each com- 
ponent U(K) of U(r) is to be divided by the dielectric constant e(K) of the 
electron gas. If, just as an exampIe, we use the Thomas-Fermi dielectric func- 
tion (14.33), we obtain the screened pseudopotential plotted in Fig. 22a. 

Figure 22a Pseudopotential for metallic sodium, based on the empty core model and screened 
by thc Thomas-Fermi dielectric function. The calculations were made for an empty core radius 
R, = I.fiha,, where a, is the Bohr radiuu, and for a screening paranictcr k,a, = 0.79. The dashed 
curve shows the assumed unscreened potential, as from (21). The dotted cnrve is the actual 
potential of tlrc ion core; other v-dues of U(r) are -50.4, -11.6, and -4.6, for r = 0.15, 0.4, and 
0.7, respectively. Th~ls the act~ial potential of the ion (chosen to fit the energy Ic\,els o i  the free 
atom) is vely much larger than the pseudopotential, over 200 times larger at r = 0.15. 
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6 3  
61 6 2  A 

I I 

U'avevector k 

Figure 22b A typical reciprocal space 
pqeodopotential. Values of U(k) tirr warevec- 
tors equal to the reciprocal lattice vectors, 6, 
arc indicated by the dots. For very small k the 
potential apprnaches (-213) times the Fermi 
energy, which is the screened-ion limit for 
111etals. (After M. L. Cohcn.) 

The pseudopotential as drawn is much wcaker than the tnie potential, hut 
the pseudopotential was adjusted so that the wavefunction in the outer region 
is ncarly identical to that for the true potential. In the language of scattering 
theory, we adjust the phase shifts of the pseudopotential to match those of the 
true potential. 

Calculation of the band structure depe~ids only 011 the Fourier compo- 
nents of t l ~ e  pseudopotential at the reciprocal lattice vectors. Usually only a 
few values of the coefficients U(G) are needed to get a good band structure: 
see the L1(G) in Fig. 22b. These coefficients arc sometimes calc~~lated from 
modcl potentials, and sometimes they are obtained from fits of tentative band 
stnicti~res to the results of optical measurements. Good values of U ( 0 )  can be 
estimated from first principles; it is shown in (14.43) that for a screened 
coulornb potential U(0) = -gtF. 

In the re~narkably successful Elnpirical Pseudopotential Method (EPM) 
the band structure is calculated using a few coefficients U(G) deduced from 
theoretical fits to measurements of the optical reflectance and absorption of 
crystals, as discusscd in Chapter 15. Charge density maps can be plotted from 
the wavefimctions generated by the EPM-see Fig. 3.11. The results are in 
excellent agreement with x-ray diffraction determinations; such maps give an 
understanding of the bonding and have great predictive value for proposed 
new structures and conlpounds. 

The EPM values of the coemcients U(G) often are additive in the contri- 
butions of the several types of ions that are prcscnt. Thus it may he possible to 
construct thc C'(G) for entirely new structures, starting from results on known 
structures. Further, the pressure dependence of a band structure may be de- 
ternlined when it is possible to estimate from the form of the U(r) curve the 
dependence of U(G) on srnall variations of G. 



It is often possible to calculate band structures, cohesive energy, lattice 
constants, and bulk moduli from first principles. Tn such ah initio pscudo- 
potential calculations the basic inputs are the crystal structure type and the 
atomic number, along with well-tested theoretical approximations to exchange 
energy terms. This is not the same as calculating from atomic number alone, 
but it is the most reasonable basis for a first-principles calculation. The results 
of Yin and Cohen are compared with experiment in the table that follows. 

Lattice Cohesive Bulk modulus 
constant (A) energy (eV) (Mbar) 

Silicon 
Calculated 5.45 
Experimental 5.43 

Germanium 
Calculated 5.66 
Experimental 5.65 

Diamond 
Calculated 3.60 
Experimental 3.57 

EXPERIMENTAL METHODS IN FERMI SURFACE STUDIES 

Powerful experimental methods have been developed for the determina- 
tion of Fermi surfaces. The methods include magnetoresistance, anomalous 
skin effect, cyclotron resonance, magneto-acoustic geometric effects, the 
Shubnikow-de Haas effect, and the de Haas-van Alphan effect. Further infor- 
mation on the momentum distribution is given by positron annihilation, 
Compton scattering, and thc Kohn cffcct. 

We propose to study one method rather thoronghly. All the methods are 
useful, but need detailed theoretical analysis. \Ve select the de Haas-van 
Alphen effect because it exhibits very well the characteristic periodicity in 1/B 
of the properties of a metal in a uniform magnetic field. 

Quantization of Orbits in a Magnetic Field 

The momentum p of a particle in a magnetic Geld is the sum (Appendix 6) 
of two parts, the kinetic rnomcntum pldn = mv = fik and the potential momcn- 
tnm or field momentum pfield = qA/c, where q is the charge. The vector poten- 
tial is related to the magnetic field by B = curl A. The total momentum is 

In SI the factor c-' is omitted 
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Following the semiclassical approach of Onsager and Lifslutz, we assume 
that the orbits in a magnetic field are quantized by the Bohr-Sommerfeld rclation 

when n is an integer and y is a phase correction that for free electrons has the 
vallle i. Then 

The equation of motion of a particle of charge q in a magnetic field is 

We integrate with respect to time to give 

apart from an additive constant which does not contribute to the final result. 
Thus one of the path integrals in (24) is 

where @ is the magnetic flux contained within the orbit in real space. We have 
used the geometrical result that 

f r X dr = 2 X (area enclosed by the orhit) 

The other path integral in (24) is 

by the Stokes theorem. Here d a i s  the area element in real space. The momen- 
tum path integral is the sum of (25b) and (25c): 

It follows that the orbit of an electron is quantized in such a way that the 
flux through it is 

@, = (n + y)(Z&/e) . (27) 

The flux llnit 2&/e = 4.14 X gauss crnZ or Tm2. 
In the de Haas-van Alphen effect discussed below we need the area of the 

orbit in wavevector space. We obtained in (27) the flux through the orbit in 



real space By (25a) we know that a line element Ar in the plane normal to B is 
rclatcd to Ak by Ar = (fic/~R)Ak, so that thr area S, in k spacr is rclatcd to the 
area A, of the orbit in r ypace by 

A,, = (L/~-.B)~S,, (28) 

It  follow^ that 

from (27), \\,hence the area of an orbit in k space will satisly 

In Ferrni surface experirrients we may be interested in the increment AB 
for which two successive orbits, and n + 1, have the same area in k space on 
the Fermi surlace. The areas are equal when 

from (30). We ha\-e the important result that equal increments of 1/B repro- 
duce similar orbits-this periodcity in 1IB is a striking feature of the magneto- 
oscillatory effects in metals at low temperatures: resistivity, susceptibility heat 
capacity. 

The population of orbits on or near the Fermi surface oscillates as B is var- 
ied, causing a wide variety of eflects. From the period of the oscillation we 
reconstruct thc Fcrmi surf'acc. Thc result ( S O )  is indcpcndcnt of thr galigc of 
the vector potrntial uscd in thc cxprcssion (22) for momcntnm; that is, p is not 
gauge invariant, but S, is. Gauge invariance is discussed further in Chapter 10 
and in Appendix G. 

De Haas-van Alphen Effect 

The de Raas-van Alphen effect is the oscillation of the magnetic moment 
of a metal as a function of the static magnetic field intensity. The effect can be 
observed in pure specimens at low temperatures in strong magnetic fields: we 
do not want the quantizatio~l of the electron orbits to be blurred by collisions, 
and we do not want the population oscillations to be averaged out by thermal 
population of adjacent orbits. 

The analysis of thc dHv.4 cff'cct is givcn tbr absolutc zcro in Fig. 23. The 
electron spin is neglected. The treatment is given for a two-dimensional (2D) 
system; in 3D we need only multiply the 2D wavefunction by plane wave factors 
exp(ik,z), where the magnetic field is parallel to the z axis. The area of an orbit in 
k,, k,, space is quantized as i11 (30). T l ~ e  area between successive orbits is 

AS = S, - = 2veB/fic . (32) 
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(a) (h) (4 (d) (4 
Figure 23 Explanation of the de Haas-van Alphen effect for a free electron gas in two dimen- 
sions in a magnetic field. The filled orbitals of the Fermi sea in the absence of a magnetic field are 
shaded in a and d. The energy levels in a magnetic field are shown in b, c, and e.  In b the field has 
a value B, such that the total energy of the electrons is the same as in the absence of a magnetic 
field: as many electrons have their energy raised as lowered by the orbital quantization in the mag- 
netic field B,. When we increase the field to B, the total electron energy is increased, because the 
uppermost electrons have their energy raised. In e for field B, the energy is again equal to that for 
the field B = 0. The total energy is a minimum at points such as B,, B,, B,, . . . , and a maximum 
near points such as B2,  B,, . . . . 

The area in k space occupied by a single orbital is (2rlL)', neglecting spin, 
for a square specimen of side L. Using (32) we find that the number of free 
electron orbitals that coalesce in a single magnetic level is 

where p = e~'/2&, as in Fig. 24. Such a magnetic level is called a Landau 
level. 

The dependence of the Fermi level on B is dramatic. For a system of N 
electrons at absolute zero the Landau levels are entirely filled up to a magnetic 
quantum number we identify by s, where s is a positive integer. Orbitals at the 
next higher levels + 1 will be partly filled to the extent needed to accommo- 
date the electrons. The Fermi level will lie in the Landau level s + 1 if there 
are electrons in this level; as the magnetic field is increased the electrons move 
to lower levels. When s + 1 is vacated, the Fermi level moves down abruptly 
to the next lower levels. 

The electron transfer to lower Landau levels can occur because their 
degeneracy D increases as B is increased, as shown in Fig. 25. As B is 



(a) (b) 
Figure 24 (a) Allowed electron orbitals in two dimensions in absence of a magnetlc field. (b) In a 
magnetic field the points which represent the orbitals of free electrons may he viewed as re- 
stricted to circles in the former kAY plane. The successive circles correspond to successive values 
of the quantum number n in the energy (n - f )ko,. The area between successive circles is 

The angular position of the points has no significance. The number of orbitals on a circle is con- 
stant and is equal to the area between successive circles times the number of orbitals per unit area 
in (a), or (2?reB/fic)(L/2~)~ = L2eB/2dc, neglecting electron spin. 

Figure 25 (a) The heavy line gives the number of particles in levels which are completely occu- 
pied in a magnetic field B, for a two-dimensional system with N = 50 and p = 0.50. The shaded 
area gives the number of particles in levels partially occupied. The value of s denotes the quantum 
number of the highest level whlch is completely filled. Thus at B = 40 we have s = 2; the levels 
n = 1 and n = 2 are filled and there are 10 particles in the level n = 3. At B = 50 the level n = 3 is 
empty. (b) The periodicity in 1/B is evident when the same points are plotted against 1/B. 

increased there occur values of B at which the quantum number of the upper- 
most filled level decreases abruptly by unity. At the critical magnetic fields 
labeled B, no level is partly occupied at absolute zero, so that 
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Figure 26 The upper curve is the total electronic energy versus 1IB. The oscillations in the en- 
ergy U  may be detected by measurement of the magnetic moment, given by - a U l a ~ .  The thermal 
and transport properties of the metal also oscillate as successive orbital levels cut through the 
Fermi level when the field is increased. The shaded region in the figure gives the contribution to 
the energy from levels that are only partly filled. The parameters for the figure are the same as for 
Fig 25, and we have taken the units of B such that B = fiw,. 

The number of filled levels times the degeneracy at B, must equal the number 
of electrons N. 

To show the periodicity of the energy as B is varied, we use the result 
that the energy of the Landau level of magnetic quantum number n is 
E, = ( n  - ;)Tim,, where w, = eBlm*c is the cyclotron frequency. The result for 
E ,  follows from the analogy between the cyclotron resonance orbits and the 
simple harmonic oscillator, but now we have found it convenient to start 
counting at n = 1 instead of at n = 0. 

The total energy of the electrons in levels that are fully occupied is 

where D is the number of electrons in each level. The total energy of the 
electrons in the partly occupied levels + 1 is 

where sD is the number of electrons in the lower filled levels. The total energy 
of the N electrons is the sum of (35)  and (36),  as in Fig. 26. 

The magnetic moment p of a system at absolute zero is given by p = 

-8UIaB. The moment here is an oscillatory function of 1/B,  Fig. 27. This os- " 

cillatory magnetic moment of the Fermi gas at low temperatures is the de 
~aas -van  ~ l p h e n  effect. From (31)  we see that the oscillations occur at equal 
intervals of 1/B such that 



Figure 27 At absolute zero the magnetic moment is given by -BUBB. The energy plotted in 
Fig. 26 leads to the magnetic moment shown here, an oscillatoly function of 1IB. In impure speci- 
mens the oscillations are smudged out in part because the energy levels are no longer sharply defined. 

A' 

Magnetic - 
Figure 28 The orbits in the section AA' are ex- field 
tremal orbits: the cyclotron period is roughly con- 
stant over a reasonable section of the Fermi surface. 
Other sections such as BB' have orbits that vary in 
period along the section. a 

where S is the extremal area (see below) of the Fermi surface normal to the di- 
rection of B. From measurements of A(l/B),  we deduce the corresponding ex- 
tremal areas S: thereby much can be inferred about the shape and size of the 
Fermi surface. 

Extremal Orbits. One point in the interpretation of the dHvA effect is sub- 
tle. For a Fermi surface of general shape the sections at different values of k, 
will have different periods. Here k, is the component of k along the direction 
of the magnetic field. The response will be the sum of contributions from all 
sections or all orbits. But the dominant response of the system comes from or- 
bits whose periods are stationary with respect to small changes in k,. Such 
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orbits are called extremal orbits. Thus, in Fig. 28 the section AA' dominates 
the obsewed cyclotron period. 

The argument can be put in mathematical form, but we do not give the 
proof here (QTS, p. 223). Essentially it is a question of phase cancellation; the 
contributions of different nonextremal orbits cancel, but near the extrema 
thc phase varies only slowly and there is a net signal fronr these orbits. Sharp 
resonances are obtained even from complicated Fermi surfaces because the 
experiment selects the extermal orbits. 

Fermi Surface of Copper. The Fermi surface of copper (Fig. 29) is distinctly 
nonspherical: eight necks make contact with thc hexagonal faces of the first 
Brillouin zone of the fcc lattice. The electron concentration in a monovalent 
metal with an fcc structure is n = 4/a3; there are four electrons in a cube of 
volume a3. Thc radius of a free electron Fermi sphere is 

and the diameter is 9.801~. 
The shortest distance across the Brillouin zone (the distance between 

hexagonal faces) is ( 2 ~ / a ) ( 3 ) ~ ' ~  = 10.88/a, somewlrat larger than the diameter 
of the free electron sphere. The sphere does not touch the zone boundary, but 
we know that the presence of a zone boundary tends to lower the band energy 
near the boundary. Thus it is plausible that the Fermi surface should neck ont 
to meet the closest (hexagonal) faces of the zone (Figs. 18 and 29). 

The square faces of thc zone are more distant, with separation 12.57/a, 
and the Fermi surface does not neck out to meet these faces. 

EXAMPLE: Fermi Surface of Gold. In gold for quite a wide range of field directions 
Shoenberg finds the magnetic moment has a period of 2 x lO-\auss-'. This period 
corresponds to an extremal orbit of area 

From Tahlc 6.1, we have k, = 1.2 X 10' cm-' for a free electron Fermi sphere for 
gold, or an cxtrcmal area of 4.5 X 1016 cm-', in general agreement with the experi- 
mental value. Thc actual periods reported by Shoenberg are 2.05 x lo-' gauss-' and 
1.95 X I()-' gauss-1. In thc [ I l l ]  direction in Au a large period of 6 X lo-@ gauss-' is 
also found; tlir corresponding orbital area is 1.6 X l O I 5  cm-% This is the "neck orbit 
N. Another extrernal orbit, the "dog's bone," is shown in Fig. 30; its area in Au is about 
0.4 of the belly area. Experimental results are shown in Fig. 31. To do the example in 
SI,  drop c from the relation for S and use as the period 2 X tesla-'. 



Figure 29 Fermi surface of copper, after Pippard. The Figure 30 Dog's bone orbit of an electron on 
Brillouin zone of the fcc structure is the truncated octa- the Fermi surface of copper or gold in a mag- 
hedron derived in Chapter 2. The Fermi surface makes netic field. This orbit is classified as holelike be- 
contact with the boundary at the center of the hexagonal cause the energy increases toward the interior of 
faces of the zone, in the [ I l l ]  directions in k space. Two the orbit. 
"belly" extremal orbits are shown, denoted by B; the 
extremal "neck" orbit is denoted by N. 

45.0 kG 45.5 kG 46.0 k~ 

Figure 31 De Haas-van Alphen effect in gold with B 1 1  [110]. The oscillation is from the dog\ 
bone orbit of Fig. 30. The signal is related to the second derivative of the magnetic moment with 
respect to field. The results were obtained by a field modulation technique in a high-homogeneity 
superconducting solenoid at about 1.2 K. (Courtesy of I. M. Templeton.) 

The free electron Fermi sphere of aluminum fills the first zone entirely 
and has a large overlap into the second and third zones, Fig. 1. The third zone 
Fermi surface is quite complicated, even though it is just made up of certain 
pieces of the surface of the free electron sphere. The free electron model also 
gives small pockets of holes in the fourth zone, but when the lattice potential is 
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Figure 32 Multiply-connected hole surface of magnesium in 
bands 1 and 2; according to L. M. Falicuv. (Drawing by Marta 
Puebla.) 

High magnetic field Weak magnetic field 

(a) (b) 

Figure 33 Brwakdown of band structure by a strong magnetic field. Brillouin zone boundaries 
are the light lines. The free electron orhits (a) in a strorlg field changc connectitity in a weak field 
(b) to become open orbits in the first hand and electron orbits in the second band. Both bauds are 
mapped together. 

taken into account these empty out, the electrons being added to the third 
zone. The general features of the predicted Fermi surface of aliiminum are 
quite well verified by experiment. Figure 32 shows part of the free electron 
Ferrr~i surface of magnesium. 

Magnetic Breakdown. Electrons in slifficiently high magnetic fields will 
movc in frcc particle orbits, the circular cyclotron orbits of Fig. 33a. Here the 
magnetic forces are dominant, and the lattice is a slight perturbation. 
In this limit the classification of the orbitals into bands may have little impor- 
tance. However, we know that at low magnetic fields the motion is described hy 
(8.7) with the band structure ek that obtains in the abscncc of a magnetic field. 

The eventual breakdown of this description as the magnetic field is in- 
creased is called magnetic hreakdown. The passage to strong magnetic fields 
may drastically change the connectivity of the orbits, as in the figure. The 
onset of magnetic breakdown will be revealed by physical properties such as 



magnetoresistance that depend sensitively on the connectivity. The condition 
for magnetic breakdown is that hw,~ ,  > Ei ,  approximately. Here e, is the free 
electron Fermi energy and E,  is the energy gap. This condition is much milder, 
especially in metals with small gaps, than the nalve condition that the mag- 
netic splitting Rw, exceed the gap. 

Small gaps may be found in hcp metals where the gap acrvss the hexagonal 
face of the zone would be zero except for a small splitting introduced by the 
spin-orbit interaction. In  Mg the splitting is of the order of eV; for this gap 
and E~ - 10 eV the breakdown condition is hw, > 1 0 5  eV, or B > 1000 C,. 

SUMMARY 

A Fermi surface is the surface in k space of constant energy equal to E, .  The 
F e r ~ n i  surface separates filled states from empty states at absolute zero. 
The form of the Fermi surface is usually exhibited best in the reduced zone 
scheme, but the connectivity of the surfaces is clearest in the periodic zone 
scheme. 

An energy band is a single branch of the GI, versus k surface 

The cohesion of simple metals is accounted for by the lowering of energy of 
the k = 0 conduction band orbital when the boundary conditions on the 
wavefunction are changed from Schrodinger to Wigncr-Seitz. 

The periodicity in the de Haas-van Alphen effect measures thc rxtremal 
cross-section area S in k space of the Fermi silrface, the cross section being 
taken perpendicular to B: 

Problems 

1. Brillouin zones of rectangular lattice. Make a plot of the first two Brillouin 
zones of a primitive rectangular two-dimensional lattice with axes a, b = 3a. 

2. Brillouin zone, rectangular lattice. A two-dimensional metal has one atom of 
vdency one in a simple rectangular primitive cell a = 2 6; b = 4 A. (a) Draw the 
first Brillouin zone. Give its dimensions, in cm-'. (b) Calculate the radius of the 
free electron Fermi sphere, in cm-'. (c) Draw this sphere to scalc on a drawing of 
the first Brillouin zone. Make another sketch to show thc first fcw periods of thc 
free electron band in the periodic zonc schcmc, for both the Grst and sccond cn- 
ergy bands. Assume there is a small energy gap at thc zone boundaly. 

3. Hexagonal close-packed structure. Consider the Grst Brillnuin zone of a crystal 
with a simple hexagonal lattice in three dimensions with lattice constants a and c. 

Let G, denote the shortest reciprocal lattice vector parallel to the c axis of the 



9 Fenni Surfaces and Metals 253 

crystal lattice. (a) Show that for a hexagonal-close-packed crystal stn~ctllre the 
Fourier corrrponent UiG,) of the crystal potential U[r) is zero. (b) Is U(2G,) also 
zero? (c) \%'Ililly is it possihle in principle to obtain an insulator made up of divalent 
atoms at the lattice points or a simple hexagonal lattice? (d) Why is it not possihle 
to obtain an irrsulator made up of monovalent atoms in a hexagonal-close-packed 
structure? 

4 .  Brillouin zones of two-dimensional divalent metal. A two-dimensional metal 
in the form of a square lattice has two conduction electrons per atom. In the d- 
most free electron approxirriation. sketch carefully the electron and hole energy 
surfaces. For the electror~s chnosr a zonc scheme such that the Fermi surface is 
shown as closed. 

5.  Open orbits. An open orbit in a monovalent tetragonal metal connects 
opposite faces of the boundary of a Brillonin zonc. The faces are separated by G 
= 2 X 10%m '. A magnetic field B = 10'' ganss = lo-' tesla is normal to the 
plane of the open orbit. (a) What is the order of magnitude of the period of the 
motion in k space? Take c = 10' cm/sec. (b) Descrihc in real space the motion of 
an electron on this orbit in the presence of tlie magnetic field. 

6. Cohesive energy for a square well potentiul. (a) Find an expression for the 
hinrling energy of an electron in one dimension in a single square well of depth U, 
and width a. (This is the standard first problem in elerrlerltary quantum mechan- 
ics.) Assume that the solution is symmetric about the rrridpoint of the wcl. (b) 
Find a nirmcrical result for the binding energy in terms of Uo for the special case 
IUo1 = 2K4nm%nd conlpare with the appropriate limit of Fig. 20. In this limit of 
widely separated \vclls the band width goes to zero, so the energy fork = 0 is the 
same as the enrrm for any other k in the lowest energy band. Other bands are 
formed frorr~ tlir excited states of the well, in this limit. 

7 .  De Hans-van Alphen period of potassium. (a) Calculate the period A(1IB) ex- 
pected for potassium or1 d1c frce electron model. (b) What is the area in real 
space of the extrslrral orhit, for B = 10 kG = 1 T? The same period applies to os- 
cillations in the electrical resistiviky, )sown as the Shubnikow-de Haas effect. 

'8. Band edge structure on k - p perturbation theory. Consider a nondegrrrerate 
orbital $nk at k = 0 111 the band n of a cubic crystal. Use second-order perturba- 
t ~ o n  theory to find the re~ul t  

where the surrl is over a11 othcr orbitals ICrJk at k = 0. The effective mass at this 
point is 

'This problem is surrlewhat difficult. 



The mass at the conduction band edge in a narrow gap semicond~~ctor is often 
dominated by the effect of the valence band edge, whcnce 

where the sum is over the valcnce hands; Eg is the energy gap. For given matrix 
elements, small gaps lead to small masses. 

9. Wannier functions. Thc Wannier functions of a band are defined in terms of 
the Bloch functions of thc same band hy 

~ ( r  - r,,) = N- In Z e x p -  ik . r,) $k(r) ; 
k 

( 4 2 )  

where r, is a lattice point. (a) Prove that Wannier functions about different lattice 
points n,m are orthogonal: 

This orthogonality property makes the functions often of greater use than atomic 
orbitals centered on different lattice sites, because the latter are not generally or- 
thogonal. (b) The Wannier functions are peaked around the lattice sites. Show 
that for $k = N-'" elkx U&X) the W7annier {unction is 

sin v(x - x,)/a 
w(x - x") = u0(x) 

r ( x  - x,J\a 

for N atoins on a line of lattice constant a 

10. Open orbits and magnetoresistance. We considered the transverse magncto- 
resistance of free electrons in Problem 6.9 and of electrons and holes in Problcm 
8.5. In some crystals the magnetoresistance saturates except in spccial crystal nri- 

entations. An open orbit carries current only in a single direction in the plane 
normal to the magnetic field; such carriers are not deflected by thc ficld. In the 
arrangement of Fig. 6.14, let the open orbits be parallel to k,; in real space these 
orbits carry current parallel to the y axis. Let a?,, = su0 bc the cond~lctivity of the 
open orbits; this defines the constant s. The magnetncond~~ctivity tensor iri the 
high field limit w,r B 1 is 

Q-2 -0-1 0 

uo(Qil ; :) 
with Q = w,r. (a) Show that the Hall field is E, = -EJsQ. (b) Show that the ef- 
fectivc rcsistivity in the x directiorr is p = (Q2/uo)(s/s + l ) ,  so that the resistivity 
does not saturate, bnt increases as BZ. 

11. Landau leoeln. The vector potential of a uniform magnetic field Bi is A = 

-By% in the Landau gauge. The hamiltonian of a free electron without spin is 
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We will look for an eigenfilnction of the wave equation H$ = E(J irr tlra form 

$ = x(y) exp[i(k~ + k,z)l 

(a) Sho\v that ~ ( y )  satisfies the equation 

where o, = eBlmc and yo = cfik,/eB. (b) Show that this is the wave equation of a 
harmonic oscillator with frequency o, , where 

6, = (n + $)fro, + fizk:/2rn . 


