

Different Products of Vectors and Their Geometrical Applications

- Dot (Scalar) Product
 - Applications of Dot (Scalar) Product
- Vector (or Cross) Product of Two Vectors

- Scalar Triple Product
- Vector Triple Product
- Reciprocal System of Vectors

DOT (SCALAR) PRODUCT

The scalar product of vectors \vec{a} and \vec{b} , written as $\vec{a} \cdot \vec{b}$, is defined to be the number $|\vec{a}||\vec{b}|\cos\theta$, where θ is the angle between \vec{a} and \vec{b} .

i.e., $\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \cos \theta$, where $0 \le \theta \le \pi$.

Notes:

- 1. $\vec{a} \cdot \vec{b}$ is positive if θ is acute.
- 2. $a \cdot b$ is negative if θ is obtuse.
- 3. $\vec{a} \cdot \vec{b}$ is zero if θ is a right angle.

Physical Interpretation of Scalar Product

Fig. 2.1

Let $\overrightarrow{OA} = \overrightarrow{a}$ represent a force acting on a particle at O and let $\overrightarrow{OB} = \overrightarrow{b}$ represent the displacement of the particle from O to B as shown in the figure. Then the displacement in the direction of the force $= OC = b \cos \theta$. Therefore the work done by a force is a scalar quantity equal to the product of the magnitude of the force and the resolved part of the displacement in the direction of force work done by force \overrightarrow{a} in moving its point of application from O to $B = |\overrightarrow{a}| |\overrightarrow{b}| \cos \theta = \overrightarrow{a} \cdot \overrightarrow{b}$.

Geometrical Interpretation of Scalar Product

Let \overrightarrow{a} and \overrightarrow{b} be two vectors represented by \overrightarrow{OA} and \overrightarrow{OB} , respectively.

Fig. 2.2

Here OL and OM are known as projections of \vec{b} on \vec{a} and \vec{a} on \vec{b} , respectively.

$$= |\overrightarrow{a}| (OB \cos \theta)$$

$$= |\overrightarrow{a}| (OL)$$

$$= (\text{magnitude of } \overrightarrow{a}) \text{ (projection of } \overrightarrow{b} \text{ on } \overrightarrow{a})$$

$$\text{Again, } \overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \cos \theta$$

$$= |\overrightarrow{b}| (|\overrightarrow{a}| \cos \theta)$$

$$= |\overrightarrow{b}| (OA \cos \theta)$$

$$= |\overrightarrow{b}| (OM)$$

$$= (\text{magnitude of } \overrightarrow{b}) \text{ (projection of } \overrightarrow{a} \text{ on } \overrightarrow{b})$$
(ii)

Thus, geometrically interpreted, the scalar product of two vectors is the product of modulus of either vectors and the projection of the other in its direction.

Thus projection of
$$\vec{a}$$
 on $\vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} = \vec{a} \cdot \frac{\vec{b}}{|\vec{b}|} = \vec{a} \cdot \vec{b}$

Projection of \vec{b} on $\vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|} = \frac{\vec{a}}{|\vec{a}|} \cdot \vec{b} = \hat{a} \cdot \vec{b}$

Properties of Dot (Scalar) Product

Now, $\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \cos \theta$

i.
$$\overrightarrow{a} \cdot \overrightarrow{a} = |\overrightarrow{a}| |\overrightarrow{a}| |\overrightarrow{a}| \cos 0^{\circ} = |\overrightarrow{a}|^{2} = a^{2} \Rightarrow \hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1$$

ii. $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}$ (commutative)
iii. $\overrightarrow{a} \cdot (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{a} \cdot \overrightarrow{c}$ (distributive)

Proof:

Let
$$\overrightarrow{OA} = \overrightarrow{a}$$
, $\overrightarrow{OB} = \overrightarrow{b}$, $\overrightarrow{BC} = \overrightarrow{c}$ so that
 $\overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{BC} = \overrightarrow{b} + \overrightarrow{c}$
From B draw $BM \perp OA$ and from C, drawn $CN \perp OA$

L.H.S. =
$$\overrightarrow{a} \cdot (\overrightarrow{b} + \overrightarrow{c})$$

= $\overrightarrow{OA} \cdot \overrightarrow{OC}$
= $(OA) (OC)\cos\theta$ (where $\theta = \angle CON$)
= $(OA)(ON)$ (as $ON = OC\cos\theta$)
= $(OA) (OM + MN)$
= $(OA) (OM) + (OA) (MN)$

Fig. 2.3

$$= \overrightarrow{OA} \cdot \overrightarrow{OB} + \overrightarrow{OA} \cdot \overrightarrow{BC}$$

$$= \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{a} \cdot \overrightarrow{c} = \text{R.H.S.}$$

- iv. $(\overrightarrow{la}) \cdot (\overrightarrow{mb}) = lm(\overrightarrow{a} \cdot \overrightarrow{b})$, where l and m are scalars
- v. If \vec{a} and \vec{b} are two non-zero vectors, then $\vec{a} \cdot \vec{b} = 0 \Leftrightarrow \vec{a}$ and \vec{b} are perpendicular to each other $\hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{i} = 0$

vi.
$$(\vec{a} \pm \vec{b})^2 = (\vec{a} \pm \vec{b}) \cdot (\vec{a} \pm \vec{b})$$

$$= |\vec{a}|^2 + |\vec{b}|^2 \pm 2 |\vec{a}| |\vec{b}| \cos \theta$$

$$= |\vec{a}|^2 + |\vec{b}|^2 \pm 2 |\vec{a}| |\vec{b}| \cos \theta$$

vii.
$$(\overrightarrow{a} + \overrightarrow{b}) \cdot (\overrightarrow{a} - \overrightarrow{b}) = |\overrightarrow{a}|^2 - |\overrightarrow{b}|^2$$

viii. If
$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$
 and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ then $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$
 $(\because \hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1 \text{ and } \hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{i} = 0)$

ix. Let $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$. Taking dot product with \hat{i} , \hat{j} and \hat{k} alternatively, we have $x = \vec{r} \cdot \hat{i}$, $y = \vec{r} \cdot \hat{j}$ and $z = \vec{r} \cdot \hat{k}$ $\Rightarrow \vec{r} = (\vec{r} \cdot \hat{i})\hat{i} + (\vec{r} \cdot \hat{j})\hat{j} + (\vec{r} \cdot \hat{k})\hat{k}$

APPLICATIONS OF DOT (SCALAR) PRODUCT

Finding Angle between Two Vectors

If $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ are non-zero vectors, then the angle between them is given by

$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \frac{a_1 b_1 + a_2 b_2 + a_3 b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2} \sqrt{b_1^2 + b_2^2 + b_3^2}}$$

Also

$$\frac{(a_1b_1 + a_2b_2 + a_3b_3)^2}{(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2)} = \cos^2\theta \le 1$$

$$\Rightarrow (a_1b_1 + a_2b_2 + a_3b_3)^2 \le (a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2)$$

Cosine Rule Using Dot Product

Using vector method, prove that in a triangle $a^2 = b^2 + c^2 - 2bc \cos A$ (Cosine law)

Fig. 2.4

In $\triangle ABC$.

Let
$$\overrightarrow{AB} = \overrightarrow{c}, \overrightarrow{BC} = \overrightarrow{a}, \overrightarrow{CA} = \overrightarrow{b},$$

Since $\vec{a} + \vec{b} + \vec{c} = 0$, we have $\vec{a} = -(\vec{b} + \vec{c})$

$$\therefore |\overrightarrow{a}| = |-(\overrightarrow{b} + \overrightarrow{c})|$$

$$\Rightarrow |\vec{a}|^2 = |\vec{b} + \vec{c}|^2$$

$$\Rightarrow |\overrightarrow{a}|^2 = |\overrightarrow{b}|^2 + |\overrightarrow{c}|^2 + 2\overrightarrow{b} \cdot \overrightarrow{c}|$$

$$\Rightarrow |\overrightarrow{a}|^2 = |\overrightarrow{b}|^2 + |\overrightarrow{c}|^2 + 2|\overrightarrow{b}||\overrightarrow{c}|\cos(\pi - A)$$

(Since angle between \vec{b} and \vec{c} = the angle between CA produced and AB)

$$\Rightarrow a^2 = b^2 + c^2 - 2bc \cos A$$

Finding Components of a Vector \vec{b} Along and Perpendicular to Vector \vec{a} or Resolving a Given Vector in the Direction of Given Two Perpendicular Vectors

Fig. 2.5

Let \vec{a} and \vec{b} be two vectors represented by \overrightarrow{OA} and \overrightarrow{OB} and let θ be the angle between \vec{a} and \vec{b} .

$$\therefore \vec{b} = \overrightarrow{OM} + \overrightarrow{MB}$$

Also
$$\overrightarrow{OM} = (OM)\hat{a}$$

= $(OB\cos\theta)\hat{a}$

$$=(|\vec{b}|\cos\theta)\hat{a}$$

$$= \left(\begin{vmatrix} \overrightarrow{b} \end{vmatrix} \frac{\overrightarrow{(a \cdot b)}}{|\overrightarrow{a}| |\overrightarrow{b}|} \right) \hat{a}$$

$$= \left(\begin{vmatrix} \overrightarrow{a} \cdot \overrightarrow{b} \\ |\overrightarrow{a}| \end{vmatrix} \right) \hat{a} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| |\overrightarrow{a}|} \overrightarrow{a} = \left(\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}|^2} \right) \overrightarrow{a}$$

Also $\vec{b} = \overrightarrow{OM} + \overrightarrow{MB}$

$$\Rightarrow \overrightarrow{MB} = \overrightarrow{b} - \overrightarrow{OM} = \overrightarrow{b} - \left(\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}|^2}\right) \overrightarrow{a}$$

Thus, the components of \vec{b} along and perpendicular to \vec{a} are $\begin{pmatrix} \vec{a} \cdot \vec{b} \\ |\vec{a}|^2 \end{pmatrix} \vec{a}$ and $\vec{b} - \begin{pmatrix} \vec{a} \cdot \vec{b} \\ |\vec{a}|^2 \end{pmatrix} \vec{a}$, respectively.

Example 2.1 If \vec{a} , \vec{b} and \vec{c} are non-zero vectors such that $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$, then find the geometrical relation between the vectors.

Sol.
$$\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$$

$$\Rightarrow \vec{a} \cdot \vec{b} - \vec{a} \cdot \vec{c} = \vec{0}$$

$$\Rightarrow \vec{a} \cdot (\vec{b} - \vec{c}) = \vec{0}$$

$$\Rightarrow \text{Either } \vec{b} - \vec{c} = \vec{0} \text{ or } \vec{a} \perp (\vec{b} - \vec{c})$$

$$\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \perp (\vec{b} - \vec{c})$$

Example 2.2 If $\vec{r} \cdot \hat{i} = \vec{r} \cdot \hat{j} = \vec{r} \cdot \hat{k}$ and $|\vec{r}| = 3$, then find vector \vec{r} .

Sol. Let
$$\overrightarrow{r} = x \hat{i} + y \hat{j} + z \hat{k}$$
. Since $\overrightarrow{r} \cdot \hat{i} = \overrightarrow{r} \cdot \hat{j} = \overrightarrow{r} \cdot \hat{k}$.

$$x = y = z$$
Also $|\overrightarrow{r}| = \sqrt{x^2 + y^2 + z^2} = 3$

$$\Rightarrow x = \pm \sqrt{3}$$

Hence, the required vector $\vec{r} = \pm \sqrt{3}(\hat{i} + \hat{j} + \hat{k})$

Example 2.3 If \vec{a} , \vec{b} and \vec{c} are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, then find the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$.

Sol. Squaring
$$(\vec{a} + \vec{b} + \vec{c}) = \vec{0}$$

$$\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2\vec{a}\cdot\vec{b} + 2\vec{b}\cdot\vec{c} + 2\vec{c}\cdot\vec{a} = 0$$

$$\Rightarrow 2(\vec{a}\cdot\vec{b} + \vec{b}\cdot\vec{c} + \vec{c}\cdot\vec{a}) = -3$$

$$\Rightarrow \vec{a}\cdot\vec{b} + \vec{b}\cdot\vec{c} + \vec{c}\cdot\vec{a} = -\frac{3}{2}$$

If \vec{a} , \vec{b} and \vec{c} are mutually perpendicular vectors of equal magnitudes, then find the angle between vectors \overrightarrow{a} and $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$.

Since \vec{a} , \vec{b} and \vec{c} are mutually perpendicular, $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$ Sol.

Angle between \vec{a} and $\vec{a} + \vec{b} + \vec{c}$ is

$$\cos \theta = \frac{\overrightarrow{a} \cdot (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c})}{|\overrightarrow{a}|| |\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}|}$$
(i)

Now $|\overrightarrow{a}| = |\overrightarrow{b}| = |\overrightarrow{c}| = a$

$$|\vec{a} + \vec{b} + \vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2\vec{a}\cdot\vec{b} + 2\vec{b}\cdot\vec{c} + 2\vec{c}\cdot\vec{a}$$
$$= a^2 + a^2 + a^2 + 0 + 0 + 0$$

$$\Rightarrow |\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}|^2 = 3a^2$$

$$\Rightarrow |\vec{a} + \vec{b} + \vec{c}| = \sqrt{3}a$$

Putting this value in (i), we get $\theta = \cos^{-1} \frac{1}{\sqrt{3}}$

 $\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{c}$ Sol.

$$\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b} = |\vec{c}|^2$$
 (i)

and $|\overrightarrow{a}| + |\overrightarrow{b}| = |\overrightarrow{c}|$

$$\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + 2|\vec{a}||\vec{b}| = |\vec{c}|^2$$
 (ii)

$$\therefore \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \quad \text{(from (i) and (ii))}$$

$$\Rightarrow \cos \theta = 1 \Rightarrow \theta = 0^{\circ}$$

If three unit vectors \vec{a} , \vec{b} and \vec{c} satisfy $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, then find the angle

Sol.

$$\vec{a} + \vec{b} = -\vec{c}$$

$$\Rightarrow |\vec{a} + \vec{b}|^2 = |\vec{c}|^2 = 1$$

$$\Rightarrow |\overrightarrow{a}|^2 + |\overrightarrow{b}|^2 + 2\overrightarrow{a} \cdot \overrightarrow{b} = 1$$

$$\Rightarrow \vec{a} \cdot \vec{b} = -\frac{1}{2}$$

$$\Rightarrow |\vec{a}| |\vec{b}| \cos \theta = -\frac{1}{2}$$

$$\Rightarrow \cos \theta = -\frac{1}{2}$$

$$\Rightarrow \cos \theta = -\frac{1}{2}$$

$$\Rightarrow \theta = \frac{2\pi}{3}$$

Example 2.7 If θ be the angle between the unit vectors \vec{a} and \vec{b} , then prove that

i.
$$\cos \frac{\theta}{2} = \frac{1}{2} |\vec{a} + \vec{b}|$$

ii.
$$\sin \frac{\theta}{2} = \frac{1}{2} |\vec{a} - \vec{b}|$$

Sol. i.
$$(\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b}$$

= $1 + 1 + 2(1)(1) \cos \theta$
= $2 + 2 \cos \theta$

$$\Rightarrow |\vec{a} + \vec{b}|^2 = 2 \cdot 2\cos^2\frac{\theta}{2}$$
$$\Rightarrow \cos\frac{\theta}{2} = \frac{1}{2}|\vec{a} + \vec{b}|$$

ii.
$$(\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b}) = |\vec{a}|^2 + |\vec{b}|^2 - 2\vec{a} \cdot \vec{b}$$

$$= 1 + 1 - 2(1)(1)\cos\theta$$

$$= 2 - 2\cos\theta$$

$$\Rightarrow |\vec{a} - \vec{b}|^2 = 2 \cdot 2\sin^2\frac{\theta}{2}$$

$$\Rightarrow \sin\frac{\theta}{2} = \frac{1}{2}|\vec{a} + \vec{b}|$$

Example 2.8 If the scalar projection of vector $x\hat{i} - \hat{j} + \hat{k}$ on vector $2\hat{i} - \hat{j} + 5\hat{k}$ is $\frac{1}{\sqrt{30}}$, then find the value of x.

Sol. Projection of
$$x\hat{i} - \hat{j} + \hat{k}$$
 on $2\hat{i} - \hat{j} + 5\hat{k} = \frac{(x\hat{i} - \hat{j} + \hat{k}) \cdot (2\hat{i} - \hat{j} + 5\hat{k})}{\sqrt{4 + 1 + 25}}$
$$= \frac{2x + 1 + 5}{\sqrt{30}}$$

But, given
$$\frac{2x+6}{\sqrt{30}} = \frac{1}{\sqrt{30}}$$
 $\Rightarrow 2x+6=1 \Rightarrow x = \frac{-5}{2}$

Example 2.9 If $\vec{a} = x\hat{i} + (x-1)\hat{j} + \hat{k}$ and $\vec{b} = (x+1)\hat{i} + \hat{j} + a\hat{k}$ make an acute angle $\forall x \in R$, then find the values of a.

Sol.
$$\vec{a} \cdot \vec{b} = (x \hat{i} + (x - 1) \hat{j} + \hat{k}) \cdot ((x + 1) \hat{i} + \hat{j} + a \hat{k})$$

$$= x(x + 1) + x - 1 + a$$

$$= x^2 + 2x + a - 1$$

We must have $\overrightarrow{a} \cdot \overrightarrow{b} > 0 \ \forall x \in R$

$$\Rightarrow x^2 + 2x + a - 1 > 0 \quad \forall \quad x \in R$$
$$\Rightarrow 4 - 4(a - 1) < 0$$

$$\Rightarrow a > 2$$

Sol. Let
$$\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$$

Then,
$$\vec{a} \cdot \hat{i} = (x\hat{i} + y\hat{j} + z\hat{k}) \cdot \hat{i} = x$$
 and $\vec{a} \cdot (\hat{i} + \hat{j}) = x + y$

and
$$\vec{a} \cdot (\hat{i} + \hat{j} + \hat{k}) = x + y + z$$
 (given that $x = x + y = x + y + z$)

Now
$$x = x + y \Rightarrow y = 0$$
 and $x + y = x + y + z \Rightarrow z = 0$

Hence x = 1 (Since \overrightarrow{a} is a unit vector)

$$\vec{a} = \hat{i}$$

Example 2.11 Prove by vector method that $\cos (A + B) = \cos A \cos B - \sin A \sin B$.

Sol. Let \hat{i} and \hat{j} be unit vectors along OX and OY, respectively.

Let \overrightarrow{OP} , \overrightarrow{OQ} be two unit vectors drawn in the plane XOY such that

$$\angle XOP = A, \ \angle XOQ = B$$

$$\therefore POQ = A + B$$

Now $\overrightarrow{OP} = \hat{i} \cos A + \hat{j} \sin A$

$$\overrightarrow{OQ} = \hat{i} \cos B - \hat{j} \sin B$$

$$\therefore \overrightarrow{OP} \cdot \overrightarrow{OQ} = \cos A \cos B - \sin A \sin B$$

$$\Rightarrow (1) (1) \cos (A + B) = \cos A \cos B - \sin A \sin B$$

$$\Rightarrow$$
 $\cos (A + B) = \cos A \cos B - \sin A \sin B$

Fig. 2.6

Example 2.12 In any triangle ABC, prove the projection formula $a = b \cos C + c \cos B$ using vector method.

Sol. Let
$$\overrightarrow{BC} = \overrightarrow{a}$$
, $\overrightarrow{CA} = \overrightarrow{b}$, $\overrightarrow{AB} = \overrightarrow{c}$, so that

$$BC = a$$
, $CA = b$, $AB = c$

Now
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$$

$$\therefore \qquad \overrightarrow{a} \cdot (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) = 0$$

$$\overrightarrow{a} \cdot \overrightarrow{a} + \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{a} \cdot \overrightarrow{c} = 0$$

$$a^2 + ab \cos (180^\circ - C) + ac \cos (180^\circ - B) = 0$$

$$a^2 - ab \cos C - ac \cos B = 0$$

$$a - b \cos C - c \cos B = 0$$

$$a = b \cos C + c \cos B$$

Fig. 2.7

Example 2.13 Prove that an angle inscribed in a semi-circle is a right angle using vector method.

Sol. Let O be the centre of the semi-circle and BA be the diameter. Let P be any point on the circumference of the semi-circle.

Let
$$\overrightarrow{OA} = \overrightarrow{a}$$
, then $\overrightarrow{OB} = -\overrightarrow{a}$
Let $\overrightarrow{OP} = \overrightarrow{r}$
 $\therefore \overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA} = \overrightarrow{r} - \overrightarrow{a}$
 $\overrightarrow{BP} = \overrightarrow{OP} - \overrightarrow{OB} = \overrightarrow{r} - (-\overrightarrow{a}) = \overrightarrow{r} + \overrightarrow{a}$
 $\overrightarrow{AP} \cdot \overrightarrow{BP} = (\overrightarrow{r} - \overrightarrow{a}) \cdot (\overrightarrow{r} + \overrightarrow{a})$

$$= \overrightarrow{r^2} - \overrightarrow{a^2}$$

$$= a^2 - a^2 \quad [\because r = a \text{ as } OP = OA]$$

∴ \overrightarrow{AP} is perpendicular to \overrightarrow{BP} ⇒ $\angle APB = 90^{\circ}$

Example 2:14 Using dot product of vectors, prove that a parallelogram, whose diagonals are equal, is a rectangle.

Sol. Let OACB be a parallelogram such that OC = AB

Let
$$\overrightarrow{OA} = \overrightarrow{a}, \overrightarrow{OB} = \overrightarrow{b}$$

Now
$$OC = AB$$

$$\Rightarrow OC^2 = AB^2$$

$$\implies \left(\vec{OA} + \vec{AC} \right)^2 = \left(\vec{AO} + \vec{OB} \right)^2$$

$$\Rightarrow \left(\vec{OA} + \vec{OB}\right)^2 = \left(-\vec{OA} + \vec{OB}\right)^2$$

$$\Rightarrow$$
 $(\overrightarrow{a} + \overrightarrow{b}) = (-\overrightarrow{a} + \overrightarrow{b})^2$

$$\Rightarrow \overrightarrow{a} + \overrightarrow{b} + 2\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{a} + \overrightarrow{b} - 2\overrightarrow{a} \cdot \overrightarrow{b}$$

$$\Rightarrow 2\vec{a} \cdot \vec{b} = -2\vec{a} \cdot \vec{b}$$

$$\Rightarrow 4\vec{a} \cdot \vec{b} = 0$$

$$\Rightarrow \vec{a} \cdot \vec{b} = \vec{0}$$

 $\Rightarrow \vec{a}$ and \vec{b} are perpendicular

$$\Rightarrow \angle AOB = 90^{\circ}$$

 \Rightarrow OACB is a rectangle

Example 2.15 If a + 2b + 3c = 4, then find the least value of $a^2 + b^2 + c^2$.

Sol. Consider vectors $\vec{p} = a\hat{i} + b\hat{j} + c\hat{k}$ and $\vec{q} = \hat{i} + 2\hat{j} + 3\hat{k}$

Now
$$\cos \theta = \frac{a + 2b + 3c}{\sqrt{a^2 + b^2 + c^2} \sqrt{1^2 + 2^2 + 3^2}}$$

or
$$\cos^2 \theta = \frac{(a+2b+3c)^2}{14(a^2+b^2+c^2)} \le 1$$

$$\Rightarrow \qquad a^2 + b^2 + c^2 \ge \frac{8}{7}$$

$$\Rightarrow \qquad \text{Hence least value of } a^2 + b^2 + c^2 \text{ is } \frac{8}{7}$$

Example 2.16 Find a unit vector \vec{a} which makes an angle of $\pi/4$ with the z-axis and it is such that $(\vec{a} + \hat{i} + \hat{j})$ is a unit vector.

Sol. Let
$$\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$$

Given
$$|\vec{a}| = 1$$
, therefore

$$x^2 + y^2 + z^2 = 1 (i)$$

Angle between \overrightarrow{a} and z-axis is $\pi/4$, therefore

$$\cos\left(\frac{\pi}{4}\right) = \frac{\vec{a} \cdot \hat{k}}{|\vec{a}||\hat{k}||}$$

$$\Rightarrow z = \frac{1}{\sqrt{2}}$$

Now
$$\vec{a} + \hat{i} + \hat{j} = (x+1)\hat{i} + (y+1)\hat{j} + z\hat{k}$$

Given that $\overrightarrow{a} + \widehat{i} + \widehat{j}$ is a unit vector. Therefore.

$$|\vec{a} + \hat{i} + \hat{j}| = \sqrt{[(x+1)^2 + (y+1)^2 + z^2]} = 1$$

$$\Rightarrow x^2 + y^2 + z^2 + 2x + 2y + 1 = 0$$

$$\Rightarrow$$
 1 + 2x + 2y + 1 = 0, using (i)

$$\Rightarrow$$
 $y = -(x + 1)$

From (i), we have

$$x^{2} + (x+1)^{2} + (1/2) = 1$$

$$\Rightarrow 4x^{2} + 4x + 1 = 0 \text{ or } (2x+1)^{2} = 0$$

$$x = -\frac{1}{2} \Rightarrow y = -\frac{1}{2}$$

Hence
$$\vec{a} = -\frac{1}{2}\hat{i} - \frac{1}{2}\hat{j} + \frac{1}{\sqrt{2}}\hat{k}$$

Example 2.17 Vectors \vec{a} , \vec{b} and \vec{c} are of the same length and taken pair-wise they form equal angles. If $\vec{a} = \hat{i} + \hat{j}$ and $\vec{b} = \hat{j} + \hat{k}$, then find vector \vec{c} .

Sol. Let
$$\vec{c} = x\hat{i} + y\hat{j} + z\hat{k}$$
. Then $|\vec{a}| = |\vec{b}| = |\vec{c}| \Rightarrow x^2 + y^2 + z^2 = 2$

It is given that the angles between the vectors taken in pairs are equal, say θ . Therefore,

$$\cos\theta = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|} = \frac{0+1+0}{\sqrt{2}\sqrt{2}} = \frac{1}{2}$$

$$\Rightarrow \frac{\overrightarrow{a} \cdot \overrightarrow{c}}{|\overrightarrow{a}||\overrightarrow{c}|} = \frac{1}{2} \text{ and } \frac{\overrightarrow{b} \cdot \overrightarrow{c}}{|\overrightarrow{b}||\overrightarrow{c}|} = \frac{1}{2}$$

$$\Rightarrow \frac{x+y}{\sqrt{2}\sqrt{2}} = \frac{1}{2} \text{ and } \frac{y+z}{\sqrt{2}\sqrt{2}} = \frac{1}{2}$$

$$\Rightarrow x + y = 1$$
 and $y + z = 1$

$$\Rightarrow y = 1 - x \text{ and } z = 1 - y = 1 - (1 - x) = x$$

Also
$$x^2 + y^2 + z^2 = 2 \Rightarrow x^2 + (1 - x)^2 + x^2 = 2$$

 $\Rightarrow (3x + 1)(x - 1) = 0 \Rightarrow x = 1, -1/3$
Now, $y = 1 - x \Rightarrow y = 0$ for $x = 1$ and $y = 4/3$ for $x = -1/3$
Hence, $\vec{c} = \hat{i} + 0 \hat{j} + \hat{k}$ and $\vec{c} = -\frac{1}{3}\hat{i} + \frac{4}{3}\hat{j} - \frac{1}{3}\hat{k}$

Example 2.18 If \vec{a} , \vec{b} and \vec{c} are three mutually perpendicular unit vectors and \vec{d} is a unit vector which makes equal angles with \vec{a} , \vec{b} and \vec{c} , then find the value of $|\vec{a} + \vec{b} + \vec{c} + \vec{d}|^2$.

Sol.
$$|\vec{a} + \vec{b} + \vec{c} + \vec{d}|^2 = \Sigma |\vec{a}|^2 + 2\Sigma \vec{a} \cdot \vec{b} = 4 + 2\vec{d} \cdot (\vec{a} + \vec{b} + \vec{c})$$
 (: \vec{a} , \vec{b} , \vec{c} are mutually perpendicular)
Let $\vec{d} = \lambda \vec{a} + \mu \vec{b} + v \vec{c}$. Then $\vec{d} \cdot \vec{a} = \vec{d} \cdot \vec{b} = \vec{d} \cdot \vec{c} = \cos \theta$. Therefore,
 $\lambda = \mu = v = \cos \theta$
Also $\lambda^2 + \mu^2 + v^2 = 1 \Rightarrow 3\cos^2 \theta = 1 \Rightarrow \cos \theta = \pm \frac{1}{\sqrt{3}}$
 $\therefore |\vec{a} + \vec{b} + \vec{c} + \vec{d}|^2 = 4 \pm \frac{2 \cdot 3}{\sqrt{3}} = 4 \pm 2\sqrt{3}$

Example 2.19 A particle acted by constant forces $4\hat{i} + \hat{j} - 3\hat{k}$ and $3\hat{i} + \hat{j} - \hat{k}$ is displaced from point $\hat{i} + 2\hat{j} + 3\hat{k}$ to point $5\hat{i} + 4\hat{j} + \hat{k}$. Find the total work done by the forces in units.

Sol. Here
$$\vec{F} = \vec{F_1} + \vec{F_2} = (4\hat{i} + \hat{j} - 3\hat{k}) + (3\hat{i} + \hat{j} - \hat{k}) = 7\hat{i} + 2\hat{j} - 4\hat{k}$$

and $\vec{d} = \vec{d_2} - \vec{d_1} = (5\hat{i} + 4\hat{j} + \hat{k}) - (\hat{i} + 2\hat{j} + 3\hat{k}) = 4\hat{i} + 2\hat{j} - 2\hat{k}$
 \therefore Work done $= \vec{F} \cdot \vec{d}$
 $= (7\hat{i} + 2\hat{j} - 4\hat{k}) \cdot (4\hat{i} + 2\hat{j} - 2\hat{k})$
 $= (7)(4) + (2)(2) + (-4)(-2)$
 $= 28 + 4 + 8 = 40 \text{ units}$

Example 2.20 If $\vec{a} = 4\hat{i} + 6\hat{j}$ and $\vec{b} = 3\hat{j} + 4\hat{k}$, then find the component of \vec{a} along \vec{b} .

Sol. The component of vector
$$\vec{a}$$
 along \vec{b} is $\frac{(\vec{a}.\vec{b})\vec{b}}{|\vec{b}|^2} = \frac{18}{25}(3\hat{i} + 4\hat{k})$

Example 2.21 If $|\vec{a}| = |\vec{b}| = |\vec{a} + \vec{b}| = 1$, then find the value of $|\vec{a} - \vec{b}|$.

Sol. We have
$$|\vec{a} + \vec{b}|^2 + |\vec{a} - \vec{b}|^2 = 2(|\vec{a}|^2 + |\vec{b}|^2)$$

$$\Rightarrow 1 + |\vec{a} - \vec{b}|^2 = 4 \Rightarrow |\vec{a} - \vec{b}| = \sqrt{3}$$

Example 2.22 If $\vec{a} = -\hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = 2\hat{i} + 0\hat{j} + \hat{k}$, then find vector \vec{c} satisfying the following conditions: (i) that it is coplanar with \vec{a} and \vec{b} , (ii) that it is \perp to \vec{b} and (iii) that $\vec{a} \cdot \vec{c} = 7$.

Sol. Let
$$\vec{c} = x\hat{i} + y\hat{j} + z\hat{k}$$

Sol.

Then from condition (i)

$$\begin{vmatrix} x & y & z \\ -1 & 1 & 1 \\ 2 & 0 & 1 \end{vmatrix} = 0 \text{ or } x + 3y - 2z = 0$$
 (i).

From condition (ii)

$$2x + z = 0 (ii)$$

From condition (iii)

$$-x+y+z=7 (iii)$$

Solving (i), (ii) and (iii), we get the values of x, y and z and hence vector $\vec{c} = \frac{1}{2}(-3\hat{i}+5\hat{j}+6\hat{k})$

Example 2.23 Let \vec{a} , \vec{b} and \vec{c} are vectors such that $|\vec{a}| = 3$, $|\vec{b}| = 4$ and $|\vec{c}| = 5$, and $(\vec{a} + \vec{b})$ is perpendicular to \vec{c} , $(\vec{b} + \vec{c})$ is perpendicular to \vec{a} and $(\vec{c} + \vec{a})$ is perpendicular to \vec{b} . Then

find the value of $|\vec{a} + \vec{b} + \vec{c}|$.

Given,
$$(\vec{a} + \vec{b}) \cdot \vec{c} = 0 \implies \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c} = 0$$

$$(\overrightarrow{b} + \overrightarrow{c}) \cdot \overrightarrow{a} = 0 \implies \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{c} \cdot \overrightarrow{a} = 0$$

$$(\overrightarrow{c} + \overrightarrow{a}) \cdot \overrightarrow{b} = 0 \implies \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{a} \cdot \overrightarrow{b} = 0$$

$$\therefore 2 \stackrel{\rightarrow}{(a \cdot b} \stackrel{\rightarrow}{b} \stackrel{\rightarrow}{c} \stackrel{\rightarrow}{c} \stackrel{\rightarrow}{c} \stackrel{\rightarrow}{c} \stackrel{\rightarrow}{a}) = 0$$

Now,
$$|\vec{a} + \vec{b} + \vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 50$$

$$\Rightarrow |\vec{a} + \vec{b} + \vec{c}| = 5\sqrt{2}$$

Example 2.24 Prove that in a tetrahedron if two pairs of opposite edges are perpendicular, then the third pair is also perpendicular.

Sol. Let *ABCD* be the tetrahedron and *A* be at the origin.

Let
$$\overrightarrow{AB} = \overrightarrow{b}$$
, $\overrightarrow{AC} = \overrightarrow{c}$ and $\overrightarrow{AD} = \overrightarrow{d}$

Let the edge AB be perpendicular to the opposite edge CD.

$$\Rightarrow \overrightarrow{AB} \cdot \overrightarrow{CD} = 0$$

$$\Rightarrow \overrightarrow{b} \cdot (\overrightarrow{d} - \overrightarrow{c}) = 0$$

$$\Rightarrow \vec{b} \cdot \vec{d} = \vec{b} \cdot \vec{c}$$
 (i)

Also let AC be perpendicular to the opposite edge BD. Therefore,

$$\overrightarrow{AC} \cdot \overrightarrow{BD} = 0$$

$$\Rightarrow \vec{c} \cdot (\vec{d} - \vec{b}) = 0$$

$$\Rightarrow \overrightarrow{c} \cdot \overrightarrow{d} = \overrightarrow{b} \cdot \overrightarrow{c}$$
 (ii)

Now from (i) and (ii), we have

$$\Rightarrow \overrightarrow{b} \cdot \overrightarrow{d} = \overrightarrow{c} \cdot \overrightarrow{d}$$

$$\Rightarrow (\vec{c} - \vec{b}) \cdot \vec{d} = 0$$

$$\Rightarrow \overrightarrow{BC} \cdot \overrightarrow{AD} = 0$$

 \Rightarrow AD is perpendicular to opposite edge BC.

Example 2.25 In isosceles triangle \overrightarrow{ABC} , $|\overrightarrow{AB}| = |\overrightarrow{BC}| = 8$, a point E divides AB internally in the ratio 1:3, then find the angle between \overrightarrow{CE} and \overrightarrow{CA} (where $|\overrightarrow{CA}| = 12$).

Sol.

Fig. 2.10

Given
$$|\overrightarrow{c}| = 12$$
 and $|\overrightarrow{b}| = |\overrightarrow{b} - \overrightarrow{c}| = 8$

$$\Rightarrow b^2 = b^2 + c^2 - 2 \overrightarrow{b} \cdot \overrightarrow{c}$$

$$\Rightarrow \vec{b} \cdot \vec{c} = 72$$

$$\cos \theta = \frac{\overrightarrow{c} \cdot \left(\overrightarrow{c} - \frac{\overrightarrow{b}}{4}\right)}{|\overrightarrow{c}| |\overrightarrow{c} - \frac{\overrightarrow{b}}{4}|} = \frac{\overrightarrow{c} \cdot \overrightarrow{c} - \frac{\overrightarrow{c} \cdot \overrightarrow{b}}{4}}{12 |\overrightarrow{c} - \frac{\overrightarrow{b}}{4}|} = \frac{144 - 18}{12 |\overrightarrow{c} - \frac{\overrightarrow{b}}{4}|}$$

Now
$$\left| \vec{c} - \frac{\vec{b}}{4} \right|^2 = \left| \vec{c} \right|^2 + \frac{\left| \vec{b} \right|^2}{16} - \frac{\vec{b} \cdot \vec{c}}{2} = 144 + 4 - 36 = 112$$

$$\Rightarrow \cos \theta = \frac{21}{2 \times \sqrt{112}} = \frac{21}{2 \times 4\sqrt{7}} = \frac{3\sqrt{7}}{8}$$

Example 2.26 Arc AC of a circle subtends a right angle at the centre O. Point B divides the arc in the ratio 1:2. If $\overrightarrow{OA} = \overrightarrow{a}$ and $\overrightarrow{OB} = \overrightarrow{b}$, then calculate \overrightarrow{OC} in terms of \overrightarrow{a} and \overrightarrow{b} .

Sol. Vector
$$\vec{c}$$
 is coplanar with vectors \vec{a} and \vec{b} . Therefore, $\vec{c} = x\vec{a} + y\vec{b}$ (i)

Fig. 2.11

Point B divides arc AC in the ratio 1:2 so that $\angle AOB = 30^{\circ}$ and $\angle BOC = 60^{\circ}$.

We have to find the values of x and y when we are given $|\vec{a}| = |\vec{b}| = |\vec{c}| = r$ (say).

$$\vec{a} \cdot \vec{b} = r^2 \cos 30^\circ = r^2 \frac{\sqrt{3}}{2}$$
 and $\vec{a} \cdot \vec{c} = 0$

$$\vec{b} \cdot \vec{c} = r^2 \cos 60^\circ = \frac{r^2}{2}$$

Multiplying both sides of (i) scalarly by \vec{c} and \vec{a} , $\vec{c} \cdot \vec{c} = x \vec{a} \cdot \vec{c} + y \vec{b} \cdot \vec{c}$

and
$$\overrightarrow{c} \cdot \overrightarrow{a} = x \overrightarrow{a} \cdot \overrightarrow{a} + y \overrightarrow{b} \cdot \overrightarrow{a}$$

$$r^2 = 0 + \frac{r^2}{2}$$
 y, $y = 2$

and
$$0 = xr^2 + yr^2 \frac{\sqrt{3}}{2}$$

Putting
$$y = 2$$
, $x = -\sqrt{3}$

$$\vec{c} = -\sqrt{3}\vec{a} + 2\vec{b}$$

Example 2.27 Vector $\overrightarrow{OA} = \hat{i} + 2\hat{j} + 2\hat{k}$ turns through a right angle passing through the positive x-axis

on the way. Show that the vector in its new position is $\frac{4\hat{i} - \hat{j} - \hat{k}}{\sqrt{2}}$.

Sol. Let the new vector be $\overrightarrow{OB} = x\hat{i} + y\hat{j} + z\hat{k}$.

According to the given condition, we have

$$|\overrightarrow{OB}| = |\overrightarrow{OA}| = 3 \Rightarrow x^2 + y^2 + z^2 = 9$$
 (i)

Also
$$\overrightarrow{OA} \perp \overrightarrow{OB} \Rightarrow x + 2y + 2z = 0$$
 (ii)

Since while turning \overrightarrow{OA} , it passes through the positive x-axis on the way,

Vectors \overrightarrow{OA} , \overrightarrow{OB} and $\lambda \hat{i}$ are coplanar.

$$\Rightarrow \begin{vmatrix} x & y & z \\ 1 & 2 & 2 \\ \lambda & 0 & 0 \end{vmatrix} = 0$$

$$\Rightarrow y - z = 0$$
Solving (i), (ii) and (iii) for x, y and z, we have $x = -4y = -4z$

$$\Rightarrow 16y^2 + y^2 + y^2 = 9$$

$$\Rightarrow y = \pm \frac{1}{\sqrt{2}}, z = \pm \frac{1}{\sqrt{2}} \text{ and } x = \mp 4 \frac{1}{\sqrt{2}}$$

$$\Rightarrow \overrightarrow{OB} = \pm \left(\frac{4}{\sqrt{2}}\hat{i} - \frac{1}{\sqrt{2}}\hat{j} - \frac{1}{\sqrt{2}}\hat{k}\right)$$
(iii)

Since angle between \overrightarrow{OB} and \hat{i} is acute, $\overrightarrow{OB} = \frac{4}{\sqrt{2}}\hat{i} - \frac{1}{\sqrt{2}}\hat{j} - \frac{1}{\sqrt{2}}\hat{k}$

Concept Application Exercise 2.1

- 1. If $|\vec{a}| = 3$, $|\vec{b}| = 4$ and the angle between \vec{a} and \vec{b} is 120°, then find the value of $|4\vec{a}+3\vec{b}|$.
- 2. If vectors $\hat{i} 2x \hat{j} 3y \hat{k}$ and $\hat{i} + 3x \hat{j} + 2y \hat{k}$ are orthogonal to each other, then find the locus of the point (x, y).
- 3. Let \vec{a} , \vec{b} and \vec{c} be pairwise mutually perpendicular vectors, such that $|\vec{a}| = 1$, $|\vec{b}| = 2$, $|\vec{c}| = 2$. Then find the length of $\vec{a} + \vec{b} + \vec{c}$.
- **4.** If $\vec{a} + \vec{b} + \vec{c} = 0$, $|\vec{a}| = 3$, $|\vec{b}| = 5$, $|\vec{c}| = 7$, then find the angle between \vec{a} and \vec{b} .
- 5. If the angle between unit vectors \vec{a} and \vec{b} is 60°, then find the value of $|\vec{a} \vec{b}|$.
- **6.** Let $\vec{u} = \hat{i} + \hat{j}$, $\vec{v} = \hat{i} \hat{j}$ and $\vec{w} = \hat{i} + 2\hat{j} + 3\hat{k}$. If \hat{n} is a unit vector such that $\vec{u} \cdot \hat{n} = 0$ and $\vec{v} \cdot \hat{n} = 0$, then find the value of $|\vec{w} \cdot \hat{n}|$.
- 7. A, B, C, D are any four points, prove that $\overrightarrow{AB} \cdot \overrightarrow{CD} + \overrightarrow{BC} \cdot \overrightarrow{AD} + \overrightarrow{CA} \cdot \overrightarrow{BD} = 0$.
- 8. P(1,0,-1), Q(2,0,-3), R(-1,2,0) and S(3,-2,-1), then find the projection length of \overrightarrow{PQ} on \overrightarrow{RS} .
- 9. If the vectors $3\vec{p} + \vec{q}$; $5\vec{p} 3\vec{q}$ and $2\vec{p} + \vec{q}$; $4\vec{p} 2\vec{q}$ are pairs of mutually perpendicular vectors, then find the angle between vectors \vec{p} and \vec{q} .
- Let \vec{A} and \vec{B} be two non-parallel unit vectors in a plane. If $(\alpha \vec{A} + \vec{B})$ bisects the internal angle between \vec{A} and \vec{B} , then find the value of α .
- 11. Let \vec{a} , \vec{b} and \vec{c} be unit vectors, such that $\vec{a} + \vec{b} + \vec{c} = \vec{x}$, $\vec{a} \cdot \vec{x} = 1$, $\vec{b} \cdot \vec{x} = \frac{3}{2}$, $|\vec{x}| = 2$. Then find the angle between \vec{c} and \vec{x} .
- 12. If \vec{a} and \vec{b} are unit vectors, then find the greatest value of $|\vec{a} + \vec{b}| + |\vec{a} \vec{b}|$.
- 13. Constant forces $P_1 = \hat{i} \hat{j} + \hat{k}$, $P_2 = -\hat{i} + 2\hat{j} \hat{k}$ and $P_3 = \hat{j} \hat{k}$ act on a particle at a point A. Determine the work done when particle is displaced from position $A(4\hat{i} 3\hat{j} 2\hat{k})$ to $B(6\hat{i} + \hat{j} 3\hat{k})$

VECTOR (OR CROSS) PRODUCT OF TWO VECTORS

The cross product is just a shorthand invented for the purpose of quickly writing down the angular momentum of an object. Here's how the cross product arises naturally from angular momentum. Recall that if we have a fixed axis and an object distance r away with velocity v and mass m is moving around the axis in a circle, the magnitude of the angular momentum is m|r||v|, where |r| is the magnitude of vector r. But what direction should the angular momentum vector point in? Well, if you follow the path of the object, it lies in a plane, an infinite two-dimensional surface. One way to represent a plane is to write down two different vectors that lie in the plane.

Another method used by mathematicians to represent a plane is to write down a single vector that is normal to the plane (normal is a synonym for perpendicular). If a plane is a flat sheet, the normal vector points straight up. Now, for any plane, there are two vectors that are normal to it, since if a vector n is normal to a plane, -n will be normal as well. So how do we determine whether to use n or -n?

A long time ago, physicists just made an arbitrary decision known today as the right-hand rule. Given vectors \vec{a} and \vec{b} , just curl your fingers from \vec{a} to \vec{b} and the thumb points in the direction of the normal used.

The vector product of two vectors \vec{a} and \vec{b} , written as $\vec{a} \times \vec{b}$, is the vector $\vec{c} = |a||b| \sin \theta \hat{n}$, where θ is the angle between \vec{a} and \vec{b} ($0 \le \theta \le \pi$), and \hat{n} is a unit vector along the line perpendicular to both \vec{a} and \vec{b} .

Fig. 2.12

Then direction of \overrightarrow{c} is such that \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} form a right-handed system.

We see that the direction of $\vec{b} \times \vec{a}$ is opposite to that of $\vec{a} \times \vec{b}$ as shown in Fig. 2.13.

$$\vec{b} \times \vec{a} = -\vec{a} \times \vec{b}$$

So the vector product is not commutative. In practice, this means that the order in which we do the calculation does matter.

Fig. 2.13

Properties of Cross Product

1.
$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$

2.
$$\vec{a} \times \vec{a} = 0$$

3.
$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

4.
$$\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = 0$$
 and $\hat{i} \times \hat{j} = \hat{k}$, $\hat{j} \times \hat{k} = \hat{i}$, $\hat{k} \times \hat{i} = \hat{j}$

Two non-zero vectors \vec{a} and \vec{b} are collinear if and only if $\vec{a} \times \vec{b} = \vec{0}$.

6. If
$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$
 and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$, then

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = (a_2b_3 - a_3b_2)\hat{i} + (a_3b_1 - a_1b_3)\hat{j} + (a_1b_2 - a_2b_1)\hat{k}$$

The unit vector perpendicular to the plane of \vec{a} and \vec{b} is $(\vec{a} \times \vec{b})$, and a vector of magnitude λ perpendicular to the plane of \vec{a} and \vec{b} is $\pm \frac{\lambda(\vec{a} \times \vec{b})}{|\vec{a} \times \vec{b}|}$.

Physical Interpretation of Cross Product as a Moment of Force

Moment of force (often just *moment*) is the tendency of a force to twist or rotate an object. This is an important, basic concept in engineering and physics. A moment is valued mathematically as the product of the force and the moment arm. Moment arm is the perpendicular distance from the point of rotation to the *line of action* of the force. The moment may be thought of as a measure of the tendency of the force to cause rotation about an imaginary axis through a point.

The moment of a force can be calculated about any point and not just the points in which the line of action of the force is perpendicular.

Image A shows the components, the force F and the moment arm x when they are perpendicular to one another. When the force is not perpendicular to the point of interest, such as point O in Images B and C, the magnitude of moment \overrightarrow{M} of a vector \overrightarrow{F} about point O is

$$\vec{M}_O = \vec{r}_{OF} \times \vec{F}$$
, where \vec{r}_{OF} is the vector from point O to the position where quantity F is applied.

Image C represents the vector components of the force in Image B. In order to determine moment \vec{M} of vector \vec{F} about point \vec{O} , when vector \vec{F} is not perpendicular to point \vec{O} , one must resolve the force \vec{F} into its horizontal and vertical components. The sum of the moments of the two components of F about point \vec{O} is

$$\vec{M}_{OF} = \vec{F} \sin \theta(x) + \vec{F} \cos \theta(0)$$

The moment arm to the vertical component of \vec{F} is a distance x. The moment arm to the horizontal component of \vec{F} does not exist. There is no rotational force about point O due to the horizontal component of \vec{F} . Thus, the moment arm distance is zero.

Thus \vec{M} can be referred to as "moment \vec{M} with respect to the axis that goes through point O", or simply "moment \vec{M} about point O". If O is the origin, or informally, if the axis involved is clear from context, one often ornits O and says simply moment, rather than moment about O. Therefore, the moment about point O is indeed the cross product, $\vec{M}_O = \vec{r_{OF}} \times \vec{F}$, since the cross product $\vec{F} \sin \theta(x)$.

Geometric Interpretation of Cross Product

Fig. 2.15

$$\vec{a} \times \vec{b} = |\vec{a}||\vec{b}|\sin\theta \hat{n}$$

$$\Rightarrow |\overrightarrow{a} \times \overrightarrow{b}| = |\overrightarrow{a}| |\overrightarrow{b}| \sin \theta$$

$$=2\left(\frac{1}{2}|\vec{a}||\vec{b}|\sin\theta\right)$$

= 2 (Area of triangle AOC)

= Area of parallelogram

Area of the triangle \overrightarrow{OAB} is $\frac{1}{2} | \overrightarrow{a} \times \overrightarrow{b} |$. $\overrightarrow{a} \times \overrightarrow{b}$ is said to be the vector area of the parallelogram with adjacent sides OA and OB.

If \vec{a} , \vec{b} are diagonals of a parallelogram, its area = $\frac{1}{2} |\vec{a} \times \vec{b}|$.

Fig. 2.16

In the above diagram $\overrightarrow{OC} = \overrightarrow{a}$ and $\overrightarrow{AB} = \overrightarrow{b}$

$$\Rightarrow \text{Area parallelogram} = 4 \times \frac{1}{2} | \overrightarrow{PC} \times \overrightarrow{PB} |$$

$$= 4 \times \frac{1}{2} \left| \frac{\vec{a}}{2} \times \frac{\vec{b}}{2} \right|$$

$$=\frac{1}{2}|\stackrel{\rightarrow}{a}\times\stackrel{\rightarrow}{b}|$$

3. If AC and BD are the diagonals of a quadrilateral, then its vector area is $\frac{1}{2}\overrightarrow{AC} \times \overrightarrow{BD}$.

Fig. 2.17

Vector area of the quadrilateral ABCD = vector area of $\triangle ABC$ + vector area of $\triangle ACD$.

$$= \frac{1}{2}\overrightarrow{AB} \times \overrightarrow{AC} + \frac{1}{2}\overrightarrow{AC} \times \overrightarrow{AD}$$

$$= -\frac{1}{2}\overrightarrow{AC} \times \overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC} \times \overrightarrow{AD}$$

$$= \frac{1}{2}\overrightarrow{AC} \times (\overrightarrow{AD} - \overrightarrow{AB})$$

$$= \frac{1}{2}\overrightarrow{AC} \times \overrightarrow{BD}$$

4. The area of a triangle whose vertices are $\overrightarrow{A(a)}$, $\overrightarrow{B(b)}$, $\overrightarrow{C(c)}$ is $\frac{1}{2} | \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} |$

Area of triangle =
$$\frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}|$$

= $\frac{1}{2} |(\overrightarrow{b} - \overrightarrow{a}) \times (\overrightarrow{c} - \overrightarrow{a})|$
= $\frac{1}{2} |\overrightarrow{b} \times \overrightarrow{c} - \overrightarrow{b} \times \overrightarrow{a} - \overrightarrow{a} \times \overrightarrow{c} + \overrightarrow{a} \times \overrightarrow{a}|$
= $\frac{1}{2} |\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}|$

Example 2.28 If A, B and C are the vertices of a triangle ABC, prove sine rule $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

Sol. Let
$$\overrightarrow{BC} = \overrightarrow{a}$$
, $\overrightarrow{CA} = \overrightarrow{b}$, $\overrightarrow{AB} = \overrightarrow{c}$, so that $\overrightarrow{a} + \overrightarrow{b} = -\overrightarrow{c}$
 $\therefore \overrightarrow{a} \times \overrightarrow{a} + \overrightarrow{a} \times \overrightarrow{b} = -\overrightarrow{a} \times \overrightarrow{c}$
 $\overrightarrow{0} + \overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{a}$
 $|\overrightarrow{a} \times \overrightarrow{b}| = |\overrightarrow{c} \times \overrightarrow{a}|$
 $|\overrightarrow{ab} \sin(180^\circ - C)| = ca \sin(180^\circ - B)$
 $|\overrightarrow{ab} \sin C| = ca \sin B$

(i)

Dividing both sides by abc, we get

$$\frac{\sin C}{c} = \frac{\sin B}{b}$$

$$\therefore \quad \frac{b}{\sin B} = \frac{c}{\sin C}$$

Similarly
$$\frac{c}{\sin C} = \frac{a}{\sin A}$$

From (i) and (ii), we have

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Fig. 2.18

Fig. 2.19

Example 2.29 Using cross product of vectors, prove that sin(A + B) = sin A cos B + cos A sin B.

Sol. Let OP and OQ be unit vectors making angles A and B with X-axis such that

$$\angle POQ = A + B$$

$$\therefore \vec{OP} = \hat{i} \cos A + \hat{j} \sin A$$

$$\vec{OQ} = \hat{i} \cos B - \hat{j} \sin B$$

Now
$$\vec{OP} \times \vec{OQ}$$

= (1) (1)
$$\sin (A + B) (-\hat{k})$$

= $-\sin (A + B) \hat{k}$

Also
$$\overrightarrow{OP} \times \overrightarrow{OQ} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \cos A & \sin A & 0 \\ \cos B & -\sin B & 0 \end{vmatrix}$$

$$= (-\cos A \sin B - \sin A \cos B) \hat{k}$$

$$\vec{OP} \times \vec{OQ} = -(\sin A \cos B + \cos A \sin B) \hat{k}$$
 (ii)

From (i) and (ii), we get

$$\sin (A + B) = \sin A \cos B + \cos A \sin B$$

Example 2.30 Find a unit vector perpendicular to the plane determined by the points (1, -1, 2), (2, 0, -1)and (0, 2, 1).

Sol. Given points are A(1, -1, 2), B(2, 0, -1) and C(0, 2, 1)

$$\Rightarrow \overrightarrow{AB} = \overrightarrow{a} = \hat{i} + \hat{j} - 3\hat{k}, \ \overrightarrow{BC} = \overrightarrow{b} = -2\hat{i} + 2\hat{j} + 2\hat{k}$$

$$\therefore \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & -3 \\ -2 & 2 & 2 \end{vmatrix} = 8\hat{i} + 4\hat{j} + 4\hat{k}$$
Hence unit vector = $\pm \frac{2\hat{i} + \hat{j} + \hat{k}}{\sqrt{6}}$

Hence unit vector =
$$\pm \frac{2\hat{i} + \hat{j} + \hat{k}}{\sqrt{6}}$$

Example 2.31 If
$$\vec{a}$$
 and \vec{b} are two vectors, then prove that $(\vec{a} \times \vec{b})^2 = \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} \end{vmatrix}$

Sol.
$$(\vec{a} \times \vec{b})^2 = (ab \sin \theta \cdot \hat{n})^2$$

$$= a^2b^2 \sin^2 \theta$$

$$= a^2b^2 - a^2b^2 \cos^2 \theta$$

$$= (\vec{a} \cdot \vec{a}) (\vec{b} \cdot \vec{b}) - (\vec{a} \cdot \vec{b})^2$$

$$= \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\ \vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{b} \end{vmatrix}$$

Example 2.32 If $|\vec{a}| = 2$, then find the value of $|\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2$.

Sol.
$$|\vec{a} \times \hat{i}|^2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ 1 & 0 & 0 \end{vmatrix}^2$$
 (since $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$)

$$= |a_3 \hat{j} - a_2 \hat{k}|^2 = a_3^2 + a_2^2$$

Similarly, $|\overrightarrow{a} \times \overrightarrow{j}|^2 = a_1^2 + a_3^2$ and $|\overrightarrow{a} \times \overrightarrow{k}|^2 = a_1^2 + a_2^2$

Hence the required result can be given as $2(a_1^2 + a_2^2 + a_3^2) = 2|\overrightarrow{a}|^2 = 8$

Example 2.33 $\vec{r} \times \vec{a} = \vec{b} \times \vec{a}; \ \vec{r} \times \vec{b} = \vec{a} \times \vec{b}; \ \vec{a} \neq \vec{0}; \ \vec{b} \neq \vec{0}; \ \vec{a} \neq \lambda \vec{b}, \ \text{and } \vec{a} \text{ is not perpendicular to } \vec{b}, \text{ then } \vec{b} = \vec{b} \times \vec{a}; \ \vec{c} \times \vec{b} = \vec{a} \times \vec{b}; \ \vec{a} \neq \vec{b}; \ \vec{c} \neq \vec{c}; \ \vec{$

Sol.
$$\overrightarrow{r} \times \overrightarrow{a} - \overrightarrow{b} \times \overrightarrow{a} = 0$$
 and $\overrightarrow{r} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{a} = 0$

Adding, we get $\overrightarrow{r} \times (\overrightarrow{a} + \overrightarrow{b}) = 0$

But as we are given $\vec{a} \neq \lambda \vec{b}$, therefore

$$\vec{r} = \mu(\vec{a} + \vec{b})$$

Example 2.34 A, B, C and D are any four points in the space, then prove that $|\overrightarrow{AB} \times \overrightarrow{CD} + \overrightarrow{BC} \times \overrightarrow{AD} + \overrightarrow{CA} \times \overrightarrow{BD}| = 4 \text{ (area of } \triangle ABC).$

Sol. Let P.V. of
$$A$$
, B , C and D be \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} and $\overrightarrow{0}$, respectively.

$$\Rightarrow \overrightarrow{AB} \times \overrightarrow{CD} = (\overrightarrow{b} - \overrightarrow{a}) \times (-\overrightarrow{c}), \overrightarrow{BC} \times \overrightarrow{AD} = (\overrightarrow{c} - \overrightarrow{b}) \times (-\overrightarrow{a}) \text{ and } \overrightarrow{CA} \times \overrightarrow{BD} = (\overrightarrow{a} - \overrightarrow{c}) \times (-\overrightarrow{b})$$

$$\overrightarrow{AB} \times \overrightarrow{CD} + \overrightarrow{BC} \times \overrightarrow{AD} + \overrightarrow{CA} \times \overrightarrow{BD} = \overrightarrow{c} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c} + \overrightarrow{a} \times \overrightarrow{c} + \overrightarrow{b} \times \overrightarrow{a} - \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{c} \times \overrightarrow{b}$$

$$= 2(\overrightarrow{c} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{a} + \overrightarrow{a} \times \overrightarrow{c})$$

$$= 2(\overrightarrow{c} \times (\overrightarrow{b} - \overrightarrow{a}) - \overrightarrow{a} \times (\overrightarrow{b} - \overrightarrow{a}))$$

$$= 2((\overrightarrow{c} - \overrightarrow{a}) \times (\overrightarrow{b} - \overrightarrow{a}))$$

$$= 2(\overrightarrow{AC} \times \overrightarrow{AB})$$

$$\Rightarrow |\overrightarrow{AB} \times \overrightarrow{CD} + \overrightarrow{BC} \times \overrightarrow{AD} + \overrightarrow{CA} \times \overrightarrow{BD}| = 4\left|\frac{1}{2}(\overrightarrow{AC} \times \overrightarrow{AB})\right| = 4\Delta ABC$$

Example 2.35 If \vec{a} , \vec{b} and \vec{c} are the position vectors of the vertices A, B and C, respectively, of ΔABC , prove that the perpendicular distance of the vertex A from the base BC of the triangle ABC

is
$$\frac{|\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}|}{|\vec{c} - \vec{b}|}$$
.
 $|\vec{BC} \times \overrightarrow{BA}| = |\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}|$
 $\Rightarrow |\vec{BC}| |\vec{BA}| \sin B = |\vec{a} \times \vec{b} \times \vec{b} \times \vec{c} + \vec{c} \times \vec{a}|$

 $\Rightarrow |\stackrel{\rightarrow}{c} - \stackrel{\rightarrow}{b}| (AB \sin B) = |\stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b} + \stackrel{\rightarrow}{b} \times \stackrel{\rightarrow}{c} + \stackrel{\rightarrow}{c} \times \stackrel{\rightarrow}{a}|$

Sol.

Fig. 2.20

Therefore, the length of perpendicular from A on $BC = AL = AB \sin B =$

Find the area of the triangle whose vertices are A(1,-1,2), B(2,1,-1) and C(3,-1,2). Example 2.36

Sol. Here
$$\overrightarrow{OA} = \hat{i} - \hat{j} + 2\hat{k}$$
 and $\overrightarrow{OB} = 2\hat{i} + \hat{j} - \hat{k}$ and $\overrightarrow{OC} = 3\hat{i} - \hat{j} + 2\hat{k}$
 $\Rightarrow \overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \hat{i} + 2\hat{j} - 3\hat{k}$ and $\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = 2\hat{i}$
Hence, the required area $= \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}|$
Now, $\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -3 \\ 2 & 0 & 0 \end{vmatrix} = -2(3\hat{j} + 2\hat{k})$

 \Rightarrow Area of triangle = $\frac{1}{2} \times 2 |3\hat{j} + 2\hat{k}| = \sqrt{13}$

Example 2.37 Find the area of a parallelogram whose two adjacent sides are represented by vectors $3\hat{i} - \hat{k}$ and $\hat{i} + 2\hat{i}$.

Sol. The area of parallelogram is given by $= |AB \times AD|$ Here we are given adjacent sides. Therefore,

$$\overrightarrow{AB} \times \overrightarrow{AD} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 0 & -1 \\ 1 & 2 & 0 \end{vmatrix} = 2\hat{i} - \hat{j} + 6\hat{k}$$
Hence the required area is = $|2\hat{i} - \hat{j} + 6\hat{k}| = \sqrt{41}$

Example 2.38 Find the area of a parallelogram whose diagonals are $\vec{a} = 3\hat{i} + \hat{j} - 2\hat{k}$ and $\vec{b} = \hat{i} - 3\hat{j} + 4\hat{k}$.

Sol.
$$\Delta = \frac{1}{2} | \vec{a} \times \vec{b} |$$

But
$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 1 & -2 \\ 1 & -3 & 4 \end{vmatrix} = -2\hat{i} - 14\hat{j} - 10\hat{k}$$

Hence
$$\Delta = \frac{1}{2} |\vec{a} \times \vec{b}| = \frac{1}{2} \sqrt{4 + 196 + 100} = 5\sqrt{3}$$

Example 2.39 Let \vec{a} , \vec{b} and \vec{c} be three vectors such that $\vec{a} \neq 0$, $|\vec{a}| = |\vec{c}| = 1$, $|\vec{b}| = 4$ and $|\vec{b} \times \vec{c}| = \sqrt{15}$. If $\vec{b} - 2\vec{c} = \lambda \vec{a}$, then find the value of λ .

Let the angle between \overrightarrow{b} and \overrightarrow{c} be α Sol.

$$|\vec{b} \times \vec{c}| = \sqrt{15}$$

$$\Rightarrow |\vec{b}||\vec{c}|\sin \alpha = \sqrt{15}$$

$$\Rightarrow \sin \alpha = \frac{\sqrt{15}}{4}$$

$$\Rightarrow \cos \alpha = \frac{1}{4}$$

$$\Rightarrow \vec{b} - 2\vec{c} = \lambda \vec{a}$$

$$\Rightarrow \overrightarrow{h} - 2\overrightarrow{c} = \lambda \overrightarrow{a}$$

$$\Rightarrow |\vec{b} - 2\vec{c}|^2 = \lambda^2 |\vec{a}|^2$$

$$\Rightarrow |\overrightarrow{b}|^2 + 4|\overrightarrow{c}|^2 - 4 \cdot \overrightarrow{b} \cdot \overrightarrow{c} = \lambda^2 |\overrightarrow{a}|^2$$

$$\Rightarrow 16 + 4 - 4\{|\overrightarrow{b}||\overrightarrow{c}|\cos\alpha\} = \lambda^2$$

$$\Rightarrow 16 + 4 - 4 \times 4 \times 1 \times \frac{1}{4} = \lambda^2$$

$$\Rightarrow \lambda^2 = 16 \Rightarrow \lambda = \pm 4$$

Example 2.40 Find the moment about (1,-1,-1) of the force $3\hat{i}+4\hat{j}-5\hat{k}$ acting at (1,0,-2).

$$\mathbf{Sol.} \qquad \overrightarrow{F} = 3\hat{i} + 4\hat{j} - 5\hat{k}$$

$$\overrightarrow{PA} = P.V. \text{ of } A - P.V. \text{ of } P$$

$$= (\hat{i} - 2\hat{j}) - (\hat{i} - \hat{j} - \hat{k})$$

$$= -\hat{i} + \hat{k}$$

Fig. 2.21

Required vector moment
$$= \overrightarrow{PA} \times \overrightarrow{F}$$

$$= (-\hat{j} + \hat{k}) \times (3\hat{i} + 4\hat{j} - 5\hat{k})$$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & -1 & 1 \\ 3 & 4 & -5 \end{vmatrix}$$

$$= \hat{i} + 3\hat{i} + 3\hat{k}$$

Example 2.41

A rigid body is spinning about a fixed point (3, -2, -1) with an angular velocity of 4 rad/s, the axis of rotation being in the direction of (1, 2, -2). Find the velocity of the particle at point (4, 1, 1).

Sol.

Fig. 2.22

$$\vec{\omega} = 4 \left(\frac{\hat{i} + 2\hat{j} - 2\hat{k}}{\sqrt{1 + 4 + 4}} \right) = \frac{4}{3} (\hat{i} + 2\hat{j} - 2\hat{k})$$

$$\vec{r} = \overrightarrow{OP} - \overrightarrow{OA}$$

$$= (4\hat{i} + \hat{j} + \hat{k}) - (3\hat{i} - 2\hat{j} - \hat{k})$$

$$= \hat{i} + 3\hat{j} + 2\hat{k}$$

$$\vec{v} = \vec{\omega} \times \vec{r} = \frac{4}{3} (\hat{i} + 2\hat{j} - 2\hat{k}) \times (\hat{i} + 3\hat{j} + 2\hat{k})$$

$$= \frac{4}{3} (10\hat{i} - 4\hat{j} + \hat{k})$$

Example 2.42 If $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$, then show that $\vec{a} - \vec{d}$ is parallel to $\vec{b} - \vec{c}$ provided $\vec{a} \neq \vec{d}$ and $\vec{b} \neq \vec{c}$.

Sol. We have
$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{d}$$
 and $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b} \times \overrightarrow{d}$ (i)

$$\vec{a} - \vec{d}$$
 will be parallel to $\vec{b} - \vec{c}$
if $(\vec{a} - \vec{d}) \times (\vec{b} - \vec{c}) = \vec{0}$
i.e., if $\vec{a} \times \vec{b} - \vec{a} \times \vec{c} - \vec{d} \times \vec{b} + \vec{d} \times \vec{c} = \vec{0}$
i.e., if $(\vec{a} \times \vec{b} + \vec{d} \times \vec{c}) - (\vec{a} \times \vec{c} + \vec{d} \times \vec{b}) = \vec{0}$
i.e., if $(\vec{a} \times \vec{b} - \vec{c} \times \vec{d}) - (\vec{a} \times \vec{c} - \vec{b} \times \vec{d}) = \vec{0}$
i.e., if $(\vec{0} - \vec{0}) = \vec{0}$

[from (i)]

i.e., $\vec{0} = \vec{0}$, which is true

Hence the result

Example 2.43 Show by a numerical example and geometrically also that $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$ does not imply $\vec{b} = \vec{c}$.

Sol. Let
$$\vec{a} = 3\hat{i} + 2\hat{j} + 5\hat{k}$$
, $\vec{b} = 6\hat{i} + 5\hat{j} + 8\hat{k}$, $\vec{c} = 3\hat{i} + 3\hat{j} + 3\hat{k}$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 2 & 5 \\ 6 & 5 & 8 \end{vmatrix}$$

$$= (16 - 25)\hat{i} - (24 - 30)\hat{j} + (15 - 12)\hat{k}$$

$$= -9\hat{i} + 6\hat{j} + 3\hat{k}$$

$$\vec{a} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 2 & 5 \\ 3 & 3 & 3 \end{vmatrix}$$

$$= (6 - 15)\hat{i} - (9 - 15)\hat{j} + (9 - 6)\hat{k} = -9\hat{i} + 6\hat{j} + 3\hat{k}$$

$$\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$$
, but $\vec{b} \neq \vec{c}$.

Geometrically

Fig. 2.23

Let
$$\overrightarrow{AB} = \overrightarrow{a}$$
, $\overrightarrow{AD} = \overrightarrow{b}$, $\overrightarrow{AD}' = \overrightarrow{c}$

Vector area of parallelogram $ABCD = \vec{a} \times \vec{b}$

Vector area of parallelogram $ABC'D' = \overrightarrow{a} \times \overrightarrow{c}$

Now vector area of parallelogram ABCD = vector area of parallelogram ABC'D'

(: both parallelograms have same base and same height)

$$\therefore \vec{a} \times \vec{b} = \vec{a} \times \vec{c} \text{ but } \vec{b} \neq \vec{c}$$

Example 2.44 If \vec{a} , \vec{b} , \vec{c} and \vec{d} are the position vectors of the vertices of a cyclic quadrilateral *ABCD*,

prove that
$$\frac{|\vec{a} \times \vec{b} + \vec{b} \times \vec{d} + \vec{d} \times \vec{a}|}{(\vec{b} - \vec{a}) \cdot (\vec{d} - \vec{a})} + \frac{|\vec{b} \times \vec{c} + \vec{c} \times \vec{d} + \vec{d} \times \vec{b}|}{(\vec{b} - \vec{c}) \cdot (\vec{d} - \vec{c})} = 0.$$

Sol.

Fig. 2.24

Consider

$$\frac{|\vec{a} \times \vec{b} + \vec{b} \times \vec{d} + \vec{d} \times \vec{a}|}{|\vec{b} - \vec{a}| \cdot (\vec{d} - \vec{a})} = \frac{|\vec{a} - \vec{d}| \times (\vec{b} - \vec{a})|}{|\vec{b} - \vec{a}| \cdot (\vec{d} - \vec{a})}$$

$$= \frac{|\vec{a} - \vec{d}| |\vec{b} - \vec{a}| \sin A}{|\vec{b} - \vec{a}| |\vec{d} - \vec{a}| \cos A}$$

$$= \tan A$$
(i)

Also
$$\frac{|\vec{b} \times \vec{c} + \vec{c} \times \vec{d} + \vec{d} \times \vec{b}|}{|\vec{b} - \vec{c}| \cdot (\vec{d} - \vec{c})} = \frac{|(\vec{b} - \vec{c}) \times (\vec{c} - \vec{d})|}{|(\vec{b} - \vec{c}) \cdot (\vec{d} - \vec{c})}$$

$$(\vec{b} - \vec{c}) \cdot (\vec{d} - \vec{c}) \qquad (\vec{b} - \vec{c}) \cdot (\vec{d} - \vec{c})$$

$$= \frac{|\vec{b} - \vec{c}| |\vec{c} - \vec{d}| \sin C}{|\vec{b} - \vec{c}| \cdot |\vec{d} - \vec{c}| \cos C}$$

$$= \tan C \qquad (iii)$$

As cyclic quadrilateral

$$A = 180^{\circ} - C$$

$$\Rightarrow \tan A = \tan (180^{\circ} - C)$$

$$\Rightarrow \tan A + \tan C = 0$$

$$\Rightarrow \frac{|\vec{a} \times \vec{b} + \vec{b} \times \vec{d} + \vec{d} \times \vec{a}|}{(\vec{b} - \vec{a}) \cdot (\vec{d} - \vec{a})} + \frac{|\vec{b} \times \vec{c} + \vec{c} \times \vec{d} + \vec{d} \times \vec{b}|}{(\vec{b} - \vec{c}) \cdot (\vec{d} - \vec{c})} = 0$$

Example 2.45 The position vectors of the vertices of a quadrilateral with A as origin are $B(\vec{b})$, $D(\vec{d})$ and $C(l\vec{b} + m\vec{d})$. Prove that the area of the quadrilateral is $\frac{1}{2}(l+m)|\vec{b} \times \vec{d}|$.

Sol. Area of quadrilateral is
$$\frac{1}{2} |\overrightarrow{AC} \times \overrightarrow{BD}| = \frac{1}{2} |(\overrightarrow{lb} + \overrightarrow{md}) \times (\overrightarrow{d} - \overrightarrow{b})|$$

$$= \frac{1}{2} |(\overrightarrow{lb} \times \overrightarrow{d} - \overrightarrow{md} \times \overrightarrow{b})|$$

$$= \frac{1}{2} (l+m) |\overrightarrow{b} \times \overrightarrow{d}|$$

Example 2.46 Let \vec{a} and \vec{b} be unit vectors such that $|\vec{a} + \vec{b}| = \sqrt{3}$. Then find the value of $(2\vec{a} + 5\vec{b}) \cdot (3\vec{a} + \vec{b} + \vec{a} \times \vec{b})$.

Sol.
$$(2\vec{a} + 5\vec{b}) \cdot (3\vec{a} + \vec{b} + \vec{a} \times \vec{b}) = 6\vec{a} \cdot \vec{a} + 17\vec{a} \cdot \vec{b} + 5\vec{b} \cdot \vec{b}$$

$$(\because \vec{a} \cdot (\vec{a} \times \vec{b}) = \vec{b} \cdot (\vec{a} \times \vec{b}) = 0, \text{ as } \vec{a} \text{ and } \vec{b} \text{ are perpendicular to } \vec{a} \times \vec{b})$$

$$= 11 + 17\vec{a} \cdot \vec{b}$$

$$\text{Now } |\vec{a} + \vec{b}| = \sqrt{3}$$

$$\Rightarrow |\vec{a} + \vec{b}|^2 = 3$$

$$\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b} = 3$$

$$\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b} = 3$$

$$\Rightarrow \vec{a} \cdot \vec{b} = \frac{1}{2}$$

$$\Rightarrow (2\vec{a} + 5\vec{b}) \cdot (3\vec{a} + \vec{b} + \vec{a} \times \vec{b}) = 11 + \frac{17}{2} = \frac{39}{2}$$

Example 2.47 $|\hat{u}|$ and $|\hat{v}|$ are two non-collinear unit vectors such that $|\hat{u} + \hat{v}| + |\hat{u}| \times |\hat{v}| = 1$. Prove that $|\hat{u} \times \hat{v}| = |\hat{u} - \hat{v}|$

Sol. Given that
$$\left| \frac{\hat{u} + \hat{v}}{2} + \hat{u} \times \hat{v} \right| = 1$$

$$\Rightarrow \left| \frac{\hat{u} + \hat{v}}{2} + \hat{u} \times \hat{v} \right|^{2} = 1$$

$$\Rightarrow \frac{2 + 2\cos\theta}{4} + \sin^{2}\theta = 1 \quad (\because \hat{u} \cdot (\hat{u} \times \hat{v}) = \hat{v} \cdot (\hat{u} \times \hat{v}) = 0)$$

$$\Rightarrow \cos^{2}\frac{\theta}{2} = \cos^{2}\theta$$

$$\Rightarrow \theta = n\pi \pm \frac{\theta}{2}, \ n \in \mathbb{Z}$$

$$\Rightarrow \theta = \frac{2\pi}{3}$$

$$\Rightarrow |\hat{u} \times \hat{v}| = \sin\frac{2\pi}{3} = \sin\frac{\pi}{3} = \left| \frac{\hat{u} - \hat{v}}{2} \right|$$

Example 2.48 In triangle ABC, points D, E and F are taken on the sides BC, CA and AB, respectively,

such that
$$\frac{BD}{DC} = \frac{CE}{EA} = \frac{AF}{FB} = n$$
. Prove that $\Delta_{DEF} = \frac{n^2 - n + 1}{(n+1)^2} \Delta_{ABC}$.

Take A as the origin and let the position vectors of points B and C be \vec{b} and \vec{c} , respectively. Sol.

Therefore, the position vectors of D, E and F are, respectively, $\frac{n\vec{c} + \vec{b}}{n+1}$, $\frac{\vec{c}}{n+1}$ and $\frac{n\vec{b}}{n+1}$. Therefore,

$$\overrightarrow{ED} = \overrightarrow{AD} - \overrightarrow{AE} = \frac{(n-1)\overrightarrow{c} + \overrightarrow{b}}{n+1}$$
 and $\overrightarrow{EF} = \frac{n\overrightarrow{b} - \overrightarrow{c}}{n+1}$

Now the vector area of $\triangle ABC = \frac{1}{2}(\vec{b} \times \vec{c})$

and the vector area of
$$\Delta DEF = \frac{1}{2}(\overrightarrow{EF} \times \overrightarrow{ED}) = \frac{1}{2(n+1)^2}[(n\overrightarrow{b} - \overrightarrow{c}) \times \{(n-1)\overrightarrow{c} + \overrightarrow{b}\}]$$

$$= \frac{1}{2(n+1)^2}[(n^2 - n)\overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{b} \times \overrightarrow{c}]$$

$$= \frac{1}{2(n+1)^2}[(n^2 - n + 1)(\overrightarrow{b} \times \overrightarrow{c})] = \frac{n^2 - n + 1}{(n+1)^2}\Delta_{ABC}$$

Concept Application Exercise 2.2

- 1. If $\vec{a} = 2\hat{i} + 3\hat{j} 5\hat{k}$, $\vec{b} = m\hat{i} + n\hat{j} + 12\hat{k}$ and $\vec{a} \times \vec{b} = \vec{0}$, then find (m, n).
- 2. If | a | = 2, | b | = 5 and | a × b | = 8, then find the value of a b.
 3. If a × b = b × c ≠ 0, where a, b and c are coplanar vectors, then for some scalar k prove that a + c = k b.
- $=2\vec{i}+3\vec{j}-\vec{k}, \ \vec{b}=-\vec{i}+2\vec{j}-4\vec{k} \ \text{and} \ \vec{c}=\vec{i}+\vec{j}+\vec{k}, \text{ then find the value of } (\vec{a}\times\vec{b})\cdot(\vec{a}\times\vec{c}).$

- 5. If the vectors c, a = xi + yj + zk and b = j are such that a, c and b form a right-handed system, then find \vec{c} .
- **6.** Given that $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{a} \cdot \overrightarrow{c}$, $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{a} \times \overrightarrow{c}$ and \overrightarrow{a} is not a zero vector. Show that $\overrightarrow{b} = \overrightarrow{c}$.
- 7. Show that $(\vec{a} \vec{b}) \times (\vec{a} + \vec{b}) = 2\vec{a} \times \vec{b}$ and give a geometrical interpretation of it.
- 8. If \vec{x} and \vec{y} are unit vectors and $|\vec{z}| = \frac{2}{\sqrt{7}}$ such that $\vec{z} + \vec{z} \times \vec{x} = \vec{y}$, then find the angle θ between \vec{x} and \vec{z} .
- 9. Prove that $(\vec{a} \cdot \hat{i})(\vec{a} \times \hat{i}) + (\vec{a} \cdot \hat{j})(\vec{a} \times \vec{j}) + (\vec{a} \cdot \hat{k})(\vec{a} \times \hat{k}) = \vec{0}$.
- 10. Let \vec{a} , \vec{b} and \vec{c} be three non-zero vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ and $\lambda \vec{b} \times \vec{a} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = \vec{0}$, then find the value of λ .
- 11. A particle has an angular speed of 3 rad/s and the axis of rotation passes through the points (1, 1, 2) and (1, 2, -2). Find the velocity of the particle at point P(3, 6, 4).
- 12. Let \vec{a} , \vec{b} and \vec{c} be unit vectors such that $\vec{a} \cdot \vec{b} = 0 = \vec{a} \cdot \vec{c}$. If the angle between \vec{b} and \vec{c} is $\frac{\pi}{6}$, then find
- 13. If $(\overrightarrow{a} \times \overrightarrow{b})^2 + (\overrightarrow{a} \cdot \overrightarrow{b})^2 = 144$ and $|\overrightarrow{a}| = 4$, then find the value of $|\overrightarrow{b}|$.
- 14. Given $|\vec{a}| = |\vec{b}| = 1$ and $|\vec{a} + \vec{b}| = \sqrt{3}$. If \vec{c} be a vector such that $\vec{c} \vec{a} 2\vec{b} = 3(\vec{a} \times \vec{b})$, then find the value of $\vec{c} \cdot \vec{b}$.
- **15.** Find the moment of \vec{F} about point (2, -1, 3), when force $\vec{F} = 3\hat{i} + 2\hat{j} 4\hat{k}$ is acting on point (1, -1, 2).

SCALAR TRIPLE PRODUCT

The scalar triple product (also called the mixed or box product) is defined as the *dot product* of one of the vectors with the *cross product* of the other two.

Thus scalar triple product of three vectors \vec{a} , \vec{b} and \vec{c} is defined as $(\vec{a} \times \vec{b}) \cdot \vec{c}$

We denote it by $[\vec{a} \ \vec{b} \ \vec{c}]$

The scalar triple product can be evaluated numerically using any one of the following equivalent characterizations:

$$(\vec{a} \times \vec{b}) \cdot \vec{c} = \vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{c} \times \vec{a}) = \vec{c} \cdot (\vec{a} \times \vec{b})$$

(The parentheses may be omitted without causing ambiguity, since the *dot product* cannot be evaluated first. If it were, it would leave the cross product of a scalar and a vector, which is not defined.)

i.e.,
$$[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] = [\overrightarrow{b} \ \overrightarrow{c} \ \overrightarrow{a}] = [\overrightarrow{c} \ \overrightarrow{a} \ \overrightarrow{b}] = -[\overrightarrow{b} \ \overrightarrow{a} \ \overrightarrow{c}] = -[\overrightarrow{c} \ \overrightarrow{b} \ \overrightarrow{a}]$$

If
$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}_2$$
, $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ and $\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$, then

$$\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = \begin{pmatrix} \vec{a} \times \vec{b} \end{pmatrix} \cdot \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} \cdot (c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}) .$$

$$= \begin{vmatrix} \hat{i} \cdot (c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}) & \hat{j} \cdot (c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}) & \hat{k} \cdot (c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}) \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

$$= \begin{vmatrix} c_1 & c_2 & c_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

$$= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

Also
$$\begin{bmatrix} \overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c} \end{bmatrix} = \overrightarrow{a} \cdot \begin{pmatrix} \overrightarrow{b} \times \overrightarrow{c} \end{pmatrix} = (a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}) \cdot \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
$$= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

Geometrical Interpretation

Here $(\vec{a} \times \vec{b}) \cdot \vec{c}$ represents (and is equal to) the volume of the parallelepiped whose adjacent sides are represented by the vectors \vec{a}, \vec{b} and \vec{c} .

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{a} \cdot (bc \sin \theta \, \hat{n})$$

$$= bc \sin \theta \, (\vec{a} \cdot \hat{n})$$

$$= bc \sin \theta \cdot \vec{a} \cdot 1 \cdot \cos \alpha$$

$$= (a \cos \alpha) \, (bc \sin \theta)$$

$$= \text{height} \times (\text{area of base})$$

$$= \text{volume of parallelepiped}$$
Also the volume of the tetrahedron $ABCD$ is equal to $\frac{1}{6} (\overrightarrow{AB} \times \overrightarrow{AC}) \cdot \overrightarrow{AD}$

Properties of Scalar Triple Product

- 1. $(\vec{a} \times \vec{b}) \cdot \vec{c} = \vec{a} \cdot (\vec{b} \times \vec{c})$, i.e., position of the dot and the cross can be interchanged without altering the product.
- 2. $[k\vec{a}\vec{b}\vec{c}] = k[\vec{a}\vec{b}\vec{c}]$ (where k is scalar)
- 3. $[\overrightarrow{a} + \overrightarrow{b} \overrightarrow{c} \overrightarrow{d}] = [\overrightarrow{a} \overrightarrow{c} \overrightarrow{d}] + [\overrightarrow{b} \overrightarrow{c} \overrightarrow{d}]$
- 4. \vec{a}, \vec{b} and \vec{c} in that order form a right-handed system if $[\vec{a} \ \vec{b} \ \vec{c}] > 0$

Fig. 2.26

- \vec{a} , \vec{b} and \vec{c} in that order form a left-handed system if $[\vec{a} \vec{b} \vec{c}] < 0$.
- 5. The necessary and sufficient condition for three non-zero, non-collinear vectors \vec{a}, \vec{b} and \vec{c} to be coplanar is that $[\vec{a} \ \vec{b} \ \vec{c}] = 0$.
- 6. $[\vec{a} \ \vec{a} \ \vec{b}] = 0$ (: \vec{a} is \perp to $\vec{a} \times \vec{b}$, $\vec{a} \cdot (\vec{a} \times \vec{b}) = 0$)

Example 2.49 If \vec{a} , \vec{b} and \vec{c} are three non-coplanar vectors, then find the value of $\frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{\vec{b} \cdot (\vec{c} \times \vec{a})} + \frac{\vec{b} \cdot (\vec{c} \times \vec{a})}{\vec{c} \cdot (\vec{a} \times \vec{b})} + \frac{\vec{c} \cdot (\vec{b} \times \vec{a})}{\vec{a} \cdot (\vec{b} \times \vec{c})}$.

Sol. Since,
$$\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} \neq 0$$

$$\frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{\vec{b} \cdot (\vec{c} \times \vec{a})} + \frac{\vec{b} \cdot (\vec{c} \times \vec{a})}{\vec{c} \cdot (\vec{a} \times \vec{b})} + \frac{\vec{c} \cdot (\vec{b} \times \vec{a})}{\vec{a} \cdot (\vec{b} \times \vec{c})} = \frac{[\vec{a} \ \vec{b} \ \vec{c}]}{[\vec{b} \ \vec{c} \ \vec{a}]} + \frac{[\vec{b} \ \vec{c} \ \vec{a}]}{[\vec{c} \ \vec{a} \ \vec{b}]} + \frac{[\vec{c} \ \vec{b} \ \vec{a}]}{[\vec{a} \ \vec{b} \ \vec{c}]}$$
$$= \frac{[\vec{a} \ \vec{b} \ \vec{c}]}{[\vec{a} \ \vec{b} \ \vec{c}]} + \frac{[\vec{a} \ \vec{b} \ \vec{c}]}{[\vec{a} \ \vec{b} \ \vec{c}]} - \frac{[\vec{a} \ \vec{b} \ \vec{c}]}{[\vec{a} \ \vec{b} \ \vec{c}]}$$
$$= 1 + 1 - 1 = 1$$

If the vectors $2\hat{i} - 3\hat{j}$, $\hat{i} + \hat{j} - \hat{k}$ and $3\hat{i} - \hat{k}$ form three concurrent edges of a parallelopiped, then find the volume of the parallelopiped.

Sol. Here,
$$\overrightarrow{OA} = 2\hat{i} - 3\hat{j} = \overrightarrow{a}$$
 (say),
 $\overrightarrow{OB} = \hat{i} + \hat{j} - \hat{k} = \overrightarrow{b}$ (say),
and $\overrightarrow{OC} = 3\hat{i} - \hat{k} = \overrightarrow{c}$ (say)

Hence, volume is
$$[\vec{a} \ \vec{b} \ \vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} 2 & -3 & 0 \\ 1 & 1 & -1 \\ 3 & 0 & -1 \end{vmatrix} = 4$$

Prove that $[\vec{a} + \vec{b} \ \vec{b} + \vec{c} \ \vec{c} + \vec{a}] = 2 [\vec{a} \ \vec{b} \ \vec{c}].$

Sol.
$$[\vec{a} + \vec{b} \ \vec{b} + \vec{c} \ \vec{c} + \vec{a}] = (\vec{a} + \vec{b}) \cdot ((\vec{b} + \vec{c}) \times (\vec{c} + \vec{a}))$$

$$= (\vec{a} + \vec{b}) \cdot (\vec{b} \times \vec{c} + \vec{b} \times \vec{a} + \vec{c} \times \vec{a})$$

$$= [\vec{a} \ \vec{b} \ \vec{c}] + [\vec{b} \ \vec{c} \ \vec{a}] = 2[\vec{a} \ \vec{b} \ \vec{c}]$$

Example 252 Prove that
$$[\vec{l} \ \vec{m} \ \vec{n}][\vec{a} \ \vec{b} \ \vec{c}] = \begin{vmatrix} \vec{l} \cdot \vec{a} & \vec{l} \cdot \vec{b} & \vec{l} \cdot \vec{c} \\ \vec{m} \cdot \vec{a} & \vec{m} \cdot \vec{b} & \vec{m} \cdot \vec{c} \end{vmatrix}$$
.

Sol. Let
$$\vec{l} = l_1 \hat{i} + l_2 \hat{j} + l_3 \hat{k}$$
, $\vec{m} = m_1 \hat{i} + m_2 \hat{j} + m_3 \hat{k}$ and $\vec{n} = n_1 \hat{i} + n_2 \hat{j} + n_3 \hat{k}$

$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}, \vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} \text{ and } \vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}. \text{ Therefore,}$$

$$\vec{l} \cdot \vec{a} = l_1 a_1 + l_2 a_2 + l_3 a_3 = \Sigma l_1 a_1$$
Similarly, $\vec{l} \cdot \vec{b} = \Sigma l_1 b_1$, etc.

Now
$$[\vec{l} \ \vec{m} \ \vec{n}][\vec{a} \ \vec{b} \ \vec{c}] = \begin{vmatrix} l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \\ n_1 & n_2 & n_3 \end{vmatrix} \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

$$= \begin{vmatrix} \Sigma l_1 a_1 & \Sigma l_1 b_1 & \Sigma l_1 c_1 \\ \Sigma m_1 a_1 & \Sigma m_1 b_1 & \Sigma m_1 c_1 \\ \Sigma n_1 a_1 & \Sigma n_1 b_1 & \Sigma n_1 c_1 \end{vmatrix}$$

$$= \begin{vmatrix} \overrightarrow{l}.\overrightarrow{a} & \overrightarrow{l}.\overrightarrow{b} & \overrightarrow{l}.\overrightarrow{c} \\ \overrightarrow{m}.\overrightarrow{a} & \overrightarrow{m}.\overrightarrow{b} & \overrightarrow{m}.\overrightarrow{c} \\ \overrightarrow{m}.\overrightarrow{a} & \overrightarrow{n}.\overrightarrow{b} & \overrightarrow{n}.\overrightarrow{c} \end{vmatrix}$$

Frample 2.53 Find the value of a so that the volume of the parallelopiped formed by vectors $\hat{i} + a\hat{j} + \hat{k}$, $\hat{j} + a\hat{k}$ and $a\hat{i} + \hat{k}$ becomes minimum.

Sol.
$$V = \begin{vmatrix} 1 & a & 1 \\ 0 & 1 & a \\ a & 0 & 1 \end{vmatrix} = 1 - a + a^3$$
$$\Rightarrow \frac{dV}{da} = 3a^2 - 1$$

Sign scheme for $3a^2 - 1$ is as follows

Fig. 2.27

V is minimum at $a = \frac{1}{\sqrt{3}}$

Example 2.54 If \overrightarrow{u} , \overrightarrow{v} and \overrightarrow{w} are three non-coplanar vectors, then prove that

$$(\overrightarrow{u} + \overrightarrow{v} - \overrightarrow{w}) \cdot (\overrightarrow{u} - \overrightarrow{v}) \times (\overrightarrow{v} - \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} \times \overrightarrow{w}$$

Sol.
$$(\overrightarrow{u} + \overrightarrow{v} - \overrightarrow{w}) \cdot (\overrightarrow{u} - \overrightarrow{v}) \times (\overrightarrow{v} - \overrightarrow{w}) = (\overrightarrow{u} + \overrightarrow{v} - \overrightarrow{w}) \cdot (\overrightarrow{u} \times \overrightarrow{v} - \overrightarrow{u} \times \overrightarrow{w} - \overrightarrow{v} \times \overrightarrow{v} + \overrightarrow{v} \times \overrightarrow{w})$$

$$= (\overrightarrow{u} + \overrightarrow{v} - \overrightarrow{w}) \cdot (\overrightarrow{u} \times \overrightarrow{v} - \overrightarrow{u} \times \overrightarrow{w} + \overrightarrow{v} \times \overrightarrow{w})$$

$$= 0 - 0 + \overrightarrow{u} \cdot (\overrightarrow{v} \times \overrightarrow{w}) + 0 - \overrightarrow{v} \cdot (\overrightarrow{u} \times \overrightarrow{w}) + 0 - \overrightarrow{w} \cdot (\overrightarrow{u} \times \overrightarrow{v}) + 0 - 0$$

$$= [\overrightarrow{u} \ \overrightarrow{v} \ \overrightarrow{w}] + [\overrightarrow{v} \ \overrightarrow{w} \ \overrightarrow{u}] - [\overrightarrow{w} \ \overrightarrow{u} \ \overrightarrow{v}] = \overrightarrow{u} \cdot (\overrightarrow{v} \times \overrightarrow{w})$$

Example 2.55 If \vec{a} and \vec{b} are two vectors such that $|\vec{a} \times \vec{b}| = 2$, then find the value of $[\vec{a} \ \vec{b} \ \vec{a} \times \vec{b}]$.

Sol.
$$[\vec{a} \ \vec{b} \ \vec{a} \times \vec{b}] = (\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{b})$$
$$= |\vec{a} \times \vec{b}|^{2}$$
$$= 4$$

Find the altitude of a parallelopiped whose three coterminous edges are vectors $\vec{A} = \hat{i} + \hat{j} + \hat{k}, \vec{B} = 2\hat{i} + 4\hat{j} - \hat{k}$ and $\vec{C} = \hat{i} + \hat{j} + 3\hat{k}$ with \vec{A} and \vec{B} as the sides of the base of the parallelopiped.

 $h = \frac{\text{volume of parallelopiped}}{\text{area of base}}$ Sol.

$$=\frac{\vec{A}\vec{B}\vec{C}}{\vec{A}\times\vec{B}} = \frac{\begin{vmatrix} 1 & 1 & 1 \\ 2 & 4 & -1 \\ 1 & 1 & 3 \end{vmatrix}}{\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 2 & 4 & -1 \end{vmatrix}} = \frac{4}{|-5\hat{i}+3\hat{j}+2\hat{k}|} = \frac{2\sqrt{38}}{19}$$

If \vec{a} , \vec{b} and \vec{c} are mutually perpendicular vectors and $\vec{a} = \alpha (\vec{a} \times \vec{b}) + \beta (\vec{b} \times \vec{c})$ $+\gamma (\overrightarrow{c} \times \overrightarrow{a})$ and $[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = 1$, then find the value of $\alpha + \beta + \gamma$.

Taking dot product with \vec{a}, \vec{b} and \vec{c} , respectively, we get Sol.

$$|\vec{a}|^2 = \beta \cdot [\vec{a} \vec{b} \vec{c}] = \beta$$
$$0 = \gamma \cdot [\vec{a} \vec{b} \vec{c}] = \gamma$$

and
$$0 = \alpha \cdot [\vec{a} \ \vec{b} \ \vec{c}] = \alpha$$

$$\therefore \alpha + \beta + \gamma = |\overrightarrow{a}|^2$$

Example 2.58 If \vec{a} , \vec{b} and \vec{c} are non-coplanar vectors, then prove that $|(\vec{a} \cdot \vec{d})(\vec{b} \times \vec{c}) + (\vec{b} \cdot \vec{d})(\vec{c} \times \vec{a})|$ $+(\vec{c}\cdot\vec{d})(\vec{a}\times\vec{b})$ is independent of \vec{d} , where \vec{d} is a unit vector.

Given $[\vec{a} \ \vec{b} \ \vec{c}] \neq 0$ as $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar. Also there does not exist any linear relation between Sol. them because if any such relation exists, then they would be coplanar.

Let
$$A = x(\vec{b} \times \vec{c}) + y(\vec{c} \times \vec{a}) + z(\vec{a} \times \vec{b}),$$

where
$$x = \overrightarrow{a} \cdot \overrightarrow{d}$$
, $y = \overrightarrow{b} \cdot \overrightarrow{d}$, $z = \overrightarrow{c} \cdot \overrightarrow{d}$

We have to find the value of modulus of \vec{A} , i.e., $|\vec{A}|$, which is independent of \vec{d} .

Multiplying both sides scalarly by \vec{a} , \vec{b} and \vec{c} and we know that scalar triple product is zero when two vectors are equal.

$$\overrightarrow{A} \cdot \overrightarrow{a} = x [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] + 0$$

Putting for x, we get

$$(\overrightarrow{a} \cdot \overrightarrow{d})[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] = \overrightarrow{A} \cdot \overrightarrow{a}$$

Similarly, we have

$$(\overrightarrow{b} \cdot \overrightarrow{d}) [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = \overrightarrow{A} \cdot \overrightarrow{b}$$

$$(\overrightarrow{c} \cdot \overrightarrow{d})[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = \overrightarrow{A} \cdot \overrightarrow{c}$$

Adding the above relations, we get

$$[(\stackrel{\rightarrow}{a}+\stackrel{\rightarrow}{b}+\stackrel{\rightarrow}{c})\cdot\stackrel{\rightarrow}{d}] [\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{b}\stackrel{\rightarrow}{c}] = \stackrel{\rightarrow}{A}\cdot(\stackrel{\rightarrow}{a}+\stackrel{\rightarrow}{b}+\stackrel{\rightarrow}{c})$$

or
$$(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) \cdot [\overrightarrow{d} [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] - \overrightarrow{A}] = 0$$

Since \vec{a} , \vec{b} and \vec{c} are non-coplanar, $\vec{a} + \vec{b} + \vec{c} \neq 0$ because otherwise any one is expressible as a linear combination of other two.

Hence
$$[\vec{a} \ \vec{b} \ \vec{c}] \vec{d} = \vec{A}$$

 $|\overrightarrow{A}| = |\overrightarrow{[a\ b\ c]}|$ as \overrightarrow{d} is a unit vector.

It is independent of \vec{d} .

Example 2.59 Prove that vectors

$$\vec{u} = (al + a_1 l_1) \hat{i} + (am + a_1 m_1) \hat{j} + (an + a_1 n_1) \hat{k}$$

$$\vec{v} = (bl + b_1 l_1) \hat{i} + (bm + b_1 m_1) \hat{j} + (bn + b_1 n_1) \hat{k}$$

$$\vec{w} = (cl + c_1 l_1) \hat{i} + (cm + c_1 m_1) \hat{j} + (cn + c_1 n_1) \hat{k}$$
are coplanar.

Sol.
$$[\overrightarrow{u} \vec{v} \vec{w}] = \begin{vmatrix} al + a_1 l_1 & am + a_1 m_1 & an + a_1 n_1 \\ bl + b_1 l_1 & bm + b_1 m_1 & bn + b_1 n_1 \\ cl + c_1 l_1 & cm + c_1 m_1 & cn + c_1 n_1 \end{vmatrix}$$

$$\Rightarrow [\overrightarrow{u} \overrightarrow{v} \overrightarrow{w}] = \begin{vmatrix} a & a_1 & 0 \\ b & b_1 & 0 \\ c & c_1 & 0 \end{vmatrix} \begin{vmatrix} l & l_1 & 0 \\ m & m_1 & 0 \\ n & n_1 & 0 \end{vmatrix} = 0$$

Therefore, the given vectors are coplanar.

Example 2.60 Let G_1 , G_2 and G_3 be the centroids of the trianglular faces OBC, OCA and OAB, respectively, of a tetrahedron OABC. If V_1 denotes the volume of the tetrahedron OABC and V_2 that of the parallelopiped with OG_1 , OG_2 and OG_3 as three concurrent edges, then prove that $4V_1 = 9V_1$.

Sol. Taking O as the origin, let the position vectors of A, B and C be \vec{a} , \vec{b} and \vec{c} , respectively. Then the

position vectors
$$G_1$$
, G_2 and G_3 are $\frac{\vec{b} + \vec{c}}{3}$, $\frac{\vec{c} + \vec{a}}{3}$ and $\frac{\vec{a} + \vec{b}}{3}$, respectively. Therefore,

$$V_1 = \frac{1}{6} [\vec{a} \ \vec{b} \ \vec{c}] \text{ and } V_2 = [\overrightarrow{OG_1} \ \overrightarrow{OG_2} \ \overrightarrow{OG_3}]$$

Now,
$$V_2 = [\overrightarrow{OG_1} \ \overrightarrow{OG_2} \ \overrightarrow{OG_3}]$$

$$\Rightarrow V_2 = \frac{1}{27} [\overrightarrow{b} + \overrightarrow{c} \ \overrightarrow{c} + \overrightarrow{a} \ \overrightarrow{a} + \overrightarrow{b}]$$

$$\Rightarrow V_2 = \frac{2}{27} [\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}]$$

$$\Rightarrow V_2 = \frac{2}{27} \times 6V_1 \Rightarrow 9V_2 = 4V_1$$

VECTOR TRIPLE PRODUCT

The vector triple product of three vectors \vec{a}, \vec{b} and \vec{c} is the vector

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}$$

Also
$$(\vec{a} \times \vec{b}) \times \vec{c} = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{b} \cdot \vec{c}) \vec{a}$$

In general, $\vec{a} \times (\vec{b} \times \vec{c}) \neq (\vec{a} \times \vec{b}) \times \vec{c}$

If $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$, then the vectors \vec{a} and \vec{c} are collinear.

Fig. 2.28

 $\vec{p} = \vec{a} \times (\vec{b} \times \vec{c})$ is a vector perpendicular to \vec{a} and $\vec{b} \times \vec{c}$, but $\vec{b} \times \vec{c}$ is a vector perpendicular to the plane of \vec{b} and \vec{c} .

 \Rightarrow Vector \overrightarrow{p} must lie in the plane of \overrightarrow{b} and \overrightarrow{c} .

$$\Rightarrow \overrightarrow{p} = \overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) = x\overrightarrow{b} + y\overrightarrow{c}$$
 (i)

Multiplying (i) scalarly by
$$\vec{a}$$
, we have $\vec{p} \cdot \vec{a} = x (\vec{a} \cdot \vec{b}) + y (\vec{a} \cdot \vec{c})$ (ii)

But $\vec{p} \perp \vec{a} \Rightarrow \vec{p} \cdot \vec{a} = 0$. Therefore,

$$x(\overrightarrow{a} \cdot \overrightarrow{b}) = -y(\overrightarrow{c} \cdot \overrightarrow{a})$$
, i.e., $= \frac{x}{\overrightarrow{c} \cdot \overrightarrow{a}} = \frac{-y}{\overrightarrow{a} \cdot \overrightarrow{b}} = \lambda$

$$\therefore x = \lambda (\overrightarrow{c} \cdot \overrightarrow{a}), y = -\lambda (\overrightarrow{a} \cdot \overrightarrow{b})$$
 (iii)

Substituting x and y from (iii) in (i),
$$\vec{a} \times (\vec{b} \times \vec{c}) = \lambda [(\vec{c} \cdot \vec{a}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}]$$
 (iv)

The simplest way to determine λ is by taking specific vectors $\vec{a} = \hat{i}, \vec{b} = \hat{i}, \vec{c} = \hat{j}$

We have from (iv),
$$\hat{i} \times (\hat{i} \times \hat{j}) = \lambda [(\hat{i} \cdot \hat{j}) \hat{i} - (\hat{i} \cdot \hat{i}) \hat{j}]$$
, i.e., $\hat{i} \times \hat{k} = \lambda [0 \hat{i} - 1 \hat{j}]$, i.e., $-\hat{j} = -\lambda \hat{j}$
 $\therefore \lambda = 1$
Substituting λ in (iv), $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}$

Lagrange's Identity

$$(\overrightarrow{a} \times \overrightarrow{b}) \cdot (\overrightarrow{c} \times \overrightarrow{d}) = \overrightarrow{a} \cdot [\overrightarrow{b} \times (\overrightarrow{c} \times \overrightarrow{d})]$$

$$= \overrightarrow{a} \cdot [(\overrightarrow{b} \cdot \overrightarrow{d}) \overrightarrow{c} - (\overrightarrow{b} \cdot \overrightarrow{c}) \overrightarrow{d}]$$

$$= (\overrightarrow{a} \cdot \overrightarrow{c}) (\overrightarrow{b} \cdot \overrightarrow{d}) - (\overrightarrow{a} \cdot \overrightarrow{d}) (\overrightarrow{b} \cdot \overrightarrow{c})$$

$$= \begin{vmatrix} \overrightarrow{a} \cdot \overrightarrow{c} & \overrightarrow{a} \cdot \overrightarrow{d} \\ \overrightarrow{b} \cdot \overrightarrow{c} & \overrightarrow{b} \cdot \overrightarrow{d} \end{vmatrix}$$

This is called Lagrange's identity.

Note:

$$(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = [(\vec{a} \times \vec{b}) \cdot \vec{d}] \vec{c} - [(\vec{a} \times \vec{b}) \cdot \vec{c}] \vec{d} = [\vec{a} \vec{b} \vec{d}] \vec{c} - [\vec{a} \vec{b} \vec{c}] \vec{d}$$
Thus vector $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d})$ lies in the plane of \vec{c} and \vec{d} ; otherwise $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = -(\vec{c} \times \vec{d}) \times (\vec{a} \times \vec{b}) = -[(\vec{c} \times \vec{d}) \cdot \vec{b}] \vec{a} + [(\vec{c} \times \vec{d}) \vec{a}] \vec{b}$

which shows that the vector lies in the plane of \vec{a} and \vec{b} . Thus the vector lies along the common section of the plane of \vec{c} and \vec{d} and the plane of \vec{a} and \vec{b} .

Example 2.61 Prove that $\hat{i} \times (\vec{a} \times \hat{i}) + \hat{j} \times (\vec{a} \times \hat{j}) + \hat{k} \times (\vec{a} \times \hat{k}) = 2 \vec{a}$.

Sol.
$$\hat{i} \times (\vec{a} \times \hat{i}) = (\hat{i} \cdot \hat{i}) \vec{a} - (\vec{a} \cdot \hat{i}) \vec{i} = \vec{a} - (\vec{a} \cdot \hat{i}) \hat{i}$$

Similarly, $\hat{j} \times (\vec{a} \times \hat{j}) = \vec{a} - (\vec{a} \cdot \hat{j}) \hat{j}$ and $\hat{k} \times (\vec{a} \times \hat{k}) = \vec{a} - (\vec{a} \cdot \hat{k}) \hat{k}$. Therefore, $\hat{i} \times (\vec{a} \times \hat{i}) + \hat{j} \times (\vec{a} \times \hat{j}) + \hat{k} \times (\vec{a} \times \hat{k}) = 3\vec{a} - ((\vec{a} \cdot \hat{i}) \hat{i} + (\vec{a} \cdot \hat{j}) \hat{j} + (\vec{a} \times \hat{k}) \hat{k}) = 2\vec{a}$

Example 2.62 Let \vec{a} , \vec{b} and \vec{c} be any three vectors, then prove that $[\vec{a} \times \vec{b} \quad \vec{b} \times \vec{c} \quad \vec{c} \times \vec{a}] = [\vec{a} \quad \vec{b} \quad \vec{c}]^2$.

Sol.
$$[\vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times \vec{a}] = (\vec{a} \times \vec{b}) \cdot ((\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a}))$$
$$= (\vec{a} \times \vec{b}) \cdot [[\vec{b} \ \vec{c} \ \vec{a}] \ \vec{c} - [\vec{b} \ \vec{c} \ \vec{c}] \ \vec{a}]$$
$$= [\vec{a} \ \vec{b} \ \vec{c}]^2$$

Example 2.63 For any four vectors, prove that $(\vec{b} \times \vec{c}) \cdot (\vec{a} \times \vec{d}) + (\vec{c} \times \vec{a}) \cdot (\vec{b} \times \vec{d}) + (\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = 0$.

Sol.
$$(\vec{b} \times \vec{c}) \cdot (\vec{a} \times \vec{d}) = (\vec{b} \cdot \vec{a}) \cdot (\vec{c} \cdot \vec{d}) - (\vec{b} \cdot \vec{d}) \cdot (\vec{c} \cdot \vec{a})$$

 $(\vec{c} \times \vec{a}) \cdot (\vec{b} \times \vec{d}) = (\vec{c} \cdot \vec{b}) \cdot (\vec{a} \cdot \vec{d}) - (\vec{c} \cdot \vec{d}) \cdot (\vec{a} \cdot \vec{b})$
 $(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = (\vec{a} \cdot \vec{c}) \cdot (\vec{b} \cdot \vec{d}) - (\vec{a} \cdot \vec{d}) \cdot (\vec{b} \cdot \vec{c})$
 $\Rightarrow (\vec{b} \times \vec{c}) \cdot (\vec{a} \times \vec{d}) + (\vec{c} \times \vec{a}) \cdot (\vec{b} \times \vec{d}) + (\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = 0$

Example 2.64 Let \hat{a} , \hat{b} and \hat{c} be the non-coplanar unit vectors. The angle between \hat{b} and \hat{c} is α , between \hat{c} and \hat{a} is β and between \hat{a} and \hat{b} is γ . If $A(\hat{a}\cos\alpha)$, $B(\hat{b}\cos\beta)$ and $C(\hat{c}\cos\gamma)$, then show that in triangle ABC, $\frac{|\hat{a}\times(\hat{b}\times\hat{c})|}{\sin A} = \frac{|\hat{b}\times(\hat{c}\times\hat{a})|}{\sin B} = \frac{|\hat{c}\times(\hat{a}\times\hat{b})|}{\sin C}$ $= \frac{\prod |\hat{a}\times(\hat{b}\times\hat{c})|}{|\sum \sin\alpha.\cos\beta.\cos\gamma \hat{n}_1|}, \text{ where } \hat{n}_1 = \frac{\hat{b}\times\hat{c}}{|\hat{b}\times\hat{c}|}, \hat{n}_2 = \frac{\hat{c}\times\hat{a}}{|\hat{c}\times\hat{a}|} \text{ and } \hat{n}_3 = \frac{\hat{a}\times\hat{b}}{|\hat{a}\times\hat{b}|}.$

Sol. From the sine rule, we get

$$\frac{AB}{\sin C} = \frac{AC}{\sin B} = \frac{BC}{\sin A} = \frac{(AB)(BC)(CA)}{2\Delta ABC}$$

$$BC = |\overrightarrow{BC}| = |\hat{c}\cos\gamma - \hat{b}\cos\beta| = |(\hat{a}\cdot\hat{b})\hat{c} - (\hat{c}\cdot\hat{a})\hat{b}| = |(\hat{a}\times(\hat{b}\times\hat{c}))|$$
Similarly.

$$AC = |\overrightarrow{AC}| = |\hat{b} \times (\hat{c} \times \hat{a})|$$
 and $AB = |\overrightarrow{AB}| = |\hat{c} \times (\hat{a} \times \hat{b})|$

Also,

$$\Delta ABC = \frac{1}{2} |\overrightarrow{BC} \times \overrightarrow{BA}|$$

$$= \frac{1}{2} |(\hat{c}\cos\gamma - \hat{b}\cos\beta) \times (\hat{a}\cos\alpha - \hat{b}\cos\beta)|$$

$$= \frac{1}{2} |(\hat{c} \times \hat{a})\cos\alpha\cos\gamma + (\hat{b} \times \hat{c})\cos\gamma\cos\beta + (\hat{a} \times \hat{b})\cos\beta\cos\alpha|$$

$$\Rightarrow 2\Delta ABC = |\Sigma \hat{n}| \sin \alpha \cos \beta \cos \gamma|$$

$$\Rightarrow \frac{|\hat{a} \times (\hat{b} \times \hat{c})|}{\sin A} = \frac{|\hat{b} \times (\hat{c} \times \hat{a})|}{\sin B} = \frac{|\hat{c} \times (\hat{a} \times \hat{b})|}{\sin C} = \frac{\prod |\hat{a} \times (\hat{b} \times \hat{c})|}{|\sum \sin \alpha \cos \beta \cos \gamma \hat{n}_1|}$$

Example 2.65 If \vec{a} , \vec{b} and \vec{c} are three non-coplanar vectors, then prove that

$$\vec{d} = \frac{\vec{a} \cdot \vec{d}}{[\vec{a} \ \vec{b} \ \vec{c}]} (\vec{b} \times \vec{c}) + \frac{\vec{b} \cdot \vec{d}}{[\vec{a} \ \vec{b} \ \vec{c}]} (\vec{c} \times \vec{a}) + \frac{\vec{c} \cdot \vec{d}}{[\vec{a} \ \vec{b} \ \vec{c}]} (\vec{a} \times \vec{b})$$

Sol. Since \vec{a} , \vec{b} and \vec{c} are non-coplanar, vectors $\vec{a} \times \vec{b}$, $\vec{b} \times \vec{c}$ and $\vec{c} \times \vec{a}$ are also non-coplanar. Let

$$\vec{d} = l(\vec{b} \times \vec{c}) + \vec{m}(\vec{c} \times \vec{a}) + \vec{n}(\vec{a} \times \vec{b})$$
 (i)

Now multiplying both sides of (i) scalarly by \vec{a} , we have

$$\vec{a} \cdot \vec{d} = l \vec{a} \cdot (\vec{b} \times \vec{c}) + m \vec{a} \cdot (\vec{c} \times \vec{a}) + n \vec{a} \cdot (\vec{a} \times \vec{b}) = l [\vec{a} \vec{b} \vec{c}] \qquad \qquad \because [\vec{a} \vec{c} \vec{a}] = 0 = [\vec{a} \vec{a} \vec{b}]$$

$$\Rightarrow l = (\vec{a} \cdot \vec{d})/[\vec{a} \vec{b} \vec{c}]$$

Similarly, multiplying (i) scalarly by \vec{b} and \vec{c} successively, we get

$$m = (\overrightarrow{b} \cdot \overrightarrow{d}) / [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]$$
 and $n = (\overrightarrow{c} \cdot \overrightarrow{d}) / [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]$

Putting these values of l, m and n in (i), we get the required relation.

Example 2.66 If \vec{b} is not perpendicular to \vec{c} , then find the vector \vec{r} satisfying the equation $\vec{r} \times \vec{b} = \vec{a} \times \vec{b}$ and $\vec{r} \cdot \vec{c} = 0$.

Sol. Given $\vec{r} \times \vec{b} = \vec{a} \times \vec{b} \Rightarrow (\vec{r} - \vec{a}) \times \vec{b} = 0$

Hence $(\overrightarrow{r} - \overrightarrow{a})$ and \overrightarrow{b} are parallel.

$$\Rightarrow \vec{r} - \vec{a} = t\vec{b}$$
 (i)

Also $\vec{r} \cdot \vec{c} = 0$

 \therefore Taking dot product of (i) by \vec{c} , we get $\vec{r} \cdot \vec{c} - \vec{a} \cdot \vec{c} = t (\vec{b} \cdot \vec{c})$

$$\Rightarrow 0 - \overrightarrow{a} \cdot \overrightarrow{c} = t (\overrightarrow{b} \cdot \overrightarrow{c}) \text{ or } t = -\left(\frac{\overrightarrow{a} \cdot \overrightarrow{c}}{\overrightarrow{b} \cdot \overrightarrow{c}}\right)$$
 (ii)

From (i) and (ii), solution of \vec{r} is $\vec{r} = \vec{a} - \begin{pmatrix} \vec{a} \cdot \vec{c} \\ \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{c} \end{pmatrix} \vec{b}$

Example 2.67 If \vec{a} and \vec{b} are two given vectors and \vec{k} is any scalar, then find the vector \vec{r} satisfying $\vec{r} \times \vec{a} + \vec{k} \vec{r} = \vec{b}$

Sol.
$$\overrightarrow{r} \times \overrightarrow{a} + k \overrightarrow{r} = \overrightarrow{b}$$

$$\Rightarrow (\overrightarrow{r} \times \overrightarrow{a}) \times \overrightarrow{a} + k \overrightarrow{r} \times \overrightarrow{a} = \overrightarrow{b} \times \overrightarrow{a}$$

$$\Rightarrow (\overrightarrow{r} \cdot \overrightarrow{a}) \overrightarrow{a} - (\overrightarrow{a} \cdot \overrightarrow{a}) \overrightarrow{r} + k (\overrightarrow{b} - k \overrightarrow{r}) = \overrightarrow{b} \times \overrightarrow{a}$$
(i)

$$\Rightarrow (\overrightarrow{r} \cdot \overrightarrow{a}) \overrightarrow{a} + k \overrightarrow{b} - \overrightarrow{b} \times \overrightarrow{a} = (|\overrightarrow{a}|^2 + k^2) \overrightarrow{r}$$

$$\Rightarrow \vec{r} = \frac{(\vec{r} \cdot \vec{a}) \vec{a} + k \vec{b} - \vec{b} \times \vec{a}}{|\vec{a}|^2 + k^2}$$

Also in Eq. (i), taking dot product with \vec{a} , we have

$$(\overrightarrow{r} \times \overrightarrow{a}) \cdot \overrightarrow{a} + k \overrightarrow{r} \cdot \overrightarrow{a} = \overrightarrow{b} \cdot \overrightarrow{a}$$

$$\Rightarrow \overrightarrow{r} \cdot \overrightarrow{a} = \frac{\overrightarrow{b} \cdot \overrightarrow{a}}{k}$$

$$\Rightarrow \vec{r} = \frac{1}{k^2 + |\vec{a}|^2} \left[\frac{(\vec{a} \cdot \vec{b}) \cdot \vec{a}}{k} + k \cdot \vec{b} + (\vec{a} \times \vec{b}) \right]$$

Example 268 If $\overrightarrow{r} \cdot \overrightarrow{a} = 0$, $\overrightarrow{r} \cdot \overrightarrow{b} = 1$ and $[\overrightarrow{r} \ \overrightarrow{a} \ \overrightarrow{b}] = 1$, $\overrightarrow{a} \cdot \overrightarrow{b} \neq 0$, $(\overrightarrow{a} \cdot \overrightarrow{b})^2 - |\overrightarrow{a}|^2 |\overrightarrow{b}|^2 = 1$, then find \overrightarrow{r} in terms of \overrightarrow{a} and \overrightarrow{b} .

Sol. Writing \vec{r} as linear combination of \vec{a} , \vec{b} and $\vec{a} \times \vec{b}$, we have

$$\vec{r} = x\vec{a} + y\vec{b} + z(\vec{a} \times \vec{b})$$

For scalars x, y and z

$$0 = \overrightarrow{r} \cdot \overrightarrow{a} = x |\overrightarrow{a}|^2 + y \overrightarrow{a} \cdot \overrightarrow{b} \quad \text{(taking dot product with } \overrightarrow{a})$$

$$1 = \overrightarrow{r} \cdot \overrightarrow{b} = x \overrightarrow{a} \cdot \overrightarrow{b} + y | \overrightarrow{b}|^2$$
 (taking dot product with \overrightarrow{b})

Solving, we get
$$y = \frac{|\vec{a}|^2}{|\vec{a}|^2 |\vec{b}|^2 - (\vec{a} \cdot \vec{b})^2} = |\vec{a}|^2$$

and
$$x = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{(\overrightarrow{a} \cdot \overrightarrow{b})^2 - |\overrightarrow{a}|^2 |\overrightarrow{b}|^2} = \overrightarrow{a} \cdot \overrightarrow{b}$$

Also
$$1 = [\vec{r} \vec{a} \vec{b}] = z |\vec{a} \times \vec{b}|^2$$
 (taking dot product with $\vec{a} \times \vec{b}$)

$$\Rightarrow z = \frac{1}{|a \times b|^2}$$

thus
$$\vec{r} = ((\vec{a} \cdot \vec{b}) \vec{a} - |\vec{a}|^2 \vec{b}) + \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|^2}$$

$$= \vec{a} \times (\vec{a} \times \vec{b}) + \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|^2}$$

Example 2.69 If vector \vec{x} satisfying $\vec{x} \times \vec{a} + (\vec{x} \cdot \vec{b}) \vec{c} = \vec{d}$ is given by $\vec{x} = \lambda \vec{a} + \vec{a} \times \frac{\vec{a} \times (\vec{d} \times \vec{c})}{(\vec{a} \cdot \vec{c}) |\vec{a}|^2}$, then find the value of λ .

Sol.
$$\overrightarrow{x} \times \overrightarrow{a} + (\overrightarrow{x} \cdot \overrightarrow{b}) \overrightarrow{c} = \overrightarrow{d}$$

Example 2.70 \vec{a} , \vec{b} and \vec{c} are three non-coplanar vectors and \vec{r} is any arbitrary vector. Prove that $[\vec{b} \ \vec{c} \ \vec{r}] \vec{a} + [\vec{c} \ \vec{a} \ \vec{r}] \vec{b} + [\vec{a} \ \vec{b} \ \vec{r}] \vec{c} = [\vec{a} \ \vec{b} \ \vec{c}] \vec{r}$.

Sol. Let
$$\overrightarrow{r} = x_1 \overrightarrow{a} + x_2 \overrightarrow{b} + x_3 \overrightarrow{c} \Rightarrow \overrightarrow{r} \cdot (\overrightarrow{b} \times \overrightarrow{c}) = x_1 \overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c}) \Rightarrow x_1 = \frac{[\overrightarrow{r} \ \overrightarrow{b} \ \overrightarrow{c}]}{[a \ \overrightarrow{b} \ \overrightarrow{c}]}$$

Also, $\overrightarrow{r} \cdot (\overrightarrow{c} \times \overrightarrow{a}) = x_2 \overrightarrow{b} \cdot (\overrightarrow{c} \times \overrightarrow{a}) \Rightarrow x_2 = \frac{[\overrightarrow{r} \ \overrightarrow{c} \ \overrightarrow{a}]}{[a \ \overrightarrow{b} \ \overrightarrow{c}]} \text{ and } \overrightarrow{r} \cdot (\overrightarrow{a} \times \overrightarrow{b}) = x_3 \overrightarrow{c} \cdot (\overrightarrow{a} \times \overrightarrow{b})$

$$\Rightarrow x_3 = \frac{[\overrightarrow{r} \ \overrightarrow{a} \ \overrightarrow{b}]}{[a \ \overrightarrow{b} \ \overrightarrow{c}]} \Rightarrow \overrightarrow{r} = \frac{[\overrightarrow{r} \ \overrightarrow{b} \ \overrightarrow{c}]}{[a \ \overrightarrow{b} \ \overrightarrow{c}]} \overrightarrow{a} + \frac{[\overrightarrow{r} \ \overrightarrow{c} \ \overrightarrow{a}]}{[a \ \overrightarrow{b} \ \overrightarrow{c}]} \overrightarrow{b} + \frac{[\overrightarrow{r} \ \overrightarrow{a} \ \overrightarrow{b}]}{[a \ \overrightarrow{b} \ \overrightarrow{c}]} \overrightarrow{c} \Rightarrow [\overrightarrow{b} \ \overrightarrow{c} \ \overrightarrow{r}] \overrightarrow{a} + [\overrightarrow{c} \ \overrightarrow{a} \ \overrightarrow{r}] \overrightarrow{b} + [\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{r}] \overrightarrow{c} = [\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] \overrightarrow{r}$$

Example 2.71 If \vec{a} , \vec{b} and \vec{c} are non-coplanar unit vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} + \vec{c}}{\sqrt{2}}$, \vec{b} and \vec{c} are non-parallel, then prove that the angle between \vec{a} and \vec{b} is $3\pi/4$.

Sol.
$$\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} + \vec{c}}{\sqrt{2}}$$

$$\Rightarrow (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} = \frac{1}{\sqrt{2}} \vec{b} + \frac{1}{\sqrt{2}} \vec{c}$$
(i)

Since \vec{b} and \vec{c} are non-collinear, comparing coefficients of \vec{c} on both sides of (i), we get

$$-\vec{a}.\vec{b} = \frac{1}{\sqrt{2}} \implies \vec{a}.\vec{b} = -\frac{1}{\sqrt{2}}$$
$$\implies (1)(1)\cos\theta = -\frac{1}{\sqrt{2}},$$

where θ is the angle between \vec{a} and \vec{b}

$$\therefore \cos \theta = -\frac{1}{\sqrt{2}} \implies \cos \theta \cos 135^{\circ}$$

$$\Rightarrow \theta = 135^{\circ} = 3\pi/4$$

Prove that
$$\vec{R} + \frac{[\vec{R} \cdot (\vec{\beta} \times (\vec{\beta} \times \vec{\alpha}))]\vec{\alpha}}{|\vec{\alpha} \times \vec{\beta}|^2} + \frac{[\vec{R} \cdot (\vec{\alpha} \times (\vec{\alpha} \times \vec{\beta}))]\vec{\beta}}{|\vec{\alpha} \times \vec{\beta}|^2} = \frac{[\vec{R} \vec{\alpha} \vec{\beta}](\vec{\alpha} \times \vec{\beta})}{|\vec{\alpha} \times \vec{\beta}|^2}$$

Sol. $\vec{\alpha}, \vec{\beta}$ and $\vec{\alpha} \times \vec{\beta}$ are three non-coplanar vectors. Any vector \vec{R} can be represented as a linear combination of these vectors.

$$\Rightarrow \vec{R} = k_1 \vec{\alpha} + k_2 \vec{\beta} + k_3 (\vec{\alpha} \times \vec{\beta}) \tag{i}$$

Take dot product of (i) with $(\vec{\alpha} \times \vec{\beta})$

$$\Rightarrow \vec{R} \cdot (\vec{\alpha} \times \vec{\beta}) = k_3 (\vec{\alpha} \times \vec{\beta}) \cdot (\vec{\alpha} \times \vec{\beta}) = k_3 |\vec{\alpha} \times \vec{\beta}|^2$$

$$\Rightarrow k_{3} = \frac{\vec{R} \cdot (\vec{\alpha} \times \vec{\beta})}{|\vec{\alpha} \times \vec{\beta}|^{2}} = \frac{[\vec{R} \vec{\alpha} \vec{\beta}]}{|\vec{\alpha} \times \vec{\beta}|^{2}}$$

Take dot product of (i) with $\vec{\alpha} \times (\vec{\alpha} \times \vec{\beta})$

$$\Rightarrow \vec{R} \cdot (\vec{\alpha} \times (\vec{\alpha} \times \vec{\beta})) = k_2 (\vec{\alpha} \times (\vec{\alpha} \times \vec{\beta})) \cdot \vec{\beta}$$

$$= k_2 [(\vec{\alpha} \cdot \vec{\beta}) \vec{\alpha} - (\vec{\alpha} \cdot \vec{\alpha}) \vec{\beta}] \cdot \vec{\beta} = k_2 [(\vec{\alpha} \cdot \vec{\beta})^2 - |\vec{\alpha}|^2 |\beta|^2]$$

$$= -k_2 |\vec{\alpha} \times \vec{\beta}|^2$$

$$\Rightarrow k_2 = \frac{-[\vec{R} \cdot (\vec{\alpha} \times (\vec{\alpha} \times \vec{\beta}))]}{|\vec{\alpha} \times \vec{\beta}|^2} \quad \text{Similarly, } k_1 = -\frac{[\vec{R} \cdot (\vec{\beta} \times (\vec{\beta} \times \vec{\alpha}))]}{|\vec{\alpha} \times \vec{\beta}|^2}$$

$$\Rightarrow \vec{R} = \frac{-[\vec{R} \cdot [\vec{\beta} \times (\vec{\beta} \times \vec{\alpha}))]\vec{\alpha}}{|\vec{\alpha} \times \vec{\beta}|^2} - \frac{[\vec{R} \cdot (\vec{\alpha} \times (\vec{\alpha} \times \vec{\beta}))]\vec{\beta}}{|\vec{\alpha} \times \vec{\beta}|^2} + \frac{[(\vec{R} \cdot (\vec{\alpha} \times \vec{\beta}))](\vec{\alpha} \times \vec{\beta})}{(\vec{\alpha} \times \vec{\beta})^2}$$

$$\Rightarrow \vec{R} + \frac{[\vec{R} \cdot (\vec{\beta} \times (\vec{\beta} \times \vec{\alpha}))]\vec{\alpha}}{|\vec{\alpha} \times \vec{\beta}|^2} + \frac{[\vec{R} \cdot (\vec{\alpha} \times (\vec{\alpha} \times \vec{\beta}))]\vec{\beta}}{|\vec{\alpha} \times \vec{\beta}|^2} = \frac{[\vec{R} \cdot (\vec{\alpha} \times \vec{\beta})](\vec{\alpha} \times \vec{\beta})}{|\vec{\alpha} \times \vec{\beta}|^2}$$

Example 2.73 If \vec{a} , \vec{b} and \vec{c} are three non-coplanar non-zero vectors, then prove that $(\vec{a} \cdot \vec{a})$ $\vec{b} \times \vec{c}$ $+ (\vec{a} \cdot \vec{b}) \vec{c} \times \vec{a} + (\vec{a} \cdot \vec{c}) \vec{a} \times \vec{b} = [\vec{b} \ \vec{c} \ \vec{a}] \vec{a}$.

Sol. As \vec{a} , \vec{b} and \vec{c} are non-coplanar, $\vec{b} \times \vec{a}$, $\vec{c} \times \vec{a}$ and $\vec{a} \times \vec{b}$ are also non-coplanar.

So, any vector can be expressed as a linear combination of these vectors.

Let
$$\vec{a} = \lambda \vec{b} \times \vec{c} + \mu \vec{c} \times \vec{a} + v \vec{a} \times \vec{b}$$

$$\vec{\cdot} \cdot \vec{a} \cdot \vec{a} = \lambda [\vec{b} \ \vec{c} \ \vec{a}], \vec{a} \cdot \vec{b} = \mu [\vec{c} \ \vec{a} \ \vec{b}], \vec{a} \cdot \vec{c} = \nu [\vec{a} \ \vec{b} \ \vec{c}]$$

$$\therefore \vec{a} = \frac{\vec{(a \cdot a)} \vec{b} \times \vec{c}}{\vec{[b c a]}} + \frac{\vec{(a \cdot b)} \vec{c} \times \vec{a}}{\vec{[c a b]}} + \frac{\vec{(a \cdot c)} \vec{a} \times \vec{b}}{\vec{[a b c]}}$$

RECIPROCAL SYSTEM OF VECTORS

Two systems of vectors are called reciprocal systems of vectors if by taking the dot product we get unity.

Thus if \vec{a} , \vec{b} and \vec{c} are three non-coplanar vectors, and if

$$\vec{a'} = \frac{\vec{b} \times \vec{c}}{\vec{a} \vec{b} \vec{c}}, \vec{b'} = \frac{\vec{c} \times \vec{a}}{\vec{a} \vec{b} \vec{c}}$$
 and $\vec{c'} = \frac{\vec{a} \times \vec{b}}{\vec{a} \vec{b} \vec{c}}$, then $\vec{a'}, \vec{b'}, \vec{c'}$ are said to be the reciprocal systems of vectors

for vectors \vec{a} , \vec{b} and \vec{c} .

Properties

i. If \vec{a} , \vec{b} and \vec{c} and $\vec{a'}$, $\vec{b'}$ and $\vec{c'}$ are reciprocal system of vectors, then $\vec{a} \cdot \vec{a'} = \frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{(\vec{a} \cdot \vec{b} \cdot \vec{c})} = \frac{[\vec{a} \cdot \vec{b} \cdot \vec{c}]}{[\vec{a} \cdot \vec{b} \cdot \vec{c}]} = 1$.

Similarly, $\vec{b} \cdot \vec{b'} = \vec{c} \cdot \vec{c'} = 1$.

Due to the above property, the two systems of vectors are called reciprocal systems.

ii.
$$\vec{a} \cdot \vec{b'} = \vec{a} \cdot \vec{c'} = \vec{b} \cdot \vec{a'} = \vec{b} \cdot \vec{c'} = \vec{c} \cdot \vec{a'} = \vec{c} \cdot \vec{b'} = 0$$

iii.
$$[\vec{a}\vec{b}\vec{c}][\vec{a}'\vec{b}'\vec{c}'] = 1$$

Proof:

We have
$$[\vec{a'}\vec{b'}\vec{c'}] = \begin{bmatrix} \vec{b} \times \vec{c} & \vec{c} \times \vec{a} & \vec{a} \times \vec{b} \\ \vec{b} \times \vec{c} & \vec{c} \times \vec{a} & \vec{a} \times \vec{b} \\ \vec{a} \vec{b} \vec{c} & \vec{a} \vec{b} \vec{c} \end{bmatrix} = \frac{1}{[\vec{a}\vec{b}\vec{c}]^3} [\vec{b} \times \vec{c} \times \vec{c} \times \vec{a} \vec{a} \times \vec{b}] = \frac{1}{[\vec{a}\vec{b}\vec{c}]^3} [\vec{a}\vec{b}\vec{c}]^2 = \frac{1}{[\vec{a}\vec{b}\vec{c}]}$$

$$\Rightarrow [\vec{a}'\vec{b}'\vec{c}'][\vec{a}\vec{b}\vec{c}] = 1$$

iv. The orthogonal triad of vectors \hat{i} , \hat{j} and \hat{k} is self-reciprocal.

Let \hat{i}' , \hat{j}' and \hat{k}' be the system of vectors reciprocal to the system \hat{i} , \hat{j} and \hat{k} . Then,

we have
$$\hat{i'} = \frac{\hat{j} \times \hat{k}}{\hat{i} + \hat{k}} = \hat{i}$$
. Similarly, $\hat{j'} = \hat{j}$ and $\hat{k'} = \hat{k}$.

v. \vec{a}, \vec{b} and \vec{c} are non-coplanar iff \vec{a}', \vec{b}' and \vec{c}' are non-coplanar.

As $[\vec{a}\vec{b}\vec{c}] \cdot [\vec{a'}\vec{b'}\vec{c'}] = 1$ and $[\vec{a}\vec{b}\vec{c}] \neq 0$ are non-coplanar $\Leftrightarrow \frac{1}{[\vec{a}\vec{b}\vec{c}]} \neq 0 \Leftrightarrow [\vec{a'}\vec{b'}\vec{c'}]$ are non-coplanar.

Example 2.74 Find a set of vectors reciprocal to the set $-\hat{i} + \hat{j} + \hat{k}$, $\hat{i} - \hat{j} + \hat{k}$, $\hat{i} + \hat{j} + \hat{k}$.

Sol. Let
$$\vec{a} = -\hat{i} + \hat{j} + \hat{k}$$
, $\vec{b} = \hat{i} - \hat{j} + \hat{k}$, $\vec{c} = \hat{i} + \hat{j} + \hat{k}$

Let
$$\vec{a} = -i + j + k$$
, $\vec{b} = i - j + k$, $\vec{c} = i + j + k$

Then $\vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = -2\hat{i} + 2\hat{k}$, $\vec{c} \times \vec{a} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ -1 & 1 & 1 \end{vmatrix} = -2\hat{j} + 2\hat{k}$, $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{vmatrix}$

= $2\hat{i} + 2\hat{j}$

$$\vec{a} \vec{b} \vec{c} = \begin{vmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = 4$$

If a', b', c' is the reciprocal system of vectors, then

$$\vec{a'} = (\vec{b} \times \vec{c})/[\vec{a}\vec{b}\vec{c}] = \frac{1}{2}(-\hat{i}+\hat{k}), \ \vec{b'} = (\vec{c} \times \vec{a})/[\vec{a}\vec{b}\vec{c}] = \frac{1}{2}(-\hat{j}+\hat{k}),$$

$$\vec{c'} = (\vec{a} \times \vec{b})/[\vec{a} \vec{b} \vec{c}] = \frac{1}{2}(\hat{i} + \hat{j})$$

Example 2.75 Let \vec{a} , \vec{b} and \vec{c} be a set of non-coplanar vectors and $\vec{a'}$, $\vec{b'}$ and $\vec{c'}$ be its reciprocal set.

Prove that
$$\vec{a} = \frac{\vec{b'} \times \vec{c'}}{[\vec{a'} \ \vec{b'} \ \vec{c'}]}$$
, $\vec{b} = \frac{\vec{c'} \times \vec{a'}}{[\vec{a'} \ \vec{b'} \ \vec{c'}]}$ and $\vec{c} = \frac{\vec{a'} \times \vec{b'}}{[\vec{a'} \ \vec{b'} \ \vec{c'}]}$

Sol. We have,
$$\vec{b'} \times \vec{c'} = \frac{(\vec{c} \times \vec{a}) \times (\vec{a} \times \vec{b})}{[\vec{a} \ \vec{b} \ \vec{c}]^2}$$

$$=\frac{\{(\stackrel{\rightarrow}{c}\times\stackrel{\rightarrow}{a})\cdot\stackrel{\rightarrow}{b}\}\stackrel{\rightarrow}{a}-\{(\stackrel{\rightarrow}{c}\times\stackrel{\rightarrow}{a})\cdot\stackrel{\rightarrow}{a}\}\stackrel{\rightarrow}{b}}{[\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{b}\stackrel{\rightarrow}{c}]^2}=\frac{[\stackrel{\rightarrow}{c}\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{b}]\stackrel{\rightarrow}{a}-[\stackrel{\rightarrow}{c}\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{a}]\stackrel{\rightarrow}{b}}{[\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{b}\stackrel{\rightarrow}{c}]^2}=\frac{\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{b}\stackrel{\rightarrow}{c}]^2}{[\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{b}\stackrel{\rightarrow}{c}]^2}=\frac{\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{b}\stackrel{\rightarrow}{c}]^2}{[\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{b}\stackrel{\rightarrow}{c}]^2}=\frac{\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{b}\stackrel{\rightarrow}{c}]^2}{[\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{b}\stackrel{\rightarrow}{c}]^2}=\frac{\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{b}\stackrel{\rightarrow}{c}]^2}{[\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{b}\stackrel{\rightarrow}{c}]^2}=\frac{\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{b}\stackrel{\rightarrow}{c}]^2}{[\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{b}\stackrel{\rightarrow}{c}]^2}=\frac{\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{b}\stackrel{\rightarrow}{c}]^2}{[\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{b}\stackrel{\rightarrow}{c}]^2}=\frac{\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{b}\stackrel{\rightarrow}{c}]^2}{[\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{b}\stackrel{\rightarrow}{c}]^2}=\frac{\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{c}\stackrel$$

Also,
$$[\vec{a'}\vec{b'}\vec{c'}] = \vec{a'} \cdot (\vec{b'} \times \vec{c'}) = \frac{\vec{b} \times \vec{c}}{[\vec{a}\vec{b}\vec{c}]} \cdot \frac{\vec{a}}{[\vec{a}\vec{b}\vec{c}]} = \frac{[\vec{a}\vec{b}\vec{c}]}{[\vec{a}\vec{b}\vec{c}]^2} = \frac{1}{[\vec{a}\vec{b}\vec{c}]}$$

$$\Rightarrow \frac{\overrightarrow{b'} \times \overrightarrow{c'}}{[\overrightarrow{a'}\overrightarrow{b'}\overrightarrow{c'}]} = \overrightarrow{a}$$
Similarly, $\overrightarrow{b} = \frac{\overrightarrow{c'} \times \overrightarrow{a'}}{[\overrightarrow{a'}\overrightarrow{b'}\overrightarrow{c'}]}$, $\overrightarrow{c} = \frac{\overrightarrow{a'} \times \overrightarrow{b'}}{[\overrightarrow{a'}\overrightarrow{b'}\overrightarrow{c'}]}$

Example 276 If $\vec{a}, \vec{b}, \vec{c}$ and $\vec{a'}, \vec{b'}, \vec{c'}$ are reciprocal system of vectors, then prove that $\vec{a'} \times \vec{b'} + \vec{b'} \times \vec{c'} + \vec{c'} \times \vec{a'} = \frac{\vec{a} + \vec{b} + \vec{c}}{|\vec{a} \vec{b} \cdot \vec{c}|}$.

Sol.
$$\vec{a'} \times \vec{b'} = \frac{(\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})}{[\vec{a} \vec{b} \vec{c}]^2} = \frac{\{(\vec{b} \times \vec{c}) \cdot \vec{a}\} \vec{c} - \{(\vec{b} \times \vec{c}) \cdot \vec{c}\} \vec{a}}{[\vec{a} \vec{b} \vec{c}]^2} = \frac{[\vec{b} \vec{c} \vec{a}] \vec{c}}{[\vec{a} \vec{b} \vec{c}]^2} = \frac{[\vec{a} \vec{b} \vec{c}] \vec{c}}{[\vec{a} \vec{b} \vec{c}]^2} = \frac{\vec{c}}{[\vec{a} \vec{b} \vec{c}]^2} = \frac{\vec{c}}{[\vec{a} \vec{b} \vec{c}]^2}$$
Similarly, $\vec{b'} \times \vec{c'} = \frac{\vec{a}}{[\vec{a} \times \vec{b} \times \vec{c}]}$ and $\vec{c'} \times \vec{a'} = \frac{\vec{b}}{[\vec{a} \vec{b} \vec{c}]}$

Adding,
$$\vec{a'} \times \vec{b'} + \vec{b'} \times \vec{c'} + \vec{c'} \times \vec{a'} = \frac{\vec{a} + \vec{b} + \vec{c}}{[\vec{a} \ \vec{b} \ \vec{c}]}$$

Example 2477 If \vec{a} , \vec{b} and \vec{c} be three non-coplanar vectors and a', b' and c' constitute the reciprocal system of vectors, then prove that

i.
$$\overrightarrow{r} = (\overrightarrow{r} \cdot \overrightarrow{a'}) \overrightarrow{a} + (\overrightarrow{r} \cdot \overrightarrow{b'}) \overrightarrow{b} + (\overrightarrow{r} \cdot \overrightarrow{c'}) \overrightarrow{c}$$

ii.
$$\vec{r} = (\vec{r} \cdot \vec{a}) \vec{a'} + (\vec{r} \cdot \vec{b}) \vec{b'} + (\vec{r} \cdot \vec{c}) \vec{c'}$$

Sol. i. Since a vector can be expressed as a linear combination of three non-coplanar vectors, therefore let $\overrightarrow{r} = x\overrightarrow{a} + y\overrightarrow{b} + z\overrightarrow{c}$ (i)

where x, y and z are scalars.

Multiplying both sides of (i) scalarly by $\vec{a'}$, we get

$$\overrightarrow{r} \cdot \overrightarrow{a'} = x \overrightarrow{a} \cdot \overrightarrow{a'} + y \overrightarrow{b} \cdot \overrightarrow{a'} + z \overrightarrow{c} \cdot \overrightarrow{a'} = x \cdot 1 = x$$

$$(\because \overrightarrow{a} \cdot \overrightarrow{a'} = 1, \overrightarrow{b} \cdot \overrightarrow{a'} = 0 = \overrightarrow{c} \cdot \overrightarrow{a'})$$

Similarly multiplying both sides of (i) scalarly by $\vec{b'}$ and $\vec{c'}$, successively, we get $y = \vec{r} \cdot \vec{b'}$ and $z = \vec{r} \cdot \vec{c'}$

Putting in (i), we get $\overrightarrow{r} = (\overrightarrow{r} \cdot \overrightarrow{a}) \overrightarrow{a} + (\overrightarrow{r} \cdot \overrightarrow{b}) \overrightarrow{b} + (\overrightarrow{r} \cdot \overrightarrow{c}) \overrightarrow{c}$

ii. Since $\vec{a'}$, $\vec{b'}$ and $\vec{c'}$ are three non-coplanar vectors, we can take $\vec{r} = x \vec{a'} + y \vec{b'} + z \vec{c'}$ (ii)

Multiplying both sides of (ii) scalarly by \vec{a} , we get $\vec{r} \cdot \vec{a} = x(\vec{a'} \cdot \vec{a}) + y(\vec{b'} \cdot \vec{a}) + z(\vec{c'} \cdot \vec{a}) = x$ $(\because \vec{a'} \cdot \vec{a} = 1 \ \vec{b'} \cdot \vec{a} = 0 = \vec{c'} \cdot \vec{a})$

Similarly, multiplying both sides of (i) scalarly by \vec{k} and \vec{c} successively, we get

$$y = \overrightarrow{r} \cdot \overrightarrow{b}$$
 and $z = \overrightarrow{r} \cdot \overrightarrow{c}$

Putting in (ii), we get $\vec{r} = (\vec{r} \cdot \vec{a}) \vec{a}' + (\vec{r} \cdot \vec{b}) \vec{b}' + (\vec{r} \cdot \vec{c}) \vec{c}'$

Concept Application Exercise 2.3

- 1. If \vec{a} , \vec{b} , \vec{c} and \vec{d} are four non-coplanar unit vectors such that \vec{d} makes equal angles with all the three vectors \vec{a} , \vec{b} , \vec{c} , then prove that $[\vec{d} \ \vec{a} \ \vec{b}] = [\vec{d} \ \vec{c} \ \vec{b}] = [\vec{d} \ \vec{c} \ \vec{a}]$.
- 2. Prove that if $[\vec{l} \ \vec{m} \ \vec{n}]$ are three non-coplanar vectors, then $[\vec{l} \ \vec{m} \ \vec{n}] (\vec{a} \times \vec{b}) = \begin{vmatrix} \vec{l} \cdot \vec{a} & \vec{l} \cdot \vec{b} & \vec{l} \\ \vec{m} \cdot \vec{a} & \vec{m} \cdot \vec{b} & \vec{m} \\ \vec{n} \cdot \vec{a} & \vec{n} \cdot \vec{b} & \vec{n} \end{vmatrix}$
- 3. If the volume of a parallelopiped whose adjacent edges are $\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}$, $\vec{b} = \hat{i} + \alpha\hat{j} + 2\hat{k}$, $\vec{c} = \hat{i} + 2\hat{j} + \alpha\hat{k}$ is 15, then find the value of α if $(\alpha > 0)$.
- **4.** If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} 2\hat{j} + \hat{k}$, then find vector \vec{c} such that $\vec{a} \cdot \vec{c} = 2$ and $\vec{a} \times \vec{c} = \vec{b}$
- 5. If $\vec{x} \cdot \vec{a} = 0$, $\vec{x} \cdot \vec{b} = 0$ and $\vec{x} \cdot \vec{c} = 0$ for some non-zero vector \vec{x} , then prove that $[\vec{a} \ \vec{b} \ \vec{c}] = 0$
- **6.** If \vec{a} , \vec{b} and \vec{c} are three non-coplanar vectors, show that

$$[\vec{a} \times \vec{b} \quad \vec{b} \times \vec{c} \quad \vec{c} \times \vec{d}] = [\vec{a} \ \vec{b} \ \vec{c}]^2 = \begin{vmatrix} \vec{a} \ \vec{a} \ \vec{a} \ \vec{a} \ \vec{d} \ \vec{d} \ \vec{d} \ \vec{c} \end{vmatrix}$$

- 7. If \vec{a} , \vec{b} and \vec{c} are three vectors such that $\vec{a} \times \vec{b} = \vec{c}$, $\vec{b} \times \vec{c} = \vec{a}$, $\vec{c} \times \vec{a} = \vec{b}$, then prove that $|\vec{a}| = |\vec{b}| = |\vec{c}|$.
- **8.** If $\vec{a} = \vec{p} + \vec{q}$, $\vec{p} \times \vec{b} = \vec{0}$ and $\vec{q} \cdot \vec{b} = 0$, then prove that $\frac{\vec{b} \times (\vec{a} \times \vec{b})}{\vec{b} \cdot \vec{b}} = \vec{q}$.
- 9. Prove that $(\vec{a} \cdot (\vec{b} \times \hat{i}) \hat{i} + (\vec{a} \cdot (\vec{b} \times \hat{j})) \hat{j} + (\vec{a} \cdot (\vec{b} \times \hat{k})) \hat{k} = \vec{a} \times \vec{b}$.
- 10. For any four vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} , prove that $\vec{d} \cdot (\vec{a} \times (\vec{b} \times (\vec{c} \times \vec{d}))) = (\vec{b} \cdot \vec{d}) [\vec{a} \ \vec{c} \ \vec{d}]$.
- 11. If \vec{a} and \vec{b} be two non-collinear unit vectors such that $\vec{a} \times (\vec{a} \times \vec{b}) = \frac{1}{2}\vec{b}$, then find the angle between \vec{a} and \vec{b} .
- 12. Show that $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c})$ if and only if \vec{a} and \vec{c} are collinear or $(\vec{a} \times \vec{c}) \times \vec{b} = \vec{0}$.
- 13. Let \vec{a} , \vec{b} and \vec{c} be non-zero vectors such that no two are collinear and $(\vec{a} \times \vec{b}) \times \vec{c}$ $= \frac{1}{3} |\vec{b}| |\vec{c}| |\vec{a}|. \text{ If } \theta \text{ is the acute angle between vectors } \vec{b} \text{ and } \vec{c}, \text{ then find the value of sin } \theta.$
- 14. If \vec{p} , \vec{q} , \vec{r} denote vectors $\vec{b} \times \vec{c}$, $\vec{c} \times \vec{a}$, $\vec{a} \times \vec{b}$, respectively, show that \vec{a} is parallel to $\vec{q} \times \vec{r}$, \vec{b} is parallel to $\vec{r} \times \vec{p}$, \vec{c} is parallel to $\vec{p} \times \vec{q}$.

Exercises

Subjective Type

Solutions on page 2.84

1. If
$$\begin{vmatrix} (a-x)^2 & (a-y)^2 & (a-z)^2 \\ (b-x)^2 & (b-y)^2 & (b-z)^2 \\ (c-x)^2 & (c-y)^2 & (c-a)^2 \end{vmatrix} = 0 \text{ and vectors } \vec{A}, \vec{B} \text{ and } \vec{C}, \text{ where } \vec{A} = a^2 \hat{i} + a\hat{j} + \hat{k}, \text{ etc., are}$$

- non-coplanar, then prove that vectors \vec{X} , \vec{Y} and \vec{Z} , where $\vec{X} = x^2 \hat{i} + x \hat{j} + \hat{k}$, etc. may be coplanar.

 2. If OABC is a tetrahedron where O is the origin and A, B and C are the other three vertices with position vectors \vec{a} , \vec{b} and \vec{c} , respectively, then prove that the centre of the sphere circumscribing the tetrahedron is given by position vector $\frac{a^2(\vec{b}\times\vec{c})+b^2(\vec{c}\times\vec{a})+c^2(\vec{a}\times\vec{b})}{2[\vec{a}\vec{b}\vec{c}]}$.
- 3. Let k be the length of any edge of a regular tetrahedron (a tetrahedron whose edges are equal in length is called a regular tetrahedron). Show that the angle between any edge and a face not containing the edge is $\cos^{-1}(1/\sqrt{3})$.
- 4. In $\triangle ABC$, a point P is taken on AB such that AP/BP = 1/3 and a point Q is taken on BC such that CQ/BQ = 3/1. If R is the point of intersection of the lines AQ and CP, using vector method, find the area of $\triangle ABC$ if the area of $\triangle BRC$ is 1 unit.
- 5. Let O be an interior point of $\triangle ABC$ such that $\overrightarrow{OA} + 2\overrightarrow{OB} + 3\overrightarrow{OC} = \overrightarrow{0}$. Then find the ratio of the area of $\triangle ABC$ to the area of $\triangle AOC$.
- 6. The lengths of two opposite edges of a tetrahedron are a and b; the shortest distance between these edges is d, and the angle between them is θ . Prove using vectors that the volume of the tetrahedron is $\frac{abd \sin \theta}{6}$.
- 7. Find the volume of a parallelopiped having three coterminus vectors of equal magnitude $|\vec{a}|$ and equal inclination θ with each other.
- 8. Let \overrightarrow{p} and \overrightarrow{q} be any two orthogonal vectors of equal magnitude 4 each. Let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be any three vectors of lengths 7, $\sqrt{15}$ and $2\sqrt{33}$, mutually perpendicular to each other. Then find the distance of the vector $(\overrightarrow{a} \cdot \overrightarrow{p}) \overrightarrow{p} + (\overrightarrow{a} \cdot \overrightarrow{q}) \overrightarrow{q} + (\overrightarrow{a} \cdot (\overrightarrow{p} \times \overrightarrow{q})) (\overrightarrow{p} \times \overrightarrow{q}) + (\overrightarrow{b} \cdot \overrightarrow{p}) \overrightarrow{p} + (\overrightarrow{b} \cdot \overrightarrow{q}) \overrightarrow{q} + (\overrightarrow{b} \cdot (\overrightarrow{p} \times \overrightarrow{q})) (\overrightarrow{p} \times \overrightarrow{q}) + (\overrightarrow{c} \cdot \overrightarrow{p}) \overrightarrow{p} + (\overrightarrow{c} \cdot \overrightarrow{q}) \overrightarrow{q} + (\overrightarrow{c} \cdot (\overrightarrow{p} \times \overrightarrow{q})) (\overrightarrow{p} \times \overrightarrow{q})$ from the origin.
- 9. Given that vectors \vec{A} , \vec{B} and \vec{C} form a triangle such that $\vec{A} = \vec{B} + \vec{C}$. Find \vec{a} , \vec{b} , \vec{c} and \vec{d} such that the area of the triangle is $5\sqrt{6}$ where

$$\vec{A} = a\hat{i} + b\hat{j} + c\hat{k}$$

$$\vec{B} = d\hat{i} + 3\hat{j} + 4\hat{k}$$

$$\vec{C} = 3\hat{i} + \hat{j} - 2\hat{k}$$

- 10. A line l is passing through the point \vec{b} and is parallel to vector \vec{c} . Determine the distance of point $A(\vec{a})$ from the line l in the form $\begin{vmatrix} \vec{b} - \vec{a} + \frac{(\vec{a} - \vec{b})\vec{c}}{|\vec{c}|^2} \end{vmatrix}$ or $\frac{|(\vec{b} - \vec{a}) \times \vec{c}|}{|\vec{c}|}$.
- 11. If $\vec{e_1}$, $\vec{e_2}$, $\vec{e_3}$ and $\vec{E_1}$, $\vec{E_2}$, $\vec{E_3}$ are two sets of vectors such that $\vec{e_i}$: $\vec{E_j} = 1$, if i = j and $\vec{e_i}$: $\vec{E_j} = 0$ and if $i \neq j$, then prove that $[\vec{e_1} \ \vec{e_2} \ \vec{e_3}][\vec{E_1} \ \vec{E_2} \ \vec{E_3}] = 1$.

Objective Type

Solutions on page 2,90

Each question has four choices a, b, c and d, out of which *only one* answer is correct. Find the correct answer.

1	True reactions in annual and a second	only if they have equal component in
	Two vectors in space are equal	I ONIV IT they have equal component in
	and rectors in space are equal	configuration in the contraction of the contraction in

a. a given direction

h two given directions

c. three given directions

d in any arbitrary direction

2. Let \vec{a} , \vec{b} and \vec{c} be the three vectors having magnitudes 1, 5 and 3, respectively, such that the angle between \vec{a} and \vec{b} is θ and $\vec{a} \times (\vec{a} \times \vec{b}) = \vec{c}$. Then $\tan \theta$ is equal to

a. 0

c. 3/5

d. 3/4

3. \vec{a} , \vec{b} and \vec{c} are three vectors of equal magnitude. The angle between each pair of vectors is $\pi/3$ such that $|\vec{a} + \vec{b} + \vec{c}| = \sqrt{6}$. Then $|\vec{a}|$ is equal to

d. $\sqrt{6}/3$

4. If \vec{a} , \vec{b} and \vec{c} are three mutually perpendicular vectors, then the vector which is equally inclined to these vectors is

a. $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$

 $\mathbf{c.} \quad \frac{\stackrel{\rightarrow}{a}}{\stackrel{\rightarrow}{\rightarrow}} + \frac{\stackrel{\rightarrow}{b}}{\stackrel{\rightarrow}{\rightarrow}} + \frac{\stackrel{\rightarrow}{c}}{\stackrel{\rightarrow}{\rightarrow}}$

h $\frac{\vec{a}}{\vec{b}} + \frac{\vec{b}}{\vec{b}} + \frac{\vec{c}}{\vec{c}}$

d $|\overrightarrow{a}| \overrightarrow{a} - |\overrightarrow{b}| \overrightarrow{b} + |\overrightarrow{c}| \overrightarrow{c}$

5. Let $\vec{a} = \hat{i} + \hat{j}$; $\vec{b} = 2\hat{i} - \hat{k}$. Then vector \vec{r} satisfying the equations $\vec{r} \times \vec{a} = \vec{b} \times \vec{a}$ and $\vec{r} \times \vec{b} = \vec{a} \times \vec{b}$

 $\mathbf{a}, \quad \hat{i} - \hat{i} + \hat{k}$

b. $3\hat{i} - \hat{j} + \hat{k}$ **c.** $3\hat{i} + \hat{j} - \hat{k}$ **d.** $\hat{i} - \hat{j} - \hat{k}$

6. If \vec{a} and \vec{b} are two vectors, such that $\vec{a} \cdot \vec{b} < 0$ and $|\vec{a} \cdot \vec{b}| = |\vec{a} \times \vec{b}|$, then the angle between vectors \vec{a} and \vec{b} is

c. $\pi/4$

7. If \hat{a} , \hat{b} and \hat{c} are three unit vectors, such that $\hat{a} + \hat{b} + \hat{c}$ is also a unit vector and θ_1 , θ_2 and θ_3 are angles between the vectors \hat{a} , \hat{b} ; \hat{b} , \hat{c} and \hat{c} , \hat{a} , respectively, then among θ_1 , θ_2 and θ_3

a. all are acute angles

b. all are right angles

c. at least one is obtuse angle

d none of these

b. the surface of a sphere described on PQ as its diameter

a line passing through points P and Q
a set of lines parallel to line PQ

value of $|\vec{a} \times \vec{b} - \vec{a} \times \vec{c}|$ is

a. 1/2

	$ AC \times BD $ is			
	a. $20\sqrt{5}$	b. $22\sqrt{5}$	c. $24\sqrt{5}$	d. $26\sqrt{5}$
11.	If \hat{a} , \hat{b} and \hat{c} are three unit	vectors inclined to each	other at an angle $ heta$, the	en the maximum value of $ heta$
	is			
	$a. \frac{\pi}{3}$	$\mathbf{b} = \frac{\pi}{2}$	c. $\frac{2\pi}{3}$	a. $\frac{5\pi}{6}$
12.	\rightarrow \rightarrow \rightarrow	_		parallel if
	a. $(\vec{a} \times \vec{c}) \times (\vec{b} \times \vec{d}) = \vec{0}$	1	$\mathbf{b} (\overrightarrow{a} \times \overrightarrow{c}) \cdot (\overrightarrow{b} \times \overrightarrow{d})$	
			, , , , ,	
	$\mathbf{c.} (\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \vec{0}$		$\mathbf{d} (\stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b}) \cdot (\stackrel{\rightarrow}{c} \times \stackrel{\rightarrow}{d})$	= 0
13.	If $\overrightarrow{r} \cdot \overrightarrow{a} = \overrightarrow{r} \cdot \overrightarrow{b} = \overrightarrow{r} \cdot \overrightarrow{c} = 0$, wh	here \vec{a} , \vec{b} and \vec{c} are nor	n-coplanar, then	
	a. $\overrightarrow{r} \perp (\overrightarrow{c} \times \overrightarrow{a})$	$\overrightarrow{\mathbf{h}} \xrightarrow{r} \overrightarrow{\mathbf{h}} \overrightarrow{\mathbf{h}}$	$C \longrightarrow C \longrightarrow C$	$\mathbf{d} \stackrel{\rightarrow}{\mathbf{r}} = \stackrel{\rightarrow}{0}$
	,		•	,
14.	If \vec{a} satisfies $\vec{a} \times (\hat{i} + 2\hat{j} + \hat{i})$,
	$\mathbf{a.} \lambda \hat{i} + (2\lambda - 1) \hat{j} + \lambda \hat{k},$	$\lambda \in R$	$\mathbf{h} \lambda \hat{i} + (1 - 2\lambda) \hat{j} - \frac{1}{2} \hat{j} = 0$	$+\lambda k, \lambda \in R$
	c. $\lambda \hat{i} + (2\lambda + 1) \hat{j} + \lambda \hat{k}$,	$\lambda \in R$	$\mathbf{d} \lambda \hat{i} - (1 + 2\lambda) \hat{j} \cdot $	$+\lambda \hat{k}, \lambda \in R$
15.	Vectors $3\vec{a} - 5\vec{b}$ and $2\vec{a}$	$+\stackrel{\rightarrow}{b}$ are mutually perper	ndicular. If $\vec{a} + 4\vec{b}$ ar	and $\vec{b} - \vec{a}$ are also mutually
	perpendicular, then the co			•
	10			d 19
	a. $\frac{19}{5\sqrt{43}}$	b. $\frac{19}{3\sqrt{43}}$	e. $\frac{1}{2\sqrt{45}}$	$6\sqrt{43}$
16.	. The unit vector orthogonal	to vector $-\hat{i} + 2\hat{j} + 2\hat{k}$	and making equal ang	gles with the x- and y-axes is
	a. $\pm \frac{1}{3} (2\hat{i} + 2\hat{j} - \hat{k})$	$\mathbf{b} = \pm \frac{1}{3} (\hat{i} + \hat{j} - \hat{k})$	c. $\pm \frac{1}{3} (2\hat{i} - 2\hat{j} - 2\hat{j} - 2\hat{j} - 2\hat{j})$	\hat{k}) d. None of these

8. If \vec{a} , \vec{b} , \vec{c} are unit vectors such that $\vec{a} \cdot \vec{b} = 0 = \vec{a} \cdot \vec{c}$ and the angle between \vec{b} and \vec{c} is $\pi/3$, then the

9. $P(\vec{p})$ and $Q(\vec{q})$ are the position vectors of two fixed points and $R(\vec{r})$ is the position vector of a

10. Two adjacent sides of a parallelogram *ABCD* are $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\hat{i} + 2\hat{j} + 3\hat{k}$. Then the value of

variable point. If R moves such that $(\vec{r} - \vec{p}) \times (\vec{r} - \vec{q}) = \vec{0}$, then the locus of R is

a. a plane containing the origin O and parallel to two non-collinear vectors \overrightarrow{OP} and \overrightarrow{OQ}

d none of these

17.	The value of x for which the	angle between $\vec{a} = 2$	$x^2 \hat{i} + 4x \hat{j} + \hat{k}$ and $\vec{b} =$	$7\hat{i} - 2\hat{j} + x\hat{k}$ is obtuse
	and the angle between \vec{b} and	the z-axis is acute and $1/2 < x < 15$ acent sides of a paralle	d less than $\pi/6$, is c. $x > 1/2$ or $x < 0$	d none of these
	$\mathbf{a.} \overrightarrow{b} + \frac{\overrightarrow{b} \times \overrightarrow{a}}{ \overrightarrow{a} ^2} \qquad \qquad \mathbf{b.}$	$\frac{\vec{a} \cdot \vec{b}}{ \vec{b} ^2}$	$\mathbf{c.} \vec{b} - \frac{\vec{b} \cdot \vec{a}}{ \vec{a} ^2} \vec{a}$	$\mathbf{d} \frac{\vec{a} \times (\vec{b} \times \vec{a})}{ \vec{b} ^2}$
19.	anti-parallel. Then the length of	of the longer diagonal 64	is	\overrightarrow{b} $\overrightarrow{=}$ 8, and \overrightarrow{a} and \overrightarrow{b} are
20.	Let $\vec{a} \cdot \vec{b} = 0$, where \vec{a} and \vec{b} and \vec{a} and \vec{b} and \vec{b} . If $\vec{c} = m\vec{a} + n\vec{b} + p(\vec{a})$	are unit vectors and the $\vec{a} \times \vec{b}$, $(m, n, p \in R)$, the	ne unit vector \overrightarrow{c} is incline then	ed at an angle $ heta$ to both
	a. $-\frac{\pi}{4} \le \theta \le \frac{\pi}{4}$ b. \vec{a} and \vec{c} are unit vectors and 1. The value of λ is	$\vec{b} \mid = 4$. The angle bet	ween \overrightarrow{a} and \overrightarrow{c} is \cos^{-1} (
		1/4, 3/4		
22.	Let the position vectors of the p	points P and Q be $4\hat{i}$ +	$-\hat{j} + \lambda \hat{k}$ and $2\hat{i} - \hat{j} + \lambda$	\hat{k} , respectively. Vector

	$\mathbf{a.} \overrightarrow{b} + \frac{b \times a}{ \overrightarrow{a} ^2}$	$\mathbf{h} \frac{a \cdot b}{ \vec{b} ^2}$	$\mathbf{c.} \vec{b} - \frac{\vec{b} \cdot \vec{a}}{ \vec{a} ^2} \vec{a}$	$\mathbf{d} \frac{\vec{a} \times (\vec{b} \times \vec{a})}{ \vec{b} ^2}$
19.	A parallelogram is constanti-parallel. Then the le	ructed on $3\vec{a} + \vec{b}$ and another of the longer	and $\vec{a} - 4\vec{b}$, where $ \vec{a} = 6$ diagonal is	and $ \vec{b} = 8$, and \vec{a} and \vec{b} are
	a. 40	b. 64	c. 32	d. 48
20.	Let $\vec{a} \cdot \vec{b} = 0$, where \vec{a} and \vec{a} and \vec{b} . If $\vec{c} = m\vec{a} + n\vec{b}$	and \vec{b} are unit vector \vec{b} + $\vec{p}(\vec{a} \times \vec{b})$, $(m, n, n,$	ors and the unit vector \overrightarrow{c} is $p \in R$), then	inclined at an angle θ to both
			$\mathbf{c.} \ \ 0 \le \theta \le \frac{\pi}{4}$	
21.	I he value of λ is			$\cos^{-1}(1/4)$ and $\vec{b} - 2\vec{c} = \lambda \vec{a}$.
22	a. 3, – 4	h 1/4, 3/4	c. -3,4	d -1/4, 3/4
22.	Let the position vectors o $\hat{i} - \hat{j} + 6\hat{k}$ is perpendicu	of the points P and got a to the plane con	Q be $4\hat{i} + \hat{j} + \lambda \hat{k}$ and $2\hat{i} - \hat{k}$	$\hat{j} + \lambda \hat{k}$, respectively. Vector points P and Q . Then λ equals
	a. -1/2	h 1/2	c. 1	d none of these
23.	A vector of magnitude	$\sqrt{2}$ coplanar wi	th the vectors $\vec{a} = \hat{i} + \hat{j}$	$+2\hat{k}$ and $\vec{b}=\hat{i}+2\hat{j}+\hat{k}$, and
	perpendicular to the vect	or $\vec{c} = \hat{i} + \hat{j} + \hat{k}$, i	s	
	$\mathbf{a.} - \hat{j} + \hat{k}$	b. $\hat{i} - \hat{k}$	$\mathbf{c.} \ \hat{\hat{i}} - \hat{j} \qquad \qquad \mathbf{d.} \ \hat{i} - \underline{\hat{i}}$	Ĵ
24.	P be a point interior to the ABC, point P is its	e acute triangle AE	\overrightarrow{BC} . If $\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC}$ is a 1	null vector then w.r.t. triangle
	a. centroid	b. orthocentre	c. incentre	d. circumcentre
25.	G is the centroid of trians If Δ_1 be the area of quadr	gle ABC and A_{\parallel} and ilateral $GA_{\parallel}AB_{\parallel}$ an	dB_1 are the midpoints of sides Δ be the area of triangle Δ	des AB and AC , respectively. ABC , then Δ/Δ_1 is equal to
	a. $\frac{3}{2}$	b 3	c. $\frac{1}{3}$	d none of these
26.	Points \vec{a} , \vec{b} , \vec{c} and \vec{d} are \vec{c} value of $\sin^2 \alpha + \sin^2 2\beta +$	coplanar and (sin c sin ² 3γ is	$\overrightarrow{a} + (2\sin 2\beta) \overrightarrow{b} + (3\sin 2\beta) \overrightarrow{b}$	$(3\gamma)\vec{c} - \vec{d} = \vec{0}$. Then the least
	a. 1/14	b 14	c. 6	$\mathbf{d}_{-1}/\sqrt{6}$

greatest angle of triangle ABC is

b. 90°

a. 120°

27.	If \overrightarrow{a} and \overrightarrow{b} are an	y two vectors of	magnitudes 1 a	and 2, respectively, and
	$(1 - 3\vec{a} \cdot \vec{b})^2 + 12\vec{a} + \vec{b} +$	$3(\vec{a} \times \vec{b}) ^2 = 47$, then the	e angle between $\stackrel{\rightarrow}{a}$	and \overrightarrow{b} is
	a. π/3	h $\pi - \cos^{-1}(1/4)$	c. $\frac{2\pi}{3}$	d $\cos^{-1}(1/4)$
28.		wo vectors of magnitude k , then the maximum value.		s, respectively, such that
	a. $\sqrt{13}$	b $2\sqrt{13}$		d. $10\sqrt{13}$
29.	\vec{a} , \vec{b} and \vec{c} are unit vec and \vec{c} is θ_2 and between	tors such that $ \vec{a} + \vec{b} + 3$ \vec{a} and \vec{c} varies $[\pi/6, 2\pi]$	\overrightarrow{c} = 4. Angle betw /3]. Then the maxim	veen \vec{a} and \vec{b} is θ_1 , between \vec{b} num value of $\cos \theta_1 + 3\cos \theta_2$ is
	a. 3	h 4	c. $2\sqrt{2}$	d 6
30.	If the vector product of	a constant vector \overrightarrow{OA} with	h a variable vector	\overrightarrow{OB} in a fixed plane OAB be a
	constant vector, then the	e locus of B is		
	a. a straight line perpe	endicular to \overrightarrow{OA}		
	h a circle with centre	O and radius equal to \overline{O}	ÄÍ	
	c. a straight line parall	el to \overrightarrow{OA}		
	d none of these			
31.				ection of \overrightarrow{v} along \overrightarrow{u} is equal to ther, then $ \overrightarrow{u} - \overrightarrow{v} + \overrightarrow{w} $ equals
	a. 2	$\mathbf{h} = \sqrt{7}$	c. $\sqrt{14}$	d 14
32.	If the two adjacent sides	of two rectangles are rep	oresented by vectors	$\overrightarrow{p} = 5\overrightarrow{a} - 3\overrightarrow{b}$; $\overrightarrow{q} = -\overrightarrow{a} - 2\overrightarrow{b}$
				the vectors $\vec{x} = \frac{1}{3} (\vec{p} + \vec{r} + \vec{s})$
	and $\vec{y} = \frac{1}{5} (\vec{r} + \vec{s})$ is	, and promise 3, and		3 "
	3		(19	,
	$\mathbf{a.} - \cos^{-1}\left(\frac{19}{5\sqrt{43}}\right)$		$\mathbf{b.} \cos^{-1}\left(\frac{19}{5\sqrt{43}}\right)$	3
	$\mathbf{c.} \pi \cos^{-1} \left(\frac{19}{5\sqrt{43}} \right)$		d. cannot be e	valuated
33.	If $\vec{\alpha} \parallel (\vec{\beta} \times \vec{\gamma})$, then $(\vec{\alpha} \times \vec{\gamma})$	$(\vec{\beta}) \cdot (\vec{\alpha} \times \vec{\gamma})$ equals to		
	$\mathbf{a} \stackrel{\rightarrow}{\alpha} ^2 \stackrel{\rightarrow}{(\beta \cdot \gamma)}$	$\mathbf{b} \mid \stackrel{\rightarrow}{\beta} \mid^2 \stackrel{\rightarrow}{(\gamma \cdot \overset{\rightarrow}{\alpha})}$	$\mathbf{c} \cdot \overrightarrow{\gamma} ^2 (\overrightarrow{\alpha} \cdot \overrightarrow{B})$	$\mathbf{d} \mid \overset{\rightarrow}{\alpha} \mid \mid \overset{\rightarrow}{\beta} \mid \mid \overset{\rightarrow}{\gamma} \mid$
34.	The position vectors of p	points A , B , and C are $\hat{i} + \hat{j}$	$\hat{j} + \hat{k}$, $\hat{i} + 5 \hat{j} - \hat{k}$ and	$2\hat{i}+3\hat{j}+5\hat{k}$, respectively. The

c. $\cos^{-1}(3/4)$ **d.** none of these

- **43.** Given that $\vec{a}, \vec{b}, \vec{p}, \vec{q}$ are four vectors such that $\vec{a} + \vec{b} = \mu \vec{p}, \vec{b} \cdot \vec{q} = 0$ and $(\vec{b})^2 = 1$, where μ is a scalar. Then $|(\vec{a} \cdot \vec{q})\vec{p} - (\vec{p} \cdot \vec{q})\vec{a}|$ is equal to
 - a. $2|\vec{p}\cdot\vec{q}|$
- **b.** $(1/2)|\vec{p}\cdot\vec{q}|$
- c. $|\vec{p} \times \vec{a}|$
- **44.** The position vectors of the vertices A, B and C of a triangle are three unit vectors \hat{a} , \hat{b} and \hat{c} , respectively. A vector \vec{d} is such that $\vec{d} \cdot \hat{a} = \vec{d} \cdot \hat{b} = \vec{d} \cdot \hat{c}$ and $\vec{d} = \lambda (\hat{b} + \hat{c})$. Then triangle ABC is
 - a. acute angled
- **b** obtuse angled
- c. right angled
- **45.** If a is a real constant and A, B and C are variable angles and $\sqrt{a^2-4} \tan A + a \tan B$ + $\sqrt{a^2 + 4} \tan c = 6a$, then the least value of $\tan^2 A + \tan^2 B + \tan^2 C$ is

- The vertex A of triangle ABC is on the line $\vec{r} = \hat{i} + \hat{j} + \lambda \hat{k}$ and the vertices B and C have respective position vectors \hat{i} and \hat{j} . Let Δ be the area of the triangle and $\Delta \in [3/2, \sqrt{33}/2]$. Then the range of values of λ corresponding to A is
 - **a.** $[-8, -4] \cup [4, 8]$
- **c.** [-2, 2]
- A non-zero vector \vec{a} is such that its projections along vectors $\frac{\hat{i}+\hat{j}}{\sqrt{2}}$, $\frac{-\hat{i}+\hat{j}}{\sqrt{2}}$ and \hat{k} are equal, then

unit vector along \overrightarrow{a} is

- **a.** $\frac{\sqrt{2} \hat{j} \hat{k}}{\sqrt{3}}$ **b.** $\frac{\hat{j} \sqrt{2}\hat{k}}{\sqrt{3}}$ **c.** $\frac{\sqrt{2}}{\sqrt{3}} \hat{j} + \frac{\hat{k}}{\sqrt{3}}$ **d.** $\frac{\hat{j} \hat{k}}{\sqrt{2}}$
- Position vector \hat{k} is rotated about origin by angle 135° in such a way that the plane made by it bisects the angle between \hat{i} and \hat{j} . Then its new position is
 - **a.** $\pm \frac{\hat{i}}{\sqrt{2}} \pm \frac{\hat{j}}{\sqrt{2}}$
- **h** $\pm \frac{\hat{i}}{2} \pm \frac{\hat{j}}{2} \frac{\hat{k}}{\sqrt{2}}$ **c.** $\frac{\hat{i}}{2\sqrt{2}} \frac{\hat{k}}{2\sqrt{2}}$
- d none of these
- In a quadrilateral ABCD, \overrightarrow{AC} is the bisector of \overrightarrow{AB} and \overrightarrow{AD} , angle between \overrightarrow{AB} and \overrightarrow{AD} is $2\pi/3$, $15|\overrightarrow{AC}| = 3|\overrightarrow{AB}| = 5|\overrightarrow{AD}|$. Then the angle between \overrightarrow{BA} and \overrightarrow{CD} is
 - **a.** $\cos^{-1} \frac{\sqrt{14}}{7\sqrt{2}}$ **b.** $\cos^{-1} \frac{\sqrt{21}}{7\sqrt{2}}$ **c.** $\cos^{-1} \frac{2}{\sqrt{7}}$ **d.** $\cos^{-1} \frac{2\sqrt{7}}{14}$

- In the following figure, AB, DE and GF are parallel to each other and AD, BG and EF are parallel to each other. If CD : CE = CG : CB = 2 : 1, then the value of area (ΔAEG) : area (ΔABD) is equal to

Fig. 2.29

a. 7/2

b. 3

d. 9/2

- **61.** Vector \vec{c} is perpendicular to vectors $\vec{a} = (2, -3, 1)$ and $\vec{b} = (1, -2, 3)$ and satisfies the condition $\vec{c} \cdot (\hat{i} + 2\hat{j} 7\hat{k}) = 10$. Then vector \vec{c} is equal to **a.** (7,5,1) **b.** (-7,-5,-1) **c.** (1,1,-1) **d.** none of these **62.** Given $\vec{a} = x\hat{i} + y\hat{j} + 2\hat{k}$, $\vec{b} = \hat{i} \hat{j} + \hat{k}$, $\vec{c} = \hat{i} + 2\hat{j}$; $\vec{a} \perp \vec{b}$, $\vec{a} \cdot \vec{c} = 4$. Then
- **a.** $[\vec{a} \ \vec{b} \ \vec{c}]^2 = |\vec{a}|$ **b.** $[\vec{a} \ \vec{b} \ \vec{c}] = |\vec{a}|$ **c.** $[\vec{a} \ \vec{b} \ \vec{c}] = 0$ **d.** $[\vec{a} \ \vec{b} \ \vec{c}] = |\vec{a}|^2$
- **63.** Let $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$, $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ and $\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$ be three non-zero vectors such that \vec{c} is a unit vector perpendicular to both \vec{a} and \vec{b} . If the angle between \vec{a} and \vec{b} is $\pi/6$, then the value of $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$ is
 - **a.** 0 **b.** 1 **c.** $\frac{1}{4} (a_1^2 + a_2^2 + a_3^2) (b_1^2 + b_2^2 + b_3^2)$ **d.** $\frac{3}{4} (a_1^2 + a_2^2 + a_3^2) (b_1^2 + b_2^2 + b_3^2)$
- **64.** Let \overrightarrow{r} , \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be four non-zero vectors such that $\overrightarrow{r} \cdot \overrightarrow{a} = 0$, $|\overrightarrow{r} \times \overrightarrow{b}| = |\overrightarrow{r}| |\overrightarrow{b}|$ and $|\overrightarrow{r} \times \overrightarrow{c}| = |\overrightarrow{r}| |\overrightarrow{c}|$. Then $[a \ b \ c]$ is equal to
 - Then $[a \ b \ c]$ is equal to **a.** |a||b||c| **b.** -|a||b||c| **c.** 0 **d.** none of these
- **65.** If \vec{a} , \vec{b} and \vec{c} are such that $[\vec{a}\vec{b}\vec{c}] = 1$, $\vec{c} = \lambda \vec{a} \times \vec{b}$, angle between \vec{a} and \vec{b} is $2\pi/3$, $|\vec{a}| = \sqrt{2}$, $|\vec{b}| = \sqrt{3}$ and $|\vec{c}| = \frac{1}{\sqrt{3}}$, then the angle between \vec{a} and \vec{b} is

d. none of these

- **a.** $\frac{\pi}{6}$ **b.** $\frac{\pi}{4}$ **c.** $\frac{\pi}{3}$ **d.** $\frac{\pi}{2}$
- **66.** If $4\vec{a} + 5\vec{b} + 9\vec{c} = 0$, then $(\vec{a} \times \vec{b}) \times [(\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})]$ is equal to
 - **a.** a vector perpendicular to the plane of \vec{a} , \vec{b} and \vec{c}
 - b. a scalar quantity
 - \mathbf{c} . $\vec{0}$
 - d none of these
- 67. Value of $[\vec{a} \times \vec{b} \ \vec{a} \times \vec{c} \ \vec{d}]$ is always equal to
 - **a.** $(\vec{a} \cdot \vec{d})[\vec{a} \vec{b} \vec{c}]$ **b.** $(\vec{a} \cdot \vec{c})[\vec{a} \vec{b} \vec{d}]$ **c.** $(\vec{a} \cdot \vec{b})[\vec{a} \vec{b} \vec{d}]$
- **68.** Let \hat{a} and \hat{b} be mutually perpendicular unit vectors. Then for any arbitrary \vec{r} ,
 - **a.** $\overrightarrow{r} = (\overrightarrow{r} \cdot \widehat{a}) \cdot \widehat{a} + (\overrightarrow{r} \cdot \widehat{b}) \cdot \widehat{b} + (\overrightarrow{r} \cdot (\widehat{a} \times \widehat{b})) \cdot (\widehat{a} \times \widehat{b})$
 - **b.** $\vec{r} = (\vec{r} \cdot \hat{a}) (\vec{r} \cdot \hat{b})\hat{b} (\vec{r} \cdot (\hat{a} \times \hat{b}))(\hat{a} \times \hat{b})$
 - **c.** $\vec{r} = (\vec{r} \cdot \hat{a}) \hat{a} (\vec{r} \cdot \hat{b}) \hat{b} + (\vec{r} \cdot (\hat{a} \times \hat{b})) (\hat{a} \times \hat{b})$
 - d none of these

69.	Let \vec{a} and \vec{b} be unit vectors that are perpendicular to each other. Then				
	$[\vec{a} + (\vec{a} \times \vec{b}) \vec{b} + (\vec{a} \times \vec{b})$				
	a. 1	b. 0	c. -1	d none of these	
70.	\vec{a} and \vec{b} are two vectors so	$ \vec{a} = 1, \vec{b} = 4$	and $\vec{a} \cdot \vec{b} = 2$. If $\vec{c} = (2\vec{a}$	$\times \vec{b}$) – $3\vec{b}$, then find the	
	angle between \vec{b} and \vec{c} .				
	a. $\frac{\pi}{3}$	$\mathbf{h} \frac{\pi}{6}$	c. $\frac{3\pi}{4}$	d. $\frac{5\pi}{6}$	
71.	\vec{b} and \vec{c} are unit vectors. The is always equal to	en for any arbitrary veçt	tor \vec{a} , $(((\vec{a} \times \vec{b}) + (\vec{a} \times \vec{a}))$	$(\vec{b} \times \vec{c}) \times (\vec{b} \times \vec{c}) \times (\vec{b} - \vec{c})$	
		$\mathbf{h} \frac{1}{2} \mid \stackrel{\rightarrow}{a} \mid$	c. $\frac{1}{3} \overrightarrow{a} $	d none of these	
72.	If $\vec{a} \cdot \vec{b} = \beta$ and $\vec{a} \times \vec{b} = \vec{c}$,	then \vec{b} is			
	$\mathbf{a.} \frac{(\beta \vec{a} - \vec{a} \times \vec{c})}{ \vec{a} ^2}$		$\mathbf{h} \frac{(\beta \vec{a} + \vec{a} \times \vec{c})}{ \vec{a} ^2}$		
	c. $\frac{(\beta \vec{c} - \vec{a} \times \vec{c})}{ \vec{a} ^2}$		$\mathbf{d} \frac{(\beta \vec{a} + \vec{a} \times \vec{c})}{ \vec{a} ^2}$		
73.	If $a(\vec{\alpha} \times \vec{\beta}) + b(\vec{\beta} \times \vec{\gamma}) + cc$	$(\stackrel{\rightarrow}{\gamma} \times \stackrel{\rightarrow}{\alpha}) = 0$ and at least	st one of a , b and c is	non-zero, then vectors	
	$\vec{\alpha}$, $\vec{\beta}$ and $\vec{\gamma}$ are				
	a. parallelc. mutually perpendicular		b. coplanard. none of these		
74.	If $(\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c}) = \vec{b}$, where	here \vec{a} , \vec{b} and \vec{c} are no			
	a. \vec{a} , \vec{b} and \vec{c} can be cop-	lanar	b. \vec{a}, \vec{b} and \vec{c} must be	e coplanar	
	c. \vec{a} , \vec{b} and \vec{c} cannot be c	oplanar	d none of these		
75.	If $\overrightarrow{r} \cdot \overrightarrow{a} = \overrightarrow{r} \cdot \overrightarrow{b} = \overrightarrow{r} \cdot \overrightarrow{c} = \frac{1}{2}$ for	some non-zero vector \overrightarrow{h}	\overrightarrow{r} , then the area of the tria	ngle whose vertices are	
	$\overrightarrow{A(a)}, \overrightarrow{B(b)} \text{ and } \overrightarrow{C(c)} \text{ is } (\overrightarrow{a})$				
=-		$\mathbf{b} \mid \overrightarrow{r} \mid$	c. $ \vec{a} \vec{b} \vec{c} \vec{r} $	d none of these	
76.	A vector of magnitude 10 ale be	ong the normal to the cu	$rve 3x^2 + 8xy + 2y^2 - 3 = 0$	at its point $P(1, 0)$ can	

b. $-8\hat{i} + 3\hat{j}$

c. $6\hat{i} - 8\hat{j}$

d. $8\hat{i} + 6\hat{j}$

a. $6\hat{i} + 8\hat{j}$

is equal to

77. If \vec{a} and \vec{b} are two unit vectors inclined at an angle $\pi/3$, then $\{\vec{a} \times (\vec{b} + \vec{a} \times \vec{b})\} \cdot \vec{b}$ is equal to

78. If \vec{a} and \vec{b} are orthogonal unit vectors, then for a vector \vec{r} non-coplanar with \vec{a} and \vec{b} , vector $\vec{r} \times \vec{a}$

	a. $[r a b]b - (r \cdot b)(b \times a)$)	$\mathbf{h} [r a b](a+b)$	
	c. $[\overrightarrow{r}\overrightarrow{a}\overrightarrow{b}]\overrightarrow{a} + (\overrightarrow{r}\cdot\overrightarrow{a})\overrightarrow{a} \times \overrightarrow{b}$		d none of these	
79.	If $\vec{a}, \vec{b}, \vec{c}$ are any three	non-coplanar v	ectors, then the equation	$(\vec{b} \times \vec{c} \times \vec{c} \times \vec{a} \times \vec{a} \times \vec{b}) x^2$
	$+ [\overrightarrow{a} + \overrightarrow{b} \overrightarrow{b} + \overrightarrow{c} \overrightarrow{c} + \overrightarrow{a}]x + $			
	a. real and distinct	b. real	c. equal	d imaginary
80.	If $\vec{x} + \vec{c} \times \vec{y} = \vec{a}$ and $\vec{y} + \vec{c}$	$\times \vec{x} = \vec{b}$, where \vec{c}	is a non-zero vector, then wh	ich of the following is not
	correct.			
	a. $\vec{x} = \frac{\vec{b} \times \vec{c} + \vec{a} + (\vec{c} \cdot \vec{a})\vec{c}}{1 + \vec{c} \cdot \vec{c}}$		$\mathbf{b} \vec{x} = \frac{\vec{c} \times \vec{b} + \vec{b} + (\vec{c} + \vec{b})}{1 + \vec{c} \cdot \vec{c}}$	$(\vec{c} \cdot \vec{a})\vec{c}$
	$1 + \vec{c} \cdot \vec{c}$		$1 + \vec{c} \cdot \vec{c}$	
	$\mathbf{c.} \ \vec{y} = \frac{\vec{a} \times \vec{c} + \vec{b} + (\vec{c} \cdot \vec{b})\vec{c}}{1 + \vec{c} \cdot \vec{c}}$		J of these	
	$\mathbf{c.} \ \ \mathbf{y} = \frac{1 + \vec{c} \cdot \vec{c}}{1 + \vec{c} \cdot \vec{c}}$		d none of these	
81.			$\vec{r} \times \vec{c} = \vec{d}$ to be consistent is	
	$\mathbf{a} \overrightarrow{b} \cdot \overrightarrow{c} = \overrightarrow{a} \cdot \overrightarrow{d}$	$\mathbf{b.} \overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{c} \cdot \overrightarrow{d}$	$\mathbf{c.} \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{a} \cdot \overrightarrow{d} = 0$	$\mathbf{d} \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{c} \cdot \overrightarrow{d} = 0$
82.	If \vec{a} and \vec{b} are non-zero n	on-collinear vecto	ors, then $[\vec{a} \ \vec{b} \ \hat{i}] \ \hat{i} + [\vec{a} \ \vec{b} \ \hat{j}] \ \hat{j}$	$+ [\vec{a} \ \vec{b} \ \hat{k}] \hat{k}$ is equal to
	\vec{a} . $\vec{a} + \vec{b}$	$\mathbf{b} \vec{a} \times \vec{b}$	c. $\vec{a} - \vec{b}$	$\mathbf{d} \overrightarrow{b} \times \overrightarrow{a}$
83.	If $\vec{a} = 2\hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + \hat{i}$	$2\hat{j} + 2\hat{k}, \vec{c} = \hat{i} +$	$\hat{j} + 2\hat{k}$ and $(1 + \alpha)\hat{i} + \beta(1 + \alpha)\hat{j}$	α) $\hat{j} + \gamma(1+\alpha)(1+\beta)\hat{k} =$
	$\vec{a} \times (\vec{b} \times \vec{c})$, then α , β and		, , , , ,	
		•	c. $-2, 4, \frac{2}{3}$	d 2.4 2
	a. $-2, -4, -\frac{\pi}{3}$	$\frac{1}{3}$	$\frac{2}{3}$	u 2, 4, $-\frac{1}{3}$
84.	Let $\vec{a}(x) = (\sin x)\hat{i} + (\cos x)$	c) \hat{j} and $\vec{b}(x) = (constant)$	$(\cos 2x)\hat{i} + (\sin 2x)\hat{j}$ be two var	riable vectors $(x \in R)$, then
	$\vec{a}(x)$ and $\vec{b}(x)$ are			
	a. collinear for unique valu	ie of x	b. perpendicular for infinite	values of x
	c. zero vectors for unique	value of x	d. none of these	
85.	to	\vec{b} , $(\vec{a} \times \hat{i}) \cdot (\vec{b} \times \vec{a})$	$(\vec{a} \times \vec{j}) \cdot (\vec{b} \times \vec{j}) + (\vec{a} \times \vec{k})$	$(\hat{b}) \cdot (\vec{b} \times \hat{k})$ is always equal
	a. $\vec{a} \cdot \vec{b}$	b. $2\vec{a}\cdot\vec{b}$	c. zero	d. none of these
97	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		→ h	ambituary vactor. Then

 $(\vec{a} \times \vec{b}) \times (\vec{r} \times \vec{c}) + (\vec{b} \times \vec{c}) \times (\vec{r} \times \vec{a}) + (\vec{c} \times \vec{a}) \times (\vec{r} \times \vec{b})$ is always equal to

	a. $[\vec{a}\vec{b}\vec{c}]\vec{r}$	b.	$2[\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{b}\stackrel{\rightarrow}{c}]\stackrel{\rightarrow}{r}$	c.	$3[\vec{a}\vec{b}\vec{c}]\vec{r}$	ď	none of these
87.	If $\vec{p} = \frac{\vec{b} \times \vec{c}}{\vec{a} \cdot \vec{b} \cdot \vec{c}}, \vec{q} = \frac{\vec{c} \times \vec{a}}{\vec{a} \cdot \vec{b} \cdot \vec{c}}$	and	$\vec{r} = \frac{\vec{a} \times \vec{b}}{\vec{a} \cdot \vec{b} \cdot \vec{c}}$, where	$\stackrel{ ightarrow}{a}$,	\overrightarrow{b} and \overrightarrow{c} are three no	on-co	oplanar vectors, then
	the value of the expression	$(\vec{a}$	$+\stackrel{\rightarrow}{b}+\stackrel{\rightarrow}{c})\cdot(\stackrel{\rightarrow}{p}+\stackrel{\rightarrow}{q}+\stackrel{\rightarrow}{r}$) is			
	a. 3	b.	2	c.	1	d.	0
88.	$A(\vec{a}), B(\vec{b}) \text{ and } C(\vec{c}) \text{ are } t$	the v	ertices of triangle A	BC a	and $R(\overrightarrow{r})$ is any no	int ir	the plane of triangle
	ABC, then $\vec{r}.(\vec{a} \times \vec{b} + \vec{b} \times \vec{b})$	\vec{c} +	$\overrightarrow{c} \times \overrightarrow{a}$) is always eq	ual 1	to		
	a. zero	b.	$[\vec{a}\vec{b}\vec{c}]$	c.	$-[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}]$	d	none of these
89.	If \vec{a} , \vec{b} and \vec{c} are non-copla	anar	vectors and $\vec{a} \times \vec{c}$	is p	erpendicular to $\stackrel{\rightarrow}{a} \times$	$(\vec{b} \times$	\overrightarrow{c}), then the value of
	$[\vec{a} \times (\vec{b} \times \vec{c})] \times \vec{c}$ is equal	to				`	,,
	a. $[\vec{a}\vec{b}\vec{c}]\vec{c}$	b.	$[\vec{a}\vec{b}\vec{c}]\vec{b}$	c.	$\vec{0}$	d.	$\vec{a} \vec{b} \vec{c} \vec{a} \vec{a}$
90.	If V be the volume of a te	etrał	nedron and V' be the	e vo	olume of another te	trahe	
	centrolds of faces of the pro-	evio	ous tetrahedron and V	/ = 1	KV'; then K is equa	l to	- 3
	a. 9		12		27		81
91.	$[(\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c}) (\vec{b} \times \vec{c})$ zero non-coplanar vectors))×($\stackrel{\rightarrow}{c} \times \stackrel{\rightarrow}{a}) \stackrel{\rightarrow}{(c} \times \stackrel{\rightarrow}{a}) \times \stackrel{\rightarrow}{(c}$	$i \times i$	(\vec{b}) is equal to (where \vec{b})	here	\vec{a} , \vec{b} and \vec{c} are non-
		L	$[\vec{a}\vec{b}\vec{c}]^3$		$\overrightarrow{a} \xrightarrow{b} \overrightarrow{c}$		$\rightarrow \rightarrow \rightarrow \rightarrow$
	. ,						
92.	If $\vec{r} = x_1(\vec{a} \times \vec{b}) + x_2(\vec{b} \times \vec{a})$	<i>x</i> + ($f_3(c \times d)$ and $4[\vec{a}\vec{b}]$	c]=	1, then $x_1 + x_2 + x_3$	is eq	ual to
	a. $\frac{1}{2} \overrightarrow{r} \cdot (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c})$	b	$\frac{1}{4} \vec{r} \cdot (\vec{a} + \vec{b} + \vec{c})$	c.	$2\overrightarrow{r}\cdot(\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c})$	d.	$4\vec{r}\cdot(\vec{a}+\vec{b}+\vec{c})$
93.	If $\vec{a} \perp \vec{b}$, then vector \vec{v} in	terr	ns of $\stackrel{\rightarrow}{a}$ and $\stackrel{\rightarrow}{b}$ satis	fyir	ng the equations \overrightarrow{v} .	$\vec{a} =$	0 and $\overrightarrow{v} \cdot \overrightarrow{b} = 1$ and
•	[v a b] = 1 is						
	a. $\frac{\vec{b}}{ \vec{b} ^2} + \frac{\vec{a} \times \vec{b}}{ \vec{a} \times \vec{b} ^2}$	h	$\frac{\overrightarrow{b}}{ \overrightarrow{b} } + \frac{\overrightarrow{a} \times \overrightarrow{b}}{ \overrightarrow{a} \times \overrightarrow{b} ^2}$	c.	$\frac{\vec{b}}{ \vec{b} ^2} + \frac{\vec{a} \times \vec{b}}{ \vec{a} \times \vec{b} }$	ď	none of these
94.	If $\vec{a'} = \hat{i} + \hat{j}$, $\vec{b'} = \hat{i} - \hat{j} + 2$	$2\hat{k}$ a	$\mathbf{nd} \ \overrightarrow{c'} = 2\hat{i} + \hat{j} - \hat{k},$	then	the altitude of the p	oaral	lelepiped formed by
	the vectors \vec{a} , \vec{b} and \vec{c} havi	ng b	pase formed by \vec{b} and	d c	is (where \vec{a}' is red	ipro	cal vector \vec{a} , etc.)
	a. 1	b.	$3\sqrt{2}/2$	c.	$1/\sqrt{6}$	d.	$1/\sqrt{2}$
95.	If $\vec{a} = \hat{i} + \hat{j}$, $\vec{b} = \hat{j} + \hat{k}$, $\vec{c} = \hat{j}$	\hat{k} +	\hat{i} , then in the recip	roca	ıl system of vector		
	vector a is						

a. $\frac{\hat{i} + \hat{j} + \hat{k}}{2}$ **b.** $\frac{\hat{i} - \hat{j} + \hat{k}}{2}$ **c.** $\frac{-\hat{i} - \hat{j} + \hat{k}}{2}$ **d.** $\frac{\hat{i} + \hat{j} - \hat{k}}{2}$

Each question has four choices a, b, c and d, out of which one or more are correct.

1. If unit vectors \vec{a} and \vec{b} are inclined at an angle 2θ such that $|\vec{a} - \vec{b}| < 1$ and $0 \le \theta \le \pi$, then θ lies in the interval

a. $[0, \pi/6)$

h $(5\pi/6, \pi]$

c. $[\pi/6, \pi/2)$

2. \vec{b} and \vec{c} are non-collinear if $\vec{a} \times (\vec{b} \times \vec{c}) + (\vec{a} \cdot \vec{b}) \vec{b} = (4 - 2x - \sin y) \vec{b} + (x^2 - 1) \vec{c}$ and $(\vec{c} \cdot \vec{c}) \vec{a} = \vec{c}$.

a. x = 1

c. $y = (4n+1)\frac{\pi}{2}, n \in I$

d. $y = (2n+1)\frac{\pi}{2}, n \in I$

3. Unit vectors \vec{a} and \vec{b} are perpendicular, and unit vector \vec{c} is inclined at an angle θ to both \vec{a} and \vec{b} . If $\vec{c} = \alpha \vec{a} + \beta \vec{b} + \gamma (\vec{a} \times \vec{b})$, then

a. $a = \beta$

b. $\gamma^2 = 1 - 2\alpha^2$ **c.** $\gamma^2 = -\cos 2\theta$ **d.** $\beta^2 = \frac{1 + \cos 2\theta}{2}$

 \vec{a} and \vec{b} are two given vectors. With these vectors as adjacent sides, a parallelogram is constructed. The vector which is the altitude of the parallelogram and which is perpendicular to \vec{a} is

a. $(\vec{a} \cdot \vec{b}) \stackrel{\rightarrow}{\rightarrow} \vec{a} - \vec{b}$

h $\frac{1}{|\vec{a}|^2} \{ |\vec{a}|^2 \vec{b} - (\vec{a} \cdot \vec{b}) \vec{a} \}$

c. $\frac{\vec{a} \times (\vec{a} \times \vec{b})}{\vec{a} \times \vec{b}}$

 $\mathbf{d} \quad \frac{\vec{a} \times (\vec{b} \times \vec{a})}{\vec{b} \cdot \vec{b}}$

5. If $\vec{a} \times (\vec{b} \times \vec{c})$ is perpendicular to $(\vec{a} \times \vec{b}) \times \vec{c}$, we may have

a. $(\overrightarrow{a} \cdot \overrightarrow{c}) | \overrightarrow{b}|^2 = (\overrightarrow{a} \cdot \overrightarrow{b}) (\overrightarrow{b} \cdot \overrightarrow{c})$

 $\mathbf{h} \stackrel{\rightarrow}{a} \stackrel{\rightarrow}{b} = 0$

 \vec{c} , $\vec{a} \cdot \vec{c} = 0$

d. $\overrightarrow{b} \cdot \overrightarrow{c} = 0$

6. Let \vec{a} , \vec{b} and \vec{c} be vectors forming right-hand triad. Let $\vec{p} = \frac{\vec{b} \times \vec{c}}{\vec{c} \times \vec{d}}$, $\vec{q} = \frac{\vec{c} \times \vec{d}}{\vec{c} \times \vec{d}}$ and $\vec{r} = \frac{\vec{a} \times \vec{b}}{\vec{d} \times \vec{d}}$. If $x \in R^+$, then

a. $x[\vec{a}\vec{b}\vec{c}] + \frac{[\vec{p}\vec{q}\vec{r}]}{\vec{r}}$ has least value 2

h $x^4 [\vec{a} \ \vec{b} \ \vec{c}]^2 + \frac{[\vec{p} \ \vec{q} \ \vec{r}]}{r^2}$ has least value (3/2^{2/3})

c. $[\overrightarrow{p} \overrightarrow{q} \overrightarrow{r}] > 0$

d. none of these

7.
$$a_1, a_2, a_3 \in R - \{0\}$$
 and $a_1 + a_2 \cos 2x + a_3 \sin^2 x = 0$ for all $x \in R$, then
a. vectors $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ and $\vec{b} = 4 \hat{i} + 2 \hat{j} + \hat{k}$ are perpendicular to each other

h vectors
$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$
 and $\vec{b} = -\hat{i} + \hat{j} + 2 \hat{k}$ are parallel to each other

c. if vector
$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$
 is of length $\sqrt{6}$ units, then one of the ordered tripplet (a_1, a_2, a_3)
= $(1, -1, -2)$

d if
$$2a_1 + 3a_2 + 6a_3 = 26$$
, then $|a_1|^2 + a_2 + 3 + a_3 + 6 + 1 = 2\sqrt{6}$

8. If \vec{a} and \vec{b} are two vectors and angle between them is θ , then

a.
$$|\vec{a} \times \vec{b}|^2 + (\vec{a} \cdot \vec{b})^2 = |\vec{a}|^2 |\vec{b}|^2$$

h
$$|\vec{a} \times \vec{b}| = (\vec{a} \cdot \vec{b})$$
, if $\theta = \pi/4$

c.
$$\vec{a} \times \vec{b} = (\vec{a} \cdot \vec{b}) \hat{n}$$
, (\hat{n} is normal unit vector), if $\theta = \pi/4$

d
$$(\overrightarrow{a} \times \overrightarrow{b}) \cdot (\overrightarrow{a} + \overrightarrow{b}) = 0$$

9. Let \vec{a} and \vec{b} be two non-zero perpendicular vectors. A vector \vec{r} satisfying the equation $\vec{r} \times \vec{b} = \vec{a}$ can be

a.
$$\vec{b} - \frac{\vec{a} \times \vec{b}}{|\vec{b}|^2}$$

$$\mathbf{h} \quad 2\vec{b} - \frac{\vec{a} \times \vec{b}}{|\vec{b}|^2}$$

$$\mathbf{c.} \quad |\vec{a}|\vec{b} - \frac{\vec{a} \times \vec{b}}{|\vec{b}|^2}$$

a.
$$\vec{b} - \frac{\vec{a} \times \vec{b}}{|\vec{b}|^2}$$
 b. $2\vec{b} - \frac{\vec{a} \times \vec{b}}{|\vec{b}|^2}$ **c.** $|\vec{a}|\vec{b} - \frac{\vec{a} \times \vec{b}}{|\vec{b}|^2}$ **d.** $|\vec{b}|\vec{b} - \frac{\vec{a} \times \vec{b}}{|\vec{b}|^2}$

10. If vectors $\vec{b} = (\tan \alpha, -1, 2\sqrt{\sin \alpha/2})$ and $\vec{c} = \left(\tan \alpha, \tan \alpha, -\frac{3}{\sqrt{\sin \alpha/2}}\right)$ are orthogonal and vector

 $\vec{a} = (1, 3, \sin 2\alpha)$ makes an obtuse angle with the z-axis, then the value of α is

a.
$$\alpha = (4n+1) \pi + \tan^{-1} 2$$

b.
$$\alpha = (4n+1) \pi - \tan^{-1} 2$$

c.
$$\alpha = (4n+2) \pi + \tan^{-1} 2$$

d.
$$\alpha = (4n + 2) \pi - \tan^{-1} 2$$

11. Let \vec{r} be a unit vector satisfying $\vec{r} \times \vec{a} = \vec{b}$, where $|\vec{a}| = \sqrt{3}$ and $|\vec{b}| = \sqrt{2}$. Then

$$\mathbf{a.} \quad \vec{r} = \frac{2}{3}(\vec{a} + \vec{a} \times \vec{b})$$

$$\mathbf{b} \quad \vec{r} = \frac{1}{3} (\vec{a} + \vec{a} \times \vec{b})$$

$$\mathbf{c.} \quad \vec{r} = \frac{2}{3} (\vec{a} - \vec{a} \times \vec{b})$$

$$\mathbf{d} \quad \vec{r} = \frac{1}{3} (-\vec{a} + \vec{a} \times \vec{b})$$

12. If \vec{a} and \vec{b} are unequal unit vectors such that $(\vec{a} - \vec{b}) \times [(\vec{b} + \vec{a}) \times (2\vec{a} + \vec{b})] = \vec{a} + \vec{b}$, then angle θ

$$\mathbf{b}$$
. $\pi/2$

c.
$$\pi/4$$

13. If \vec{a} and \vec{b} are two unit vectors perpendicular to each other and $\vec{c} = \lambda_1 \vec{a} + \lambda_2 \vec{b} + \lambda_3 (\vec{a} \times \vec{b})$, then which of the following is (are) true?

$$\mathbf{a.} \quad \lambda_{1} = \overrightarrow{a} \cdot \overrightarrow{c}$$

$$\mathbf{h} \quad \lambda_2 = |\overrightarrow{b} \times \overrightarrow{c}|$$

c.
$$\lambda_2 = (\overrightarrow{a} \times \overrightarrow{b}) \times \overrightarrow{c}$$

d
$$\lambda_1 + \lambda_2 + \lambda_3 = (\vec{a} + \vec{b} + \vec{a} \times \vec{b}) \cdot \vec{c}$$

14. If vectors
$$\vec{a}$$
 and \vec{b} are non-collinear, then $\frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|}$ is

a. a unit vector

b. in the plane of \vec{a} and \vec{b}

c. equally inclined to \vec{a} and \vec{b}

d. perpendicular to $\vec{a} \times \vec{b}$

15. If \vec{a} and \vec{b} are non zero vectors such that $|\vec{a} + \vec{b}| = |\vec{a} - 2\vec{b}|$, then

$$\mathbf{a.} \quad 2\overrightarrow{a}.\overrightarrow{b} = |\overrightarrow{b}|^2$$

h
$$\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{b}|^2$$

c. least value of $\overrightarrow{a} \cdot \overrightarrow{b} + \frac{1}{|\overrightarrow{b}|^2 + 2}$ is $\sqrt{2}$

d least value of $\vec{a} \cdot \vec{b} + \frac{1}{\vec{b} + \vec{b} + 2}$ is $\sqrt{2} - 1$

16. Let \vec{a} , \vec{b} and \vec{c} be non-zero vectors and $\vec{V_1} = \vec{a} \times (\vec{b} \times \vec{c})$ and $\vec{V_2} = (\vec{a} \times \vec{b}) \times \vec{c}$. Vectors \vec{V}_1 and \vec{V}_2 are equal. Then

a. \vec{a} and \vec{b} are orthogonal

h \overrightarrow{a} and \overrightarrow{c} are collinear

c. \overrightarrow{b} and \overrightarrow{c} are orthogonal

 $\vec{\mathbf{d}} = \vec{\lambda} (\vec{a} \times \vec{c})$ when λ is a scalar

17. Vectors \vec{A} and \vec{B} satisfying the vector equation $\vec{A} + \vec{B} = \vec{a}$, $\vec{A} \times \vec{B} = \vec{b}$ and $\vec{A} \cdot \vec{a} = 1$, where \vec{a} and \vec{b} are given vectors, are

a.
$$\vec{A} = \frac{(\vec{a} \times \vec{b}) - \vec{a}}{a^2}$$

b
$$\vec{B} = \frac{(\vec{b} \times \vec{a}) + \vec{a}(a^2 - 1)}{a^2}$$

$$\mathbf{c.} \quad \vec{A} = \frac{(\vec{a} \times \vec{b}) + \vec{a}}{a^2}$$

d
$$\vec{B} = \frac{(\vec{b} \times \vec{a}) - \vec{a}(a^2 - 1)}{a^2}$$

18. A vector \vec{d} is equally inclined to three vectors $\vec{a} = \hat{i} - \hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} + \hat{j}$ and $\vec{c} = 3\hat{j} - 2\hat{k}$. Let \vec{x} , \vec{y} and \vec{z} be three vectors in the plane of \vec{a} , \vec{b} ; \vec{b} , \vec{c} ; \vec{c} , \vec{a} , respectively. Then

$$\mathbf{a.} \quad \vec{x} \cdot \vec{d} = -1$$

$$\mathbf{b} \quad \overrightarrow{y} \cdot \overrightarrow{d} = 1$$

$$\mathbf{c.} \quad \vec{z} \cdot \vec{d} = 0$$

d
$$\overrightarrow{r} \cdot \overrightarrow{d} = 0$$
, where $\overrightarrow{r} = \lambda \overrightarrow{x} + \mu \overrightarrow{y} + \delta \overrightarrow{z}$

19. Vectors perpendicular to $\hat{i} - \hat{j} - \hat{k}$ and in the plane of $\hat{i} + \hat{j} + \hat{k}$ and $-\hat{i} + \hat{j} + \hat{k}$ are

a.
$$\hat{i} + \hat{k}$$

$$\mathbf{b} \quad 2\hat{i} + \hat{j} + \hat{k}$$

c.
$$3\hat{i} + 2\hat{i} + \hat{k}$$

b.
$$2\hat{i} + \hat{j} + \hat{k}$$
 c. $3\hat{i} + 2\hat{j} + \hat{k}$ **d.** $-4\hat{i} - 2\hat{j} - 2\hat{k}$

20. If side \overrightarrow{AB} of an equilateral triangle ABC lying in the x-y plane is $3\hat{i}$, then side \overrightarrow{CB} can be

a.
$$-\frac{3}{2}(\hat{i}-\sqrt{3}\,\hat{j})$$

b.
$$\frac{3}{2}(\hat{i} - \sqrt{3}\,\hat{j})$$

c.
$$-\frac{3}{2}(\hat{i} + \sqrt{3}\,\hat{j})$$

b.
$$\frac{3}{2}(\hat{i} - \sqrt{3}\,\hat{j})$$
 c. $-\frac{3}{2}(\hat{i} + \sqrt{3}\,\hat{j})$ **d.** $\frac{3}{2}(\hat{i} + \sqrt{3}\,\hat{j})$

- 21. The angles of a triangle, two of whose sides are represented by vectors $\sqrt{3}(\hat{a} \times \vec{b})$ and $\hat{b} (\hat{a} \cdot \vec{b})\hat{a}$, where \vec{b} is a non-zero vector and \hat{a} is a unit vector in the direction of \vec{a} , are
 - a. $tan^{-1}(\sqrt{3})$
- **h** $\tan^{-1}(1/\sqrt{3})$
- **c.** $\cot^{-1}(0)$
- **d** $tan^{-1}(1)$
- 22. \vec{a}, \vec{b} and \vec{c} are unimodular and coplanar. A unit vector \vec{d} is perpendicular to them. If $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \frac{1}{6} \hat{i} - \frac{1}{3} \hat{j} + \frac{1}{3} \hat{k}$, and the angle between \vec{a} and \vec{b} is 30°, then \vec{c} is

 - **a.** $(\hat{i} 2\hat{j} + 2\hat{k})/3$ **b.** $(-\hat{i} + 2\hat{j} 2\hat{k})/3$ **c.** $(2\hat{i} + 2\hat{j} \hat{k})/3$ **d.** $(-2\hat{i} 2\hat{j} + \hat{k})/3$

- 23. If $\vec{a} + 2\vec{b} + 3\vec{c} = \vec{0}$, then $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = \vec{0}$
 - **a.** $2(\vec{a} \times \vec{b})$
- **b.** $6(\vec{b} \times \vec{c})$ **c.** $3(\vec{c} \times \vec{a})$
- **24.** \vec{a} and \vec{b} are two non-collinear unit vectors, and $\vec{u} = \vec{a} (\vec{a} \cdot \vec{b})\vec{b}$ and $\vec{v} = \vec{a} \times \vec{b}$. Then $|\vec{v}|$ is
 - $\mathbf{a}, \quad |\stackrel{\rightarrow}{u}|$

- **h** $|\overrightarrow{u}| + |\overrightarrow{u} \cdot \overrightarrow{b}|$ **c.** $|\overrightarrow{u}| + |\overrightarrow{u} \cdot \overrightarrow{a}|$
- d none of these

- 25. If $\vec{a} \times \vec{b} = \vec{c}$, $\vec{b} \times \vec{c} = \vec{a}$, where $\vec{c} \neq \vec{0}$, then
 - **a.** $|\overrightarrow{a}| = |\overrightarrow{c}|$

 $\mathbf{h} \mid \stackrel{\rightarrow}{a} \mid = \mid \stackrel{\rightarrow}{b} \mid$

 \vec{c} , $|\vec{b}| = 1$

- **d** $|\overrightarrow{a}| = |\overrightarrow{b}| = |\overrightarrow{c}| = 1$
- **26.** Let \vec{a} , \vec{b} and \vec{c} be three non-coplanar vectors and \vec{d} be a non-zero vector, which is perpendicular to $(\vec{a} + \vec{b} + \vec{c})$. Now $\vec{d} = (\vec{a} \times \vec{b}) \sin x + (\vec{b} \times \vec{c}) \cos y + 2 (\vec{c} \times \vec{a})$. Then
 - **a.** $\frac{\overrightarrow{d} \cdot (\overrightarrow{a} + \overrightarrow{c})}{\overrightarrow{a} \cdot \overrightarrow{b} \cdot \overrightarrow{c}} = 2$

- $\mathbf{b} \quad \frac{\overrightarrow{d} \cdot (\overrightarrow{a} + \overrightarrow{c})}{\overrightarrow{c} \overrightarrow{a} \overrightarrow{b} \overrightarrow{c}} = -2$
- c. minimum value of $x^2 + y^2$ is $\pi^2/4$
- **d.** minimum value of $x^2 + y^2$ is $5\pi^2/4$
- 27. If \vec{a} , \vec{b} and \vec{c} are three unit vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{1}{2}\vec{b}$, then $(\vec{b} \text{ and } \vec{c} \text{ being non-parallel})$ **a.** angle between \vec{a} and \vec{b} is $\pi/3$. **b.** angle between \vec{a} and \vec{c} is $\pi/3$.

- •c. angle between \vec{a} and \vec{b} is $\pi/2$
- **d.** angle between \overrightarrow{a} and \overrightarrow{c} is $\pi/2$
- If in triangle ABC, $\overrightarrow{AB} = \frac{\overrightarrow{u}}{|\overrightarrow{u}|} \frac{\overrightarrow{v}}{|\overrightarrow{v}|}$ and $\overrightarrow{AC} = \frac{2\overrightarrow{u}}{|\overrightarrow{u}|}$, where $|\overrightarrow{u}| \neq |\overrightarrow{v}|$, then
 - $1 + \cos 2A + \cos 2B + \cos 2C = 0$
 - **c.** projection of AC on BC is equal to BC
- **b.** $\sin A = \cos C$
- **d.** projection of AB on BC is equal to AB

- **29.** $[\vec{a} \times \vec{b} \quad \vec{c} \times \vec{d} \quad \vec{e} \times \vec{f}]$ is equal to
 - **a.** $[\vec{a}\vec{b}\vec{d}][\vec{c}\vec{e}\vec{f}] [\vec{a}\vec{b}\vec{c}][\vec{d}\vec{e}\vec{f}]$

b. $[\overrightarrow{a}\overrightarrow{b}\overrightarrow{e}][\overrightarrow{f}\overrightarrow{c}\overrightarrow{d}] - [\overrightarrow{a}\overrightarrow{b}\overrightarrow{f}][\overrightarrow{e}\overrightarrow{c}\overrightarrow{d}]$

c. $[\overrightarrow{c}\overrightarrow{d}\overrightarrow{a}][\overrightarrow{b}\overrightarrow{e}\overrightarrow{f}] - [\overrightarrow{a}\overrightarrow{d}\overrightarrow{b}][\overrightarrow{a}\overrightarrow{e}\overrightarrow{f}]$

d $[\vec{a}\vec{c}\vec{e}][\vec{b}\vec{d}\vec{f}]$

The scalars l and m such that $l\overrightarrow{a} + m\overrightarrow{b} = \overrightarrow{c}$, where $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} are given vectors, are equal to

a.
$$l = \frac{(\vec{c} \times \vec{b}) \cdot (\vec{a} \times \vec{b})}{(\vec{a} \times \vec{b})^2}$$

$$\mathbf{b} \quad l = \frac{(\vec{c} \times \vec{a}) \cdot (\vec{b} \times \vec{a})}{(\vec{b} \times \vec{a})}$$

$$\mathbf{c.} \quad m = \frac{\vec{(c \times a)} \cdot \vec{(b \times a)}}{\vec{(b \times a)}^2}$$

d.
$$m = \frac{(\overrightarrow{c} \times \overrightarrow{a}) \cdot (\overrightarrow{b} \times \overrightarrow{a})}{(\overrightarrow{b} \times \overrightarrow{a})}$$

31. If $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) \cdot (\vec{a} \times \vec{d}) = 0$, then which of the following may be true?

a. \vec{a} , \vec{b} , \vec{c} and \vec{d} are necessarily coplanar **b.** \vec{a} lies in the plane of \vec{c} and \vec{d}

c. \vec{b} lies in the plane of \vec{a} and \vec{d}

 \vec{c} lies in the plane of \vec{a} and \vec{d}

32. A, B, C and D are four points such that $\overrightarrow{AB} = m(2\hat{i} - 6\hat{j} + 2\hat{k}), \overrightarrow{BC} = (\hat{i} - 2\hat{j})$ and $\overrightarrow{CD} = n(-6\hat{i} + 15\hat{j} - 3\hat{k})$. If CD intersects AB at some point E, then

c. m=n

d. m < n

33. If vectors \vec{a} , \vec{b} and \vec{c} are non-coplanar and l, m and n are distinct scalars, then $[(l\vec{a} + m\vec{b} + n\vec{c})(l\vec{b} + m\vec{c} + n\vec{a})(l\vec{c} + m\vec{a} + n\vec{b})] = 0$ implies

a. l + m + n = 0

b roots of the equation $lx^2 + mx + n = 0$ are real

 $l^2 + m^2 + n^2 = 0$

d. $l^3 + m^3 + n^3 = 3lmn$

34. Let $\vec{\alpha} = a\hat{i} + b\hat{j} + c\hat{k}$, $\vec{\beta} = b\hat{i} + c\hat{j} + a\hat{k}$ and $\vec{\gamma} = c\hat{i} + a\hat{j} + b\hat{k}$ be three coplanar vectors with $a \neq b$, and $\vec{v} = \hat{i} + \hat{j} + \hat{k}$. Then \vec{v} is perpendicular to

- d none of these
- **35.** If vectors $\vec{A} = 2\hat{i} + 3\hat{j} + 4\hat{k}$, $\vec{B} = \hat{i} + \hat{j} + 5\hat{k}$ and \vec{C} form a left-handed system, then \vec{C} is

- **a.** $11\hat{i} 6\hat{j} \hat{k}$ **b.** $-11\hat{i} + 6\hat{j} + \hat{k}$ **c.** $11\hat{i} 6\hat{j} + \hat{k}$ **d.** $-11\hat{i} + 6\hat{j} \hat{k}$

Reasoning Type

Solutions on page 2.126

Each question has four choices a, b, c and d, out of which only one is correct. Each equation contains Statement 1 and Statement 2.

- Both the statements are true and Statement 2 is the correct explanation for Statement 1.
- Both the statements are true but Statement 2 is not the correct explanation for Statement 1.
- Statement 1 is true and Statement 2 is false.
- Statement 1 is false and Statement 2 is true.

1. Statement 1: Vector $\vec{c} = -5\hat{i} + 7\hat{j} + 2\hat{k}$ is along the bisector of angle between $\vec{a} = \hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = -8\hat{i} + \hat{i} - 4\hat{k}$

Statement 2: \vec{c} is equally inclined to \vec{a} and \vec{b} .

2. Statement 1: A component of vector $\vec{b} = 4\hat{i} + 2\hat{j} + 3\hat{k}$ in the direction perpendicular to the direction of vector $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ is $\hat{i} - \hat{j}$.

Statement 2: A component of vector in the direction of $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ is $2\hat{i} + 2\hat{j} + 2\hat{k}$.

3. Statement 1: Distance of point D(1, 0, -1) from the plane of points A(1, -2, 0), B(3, 1, 2) and C(-1, 1, -1) is $\frac{8}{\sqrt{229}}$.

Statement 2: Volume of tetrahedron formed by the points A, B, C and D is $\frac{\sqrt{229}}{2}$.

4. Let \vec{r} be a non-zero vector satisfying $\vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} = 0$ for given non-zero vectors \vec{a}, \vec{b} and \vec{c} . Statement 1: $[\vec{a} - \vec{b} \ \vec{b} - \vec{c} \ \vec{c} - \vec{a}] = 0$

Statement 2: $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = 0$

5. Statement 1: If $a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$, $b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ and $c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$ are three mutually perpendicular unit vectors, then $a_1 \hat{i} + b_1 \hat{j} + c_1 \hat{k}$, $a_2 \hat{i} + b_2 \hat{j} + c_2 \hat{k}$ and $a_3 \hat{i} + b_3 \hat{j} + c_3 \hat{k}$ may be mutually perpendicular unit vectors.

Statement 2: Value of determinant and its transpose are the same.

6. Statement 1: If $\vec{A} = 2\hat{i} + 3\hat{j} + 6\hat{k}$, $\vec{B} = \hat{i} + \hat{j} - 2\hat{k}$ and $\vec{C} = \hat{i} + 2\hat{j} + \hat{k}$, then $|\vec{A} \times (\vec{A} \times (\vec{A} \times \vec{A})) \cdot \vec{C}|$

Statement 2: $|\vec{A} \times (\vec{A} \times (\vec{A} \times \vec{B})) \cdot \vec{C}| = |\vec{A}|^2 |[\vec{A} \vec{B} \vec{C}]|$

7. Statement 1: \vec{a} , \vec{b} and \vec{c} are three mutually perpendicular unit vectors and \vec{d} is a vector such that \vec{a} , \vec{b} , \vec{c} and \vec{d} are non-coplanar. If $[\vec{d} \ \vec{b} \ \vec{c}] = [\vec{d} \ \vec{a} \ \vec{b}] = [\vec{d} \ \vec{c} \ \vec{a}] = 1$, then $\vec{d} = \vec{a} + \vec{b} + \vec{c}$.

Statement 2: $[\vec{d} \ \vec{b} \ \vec{c}] = [\vec{d} \ \vec{a} \ \vec{b}] = [\vec{d} \ \vec{c} \ \vec{a}] \Rightarrow \vec{d}$ is equally inclined to \vec{a} , \vec{b} and \vec{c} .

8. Consider three vectors \vec{a} , \vec{b} and \vec{c} .

Statement 1: $\vec{a} \times \vec{b} = ((\hat{i} \times \vec{a}) \cdot \vec{b}) \cdot \hat{i} + ((\hat{j} \times \vec{a}) \cdot \vec{b}) \cdot \hat{j} + ((\hat{k} \times \vec{a}) \cdot \vec{b}) \cdot \hat{k}$

Statement 2: $\vec{c} = (\hat{i} \cdot \vec{c}) \hat{i} + (\hat{j} \cdot \vec{c}) \hat{j} + (\hat{k} \cdot \vec{c}) \hat{k}$

Linked Comprehension Type

Based on each paragraph, three multiple choice questions have to be answered. Each question has four choices a, b, c and d, out of which only one is correct.

For Problems 1-3

Let $\overrightarrow{u}, \overrightarrow{v}$ and \overrightarrow{w} be three unit vectors such that $\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w} = \overrightarrow{a}, \overrightarrow{u} \times (\overrightarrow{v} \times \overrightarrow{w}) = \overrightarrow{b}, (\overrightarrow{u} \times \overrightarrow{v}) \times \overrightarrow{w} = \overrightarrow{c},$ $\overrightarrow{a} \cdot \overrightarrow{u} = 3/2$, $\overrightarrow{a} \cdot \overrightarrow{v} = 7/4$ and $|\overrightarrow{a}| = 2$.

1. Vector
$$\overrightarrow{u}$$
 is

a.
$$\overrightarrow{a} - \frac{2}{3}\overrightarrow{b} + \overrightarrow{c}$$

b.
$$\vec{a} + \frac{4}{3}\vec{b} + \frac{8}{3}\vec{c}$$

c.
$$2\vec{a} - \vec{b} + \frac{1}{3}\vec{c}$$

b.
$$\vec{a} + \frac{4}{3}\vec{b} + \frac{8}{3}\vec{c}$$
 c. $2\vec{a} - \vec{b} + \frac{1}{3}\vec{c}$ **d.** $\frac{4}{3}\vec{a} - \vec{b} + \frac{2}{3}\vec{c}$

2. Vector
$$\overrightarrow{v}$$
 is

a.
$$2\vec{a} - 3\vec{c}$$

b.
$$3\vec{b} - 4c$$
 c. $-4\vec{c}$

d.
$$\overrightarrow{a} + \overrightarrow{b} + 2\overrightarrow{c}$$

3. Vector
$$\overrightarrow{w}$$
 is

a.
$$\frac{2}{3}(2\vec{c} - \vec{b})$$

$$\mathbf{h} \quad \frac{1}{3}(\vec{a} - \vec{b} - \vec{c})$$

h
$$\frac{1}{3}(\vec{a} - \vec{b} - \vec{c})$$
 c. $\frac{1}{3}\vec{a} - \frac{2}{3}\vec{b} - 2\vec{c}$ **d.** $\frac{4}{3}(\vec{c} - \vec{b})$

$$\mathbf{d} \quad \frac{4}{3}(\vec{c} - \vec{b})$$

For Problems 4-6

Vectors \vec{x}, \vec{y} and \vec{z} , each of magnitude $\sqrt{2}$, make an angle of 60° with each other. $\vec{x} \times (\vec{y} \times \vec{z}) = \vec{a}$, $\overrightarrow{y} \times (\overrightarrow{z} \times \overrightarrow{x}) = \overrightarrow{b}$ and $\overrightarrow{x} \times \overrightarrow{y} = \overrightarrow{c}$.

4. Vector \overrightarrow{x} is

a.
$$\frac{1}{2}[(\vec{a}-\vec{b})\times\vec{c}+(\vec{a}+\vec{b})]$$

h
$$\frac{1}{2} [(\overrightarrow{a} + \overrightarrow{b}) \times \overrightarrow{c} + (\overrightarrow{a} - \overrightarrow{b})]$$

c.
$$\frac{1}{2}[-(\vec{a}+\vec{b})\times\vec{c}+(\vec{a}+\vec{b})]$$

d
$$\frac{1}{2}[(\vec{a}+\vec{b})\times\vec{c}-(\vec{a}+\vec{b})]$$

5. Vector
$$\vec{y}$$
 is

a.
$$\frac{1}{2}[(\vec{a} + \vec{c}) \times \vec{b} - \vec{b} - \vec{a}]$$

b.
$$\frac{1}{2}[(\vec{a}-\vec{c})\times\vec{c}+\vec{b}+\vec{a}]$$

c.
$$\frac{1}{2}[(\overrightarrow{a}+\overrightarrow{b})\times\overrightarrow{c}+\overrightarrow{b}+\overrightarrow{a}]$$

d
$$\frac{1}{2}[(\overrightarrow{a}-\overrightarrow{c})\times\overrightarrow{a}+\overrightarrow{b}-\overrightarrow{a}]$$

6. Vector
$$\vec{z}$$
 is ...

a.
$$\frac{1}{2}[(\vec{a}-\vec{c})\times\vec{c}-\vec{b}+\vec{a}]$$

h
$$\frac{1}{2}[(\vec{a}+\vec{b})\times\vec{c}+\vec{b}-\vec{a}]$$

c.
$$\frac{1}{2}[\vec{c}\times(\vec{a}-\vec{b})+\vec{b}+\vec{a}]$$

d none of these

For Problems 7-9

If $\overrightarrow{x} \times \overrightarrow{y} = \overrightarrow{a}$, $\overrightarrow{y} \times \overrightarrow{z} = \overrightarrow{b}$, $\overrightarrow{x} \cdot \overrightarrow{b} = \gamma$, $\overrightarrow{x} \cdot \overrightarrow{y} = 1$ and $\overrightarrow{y} \cdot \overrightarrow{z} = 1$

7. Vector
$$\overrightarrow{x}$$
 is

a.
$$\frac{1}{|\vec{a} \times \vec{b}|^2} [\vec{a} \times (\vec{a} \times \vec{b})]$$

b
$$\frac{\gamma}{\begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix}^2} [\vec{a} \times \vec{b} - \vec{a} \times (\vec{a} \times \vec{b})]$$

c.
$$\overrightarrow{\gamma}_{|\overrightarrow{a}\times\overrightarrow{b}|^2}[\overrightarrow{a}\times\overrightarrow{b}+\overrightarrow{b}\times(\overrightarrow{a}\times\overrightarrow{b})]$$

d none of these

8. Vector
$$\overrightarrow{y}$$
 is

$$\mathbf{a.} \quad \frac{\vec{a} \times \vec{b}}{\gamma}$$

$$\mathbf{h} \quad \vec{a} + \frac{\vec{a} \times \vec{b}}{\gamma}$$

c.
$$\vec{a} + \vec{b} + \frac{\vec{a} \times \vec{b}}{\gamma}$$
 d. none of these

9. Vector
$$\vec{z}$$
 is

a.
$$\frac{\gamma}{|\vec{a} \times \vec{b}|^2} [\vec{a} + \vec{b} \times (\vec{a} \times \vec{b})]$$

h
$$\frac{\gamma}{\vec{a} \times \vec{b}} [\vec{a} + \vec{b} - \vec{a} \times (\vec{a} \times \vec{b})]$$

c.
$$\vec{a \times b}^2 \vec{a} \times \vec{b} + \vec{b} \times (\vec{a} \times \vec{b})$$

d none of these

For Problems 10-12

Given two orthogonal vectors \vec{A} and \vec{B} each of length unity. Let \vec{P} be the vector satisfying the equation $\overrightarrow{P} \times \overrightarrow{B} = \overrightarrow{A} - \overrightarrow{P}$. Then

10.
$$(\overrightarrow{P} \times \overrightarrow{B}) \times \overrightarrow{B}$$
 is equal to

a.
$$\overrightarrow{P}$$

$$\mathbf{h} - \overrightarrow{P}$$

c.
$$2\vec{B}$$

$$\overrightarrow{A}$$

11.
$$\overrightarrow{P}$$
 is equal to

a.
$$\frac{\vec{A}}{2} + \frac{\vec{A} \times \vec{B}}{2}$$

$$\mathbf{h} \quad \frac{\vec{A}}{2} + \frac{\vec{B} \times \vec{A}}{2}$$

$$\mathbf{h} \quad \frac{\vec{A}}{2} + \frac{\vec{B} \times \vec{A}}{2} \qquad \qquad \mathbf{c.} \quad \frac{\vec{A} \times \vec{B}}{2} - \frac{\vec{A}}{2} \qquad \qquad \mathbf{d.} \quad \vec{A} \times \vec{B}$$

d.
$$\vec{A} \times \vec{B}$$

12. Which of the following statements is false?

a. vectors \overrightarrow{P} , \overrightarrow{A} and $\overrightarrow{P} \times \overrightarrow{B}$ are linearly dependent.

h vectors \overrightarrow{P} , \overrightarrow{B} and $\overrightarrow{P} \times \overrightarrow{B}$ are linearly independent.

c. \overrightarrow{P} is orthogonal to \overrightarrow{B} and has length $1/\sqrt{2}$.

d. none of the above.

For Problems 13-15

Let $\vec{a} = 2\hat{i} + 3\hat{j} - 6\hat{k}$, $\vec{b} = 2\hat{i} - 3\hat{j} + 6\hat{k}$ and $\vec{c} = -2\hat{i} + 3\hat{j} + 6\hat{k}$. Let $\vec{a_1}$ be the projection of \vec{a} on \vec{b} and $\vec{a_2}$ be the projection of $\vec{a_1}$ on \vec{c} . Then

13.
$$\vec{a_2}$$
 is equal to

a.
$$\frac{943}{49}(2\hat{i}-3\hat{j}-6\hat{k})$$

h
$$\frac{943}{49^2}(2\hat{i}-3\hat{j}-6\hat{k})$$

c.
$$\frac{943}{49}(-2\hat{i}+3\hat{j}+6\hat{k})$$

d
$$\frac{943}{49^2}(-2\hat{i}+3\hat{j}+6\hat{k})$$

14. $\vec{a} \cdot \vec{b}$ is equal to

 a_{-41}

b. -41/7

c. 41

d. 287

15. Which of the following is true?

a. \overrightarrow{a} and $\overrightarrow{a_2}$ are collinear

b. \overrightarrow{a}_1 and \overrightarrow{c} are collinear

c. \overrightarrow{a} , \overrightarrow{a} and \overrightarrow{b} are coplanar

d \overrightarrow{a} , \overrightarrow{a} and \overrightarrow{a} are coplanar

For Problems 16-18

Consider a triangular pyramid ABCD the position vectors of whose angular points are A(3, 0, 1), B(-1, 4, 1), C(5, 2, 3) and D(0, -5, 4). Let G be the point of intersection of the medians of triangle BCD.

16. The length of vector \overrightarrow{AG} is

a. $\sqrt{17}$

b. $\sqrt{51/3}$

c. $3/\sqrt{6}$

d. $\sqrt{59}/4$

17. Area of triangle ABC in sq. units is

b. $8\sqrt{6}$

d none of these

18. The length of the perpendicular from vertex D on the opposite face is

a. $14/\sqrt{6}$

h $2/\sqrt{6}$

c. $3/\sqrt{6}$

d none of these

For Problems 19-21

Vertices of a parallelogram taken in order are A(2, -1, 4); B(1, 0-1); C(1, 2, 3) and D.

The distance between the parallel lines AB and CD is

 \mathbf{a} . $\sqrt{6}$

b. $3\sqrt{6/5}$

c. $2\sqrt{2}$

d. 3

20. Distance of the point P(8, 2, -12) from the plane of the parallelogram is

a. $\frac{4\sqrt{6}}{9}$

b $\frac{32\sqrt{6}}{9}$ **c.** $\frac{16\sqrt{6}}{9}$

d. none

The orthogonal projections of the parallelogram on the three coordinate planes xy, yz and zx, respectively, are

a. 14,4,2

b. 2.4.14 **c.** 4.2.14

d. 2, 14, 4

For Problems 22-24

Let \vec{r} be a position vector of a variable point in Cartesian OXY plane such that $\vec{r} \cdot (10 \, \hat{j} - 8 \, \hat{i} - \vec{r}) = 40$ and $p_1 = \max\{|\vec{r} + 2\hat{i} - 3\hat{j}|^2\}, \ p_2 = \min\{|\vec{r} + 2\hat{i} - 3\hat{j}|^2\}.$ A tangent line is drawn to the curve $y = 8/x^2$ at point A with abscissa 2. The drawn line cuts the x-axis at a point B.

22. p_2 is equal to

a. 9

b. $2\sqrt{2}-1$ **c.** $6\sqrt{2}+3$ **d.** $9-4\sqrt{2}$

a. 2

h 10

c. 18

d. 5

24. $\overrightarrow{AB} \cdot \overrightarrow{OB}$ is equal to

a. 1

b. 2

c. 3

d. 4

Matrix-Match Type

Solutions on page 2.134

Each question contains statements given in two columns which have to be matched. Statements (a,b,c,d) in Column I have to be matched with statements (p,q,r,s) in Column II. If the correct matches are $a \to p$, s; $b \to q$, r; $c \to p$, q and $d \to s$, then the correctly bubbled 4×4 matrix should be as follows:

1.

	Column I	Column II
a.	The possible value of a if $\vec{r} = (\hat{i} + \hat{j}) + \lambda(\hat{i} + 2\hat{j} - \hat{k})$ and $\vec{r} = (\hat{i} + 2\hat{j}) + \mu(-\hat{i} + \hat{j} + a\hat{k})$ are not consistent, where λ and μ are scalars, is	p . –4
h	The angle between vectors $\vec{a} = \lambda \hat{i} - 3\hat{j} - \hat{k}$ and $\vec{b} = 2\lambda \hat{i} + \lambda \hat{j} - \hat{k}$ is acute, whereas vector \vec{b} makes an obtuse angle with the axes of coordinates. Then λ may be	q. –2
c.	The possible value of a such that $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} + 2\hat{j} + (1+a)\hat{k}$ and $3\hat{i} + a\hat{j} + 5\hat{k}$ are coplanar is	r. 2
d.	If $\vec{A} = 2\hat{i} + \lambda \hat{j} + 3\hat{k}$, $\vec{B} = 2\hat{i} + \lambda \hat{j} + \hat{k}$, $\vec{C} = 3\hat{i} + \hat{j}$ and $\vec{A} + \lambda \vec{B}$ is perpendicular to \vec{C} , then $ 2\lambda $ is	s. 3

2.

	Column I	Column II
a.	If \vec{a} , \vec{b} and \vec{c} are three mutually perpendicular vectors where $ \vec{a} = \vec{b} = 2$, $ \vec{c} = 1$, then $[\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}]$ is	p . –12
b	If \vec{a} and \vec{b} are two unit vectors inclined at $\pi/3$, then $16 [\vec{a} \ \vec{b} + \vec{a} \times \vec{b} \ \vec{b}] \text{ is}$	q 0
c.	If \vec{b} and \vec{c} are orthogonal unit vectors and $\vec{b} \times \vec{c} = \vec{a}$, then $[\vec{a} + \vec{b} + \vec{c} \vec{a} + \vec{b} \vec{b} + \vec{c}]$ is	r. 16
d.	If $[\overrightarrow{x} \ \overrightarrow{y} \ \overrightarrow{a}] = [\overrightarrow{x} \ \overrightarrow{y} \ \overrightarrow{b}] = [\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] = 0$, each vector being a non-zero vector, then $[\overrightarrow{x} \ \overrightarrow{y} \ \overrightarrow{c}]$ is	s. 1

3.

	Column I	Col	lumn II
a.	If $ \vec{a} = \vec{b} = \vec{c} $, angle between each pair of vectors is $\frac{\pi}{2}$ and $ \vec{a} + \vec{b} + \vec{c} = \sqrt{6}$, then $2 \vec{a} $ is equal to	p	3
h	If \vec{a} is perpendicular to $\vec{b} + \vec{c}$, \vec{b} is perpendicular to $\vec{c} + \vec{a}$, \vec{c} is perpendicular to $\vec{a} + \vec{b}$, $ \vec{a} = 2$, $ \vec{b} = 3$ and $ \vec{c} = 6$, then $ \vec{a} + \vec{b} + \vec{c} - 2$ is equal to	q	2
c.	$\vec{a} = 2\hat{i} + 3\hat{j} - \hat{k}, \ \vec{b} = -\hat{i} + 2\hat{j} - 4\hat{k}, \ \vec{c} = \hat{i} + \hat{j} + \hat{k} \text{ and}$ $\vec{d} = 3\hat{i} + 2\hat{j} + \hat{k}, \text{ then } \frac{1}{7}(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) \text{ is equal to}$	r.	4
d.	If $ \vec{a} = \vec{b} = \vec{c} = 2$ and $ \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = 2$, then $[\vec{a} \ \vec{b} \ \vec{c}] \cos 45^\circ$ is equal to	s.	5

4. Given two vectors $\vec{a} = -\hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = -\hat{i} - 2\hat{j} - \hat{k}$.

	Column I	Column II
a.	Area of triangle formed by \vec{a} and \vec{b}	p 3
b	Area of parallelogram having sides \vec{a} and \vec{b}	q 12√3
c.	Area of parallelogram having diagonals $2\vec{a}$ and $4\vec{b}$	r. $3\sqrt{3}$
d.	Volume of parallelepiped formed by \vec{a} , \vec{b} and $\vec{c} = \hat{i} + \hat{j} + \hat{k}$	s. $\frac{3\sqrt{3}}{2}$

5. Given two vectors $\vec{a} = -\hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = -2\hat{i} + \hat{j} + 2\hat{k}$.

Column I		Column II	
a.	A vector coplanar with \vec{a} and \vec{b}	$\mathbf{p} -3\hat{i} + 3\hat{j} + 4\hat{k}$	
b.	A vector which is perpendicular to both \vec{a} and \vec{b}	$\mathbf{q} 2\hat{i} - 2\hat{j} + 3\hat{k}$	
c.	A vector which is equally inclined to \vec{a} and \vec{b}	$\hat{i} + \hat{j}$	
d	A vector which forms a triangle with \vec{a} and \vec{b}	$\mathbf{s.} \hat{i} - \hat{j} + 5\hat{k}$	

6.

	Column I	Column II
a.	If $ \vec{a} + \vec{b} = \vec{a} + 2\vec{b} $, then angle between \vec{a} and \vec{b} is	p. 90°
b	If $ \vec{a} + \vec{b} = \vec{a} - 2\vec{b} $, then angle between \vec{a} and \vec{b} is	q obtuse
c.	If $ \vec{a} + \vec{b} = \vec{a} - \vec{b} $, then angle between \vec{a} and \vec{b} is	r. 0°
d	Angle between $\vec{a} \times \vec{b}$ and a vector perpendicular to the vector $\vec{c} \times (\vec{a} \times \vec{b})$ is	s. acute

7. Volume of parallelepiped formed by vectors $\vec{a} \times \vec{b}$, $\vec{b} \times \vec{c}$ and $\vec{c} \times \vec{a}$ is 36 sq. units.

	Column I	Column II	
a.	Volume of parallelepiped formed by vectors \vec{a} , \vec{b} and \vec{c} is	р	0 sq. units
b.	Volume of tetrahedron formed by vectors \vec{a} , \vec{b} and \vec{c} is	q.	12 sq. units
c.	Volume of parallelepiped formed by vectors $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$ and $\vec{c} + \vec{a}$ is	r.	6 sq. units
d.	Volume of parallelepiped formed by vectors $\vec{a} - \vec{b}$, $\vec{b} - \vec{c}$ and $\vec{c} - \vec{a}$ is	s.	1 sq. units

Integer Answer Type

Solutions on page 2.138

- 1. If \vec{a} and \vec{b} are any two unit vectors, then find the greatest positive integer in the range of $\frac{3|\vec{a}+\vec{b}|}{2} + 2|\vec{a}-\vec{b}|$.
- 2. Let \vec{u} be a vector on rectangular coordinate system with sloping angle 60°. Suppose that $|\vec{u} \hat{i}|$ is geometric mean of $|\vec{u}|$ and $|\vec{u} 2\hat{i}|$, where \hat{i} is the unit vector along x-axis. Then find the value of $(\sqrt{2} + 1)|\vec{u}|$.
- 3. Find the absolute value of parameter t for which the area of the triangle whose vertices are A(-1, 1, 2); B(1, 2, 3) and C(t, 1, 1) is minimum.
- **4.** If $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$; $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$, $\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$ and $[3\vec{a} + \vec{b} \ 3\vec{b} + \vec{c} \ 3\vec{c} + \vec{a}] = \lambda \begin{vmatrix} \vec{a} \cdot \hat{i} & \vec{a} \cdot \hat{j} & \vec{a} \cdot \hat{k} \\ \vec{b} \cdot \hat{i} & \vec{b} \cdot \hat{j} & \vec{b} \cdot \hat{k} \\ \vec{c} \cdot \hat{i} & \vec{c} \cdot \hat{j} & \vec{c} \cdot \hat{k} \end{vmatrix}$, then find the value of $\frac{\lambda}{4}$.
- 5. Let $\vec{a} = \alpha \hat{i} + 2 \hat{j} 3 \hat{k}$, $\vec{b} = \hat{i} + 2 \alpha \hat{j} 2 \hat{k}$ and $\vec{c} = 2 \hat{i} \alpha \hat{j} + \hat{k}$. Find the value of 6α , such that $\{(\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c})\} \times (\vec{c} \times \vec{a}) = 0$.
- **6.** If \vec{x} , \vec{y} are two non-zero and non-collinear vectors satisfying $[(a-2)\alpha^2 + (b-3)\alpha + c]\vec{x} + [(a-2)\beta^2 + (b-3)\beta + c]\vec{y} + [(a-2)\gamma^2 + (b-3)\gamma + c](\vec{x} \times \vec{y}) = 0, \text{ where } \alpha,$ β, γ are three distinct real numbers, then find the value of $(a^2 + b^2 + c^2 4)$.
- 7. Let \overrightarrow{u} and \overrightarrow{v} are unit vectors such that $\overrightarrow{u} \times \overrightarrow{v} + \overrightarrow{u} = \overrightarrow{w}$ and $\overrightarrow{w} \times \overrightarrow{u} = \overrightarrow{v}$. Find the value of $[\overrightarrow{u} \times \overrightarrow{v}]$.
- 8. Find the value of λ if the volume of a tetrahedron whose vertices are with position vectors $\hat{i} 6\hat{j} + 10\hat{k}$, $-\hat{i} 3\hat{j} + 7\hat{k}$, $5\hat{i} \hat{j} + \lambda\hat{k}$ and $7\hat{i} 4\hat{j} + 7\hat{k}$ is 11 cubic unit.
- 9. Given that $\vec{u} = \hat{i} 2\hat{j} + 3\hat{k}$; $\vec{v} = 2\hat{i} + \hat{j} + 4\hat{k}$; $\vec{w} = \hat{i} + 3\hat{j} + 3\hat{k}$ and $(\vec{u} \cdot \vec{R} 15)\hat{i} + (\vec{v} \cdot \vec{R} 30)\hat{j} + (\vec{w} \cdot \vec{R} 20)\hat{k} = \vec{0}$. Then find the greatest integer less than or equal to $|\vec{R}|$.
- 10. Let a three-dimensional vector \vec{V} satisfies the condition, $2\vec{V} + \vec{V} \times (\hat{i} + 2\hat{j}) = 2\hat{i} + \hat{k}$. If $3|\vec{V}| = \sqrt{m}$, then find the value of m.
- 11. If \vec{a} , \vec{b} , \vec{c} are unit vectors such that $\vec{a} \cdot \vec{b} = 0 = \vec{a} \cdot \vec{c}$ and the angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$, then find the value of $|\vec{a} \times \vec{b} \vec{a} \times \vec{c}|$.
- 12. Let $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = 10\overrightarrow{a} + 2\overrightarrow{b}$ and $\overrightarrow{OC} = \overrightarrow{b}$, where O, A and C are non-collinear points. Let p denote the area of quadrilateral OACB, and let q denote the area of parallelogram with OA and OC as adjacent sides. If $p = k \ q$, then find k.

13. Find the work done by the force $F = 3\hat{i} - \hat{j} - 2\hat{k}$ acting on a particle such that the particle is displaced from point A(-3, -4, 1) to point B(-1, -1, -2).

Archives

Solutions on page 2.144

Subjective Type

- 1. From a point O inside a triangle ABC, perpendiculars OD, OE and OF are drawn to the sides BC, CA and AB, respectively. Prove that the perpendiculars from A, B and C to the sides EF, FD and DE are concurrent.

 (IIT-JEE, 1978)
- 2. $A_1, A_2, ..., A_n$ are the vertices of a regular plane polygon with n sides and O as its centre. Show that $\sum_{i=1}^{n-1} (\overrightarrow{OA}_i \times \overrightarrow{OA}_{i+1}) = (1-n)(\overrightarrow{OA}_2 \times \overrightarrow{OA}_1).$ (IIT-JEE,1998)
- 3. If c be a given non-zero scalar, and \vec{A} and \vec{B} be given non-zero vectors such that $\vec{A} \perp \vec{B}$, find the vector \vec{X} which satisfies the equations $\vec{A} \cdot \vec{X} = c$ and $\vec{A} \times \vec{X} = \vec{B}$. (IIT-JEE, 1983)
- **4.** If A, B, C, D are any four points in space, prove that $|\overrightarrow{AB} \times \overrightarrow{CD} + \overrightarrow{BC} \times \overrightarrow{AD} + \overrightarrow{CA} \times \overrightarrow{BD}| = 4$ (area of triangle ABC).
- 5. If vectors \vec{a} , \vec{b} and \vec{c} are coplanar, show that $\begin{vmatrix} \vec{a} & \vec{b} & \vec{c} \\ \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \end{vmatrix} = \vec{0}$. (IIT-JEE, 1989)
- **6.** Let $\vec{A} = 2\vec{i} + \vec{k}$, $\vec{B} = \vec{i} + \vec{j} + \vec{k}$ and $\vec{C} = 4\vec{i} 3\vec{j} + 7\vec{k}$. Determine a vector \vec{R} satisfying $\vec{R} \times \vec{B} = \vec{C} \times \vec{B}$ and $\vec{R} \cdot \vec{A} = 0$. (IIT-JEE, 1990)
- 7. Determine the value of c so that for all real x, vectors $cx \hat{i} 6\hat{j} 3\hat{k}$ and $x\hat{i} + 2\hat{j} + 2cx\hat{k}$ make an obtuse angle with each other. (IIT-JEE, 1991)
- 8. If vectors \vec{b} , \vec{c} and \vec{d} , are not coplanar, then prove that vector $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) + (\vec{a} \times \vec{c}) \times (\vec{d} \times \vec{b}) + (\vec{a} \times \vec{d}) \times (\vec{b} \times \vec{c})$ is parallel to \vec{a} .

 (IIT-JEE, 1994)
- 9. The position vectors of the vertices A, B and C of a tetrahedron ABCD are $\hat{i} + \hat{j} + \hat{k}$, \hat{i} and $3\hat{i}$, respectively. The altitude from vertex D to the opposite face ABC meets the median line through A of triangle ABC at a point E. If the length of the side AD is 4 and the volume of the tetrahedron is $2\sqrt{2}/3$, find the position vectors of the point E for all its possible positions. (IIT-JEE, 1996)
- 10. Let \vec{a} , \vec{b} and \vec{c} be non-coplanar unit vectors, equally inclined to one another at an angle θ . If $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} = p \vec{a} + q \vec{b} + r \vec{c}$, find scalars p, q and r in terms of θ . (IIT-JEE 1997)
- 11. If \vec{A} , \vec{B} and \vec{C} are vectors such that $|\vec{B}| = |\vec{C}|$. Prove that $[(\vec{A} + \vec{B}) \times (\vec{A} + \vec{C})] \times (\vec{B} + \vec{C}) \cdot (\vec{B} + \vec{C}) = 0.$ (IIT-JEE, 1997)

- 12. For any two vectors \overrightarrow{u} and \overrightarrow{v} , prove that
 - **a.** $(\vec{u}.\vec{v})^2 + |\vec{u} \times \vec{v}|^2 = |\vec{u}|^2 |\vec{v}|^2$ and

b.
$$(\vec{1} + |\vec{u}|^2)(\vec{1} + |\vec{v}|^2) = (1 - \vec{u} \cdot \vec{v})^2 + |\vec{u} + \vec{v} + (\vec{u} \times \vec{v})|^2$$
 (IIT-JEE, 1998)

- 13. Let \vec{u} and \vec{v} be unit vectors. If \vec{w} is a vector such that $\vec{w} + (\vec{w} \times \vec{u}) = \vec{v}$, then prove that $|(\vec{u} \times \vec{v}) \cdot \vec{w}| \le 1/2$ and that the equality holds if and only if \vec{u} is perpendicular to \vec{v} . (IIT-JEE, 1999)
- **14.** Find three-dimensional vectors \vec{v}_1 , \vec{v}_2 and \vec{v}_3 satisfying $\vec{v}_1 \cdot \vec{v}_1 = 4$, $\vec{v}_1 \cdot \vec{v}_2 = -2$, $\vec{v}_1 \cdot \vec{v}_3 = 6$, $\vec{v}_2 \cdot \vec{v}_2 = 2$, $\vec{v}_2 \cdot \vec{v}_3 = -5$, $\vec{v}_3 \cdot \vec{v}_3 = 29$. (IIT-JEE, 2001)
- 15. Let V be the volume of the parallelepiped formed by the vectors $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$, $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ and $\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$. If a_r , b_r and c_r , where r = 1, 2, 3, are non-negative real numbers and $\sum_{r=1}^{3} (a_r + b_r + c_r) = 3L$, show that $V \le L^3$. (IIT-JEE, 2002)
- 16. \overrightarrow{u} , \overrightarrow{v} and \overrightarrow{w} are three non-coplanar unit vectors and α , β and γ are the angles between \overrightarrow{u} and \overrightarrow{v} , \overrightarrow{v} and \overrightarrow{w} , and \overrightarrow{w} and \overrightarrow{u} , respectively, and \overrightarrow{x} , \overrightarrow{y} and \overrightarrow{z} are unit vectors along the bisectors of the angles α , β and γ , respectively. Prove that $[\overrightarrow{x} \times \overrightarrow{y} \ \overrightarrow{y} \times \overrightarrow{z} \ \overrightarrow{z} \times \overrightarrow{x}] = \frac{1}{16} [\overrightarrow{u} \ \overrightarrow{v} \ \overrightarrow{w}]^2 \sec^2 \frac{\beta}{2} \sec^2 \frac{\beta}{2} \sec^2 \frac{\gamma}{2}$.

(IIT-JEE, 2003)

- 17. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are distinct vectors such that $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$ and $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$, prove that $(\vec{a} \vec{d}) \cdot (\vec{b} \vec{c}) \neq 0$, i.e., $\vec{a} \cdot \vec{b} + \vec{d} \cdot \vec{c} \neq \vec{d} \cdot \vec{b} + \vec{a} \cdot \vec{c}$. (IIT-JEE, 2004)
- 18. P_1 and P_2 are planes passing through origin. L_1 and L_2 are two lines on P_1 and P_2 , respectively, such that their intersection is the origin. Show that there exist points A, B and C, whose permutation A', B' and C', respectively, can be chosen such that (i) A is on L_1 , B on P_1 but not on L_1 and C not on P_2 . (IIT-JEE, 2004)
- 19. If the incident ray on a surface is along the unit vector \hat{v} , the reflected ray is along the unit vector \hat{w} and the normal is along the unit vector \hat{a} outwards, express \hat{w} in terms of \hat{a} and \hat{v} .

(IIT-JEE, 2005)

Objective Type

Fill in the blanks

- 1. Let \vec{A} , \vec{B} and \vec{C} be vectors of length, 3, 4 and 5, respectively. Let \vec{A} be perpendicular to $\vec{B} + \vec{C}$, \vec{B} to $\vec{C} + \vec{A}$ and \vec{C} to $\vec{A} + \vec{B}$. Then the length of vector $\vec{A} + \vec{B} + \vec{C}$ is ______.

 (IIT-JEE, 1981)

 2. The unit vector perpendicular to the plane determined by P(1, -1, 2), Q(2, 0, -1) and R(0, 2, 1) is ______.

 (IIT-JEE, 1983)

 3. The area of the triangle whose vertices are A(1, -1, 2), B(2, 1, -1), C(3, -1, 2) is ______.

 (IIT-JEE, 1983)

 4. If \vec{A} , \vec{B} and \vec{C} are the three non-coplanar vectors, then $\vec{A} \cdot \vec{B} \times \vec{C} + \vec{B} \cdot \vec{A} \times \vec{C} = \vec{C} \times \vec{A} \times \vec{B} \times \vec{C} \times \vec{A} \times \vec{B} = \vec{C} \times \vec{A} \times \vec{B} \times \vec{C} \times \vec{A} \times \vec{B} = \vec{C} \times \vec{A} \times \vec{C} \times \vec{A} \times \vec{C} \times \vec{C} \times \vec{A} \times \vec{C} \times \vec{C}$
- 5. If $\vec{A} = (1, 1, 1)$ and $\vec{C} = (0, 1, -1)$ are given vectors, then vector \vec{B} satisfying the equations $\vec{A} \times \vec{B} = \vec{C}$ and $\vec{A} \cdot \vec{B} = 3$ is ______. (IIT-JEE, 1985)
- 6. Let $\vec{b} = 4\hat{i} + 3\hat{j}$ and \vec{c} be two vectors perpendicular to each other in the xy-plane. All vectors in the same plane having projections 1 and 2 along \vec{b} and \vec{c} , respectively, are given by ______.

 (IIT-JEE, 1987)
- 7. The components of a vector \vec{a} along and perpendicular to a non-zero vector \vec{b} are and ______, respectively. (IIT-JEE, 1988)
- 8. A unit vector coplanar with $\vec{i} + \vec{j} + 2\vec{k}$ and $\vec{i} + 2\vec{j} + \vec{k}$ and perpendicular to $\vec{i} + \vec{j} + \vec{k}$ is ______. (IIT-JEE, 1992)
- 9. A non-zero vector \vec{a} is parallel to the line of intersection of the plane determined by vectors \hat{i} and $\hat{i} + \hat{j}$ and the plane determined by vectors $\hat{i} \hat{j}$ and $\hat{i} + \hat{k}$. The angle between \vec{a} and vector $\hat{i} 2\hat{j} + 2\hat{k}$ is ______. (IIT-JEE, 1996)
- 10. If \vec{b} and \vec{c} are mutually perpendicular unit vectors and \vec{a} is any vector, then $(\vec{a} \cdot \vec{b}) \vec{b} + (\vec{a} \cdot \vec{c}) \vec{c} + \frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{|\vec{b} \times \vec{c}|} (\vec{b} \times \vec{c}) = \underline{\qquad}$ (IIT-JEE, 1996)
- 11. Let \vec{a} , \vec{b} and \vec{c} be three vectors having magnitudes 1, 1 and 2, respectively. If $\vec{a} \times (\vec{a} \times \vec{c}) + \vec{b} = \vec{0}$, then the acute angle between \vec{a} and \vec{c} is _____. (IIT-JEE, 1997)
- 12. A, B, C and D are four points in a plane with position vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} , respectively, such that $(\vec{a} \vec{d}) \cdot (\vec{b} \vec{c}) = (\vec{b} \vec{d}) \cdot (\vec{c} \vec{a}) = 0$. Then point D is the _______ of triangle ABC.

(HT-JEE, 1984)

13. Let $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = 10\overrightarrow{a} + 2\overrightarrow{b}$ and $\overrightarrow{OC} = \overrightarrow{b}$, where O, A and C are non-collinear points. Let p denote the area of the quadrilateral OABC, and let q denote the area of the parallelogram with OA and OC as (IIT-JEE, 1997) adjacent sides. If p = kq, then k =____

14. If $\vec{a} = \hat{j} + \sqrt{3}\hat{k}$, $\vec{b} = -\hat{j} + \sqrt{3}\hat{k}$ and $\vec{c} = 2\sqrt{3}\hat{k}$ form a triangle, then the internal angle of the triangle between \vec{a} and \vec{b} is (IIT-JEE, 2011)

True or false

1. Let \vec{A} , \vec{B} and \vec{C} be unit vectors such that $\vec{A} \cdot \vec{B} = \vec{A} \cdot \vec{C} = 0$ and the angle between \vec{B} and \vec{C} is $\pi/3$. Then $\overrightarrow{A} = \pm 2 (\overrightarrow{B} \times \overrightarrow{C})$. (IIT-JEE, 1981)

2. If $\vec{X} \cdot \vec{A} = 0$, $\vec{X} \cdot \vec{B} = 0$ and $\vec{X} \cdot \vec{C} = 0$ for some non-zero vector \vec{X} , then $[\vec{A} \vec{B} \vec{C}] = 0$.

(IIT-JEE, 1983)

3. For any three vectors \vec{a} , \vec{b} and \vec{c} , $(\vec{a} - \vec{b}) \cdot (\vec{b} - \vec{c}) \times (\vec{c} - \vec{a}) = 2\vec{a} \cdot \vec{b} \times \vec{c}$. (IIT-JEE, 1989)

Multiple choice questions with one correct answer

1. The scalar $\vec{A} \cdot (\vec{B} + \vec{C}) \times (\vec{A} + \vec{B} + \vec{C})$ equals

b. $[\overrightarrow{A} \overrightarrow{B} \overrightarrow{C}] + [\overrightarrow{B} \overrightarrow{C} \overrightarrow{A}]$ **c.** $[\overrightarrow{A} \overrightarrow{B} \overrightarrow{C}]$

d none of these

(HT-JEE, 1981)

2. For non-zero vectors \vec{a} , \vec{b} and \vec{c} , $|(\vec{a} \times \vec{b}) \cdot \vec{c}| = |\vec{a}| |\vec{b}| |\vec{c}|$ holds if and only if

 $\mathbf{a.} \quad \vec{a} \cdot \vec{b} = 0, \ \vec{b} \cdot \vec{c} = 0$

c $\overrightarrow{c} \cdot \overrightarrow{a} = 0, \overrightarrow{a} \cdot \overrightarrow{b} = 0$

h $\overrightarrow{b} \cdot \overrightarrow{c} = 0, \overrightarrow{c} \cdot \overrightarrow{a} = 0$ **d** $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{c} = \overrightarrow{c} \cdot \overrightarrow{a} = 0$ (IIT-JEE, 1982)

The volume of the parallelopiped whose sides are given by $\overrightarrow{OA} = 2i - 2j$, $\overrightarrow{OB} = i + j - k$ and \overrightarrow{OC} =3i-k is

a. 4/13

(IIT-JEE, 1983)

4. Let \vec{a} , \vec{b} and \vec{c} be three non-coplanar vectors and \vec{p} , \vec{q} and \vec{r} the vectors defined by the relations

$$\vec{p} = \frac{\vec{b} \times \vec{c}}{[\vec{a} \ \vec{b} \ \vec{c}]}, \vec{q} = \frac{\vec{c} \times \vec{a}}{[\vec{a} \ \vec{b} \ \vec{c}]} \text{ and } \vec{r} = \frac{\vec{a} \times \vec{b}}{[\vec{a} \ \vec{b} \ \vec{c}]}. \text{ Then the value of the expression } (\vec{a} + \vec{b}) \cdot \vec{p} + (\vec{b} + \vec{c}) \cdot \vec{q} + (\vec{c} + \vec{a}) \cdot \vec{r} \text{ is}$$

b. 1

c. 2

d 3

(IIT-JEE, 1988)

5. Let $\vec{a} = \hat{i} - \hat{j}$, $\vec{b} = \hat{j} - \hat{k}$ and $\vec{c} = \hat{k} - \hat{i}$. If \vec{d} is a unit vector such that $\vec{a} \cdot \vec{d} = 0 = [\vec{b} \ \vec{c} \ \vec{d}]$, then \vec{d} equals

a.
$$\pm \frac{\hat{i} + \hat{j} - 2\hat{k}}{\sqrt{6}}$$
 b. $\pm \frac{\hat{i} + \hat{j} - \hat{k}}{\sqrt{3}}$ **c.** $\pm \frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$ **d.** $\pm \hat{k}$

(IIT-JEE, 1995)

6.	If \vec{a} , \vec{b} and \vec{c} are non- \vec{a} and \vec{b} is			$\frac{+c}{\sqrt{2}}$, then the angle between
	a. $3\pi/4$	$\mathbf{h} = \pi/4$	c. $\pi/2$	d. π (HT-JEE, 1995)
7.	Let \overrightarrow{u} , \overrightarrow{v} and \overrightarrow{w} be very \overrightarrow{u} by \overrightarrow{v} by \overrightarrow{v} by \overrightarrow{v} by \overrightarrow{v} by \overrightarrow{v} is	etors such that $\vec{u} + \vec{v} + \vec{v}$	$\overrightarrow{w} = 0$. If $ \overrightarrow{u} = 3$, $ \overrightarrow{v} $	\overrightarrow{v} = 4 and $ \overrightarrow{w} $ = 5, then
	a. 47	b -25	c. 0	d. 25
			55 0	(HT-JEE, 1995)
8.	If \vec{a} , \vec{b} and \vec{c} are three	non-coplanar vectors, the	en $(\vec{a} + \vec{b} + \vec{c}) \cdot [(\vec{a} + \vec{b})]$	$\times (\vec{a} + \vec{c})$] equals
	a. 0	$\mathbf{h} [\vec{a} \ \vec{b} \ \vec{c}]$	$\mathbf{c.} \ \ 2 \left[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c} \right]$	$\mathbf{d} = \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$ (IIT-JEE, 1995)
9.	9. \overrightarrow{p} , \overrightarrow{q} and \overrightarrow{r} are three mutually perpendicular vectors of the same magnitude. If vector \overrightarrow{x} satisfies			
	equation $\overrightarrow{p} \times ((\overrightarrow{x} - \overrightarrow{q})$	$\times \vec{p}) + \vec{q} \times ((\vec{x} - \vec{r}) \times \vec{q}) +$	$\overrightarrow{r} \times ((\overrightarrow{x} - \overrightarrow{p}) \times \overrightarrow{r}) = \overrightarrow{0},$	then \vec{x} is given by
	$\mathbf{a.} \frac{1}{2} (\vec{p} + \vec{q} - 2\vec{r})$	$\mathbf{h} \frac{1}{2} (\vec{p} + \vec{q} + \vec{r})$	$\mathbf{c.} \frac{1}{3} (\stackrel{\rightarrow}{p} + \stackrel{\rightarrow}{q} + \stackrel{\rightarrow}{r})$	$\mathbf{d.} \frac{1}{3} (2 \vec{p} + \vec{q} - \vec{r})$
				(HT-JEE, 1997)
10.	Let $\vec{a} = 2i + j - 2k$ an	db = i + j. If c is a vector	such that $\overrightarrow{a} \cdot \overrightarrow{c} = \overrightarrow{c} $,	$\overrightarrow{c} - \overrightarrow{a} = 2\sqrt{2}$ and the angle
	10. Let $\vec{a} = 2i + j - 2k$ and $\vec{b} = i + j$. If \vec{c} is a vector such that $\vec{a} \cdot \vec{c} = \vec{c} $, $ \vec{c} - \vec{a} = 2\sqrt{2}$ and the a between $\vec{a} \times \vec{b}$ and \vec{c} is 30°, then $ (\vec{a} \times \vec{b}) \times \vec{c} $ is equal to			
	a. 2/3	b. 3/2	c. 2	d 3
				(HT-JEE, 1999)
11.	Let $\vec{a} = 2i + j + k$, $\vec{b} = is$	= i + 2j - k and a unit vector	\overrightarrow{c} be coplanar. If \overrightarrow{c} is	perpendicular to \vec{a} , then \vec{c}
		h $\frac{1}{\sqrt{3}} (-i-j-k)$	c. $\frac{1}{\sqrt{5}}(i-2j)$	$\mathbf{d.} \frac{1}{\sqrt{3}} \ (i-j-k)$
12.	If the vectors \vec{a} , \vec{b} and	\overrightarrow{c} form the sides BC, CA	and AB, respectively, o	of triangle ABC, then
	a. $\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}$	=0	$\mathbf{h} \vec{a} \times \vec{b} = \vec{b} \times \vec{c} =$	$=\stackrel{\rightarrow}{c}\times\stackrel{\rightarrow}{a}$
	c. $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a}$		$\mathbf{d} \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} = 0$	$\overrightarrow{c} \times \overrightarrow{a} = \overrightarrow{0}$
				(IIT-JEE, 2000)
13.				dP_2 be planes determined by
	the pairs of vectors \vec{a} , \vec{b} and \vec{c} , \vec{d} , respectively. Then the angle between P_1 and P_2 is			P_1 and P_2 is
	a. 0	\mathbf{b} $\pi/4$	c. $\pi/3$	d. π/2 (HT-JEE, 2000)

14. If \vec{a} , \vec{b} and \vec{c} are unit coplanar vectors, then the scalar triple product $[2\vec{a} - \vec{b} \ 2\vec{b} - \vec{c} \ 2\vec{c} - \vec{a}]$ is

b. 1

a. 0

c. $-\sqrt{3}$

(IIT-JEE, 2000)

15.	If \hat{a} , \hat{b} and \hat{c} are unit vectors	\hat{a} , \hat{b} and \hat{c} are unit vectors, then $ \hat{a} - \hat{b} ^2 + \hat{b} - \hat{c} ^2 + \hat{c} - \hat{a} ^2$ does not exceed			
	a. 4	b 9	c. 8	d. 6 (IIT-JEE, 2001)	
16.	If \vec{a} and \vec{b} are two unit vectors such that $\vec{a} + 2\vec{b}$ and $5\vec{a} - 4\vec{b}$ are perpendicular to each other, then				
	the angle between \vec{a} and \vec{b} a. 45°	h 60°	c. cos ⁻¹ (1/3)	(HT-JEE, 2002)	
17.	Let $\vec{V} = 2\hat{i} + \hat{j} - \hat{k}$ and $\vec{W} = $ product $[\vec{U} \ \vec{V} \ \vec{W}]$ is	Let $\vec{V} = 2\hat{i} + \hat{j} - \hat{k}$ and $\vec{W} = \hat{i} + 3\hat{k}$. If \vec{U} is a unit vector, then the maximum value of the scalar triple			
	a 1	h $\sqrt{10} + \sqrt{6}$	c. $\sqrt{59}$	d. $\sqrt{60}$ (IIT-JEE, 2002)	
18.	The value of a so that the minimum is	volume of parallelopip	ped formed by $\hat{i} + a \hat{j} +$	\hat{k} , $\hat{j} + a\hat{k}$ and $a\hat{i} + \hat{k}$ is	
	a. -3	b. 3	c. $1/\sqrt{3}$	d $\sqrt{3}$ (HT-JEE, 2003)	
19.	If $\vec{a} = (\hat{i} + \hat{j} + \hat{k}), \vec{a} \cdot \vec{b} = 1$	and $\vec{a} \times \vec{b} = \hat{j} - \hat{k}$, then	\vec{b} is	,	
	$\mathbf{a.} \hat{i} = \hat{j} + \hat{k}$	$\mathbf{b} 2\hat{j} - \hat{k}$	c. \hat{i}	d 2 _i	
20.	The unit vector which is $2\hat{i} + \hat{j} + \hat{k}$ and $\hat{i} - \hat{j} + \hat{k}$		or $5\hat{j} + 2\hat{j} + 6\hat{k}$ and is	(IIT-JEE, 2004) s coplanar with vectors	
	$\mathbf{a.} \frac{2\hat{i} - 6\hat{j} + \hat{k}}{\sqrt{41}}$	$\mathbf{h} \frac{2\hat{i} - 3\hat{j}}{\sqrt{13}}$	$\mathbf{c.} \frac{3\hat{i} - \hat{k}}{\sqrt{10}}$	$\mathbf{d} \frac{4\hat{i} + 3\hat{j} - 3\hat{k}}{\sqrt{34}}$	
				(HT-JEE, 2004)	
21.	If \vec{a} , \vec{b} and \vec{c} are three non	a-zero, non-coplanar vec	etors and $\vec{b_1} = \vec{b} - \frac{\vec{b} \cdot \vec{a}}{ \vec{a} ^2} \vec{a}$	$\vec{a}, \vec{b}_2 = \vec{b} + \frac{\vec{b} \cdot \vec{a}}{ \vec{a} ^2} \vec{a},$	
	$\vec{c}_1 = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{ \vec{a} ^2} \vec{a} + \frac{\vec{b} \cdot \vec{c}}{ \vec{c} ^2} \vec{b}_1,$	$ \overset{\rightarrow}{c_2} = \vec{c} - \frac{\overset{\rightarrow}{c \cdot a}}{\overset{\rightarrow}{ a ^2}} \vec{a} - \frac{\overset{\rightarrow}{b \cdot c}}{\overset{\rightarrow}{ b_1 ^2}} $	\vec{b}_1 , $\vec{c}_3 = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{ \vec{c} ^2} \vec{a} + \frac{\vec{b} \cdot \vec{c}}{ \vec{c} ^2}$	$\frac{\overrightarrow{c}}{ ^2}\overrightarrow{b_1}$,	
	$\vec{c_4} = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{ \vec{c} ^2} \vec{a} = \frac{\vec{b} \cdot \vec{c}}{ \vec{b} ^2} \vec{b_1},$	then the set of orthogo	nal vectors is		
	$\mathbf{a} (\vec{a}, \vec{b_1}, \vec{c_3})$	$\mathbf{h} (\overrightarrow{a}, \overrightarrow{b_1}, \overrightarrow{c_2})$	$\mathbf{c.} (\vec{a}, \vec{b_{i}}, \vec{c_{i}})$	d. $(\overrightarrow{a}, \overrightarrow{b_2}, \overrightarrow{c_2})$ (IIT-JEE, 2005)	

22. Let $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$, $\vec{b} = \hat{i} - \hat{j} + \hat{k}$ and $\vec{c} = \hat{i} + \hat{j} - \hat{k}$. A vector in the plane of \vec{a} and \vec{b} whose projection on $\stackrel{\rightarrow}{c}$ is $1/\sqrt{3}$, is

a.
$$4\hat{i} - \hat{j} + 4\hat{k}$$

b.
$$3\hat{i} + \hat{j} - 3\hat{k}$$
 c. $2\hat{i} + \hat{j} - 2\hat{k}$ **d.** $4\hat{i} + \hat{j} - 4\hat{k}$

c.
$$2\hat{i} + \hat{j} - 2\hat{k}$$

$$4\hat{i} + \hat{j} - 4\hat{k}$$

23. Let two non-collinear unit vectors \hat{a} and \hat{b} form an acute angle. A point P moves so that at any time t, the position vector \overrightarrow{OP} (where O is the origin) is given by $\hat{a} \cot t + \hat{b} \sin t$. When P is farthest from origin O, let M be the length of \overrightarrow{OP} and u be the unit vector along \overrightarrow{OP} . Then

a.
$$\hat{u} = \frac{\hat{a} + \hat{b}}{|\hat{a} + \hat{b}|}$$
 and $M = (1 + \hat{a} \cdot \hat{b})^{1/2}$

b.
$$\hat{u} = \frac{\hat{a} - \hat{b}}{|\hat{a} - \hat{b}|}$$
 and $M = (1 + \hat{a} \cdot \hat{b})^{1/2}$

c.
$$\hat{u} = \frac{\hat{a} + \hat{b}}{|\hat{a} + \hat{b}|}$$
 and $M = (1 + 2\hat{a} \cdot \hat{b})^{1/2}$

$$\mathbf{d} \quad \hat{u} = \frac{\hat{a} - \hat{b}}{|\hat{a} - \hat{b}|} \text{ and } M = (1 + 2\hat{a} \cdot \hat{b})^{1/2}$$

(IIT-JEE, 2008)

24. If \vec{a} , \vec{b} , \vec{c} and \vec{d} are unit vectors such that $(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = 1$ and $\vec{a} \cdot \vec{c} = \frac{1}{2}$, then

- **a.** \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are non-coplanar
- \vec{b} , \vec{c} and \vec{d} are non-coplanar
- c. \vec{b} and \vec{d} are non-parallel
- **d** \overrightarrow{a} and \overrightarrow{d} are parallel and \overrightarrow{b} and \overrightarrow{c} are parallel

(HT-JEE, 2009)

Two adjacent sides of a parallelogram ABCD are given by $\overrightarrow{AB} = 2\hat{i} + 10\hat{j} + 11\hat{k}$ and $\overline{AD} = -\hat{i} + 2\hat{j} + 2\hat{k}$. The side AD is rotated by an acute angle α in the plane of the parallelogram so that AD becomes AD'. If AD' makes a right angle with the side AB, then the cosine of the angle α is given by

a.
$$\frac{8}{9}$$

b
$$\frac{\sqrt{17}}{9}$$

c.
$$\frac{1}{9}$$

c.
$$\frac{1}{9}$$
 d. $\frac{4\sqrt{5}}{9}$

(IIT-JEE, 2010)

- **26.** Let P, Q, R and S be the points on the plane with position vectors $-2\hat{i} \hat{j}$, $4\hat{i}$, $3\hat{i} + 3\hat{j}$ and $-3\hat{j} + 2\hat{j}$ respectively. The quadrilateral PORS must be a
 - a. parallelogram, which is neither a rhombus nor a rectangle
 - b. square
 - c. rectangle, but not a square
 - d rhombus, but not a square

(HT-JEE, 2010)

- 27. Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} \hat{j} + \hat{k}$ and $\vec{c} = \hat{i} \hat{j} \hat{k}$ be three vectors. A vector \vec{v} in the plane of \vec{a} and \vec{b} , whose projection on \vec{c} is $\frac{1}{\sqrt{3}}$, is given by
 - **a.** $\hat{i} 3\hat{i} + 3\hat{k}$
- **b.** $-3\hat{i} 3\hat{j} + \hat{k}$ **c.** $3\hat{i} \hat{j} + 3\hat{k}$ **d.** $\hat{i} + 3\hat{j} 3\hat{k}$

(HT-JEE, 2011)

Multiple choice questions with one or more than one correct answer

1. Let $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$, $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ and $\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$ be three non-zero vectors such that \vec{c} is a unit vector perpendicular to both vectors \vec{a} and \vec{b} . If the angle between \vec{a} and \vec{b} is

$$\pi/6$$
, then $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}^2$ is equal to

- **b.** 1

c.
$$\frac{1}{4} \left(a_1^2 + a_2^2 + a_2^2 \right) \left(b_1^2 + b_2^2 + b_3^2 \right)$$

d
$$\frac{3}{4} \left(a_1^2 + a_2^2 + a_3^2 \right) \left(b_1^2 + b_2^2 + b_3^2 \right) \left(c_1^2 + c_2^2 + c_3^2 \right)$$

(IIT-JEE, 1986)

- The number of vectors of unit length perpendicular to vectors $\vec{a} = (1, 1, 0)$ and $\vec{b} = (0, 1, 1)$ is
 - a. one

- c. three

3. Let $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} - \hat{k}$ and $\vec{c} = \hat{i} + \hat{j} - 2\hat{k}$ be three vectors. A vector in the plane of \vec{b} and \vec{c} , whose projection on \vec{a} is of magnitude $\sqrt{2/3}$, is

- **a.** $2\hat{i} + 3\hat{j} 3\hat{k}$ **b.** $2\hat{i} + 3\hat{j} + 3\hat{k}$ **c.** $-2\hat{i} \hat{j} + 5\hat{k}$ **d.** $2\hat{i} + \hat{j} + 5\hat{k}$

4. For three vectors \overrightarrow{u} , \overrightarrow{v} and \overrightarrow{w} which of the following expressions is not equal to any of the remaining three?

$$\mathbf{a.} \quad \stackrel{\rightarrow}{u} \cdot (\stackrel{\rightarrow}{v} \times \stackrel{\rightarrow}{w})$$

b.
$$(\overrightarrow{v} \times \overrightarrow{w}) \cdot \overrightarrow{u}$$

$$v \cdot (\overrightarrow{u} \times \overrightarrow{w})$$

d
$$(\overrightarrow{u} \times \overrightarrow{v}) \cdot \overrightarrow{w}$$

(IIT-JEE, 1998)

(HT-JEE, 1999)

- 7. Vector $\frac{1}{3}(2\hat{i}-2\hat{j}+\hat{k})$ is
 - a. a unit vector
 - **h** makes an angle $\pi/3$ with vector $(2\hat{i} 4\hat{j} + 3\hat{k})$
 - **c.** parallel to vector $\left(-\hat{i} + \hat{j} \frac{1}{2}\hat{k}\right)$
 - **d** perpendicular to vector $3\hat{i} + 2\hat{j} 2\hat{k}$ (IIT-JEE, 1994)
- **8.** Let \vec{A} be a vector parallel to the line of intersection of planes P_1 and P_2 . Plane P_1 is parallel to vectors $2\hat{j} + 3\hat{k}$ and $4\hat{j} - 3\hat{k}$ and P_2 is parallel to $\hat{j} - \hat{k}$ and $3\hat{i} + 3\hat{j}$. Then the angle between vector \vec{A} and a given vector $2\hat{i} + \hat{j} - 2\hat{k}$ is

- c. $\pi/6$
- **d.** $3\pi/4$

(IIT-JEE, 2006)

- 9. The vector(s) which is/are coplanar with vectors $\hat{i} + \hat{j} + 2\hat{k}$ and $\hat{i} + 2\hat{j} + \hat{k}$, and perpendicular to vector $\hat{i} + \hat{j} + \hat{k}$ is/are
 - **a.** $\hat{j} \hat{k}$

- $\mathbf{h} \hat{i} + \hat{j} \qquad \qquad \mathbf{c.} \quad \hat{i} \hat{j}$
- $\mathbf{d}_{i} \hat{i} + \hat{k}$

(HT-JEE, 2011)

Integer Answer Type

- 1. If \vec{a} and \vec{b} are vectors in space given by $\vec{a} = \frac{\hat{i} 2\hat{j}}{\sqrt{5}}$ and $\vec{b} = \frac{2\hat{i} + \hat{j} + 3\hat{k}}{\sqrt{14}}$, then find the value of $(2\vec{a} + \vec{b}) \cdot [(\vec{a} \times \vec{b}) \times (\vec{a} - 2\vec{b})]$ (HT-JEE, 2010)
- 2. Let $\vec{a} = -\hat{i} \hat{k}$, $\vec{b} = -\hat{i} + \hat{j}$ and $\vec{c} = \hat{i} + 2\hat{j} + 3\hat{k}$ be three given vectors. If \vec{r} is a vector such that $\vec{r} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{r} \cdot \vec{a} = 0$, then find the value of $\vec{r} \cdot \vec{b}$. (IIT-JEE, 2011)

ANSWERS AND SOLUTIONS

Subjective Type

1. $D = D_1 D_2$ (see determinants)

$$= 2 \begin{vmatrix} a^2 & a & 1 \\ b^2 & b & 1 \\ c^2 & c & 1 \end{vmatrix} \begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix} = 0$$

Since \overrightarrow{A} , \overrightarrow{B} and \overrightarrow{C} are non-coplanar, $D_1 \neq 0$,

$$D_2 = 0$$
 or $\begin{vmatrix} x^2 & x & 1 \\ y^2 & y & 1 \\ z^2 & z & 1 \end{vmatrix} = 0$
or \vec{X} , \vec{Y} and \vec{Z} are coplanar.

2.

Fig. 2.31

If the centre P is with position vector \overrightarrow{r} , then

$$\vec{a} - \vec{r} = \overrightarrow{PA}$$
, $\vec{b} - \vec{r} = \overrightarrow{PB}$, $\vec{c} - \vec{r} = \overrightarrow{PC}$

where
$$|\overrightarrow{PA}| = |\overrightarrow{PB}| = |\overrightarrow{PC}| = |\overrightarrow{OP}| = |\overrightarrow{r}|$$

Consider
$$|\vec{a} - \vec{r}| = |\vec{r}|$$

$$\Rightarrow (\overrightarrow{a} - \overrightarrow{r}) \cdot (\overrightarrow{a} - \overrightarrow{r}) = \overrightarrow{r} \cdot \overrightarrow{r}$$

$$\Rightarrow a^2 - 2\overrightarrow{a} \cdot \overrightarrow{r} + r^2 = r^2 \Rightarrow a^2 = 2\overrightarrow{a} \cdot \overrightarrow{r}$$

Similarly,
$$b^2 = 2\vec{b} \cdot \vec{r}$$
, $c^2 = 2\vec{c} \cdot \vec{r}$

Since $(\vec{b} \times \vec{c})$, $(\vec{c} \times \vec{a})$ and $(\vec{a} \times \vec{b})$ are non coplanar, then $\vec{r} = x(\vec{b} \times \vec{c}) + y(\vec{c} \times \vec{a}) + z(\vec{a} \times \vec{b})$

$$\Rightarrow \overrightarrow{a} \cdot \overrightarrow{r} = x\overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c}) + y \cdot 0 + z \cdot 0 = x [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] \Rightarrow x = \frac{\overrightarrow{a} \cdot \overrightarrow{r}}{|\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}|} = \frac{a^2}{2[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]}$$

Similarly,
$$y = \frac{b^2}{2[\vec{a} \vec{b} \vec{c}]}$$
 and $z = \frac{c^2}{2[\vec{a} \vec{b} \vec{c}]}$

Hence
$$\vec{r} = \frac{a^2(\vec{b} \times \vec{c}) + b^2(\vec{c} \times \vec{a}) + c^2(\vec{a} \times \vec{b})}{2[\vec{a} \vec{b} \vec{c}]}$$

3.

Fig. 2.32

Let O be the origin of reference and A, B, C vertices with position vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} , respectively. A vector normal to plane ABC is $\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}$ and $\overrightarrow{OA} = \overrightarrow{a}$.

The angle between a line and a plane is equal to the complement of the angle between the line and the normal to the plane. Thus, if θ denotes the angle between the face and edge, then

$$\sin \theta = \frac{(\vec{b} \times \vec{c} + \vec{c} \times \vec{a} + \vec{a} \times \vec{b}) \cdot \vec{a}}{(\vec{b} \times \vec{c} + \vec{c} \times \vec{a} + \vec{a} \times \vec{b}) \cdot \vec{a}} = \frac{\vec{a} \vec{b} \vec{c}}{(\vec{b} \times \vec{c} + \vec{c} \times \vec{a} + \vec{a} \times \vec{b}) \cdot \vec{a}} = \frac{\vec{a} \vec{b} \vec{c}}{(\vec{b} \times \vec{c} + \vec{c} \times \vec{a} + \vec{a} \times \vec{b}) \cdot \vec{a}} = \frac{\vec{a} \vec{b} \vec{c}}{(\vec{b} \times \vec{c} + \vec{c} \times \vec{a} + \vec{a} \times \vec{b}) \cdot \vec{a}}$$

Now
$$[\vec{a} \ \vec{b} \ \vec{c}]^2 = \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c} \end{vmatrix} = k^6 \begin{vmatrix} 1 & \cos 60^\circ & \cos 60^\circ \\ \cos 60^\circ & 1 & \cos 60^\circ \\ \cos 60^\circ & \cos 60^\circ & 1 \end{vmatrix}$$
, (where k is the length of the side of the tetrahectron)

$$= k^6 \left(\frac{3}{4} - \frac{1}{8} - \frac{1}{8} \right) = \frac{1}{2} k^6$$

Also, $(\vec{b} \times \vec{c} + \vec{c} \times \vec{a} + \vec{a} \times \vec{b})$ is twice the area of triangle *ABC*, which is equilateral with each side k so that this is $\frac{\sqrt{3}}{2}k^2$.

Hence
$$\sin \theta = \frac{\frac{k^3}{\sqrt{2}}}{\frac{\sqrt{3}}{2}k^2 \cdot k} = \frac{2}{\sqrt{6}} \Rightarrow \cos \theta = \frac{1}{\sqrt{3}}.$$

4.

Fig. 2.33

Taking A as origin, let \vec{b} and \vec{c} be the position vectors of B and C, respectively.

The position vector of Q is $\frac{3\vec{b}+\vec{c}}{4}$ and that of P is $\frac{\vec{b}}{4}$.

If
$$\frac{AR}{QR} = \frac{\lambda}{1}$$
, then position vector of $R = \lambda \left(\frac{3\vec{b} + \vec{c}}{4} \right)$ (i)

If
$$\frac{CR}{RP} = \frac{\mu}{1}$$
, then position vector of $R = \frac{\mu \frac{b}{4} + c}{\mu + 1}$ (ii)

Comparing (i) and (ii), we have

$$\frac{3\lambda}{4} = \frac{\mu}{4(\mu+1)} \text{ and } \frac{\lambda}{4} = \frac{1}{\mu+1}$$

Solving,
$$\lambda = \frac{4}{13}$$
 and $\mu = 12$

Therefore, position vector R is $\frac{3\vec{b}+\vec{c}}{13}$.

 $\triangle ABC$ and $\triangle BRC$ have the same base. Therefore, areas are proportional to AQ and RQ.

$$\frac{\Delta ABC}{\Delta BRC} = \frac{\begin{vmatrix} \vec{3}\vec{b} + \vec{c} \\ 4 \end{vmatrix}}{\begin{vmatrix} \vec{3}\vec{b} + \vec{c} \\ 4 \end{vmatrix}} = \frac{13}{9}$$

Area of $\triangle ABC$ is 13/9 units.

5.
$$\frac{\text{Area of } \Delta ABC}{\text{Area of } \Delta AOC} = \frac{\frac{1}{2} |\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}|}{\frac{1}{2} |\vec{a} \times \vec{c}|}$$
Now $\vec{a} + 2\vec{b} + 3\vec{c} = \vec{0}$

$$\Rightarrow \vec{a} \times \vec{b} = 3(\vec{b} \times \vec{c})$$

Cross multiply with \vec{a} , $2\vec{a} \times \vec{b} + 3\vec{a} \times \vec{c} = 0$

$$\Rightarrow \vec{a} \times \vec{b} = \frac{3}{2} (\vec{c} \times \vec{a})$$

$$\vec{a} \times \vec{b} = \frac{3}{2} (\vec{c} \times \vec{a}) = 3(\vec{b} \times \vec{c})$$

Let
$$(\vec{c} \times \vec{a}) = \vec{p}$$

$$\vec{a} \times \vec{b} = \frac{3\vec{p}}{2}; \vec{b} \times \vec{c} = \frac{\vec{p}}{2}$$

$$\therefore \text{Ratio} = \frac{|\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}|}{|\vec{c} \times \vec{a}|}$$

$$=\frac{\begin{vmatrix} \overrightarrow{3} \overrightarrow{p} + \overrightarrow{p} + \overrightarrow{p} \\ 2 + 2 \end{vmatrix}}{\begin{vmatrix} \overrightarrow{p} \end{vmatrix}}$$

$$= \frac{3|\overrightarrow{p}|}{|\overrightarrow{p}|} = 3$$

6. In tetrahedron *OABC*, take *O* as the initial point and let the position vectors of *A*, *B* and *C* be \vec{a} , \vec{k} and \vec{c} , respectively; then volume of the tetrahedron is equal to $\frac{1}{6}\vec{a}$. $(\vec{k} \times \vec{c})$.

Also $\overrightarrow{BC} = \overrightarrow{c} - \overrightarrow{k}$ so that volume of tetrahedron

$$V = \frac{1}{6} \vec{a} \cdot (\vec{k} \times (\vec{k} + \overrightarrow{BC})) = \frac{1}{6} \vec{a} \cdot (\vec{k} \times \overrightarrow{BC}) = \frac{1}{6} \vec{k} \cdot (\overrightarrow{BC} \times \vec{a})$$

 $=\frac{1}{6}\vec{k}$. $|BC||a|\sin\theta\hat{n}$, where \hat{n} is the unit vector along PN, the line perpendicular to both OA and BC. Also |BC| = b.

Here $V = \frac{1}{6}ab\sin\theta \vec{k} \cdot \hat{n} = \frac{1}{6}ab\sin\theta$ (projection of *OB* on *PN*)

 $\frac{1}{6}ab\sin\theta = (\text{perpendicular distance between } OA \text{ and } BC) = \frac{1}{6}ab\sin\theta . d = \frac{1}{6}abd\sin\theta$

7. Let \vec{a} , \vec{b} and \vec{c} be three vectors of magnitude $|\vec{a}|$ and equal inclination θ with each other.

The volume of parallelepiped = $\vec{a} \cdot (\vec{b} \times \vec{c}) = [\vec{a} \ \vec{b} \ \vec{c}]$

and
$$[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}]^2 = \begin{vmatrix} \overrightarrow{a} \cdot \overrightarrow{a} & \overrightarrow{a} \cdot \overrightarrow{b} & \overrightarrow{a} \cdot \overrightarrow{c} \\ \overrightarrow{b} \cdot \overrightarrow{a} & \overrightarrow{b} \cdot \overrightarrow{b} & \overrightarrow{b} \cdot \overrightarrow{c} \\ \overrightarrow{a} \cdot \overrightarrow{c} & \overrightarrow{b} \cdot \overrightarrow{c} & \overrightarrow{c} \cdot \overrightarrow{c} \end{vmatrix}$$

$$= |\vec{a}|^6 \begin{vmatrix} 1 & \cos\theta & \cos\theta \\ \cos\theta & 1 & \cos\theta \\ \cos\theta & \cos\theta & 1 \end{vmatrix}$$
$$= |\vec{a}|^6 (2\cos^3\theta - 3\cos^2\theta + 1)$$
$$= |\vec{a}|^6 (1 - \cos\theta)^2 (1 + 2\cos\theta)$$
$$\Rightarrow [\vec{a}\vec{b}\vec{c}] = |\vec{a}|^3 \sqrt{1 + 2\cos\theta} (1 - \cos\theta)$$

8. $\overrightarrow{p}, \overrightarrow{q} \text{ and } \overrightarrow{p} \times \overrightarrow{q} \text{ are perpendicular to each other. We have,}$ $(\overrightarrow{a} \cdot \overrightarrow{p}) \overrightarrow{p} + (\overrightarrow{a} \cdot \overrightarrow{q}) \overrightarrow{q} + (\overrightarrow{a} \cdot (\overrightarrow{p} \times \overrightarrow{q})) (\overrightarrow{p} \times \overrightarrow{q}) = \overrightarrow{a} | \overrightarrow{p}|^2,$ $(\overrightarrow{b} \cdot \overrightarrow{p}) \overrightarrow{p} + (\overrightarrow{b} \cdot \overrightarrow{q}) \overrightarrow{q} + (\overrightarrow{b} \cdot (\overrightarrow{p} \times \overrightarrow{q})) (\overrightarrow{p} \times \overrightarrow{q}) = \overrightarrow{b} | \overrightarrow{p}|^2,$ $(\overrightarrow{c} \cdot \overrightarrow{p}) \overrightarrow{p} + (\overrightarrow{c} \cdot \overrightarrow{q}) \overrightarrow{q} + (\overrightarrow{c} \cdot (\overrightarrow{p} \times \overrightarrow{q})) (\overrightarrow{p} \times \overrightarrow{q}) = \overrightarrow{c} | \overrightarrow{p}|^2$

Hence, the required distance is $|(\vec{a} + \vec{b} + \vec{c})||\vec{p}|^2$.

Fig. 2.34

$$= \sqrt{|\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2} \times |\vec{p}|^2$$

$$= 14 \times 4^2 - 224$$

9. Here \vec{A} , \vec{B} and \vec{C} are the vectors representing the sides of triangle ABC, where $\vec{A} = a \hat{i} + b \hat{j} + c \hat{k}$,

$$\vec{B} = d\hat{i} + 3\hat{j} + 4\hat{k} \text{ and } \vec{C} = 3\hat{i} + \hat{j} - 2\hat{k}.$$

Given that $\vec{A} = \vec{B} + \vec{C}$. Therefore

$$a\hat{i} + b\hat{j} + c\hat{k} = (d+3)\hat{i} + 4\hat{j} + 2\hat{k}$$

$$\Rightarrow \qquad a = d + 3, b = 4, c = 2$$

Now
$$\vec{B} \times \vec{C} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ d & 3 & 4 \\ 3 & 1 & -2 \end{vmatrix}$$

=-10
$$\hat{i}$$
 + (2d+12) \hat{j} + (d-9) \hat{k}
∴ Area of ΔABC = $\frac{1}{2} | \vec{B} \times \vec{C} |$
= $\frac{1}{2} \sqrt{[100 + (2d+12)^2 + (d-9)^2]}$
= $5\sqrt{6}$ (Given)
⇒ $\sqrt{(5d^2 + 30d + 325)} = 10\sqrt{6}$
⇒ $5d^2 + 30d - 275 = 0 \Rightarrow d^2 + 6d - 55 = 0$
⇒ (d+11) (d-5) = 0
⇒ d = 5 or -11

When d = 5, a = 8, b = 4 and c = 2, and when d = -11, a = -8, b = 4 and c = 2.

10.

Fig. 2.35

 $AM = |AB \sin \theta|$, where θ is the angle between \overrightarrow{AB} and \overrightarrow{c}

and
$$\sin \theta = \frac{|\overrightarrow{AB} \times \overrightarrow{c}|}{|\overrightarrow{AB}||\overrightarrow{c}|}$$

$$\Rightarrow AM = |\overrightarrow{AB}| \frac{|\overrightarrow{AB} \times \overrightarrow{c}|}{|\overrightarrow{AB}||\overrightarrow{c}|} = \frac{|(\overrightarrow{b} - \overrightarrow{a}) \times \overrightarrow{c}|}{|\overrightarrow{c}|}$$

Also
$$\overrightarrow{BM} = \frac{(\overrightarrow{a} - \overrightarrow{b}) \cdot \overrightarrow{c}}{|\overrightarrow{c}|} \frac{\overrightarrow{c}}{|\overrightarrow{c}|}$$

And
$$\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{BM}$$

$$\Rightarrow |\overrightarrow{AM}| = \left| \overrightarrow{b} - \overrightarrow{a} + \frac{(\overrightarrow{a} - \overrightarrow{b}) \cdot \overrightarrow{c}}{|\overrightarrow{c}|^2} \overrightarrow{c} \right|$$

11. We know that
$$[\vec{e_1} \ \vec{e_2} \ \vec{e_3}][\vec{E_1} \ \vec{E_2} \ \vec{E_3}] = \begin{vmatrix} \vec{e_1} \cdot \vec{E_1} & \vec{e_1} \cdot \vec{E_2} & \vec{e_1} \cdot \vec{E_3} \\ \vec{e_2} \cdot \vec{E_1} & \vec{e_2} \cdot \vec{E_2} & \vec{e_2} \cdot \vec{E_2} \\ \vec{e_3} \cdot \vec{E_1} & \vec{e_3} \cdot \vec{E_2} & \vec{e_3} \cdot \vec{E_3} \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

$$= 1$$

Objective Type

1. c. If
$$\vec{x} = \vec{y} \Rightarrow \hat{a} \cdot \vec{x} = \hat{a} \cdot \vec{y}$$
. This equality must hold for any arbitrary \hat{a}

2. **d.**
$$\vec{a} \times (\vec{a} \times \vec{b}) = \vec{c} \Rightarrow |\vec{a}| |\vec{a} \times \vec{b}| = |\vec{c}| (\because \vec{a} \perp (\vec{a} \times \vec{b}))$$

 $1 (1 \times 5) \sin \theta = 3 \Rightarrow \sin \theta = \frac{3}{5} \Rightarrow \tan \theta = \frac{3}{4}.$

3. **c.**
$$|\vec{a} + \vec{b} + \vec{c}|^2 = 6$$

$$\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 6$$

$$\Rightarrow |\vec{a}| = |\vec{b}| = |\vec{c}| \text{ and } \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cdot \cos \frac{\pi}{3}$$

i.e.,
$$\overrightarrow{a} \cdot \overrightarrow{b} = \frac{1}{2} |\overrightarrow{a}|^2$$

$$\therefore 3|\overrightarrow{a}|^2 + 3|\overrightarrow{a}|^2 = \dot{6}$$

$$\Rightarrow |\vec{a}|^2 \Rightarrow |\vec{a}| = 1$$

4. **b** Let
$$\vec{\alpha} = \frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|} + \frac{\vec{c}}{|\vec{c}|}$$

Since \vec{a}, \vec{b} and \vec{c} are mutually perpendicular vectors, if $\vec{\alpha}$ makes angles θ , $\phi \psi$ with \vec{a}, \vec{b} and \vec{c} , respectively, then

$$\vec{\alpha} \cdot \vec{a} = \frac{\vec{a} \cdot \vec{a}}{\vec{a}}$$

$$\Rightarrow |\vec{\alpha}| \cdot |\vec{a}| \cos \theta = |\vec{a}|$$

$$\Rightarrow \cos \theta = \frac{1}{|\vec{\alpha}|}$$

Similarly
$$\cos \phi = \frac{1}{|\alpha|}, \cos \psi = \frac{1}{|\alpha|}$$

$$\theta = \phi = \psi$$

5. c.
$$\overrightarrow{r} \times \overrightarrow{a} = \overrightarrow{b} \times \overrightarrow{a} \Rightarrow (\overrightarrow{r} - \overrightarrow{b}) \times \overrightarrow{a} = 0$$

$$\vec{r} \times \vec{b} = \vec{a} \times \vec{b} \Rightarrow (\vec{r} - \vec{a}) \times \vec{b} = 0$$

If
$$\vec{r} = x \hat{i} + y \hat{j} + z \hat{k}$$
, then

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x - 2 & y & z + 1 \\ 1 & 1 & 0 \end{vmatrix} = 0 \text{ and } \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x - 1 & y - 1 & z \\ 2 & 0 & -1 \end{vmatrix} = 0$$

$$\Rightarrow$$
 z + 1 = 0, x - y = 2 and y - 1 = 0, x - 1 + 2z = 0

$$\Rightarrow x = 3, y = 1, z = -1$$

6.
$$\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a} \times \overrightarrow{b}|$$

$$\Rightarrow |\vec{a}||\vec{b}||\cos\theta| = |\vec{a}||\vec{b}||\sin\theta|$$
 (where θ is the angle between \vec{a} and \vec{b})

$$\Rightarrow |\cos \theta| = |\sin \theta|$$

$$\Rightarrow \theta = \frac{\pi}{4} \text{ or } \frac{3\pi}{4} \text{ (as } 0 \le \theta \le \pi)$$

But
$$\vec{a} \cdot \vec{b} < 0$$
, therefore $\theta = \frac{3\pi}{4}$

7. **c.**
$$|\vec{a} + \vec{b} + \vec{c}|^2 = 1$$

$$\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2|\vec{a}||\vec{b}|\cos\theta_1 + 2|\vec{b}||\vec{c}|\cos\theta_2 + 2|\vec{c}||\vec{a}|\cos\theta_3 = 1$$

$$\Rightarrow \cos \theta_1 + \cos \theta_2 + \cos \theta_3 = -1$$

$$\Rightarrow \cos \theta_1 + \cos \theta_2 + \cos \theta_3 = -1$$

\Rightarrow One of θ_1 , θ_2 and θ_3 should be an obtuse angle.

8. b.
$$|\vec{a} \times \vec{b} - \vec{a} \times \vec{c}|^2 = |\vec{a} \times (\vec{b} - \vec{c})|^2 = |\vec{a}|^2 |\vec{b} - \vec{c}|^2 - (\vec{a} \cdot (\vec{b} - \vec{c}))^2 = |\vec{b} - \vec{c}|^2$$

$$= |\vec{b}|^2 + |\vec{c}|^2 - 2|\vec{b}||\vec{c}|\cos\frac{\pi}{3} = 1$$

9.
$$\mathbf{c.} R(\overrightarrow{r})$$
 moves on PQ .

$$\frac{\overrightarrow{R(r)}}{\overrightarrow{P(p)}} \qquad \overrightarrow{Q(q)}$$

10. **b.**
$$|\overrightarrow{AC} \times \overrightarrow{BD}| = 2 |\overrightarrow{AB} \times \overrightarrow{AD}|$$

$$= 2 \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 4 & -5 \\ 1 & 2 & 3 \end{vmatrix}$$
$$= 12 \left[\hat{i} (12 + 10) - \hat{j} (6 + 5) + \hat{k} (4 - 4) \right]$$
$$= 12 \left[22 \hat{i} - 11 \hat{j} \right]$$

$$= 22 | [2\hat{i} - \hat{j}]|$$
$$= 22 \times \sqrt{5}$$

$$= 22 \times \sqrt{5}$$
11. c. $(\hat{a} + \hat{b} + \hat{c})^2 \ge 0$

$$3 + 2(\hat{a} \cdot \hat{b} + \vec{b} \cdot \hat{c} + \vec{c} \cdot \vec{a}) \ge 0$$

$$3 + 6\cos\theta \ge 0$$

$$\cos\theta \ge -\frac{1}{2}$$

$$\Rightarrow \theta = \frac{2\pi}{3}$$

12. **c.** $\vec{a} \times \vec{b}$ is a vector perpendicular to the plane containing \vec{a} and \vec{b} . Similarly, $\vec{c} \times \vec{d}$ is a vector perpendicular to the plane containing \vec{c} and \vec{d} .

Thus, the two planes will be parallel if their normals, i.e., $\vec{a} \times \vec{b}$ and $\vec{c} \times \vec{d}$, are parallel.

$$\Rightarrow (\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \vec{0}$$

13. **d.** Let $\overrightarrow{r} \neq \overrightarrow{0}$. Then $\overrightarrow{r} \cdot \overrightarrow{a} = \overrightarrow{r} \cdot \overrightarrow{b} = \overrightarrow{r} \cdot \overrightarrow{c} = 0$

 $\Rightarrow \vec{a}, \vec{b}$ and \vec{c} are coplanar, which is a contradiction.

Therefore, $\vec{r} = \vec{0}$

14. c.
$$\vec{a} \times (\hat{i} + 2\hat{j} + \hat{k}) = \hat{i} - \hat{k} = (\hat{j} \times (\hat{i} + 2\hat{j} + \hat{k}))$$

$$\Rightarrow (\vec{a} - \hat{j}) \times (\hat{i} + 2\hat{j} + \hat{k}) = \vec{0}$$

$$\Rightarrow \vec{a} - \hat{j} = \lambda(\hat{i} + 2\hat{j} + \hat{k})$$

$$\Rightarrow \vec{a} = \lambda \hat{i} + (2\lambda + 1)\hat{j} + \lambda \hat{k}, \lambda \in R$$

15. **a.**
$$(3\vec{a} - 5\vec{b}) \cdot (2\vec{a} + \vec{b}) = 0$$

 $\Rightarrow 6|\vec{a}|^2 - 5|\vec{b}|^2 = 7\vec{a} \cdot \vec{b}$
Also, $(\vec{a} + 4\vec{b}) \cdot (\vec{b} - \vec{a}) = 0$
 $\Rightarrow -|\vec{a}|^2 + 4|\vec{b}|^2 = 3\vec{a} \cdot \vec{b}$
 $\Rightarrow \frac{6}{7}|\vec{a}|^2 - \frac{5}{7}|\vec{b}|^2 = -\frac{1}{3}|\vec{a}|^2 + \frac{4}{3}|\vec{b}|^2$
 $\Rightarrow 25|\vec{a}|^2 = 43|\vec{b}|^2$
 $\Rightarrow 3\vec{a} \cdot \vec{b} = -|\vec{a}|^2 + 4|\vec{b}|^2 = \frac{57}{25}|\vec{b}|^2$
 $\Rightarrow 3|\vec{a}||\vec{b}|\cos\theta = \frac{57}{25}|\vec{b}|^2$

$$\Rightarrow 3\sqrt{\frac{43}{25}} |\vec{b}|^2 \cos\theta = \frac{57}{25} |\vec{b}|^2$$

$$\Rightarrow \cos \theta = \frac{19}{5\sqrt{43}}$$

16. **a.** Let l, m and n be the direction cosines of the required vector. Then, l = m (given). Therefore

Required vector
$$\vec{r} = l\hat{i} + m\hat{j} + n\hat{k} = l\hat{i} + l\hat{j} + n\hat{k}$$

Now, $l^2 + m^2 + n^2 = 1 \Rightarrow 2l^2 + n^2 = 1$ (i)

Since, \hat{r} is perpendicular to $-\hat{i} + 2\hat{j} + 2\hat{k}$,

$$\vec{r} \cdot (-\hat{i} + 2\hat{j} + 2\hat{k}) = 0 \Rightarrow -l + 2l + 2n = 0 \Rightarrow l + 2n = 0$$
 (ii)

From (i) and (ii), we get: $n = \frac{1}{4}$, $l = \pm \frac{2}{3}$

Hence, required vector $\vec{r} = \frac{1}{3} (\pm 2\hat{i} \pm 2\hat{j} \mp \hat{k}) = \pm \frac{1}{3} (2\hat{i} + 2\hat{j} - \hat{k})$

d. The angle between \overrightarrow{a} and \overrightarrow{b} is obtuse. Therefore. 17.

$$\vec{a} \cdot \vec{b} < 0$$

$$\Rightarrow 14x^2 - 8x + x < 0$$

$$\Rightarrow 7x(2x - 1) < 0$$

 $\Rightarrow 0 < x < 1/2$ (i)

The angle between \vec{b} and the z-axis is acute and less than $\pi/6$. Therefore,

$$\frac{\overrightarrow{b \cdot k}}{|\overrightarrow{b}||\overrightarrow{k}|} > \cos \pi/6 \quad (\because \theta < \pi/6 \Rightarrow \cos \theta > \cos \pi/6)$$

$$\Rightarrow \frac{x}{\sqrt{x^2 + 53}} > \frac{\sqrt{3}}{2}$$

$$\Rightarrow 4x^2 > 3x^2 + 159$$

$$\Rightarrow x^2 > 159$$

$$\Rightarrow x > \sqrt{159} \text{ or } x < -\sqrt{159}$$
 (ii)

Clearly, (i) and (ii) cannot hold together.

18.

Fig. 2.36

Let
$$\overrightarrow{OD} = t \overrightarrow{a}$$

 $\therefore \overrightarrow{DB} = \overrightarrow{b} - t\overrightarrow{a}$
 $\therefore (\overrightarrow{b} - t\overrightarrow{a}) \cdot \overrightarrow{a} = 0 \quad (\because \overrightarrow{DB} \perp \overrightarrow{OA})$
 $\Rightarrow t = \frac{\overrightarrow{b} \cdot \overrightarrow{a}}{|\overrightarrow{a}|^2}$
 $\therefore \overrightarrow{DB} = \overrightarrow{b} - \frac{(\overrightarrow{b} \cdot \overrightarrow{a}) \cdot \overrightarrow{a}}{|\overrightarrow{a}|^2}$

19. **d.**
$$(3\vec{a} + \vec{b}) \cdot (\vec{a} - 4\vec{b})$$

= $3 |\vec{a}|^2 - 11\vec{a} \cdot \vec{b} - 4|\vec{b}|^2$
= $3 \times 36 - 11 \times 6 \times 8 \cos \pi - 4 \times 64 > 0$

Therefore, the angle between \vec{a} and \vec{b} is acute.

The longer diagonal is given by

$$\vec{\alpha} = (3\vec{a} + \vec{b}) + (\vec{a} - 4\vec{b}) = 4\vec{a} - 3\vec{b}$$
Now, $|\vec{\alpha}|^2 = |4\vec{a} - 3\vec{b}|^2 = 16|\vec{a}|^2 + 9|\vec{b}|^2 - 24\vec{a} \cdot \vec{b}$

$$= 16 \times 36 + 9 \times 64 - 24 \times 6 \times 8 \cos \pi$$

$$= 16 \times 144$$

$$\Rightarrow |4\vec{a} - 3\vec{b}| = 48$$

20. b.
$$\overrightarrow{c} = \overrightarrow{ma} + \overrightarrow{nb} + \overrightarrow{p(a \times b)}$$

Taking dot product with \vec{a} and \vec{b} , we have $m = n = \cos \theta$ $\Rightarrow |\vec{c}| = |\cos \theta \vec{a} + \cos \theta \vec{b} + p(\vec{a} \times \vec{b})| = 1$ Squaring both sides, we get $\cos^2 \theta + \cos^2 \theta + p^2 = 1$

$$\Rightarrow \cos \theta = \pm \frac{\sqrt{1 - p^2}}{\sqrt{2}}$$

Now $-\frac{1}{\sqrt{2}} \le \cos \theta \le \frac{1}{\sqrt{2}}$ (for real value of θ) $\therefore \frac{\pi}{4} \le \cos \theta \le \frac{3\pi}{4}$

21. **a.**
$$\vec{b} - 2\vec{c} = \lambda \vec{a}$$

$$\Rightarrow \vec{b} = 2\vec{c} + \lambda \vec{a}$$

$$\Rightarrow |\vec{b}|^2 = |2\vec{c} + \lambda \vec{a}|^2$$

$$\Rightarrow 16 = 4 |\overrightarrow{c}|^2 + \lambda^2 |\overrightarrow{a}|^2 + 4\lambda \overrightarrow{a} \cdot \overrightarrow{c}$$

$$\Rightarrow 16 = 4 + \lambda^2 + 4\lambda \frac{1}{4}$$

$$\Rightarrow \lambda^2 + \lambda - 12 = 0$$

$$\Rightarrow \lambda = 3, -4$$

22. a. A vector perpendicular to the plane of O, P and Q is $\overrightarrow{OP} \times \overrightarrow{OQ}$.

Now,
$$\overrightarrow{OP} \times \overrightarrow{OQ} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 1 & \lambda \\ 2 & -1 & \lambda \end{vmatrix} = 2\lambda \hat{i} - 2\lambda \hat{j} - 6\hat{k}$$

Therefore, $\hat{i} - \hat{j} + 6\hat{k}$ is parallel to $2\lambda \hat{i} - 2\lambda \hat{j} - 6\hat{k}$

Hence
$$\frac{1}{2\lambda} = \frac{-1}{-2\lambda} = \frac{6}{-6}$$

 $\lambda = -\frac{1}{2}$

23. a. A vector coplanar with \vec{a} and \vec{b} and perpendicular to \vec{c} is $\lambda((\vec{a} \times \vec{b}) \times \vec{c})$.

But
$$\lambda \left((\vec{a} \times \vec{b}) \times \vec{c} \right) = \lambda \left[(\vec{a} \cdot \vec{c}) \vec{b} - (\vec{b} \cdot \vec{c}) \vec{a} \right]$$

$$= \lambda \left[4\vec{b} - 4\vec{a} \right]$$

$$= 4\lambda \left[\hat{j} - \hat{k} \right]$$

Now
$$4 |\lambda| \sqrt{2} = \sqrt{2}$$
 (Given) $\Rightarrow \lambda = \pm \frac{1}{4}$

Hence the required vector is $\hat{j} - \hat{k}$ or $-\hat{j} + \hat{k}$

24. a.
$$\vec{a} - \vec{p} + \vec{b} - \vec{p} + \vec{c} - \vec{p} = 0$$

$$\Rightarrow \vec{p} = \frac{\vec{a} + \vec{b} + \vec{c}}{3}$$

 \Rightarrow P is centroid

25. b

Fig. 2.37

Let P.V. of A, B and C be $\vec{0}$, \vec{b} and \vec{c} , respectively. Therefore,

$$\vec{G} = \frac{\vec{b} + \vec{c}}{3}$$

$$\vec{A}_1 = \frac{\vec{b}}{2}, \vec{B}_1 = \frac{\vec{c}}{2}$$

$$\Delta_{AB_1G} = \frac{1}{2} |\overrightarrow{AG} \times \overrightarrow{AB_1}| = \frac{1}{2} \left| \frac{\overrightarrow{b} + \overrightarrow{c}}{3} \times \left(\frac{\overrightarrow{c}}{2} \right) \right|$$

$$= \frac{1}{12} |\vec{b} \times \vec{c}|$$

$$\Delta_{AA_{1}G} = \frac{1}{2} |\overrightarrow{AG} \times \overrightarrow{AA_{1}}| = \frac{1}{2} \left| \frac{\overrightarrow{b} + \overrightarrow{c}}{3} \times \left(\frac{\overrightarrow{b}}{2} \right) \right| = \frac{1}{12} |\overrightarrow{b} \times \overrightarrow{c}|$$

$$\Rightarrow \Delta_{GA_1AB_1} = \frac{1}{6} |\overrightarrow{b} \times \overrightarrow{c}| = \frac{1}{3} \cdot \frac{1}{2} |\overrightarrow{b} \times \overrightarrow{c}| = \frac{1}{3} \Delta_{ABC}$$

$$\Rightarrow \frac{\Delta}{\Delta_1} = 3$$

26. a. Points \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} and \overrightarrow{d} are coplanar. Therefore,

$$\sin \alpha + 2\sin 2\beta + 3\sin 3\gamma = 1$$

Now $|\sin \alpha + 2\sin 2\beta + 3\sin 3\gamma| \le \sqrt{1 + 4 + 9}$. $\sqrt{\sin^2 \alpha + \sin^2 2\beta + \sin^2 3\gamma}$

$$\Rightarrow \sin^2 \alpha + \sin^2 2\beta + \sin^2 3\gamma \ge \frac{1}{14}$$

27. **c.**
$$1+9(\vec{a}\cdot\vec{b})^2-6(\vec{a}\cdot\vec{b})+4|\vec{a}|^2+|\vec{b}|^2+9|\vec{a}\times\vec{b}|^2+4|\vec{a}\cdot\vec{b}|=47$$

 $\Rightarrow 1+4+4+36-4\cos\theta=47$

$$\Rightarrow \cos \theta = -\frac{1}{2}$$

 \Rightarrow Angle between \vec{a} and \vec{b} is $\frac{2\pi}{3}$.

28. **c.**
$$k = |2(\overrightarrow{a} \times \overrightarrow{b})| + |3(\overrightarrow{a} \cdot \overrightarrow{b})|$$

= $12 \sin \theta + 18 \cos \theta$

 \Rightarrow maximum value of k is $\sqrt{12^2 + 18^2} = 6\sqrt{13}$

29. b.
$$|\vec{a} + \vec{b} + 3\vec{c}|^2 = 16$$

$$\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + 9|\vec{c}|^2 + 2\cos\theta_1 + 6\cos\theta_2 + 6\cos\theta_3 = 16, \ \theta_3 \in [\pi/6, 2\pi/3]$$

$$\Rightarrow$$
 2cos θ_1 + 6cos θ_2 = 5 - 6 cos θ_3

$$\Rightarrow (\cos \theta_1 + 3\cos \theta_2)_{\text{max}} = 4$$

30. c.
$$|\overrightarrow{a} \times \overrightarrow{r}| = |\overrightarrow{c}|$$

Fig. 2.38

Triangles on the same base and between the same parallel will have the same area.

31. c. Given
$$\overrightarrow{v} \cdot \overrightarrow{u} = \overrightarrow{w} \cdot \overrightarrow{u}$$

and
$$\overrightarrow{v} \perp \overrightarrow{w} \Rightarrow \overrightarrow{v} \cdot \overrightarrow{w} = 0$$

Now,
$$|\overrightarrow{u} - \overrightarrow{v} + \overrightarrow{w}|^2$$

$$=|\overrightarrow{u}|^2+|\overrightarrow{v}|^2+|\overrightarrow{w}|^2-2\overrightarrow{u}\cdot\overrightarrow{v}-2\overrightarrow{w}\cdot\overrightarrow{v}+2\overrightarrow{u}\cdot\overrightarrow{w}$$

$$=1+4+9$$

so
$$|\overrightarrow{u} - \overrightarrow{v} + \overrightarrow{w}| = \sqrt{14}$$

32. b. We have

$$\overrightarrow{p} \cdot \overrightarrow{q} = 0$$

$$\Rightarrow (5\vec{a} - 3\vec{b}) \cdot (-\vec{a} - 2\vec{b}) = 0$$

$$\Rightarrow 6|\vec{b}|^2 - 5|\vec{a}|^2 - 7\vec{a} \cdot \vec{b} = 0$$
 (i)

Also
$$\overrightarrow{r} \cdot \overrightarrow{s} = 0$$

$$\Rightarrow (-4\vec{a} - \vec{b}) (-\vec{a} + \vec{b}) = 0$$

$$\Rightarrow 4|\vec{a}|^2 - |\vec{b}|^2 - 3\vec{a} \cdot \vec{b} = 0$$
 (ii)

Now
$$\vec{x} = \frac{1}{3} (\vec{p} + \vec{r} + \vec{s}) = \frac{1}{3} (5\vec{a} - 3\vec{b} - 4\vec{a} - \vec{b} - \vec{a} + \vec{b}) = -\vec{b}$$

and
$$\vec{y} = \frac{1}{5} (\vec{r} + \vec{s}) = \frac{1}{5} (-5\vec{a}) = -\vec{a}$$

Angle between
$$\vec{x}$$
 and \vec{y} , i.e., $\cos \theta = \frac{\vec{x} \cdot \vec{y}}{|\vec{x}||\vec{y}|} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$ (iii)

From (i) and (ii),
$$|\vec{a}| = \sqrt{\frac{25}{19}} \sqrt{\vec{a} \cdot \vec{b}}$$
 and $|\vec{b}| = \sqrt{\frac{43}{19}} \sqrt{\vec{a} \cdot \vec{b}}$. Therefore

$$|\overrightarrow{a}||\overrightarrow{b}| = \frac{\sqrt{25 \times 43}}{19} \cdot \overrightarrow{a} \cdot \overrightarrow{b}$$

$$\theta = \cos^{-1}\left(\frac{19}{5\sqrt{43}}\right)$$

33. **a.**
$$\vec{\alpha} \parallel (\vec{\beta} \times \vec{\gamma}) \Rightarrow \vec{\alpha} \perp \vec{\beta} \text{ and } \vec{\alpha} \perp \vec{\gamma}$$

Now, $(\vec{\alpha} \times \vec{\beta}) \cdot (\vec{\alpha} \times \vec{\gamma}) = |\vec{\alpha}|^2 \cdot (\vec{\beta} \cdot \vec{\gamma}) - (\vec{\alpha} \cdot \vec{\beta}) \cdot (\vec{\alpha} \cdot \vec{\gamma}) = |\vec{\alpha}|^2 \cdot (\vec{\beta} \cdot \vec{\gamma})$

34. b. Since,
$$\overrightarrow{OA} = \hat{i} + \hat{j} + \hat{k}$$

$$\overrightarrow{OB} = \hat{i} + 5 \hat{j} - \hat{k}$$

$$\overrightarrow{OC} = 2 \hat{i} + 3 \hat{j} + 5 \hat{k}$$

$$a = BC = |\overrightarrow{BC}| = |\overrightarrow{OC} - \overrightarrow{OB}| = |\hat{i} - 2\hat{j} + 6\hat{k}| = \sqrt{41}$$

$$b = CA = |\overrightarrow{CA}| = |\overrightarrow{OA} - \overrightarrow{OC}| = |-\hat{i} - 2\hat{j} - 4\hat{k}| = \sqrt{21}$$

and
$$c = AB = |\overrightarrow{AB}| = |\overrightarrow{OB} - \overrightarrow{OA}| = |0\hat{i} + 4\hat{j} - 2\hat{k}| = \sqrt{20}$$

Since a > b > c, A is the greatest angle. Therefore,

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{21 + 20 - 41}{2 \cdot \sqrt{21} \cdot \sqrt{20}} = 0$$

$$\therefore \angle A = 90^{\circ}$$

$$\mathbf{35.} \quad \mathbf{b.} \, \stackrel{\rightarrow}{a} + \stackrel{\rightarrow}{b} = \lambda \stackrel{\rightarrow}{c} \tag{i}$$

and
$$\vec{b} + \vec{c} = \mu \vec{a}$$
 (ii)

$$\therefore (\lambda \vec{c} - \vec{a}) + \vec{c} = \mu \vec{a}$$
 (putting $\vec{b} = \lambda \vec{c} - \vec{a}$)

$$\Rightarrow (\lambda + 1)\vec{c} = (\mu + 1)\vec{a}$$

$$\Rightarrow \lambda = \mu = -1$$

$$\Rightarrow \vec{a} + \vec{b} + \vec{c} = 0$$

$$\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0$$

$$\Rightarrow \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -3$$

36.
$$\vec{a} \cdot \vec{0} = (\vec{a} + \vec{b}) \cdot (2\vec{a} + 3\vec{b}) \times (3\vec{a} - 2\vec{b})$$

$$= (\overrightarrow{a} + \overrightarrow{b}) \cdot (-4\overrightarrow{a} \times \overrightarrow{b} - 9\overrightarrow{a} \times \overrightarrow{b})$$

$$=-13 (\vec{a} + \vec{b}) \cdot (\vec{a} \times \vec{b})$$

which is true for all values of \vec{a} and \vec{b} .

$$\overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{BC} \cdot \overrightarrow{BA} + \overrightarrow{CA} \cdot \overrightarrow{CB} = (AB) (AC) \cos \theta + (BC) (BA) \sin \theta + 0$$

$$= AB (AC \cos \theta + BC \sin \theta)$$

$$= AB \left(\frac{(AC)^2}{AB} + \frac{(BC)^2}{AB} \right)$$

$$= AC^2 + BC^2 = AB^2 = p^2$$

38. **c.**
$$\vec{a}_1 = (\vec{a} \cdot \hat{b}) \hat{b} = \frac{(\vec{a} \cdot \vec{b}) \vec{b}}{|\vec{b}|^2}$$

$$\Rightarrow \vec{a}_2 = \vec{a} - \vec{a}_1 = \vec{a} - \frac{(\vec{a} \cdot \vec{b}) \vec{b}}{|\vec{b}|^2}$$
Thus, $\vec{a}_1 \times \vec{a}_2 = \frac{(\vec{a} \cdot \vec{b}) \vec{b}}{|\vec{b}|^2} \times \left(\vec{a} - \frac{(\vec{a} \cdot \vec{b}) \vec{b}}{|\vec{b}|^2}\right) = \frac{(\vec{a} \cdot \vec{b}) (\vec{b} \times \vec{a})}{|\vec{b}|^2}$

39. b. Let the required vector be
$$\vec{r}$$
. Then $\vec{r} = x_1 \vec{b} + x_2 \vec{c}$ and $\vec{r} \cdot \vec{a} = \sqrt{\frac{2}{3}}$ $(|\vec{a}|) = 2$

Now,
$$\vec{r} \cdot \vec{a} = x_1 \vec{a} \cdot \vec{b} + x_2 \vec{a} \cdot \vec{c} \implies 2 = x_1 (2 - 2 - 1) + x_2 (2 - 1 - 2) \implies x_1 + x_2 = -2$$

$$\implies \vec{r} = x_1 (\hat{i} + 2\hat{j} - \hat{k}) + x_2 (\hat{i} + \hat{j} - 2\hat{k}) = \hat{i} (x_1 + x_2) + \hat{j} (2x_1 + x_2) - \hat{k} (2x_2 + x_1)$$

$$= -2\hat{i} + \hat{j} (x_1 - 2) - \hat{k} (-4 - x_1), \text{ where } x_1 \in R$$

40. a. Let P.V. of P, A, B and C be \overrightarrow{p} , \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} , respectively, and $O(\overrightarrow{0})$ be the circumcentre of equilateral triangle ABC. Then

$$|\vec{p}| = |\vec{b}| = |\vec{a}| = |\vec{c}| = \frac{l}{\sqrt{3}}$$

Now $|\vec{PA}|^2 = |\vec{a} - \vec{p}|^2 = |\vec{a}|^2 + |\vec{p}|^2 - 2\vec{p} \cdot \vec{a}$

Similarly,
$$|\overrightarrow{PB}|^2 = |\overrightarrow{b}|^2 + |\overrightarrow{p}|^2 - 2\overrightarrow{p} \cdot \overrightarrow{b}$$

and
$$|\vec{PC}|^2 = |\vec{c}|^2 + |\vec{p}|^2 - 2\vec{p} \cdot \vec{c}$$

$$\Rightarrow \Sigma |\overrightarrow{PA}|^2 = 6 \cdot \frac{l^2}{3} - 2\overrightarrow{p} \cdot (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) = 2l^2 \quad \text{as } (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}/3 = \overrightarrow{0})$$

41. d. For minimum value $|\vec{r} + b\vec{s}| = 0$.

Let \vec{r} and \vec{s} are anti parallel so $b\vec{s} = -\vec{r}$

so
$$|\vec{bs}|^2 + |\vec{r} + \vec{bs}|^2 = |-\vec{r}|^2 + |\vec{r} - \vec{r}|^2 = |\vec{r}|^2$$

42. c. Let the required vector \overrightarrow{r} be such that

$$\vec{r} = x_1 \vec{a} + x_2 \vec{b} + x_3 \vec{a} \times \vec{b}$$

We must have $\vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot (\vec{a} \times \vec{b})$ (as $\vec{r}, \vec{a}, \vec{b}$ and $\vec{a} \times \vec{b}$ are unit vectors and \vec{r} is equally inclined to \vec{a}, \vec{b} and $\vec{a} \times \vec{b}$)

Now
$$\overrightarrow{r} \cdot \overrightarrow{a} = x_1$$
, $\overrightarrow{r} \cdot \overrightarrow{b} = x_2$, $\overrightarrow{r} \cdot (\overrightarrow{a} \times \overrightarrow{b}) = x_2$

$$\Rightarrow \vec{r} = \lambda (\vec{a} + \vec{b} + (\vec{a} \times \vec{b}))$$

Also,
$$\overrightarrow{r} \cdot \overrightarrow{r} = 1$$

$$\Rightarrow \lambda^2 (\vec{a} + \vec{b} + \vec{a} \times \vec{b}) \cdot (\vec{a} + \vec{b} + (\vec{a} \times \vec{b})) = 1$$

$$\Rightarrow \lambda^2 (|\overrightarrow{a}|^2 + |\overrightarrow{b}|^2 + |\overrightarrow{a} \times \overrightarrow{b}|^2) = 1$$

$$\Rightarrow \lambda^2 = \frac{1}{3}$$

$$\Rightarrow \lambda = \pm \frac{1}{\sqrt{3}}$$

$$\Rightarrow \vec{r} = \pm \frac{1}{\sqrt{3}} (\vec{a} + \vec{b} + \vec{a} \times \vec{b})$$

43. d.
$$\vec{a} + \vec{b} = \mu \vec{p}$$
 $\vec{b} \cdot \vec{q} = 0$, $|\vec{b}|^2 = 1$

$$\vec{a} + \vec{b} = \mu \vec{p}$$

$$\Rightarrow (\vec{a} + \vec{b}) \times \vec{a} = \mu \vec{p} \times \vec{a} , \ \vec{b} \times \vec{a} = \mu \vec{p} \times \vec{a} \Rightarrow \vec{q} \times (\vec{b} \times \vec{a}) = \mu \vec{q} \times (\vec{p} \times \vec{a})$$

$$\Rightarrow (\vec{q} \cdot \vec{a})\vec{b} - (\vec{q} \cdot \vec{b})\vec{a} = \mu \vec{q} \times (\vec{p} \times \vec{a}) \Rightarrow (\vec{q} \cdot \vec{a})\vec{b} = \mu \vec{q} \times (\vec{p} \times \vec{a})$$

$$\because \vec{a} + \vec{b} = \mu \vec{p} .$$

$$\Rightarrow \vec{q} \cdot (\vec{a} + \vec{b}) = \mu \vec{q} \cdot \vec{p}$$

$$\Rightarrow \vec{q} \cdot \vec{a} + \vec{q} \cdot \vec{b} = \mu \vec{p} \cdot \vec{q}$$

$$\Rightarrow \mu = \frac{\vec{q} \cdot \vec{a}}{\vec{p} \cdot \vec{q}}$$

$$\Rightarrow (\vec{q} \cdot \vec{a}) \vec{b} = \frac{\vec{q} \cdot \vec{a}}{\vec{p} \cdot \vec{q}} [(\vec{q} \cdot \vec{a}) \cdot \vec{p} - (\vec{q} \cdot \vec{p}) \vec{a}]$$

$$\Rightarrow \lfloor (\vec{q} \cdot \vec{a}) \vec{p} - (\vec{q} \cdot \vec{p}) \vec{a} \rfloor = \lfloor (\vec{p} \cdot \vec{q}) \vec{b} \rfloor = \lfloor (\vec{p} \cdot \vec{q}) \rfloor \cdot \lfloor \vec{b} \rfloor$$

$$\Rightarrow |(\vec{q} \cdot \vec{a})\vec{p} - (\vec{q} \cdot \vec{p})\vec{a}| = |\vec{p} \cdot \vec{q}|$$

44. c.
$$\overrightarrow{d} \cdot \overrightarrow{a} = \overrightarrow{d} \cdot \overrightarrow{b} = \overrightarrow{d} \cdot \overrightarrow{c}$$

$$\Rightarrow \lambda (\hat{a} \cdot \hat{b} + \hat{a} \cdot \hat{c}) = \lambda (1 + \hat{b} \cdot \hat{c}) = \lambda (1 + \hat{b} \cdot \hat{c}) \Rightarrow 1 + \hat{b} \cdot \hat{c} = \hat{a} \cdot \hat{b} + \hat{a} \cdot \hat{c}$$

$$\Rightarrow 1 - \hat{a} \cdot \hat{b} + \hat{b} \cdot \hat{c} - \hat{a} \cdot \hat{c} = 0 \Rightarrow 1 - \hat{a} \cdot \hat{b} + (\hat{b} - \hat{a}) \cdot \hat{c} = 0 \Rightarrow \hat{a} \cdot (\hat{a} - \hat{b}) + (\hat{b} - \hat{a}) \cdot \hat{c} = 0$$

$$\Rightarrow (\hat{a} - \hat{c}) \cdot (\hat{a} - \hat{b}) = 0 \Rightarrow \hat{a} - \hat{c}$$
 is perpendicular to $(\hat{a} - \hat{b}) \Rightarrow$ The triangle is right angled.

$$(\sqrt{a^2 - 4} \, \hat{i} + a \, \hat{j} + \sqrt{a^2 + 4} \, \hat{k}) \cdot (\tan A \, \hat{i} + \tan B \, \hat{j} + \tan C \, \hat{k}) = 6a$$

$$\Rightarrow \sqrt{a^2 - 4 + a^2 + a^2 + 4} \, \sqrt{\tan^2 A + \tan^2 B + \tan^2 C} \cdot (\cos \theta) = 6a \quad (\because \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta)$$

$$\sqrt{3} a \sqrt{\tan^2 A + \tan^2 B + \tan^2 C} \cdot (\cos \theta) = 6a$$

$$\tan^2 A + \tan^2 B + \tan^2 C = 12 \sec^2 \theta \ge 12$$
 (: $\sec^2 \theta > 1$)

The least value of $\tan^2 A + \tan^2 B + \tan^2 C$ is 12.

46.
$$\mathbf{d.} \Delta = \frac{1}{2} |(\hat{j} + \lambda \hat{k}) \times (\hat{i} + \lambda \hat{k})| = \frac{1}{2} |-\hat{k} + \lambda \hat{i} + \lambda \hat{j}| = \frac{1}{2} \sqrt{2\lambda^2 + 1}$$

$$\Rightarrow \frac{9}{4} \le \frac{1}{4} (2\lambda^2 + 1) \le \frac{33}{4}$$

$$\Rightarrow \frac{1}{4} \leq \frac{1}{4} (2\lambda^{2} + 1) \leq \frac{1}{4}$$
$$\Rightarrow 4 \leq \lambda^{2} \leq 16$$

$$\Rightarrow 2 \le |\lambda| \le 4$$

47. c. Let the projection be x, then
$$\vec{a} = \frac{x(\hat{i} + \hat{j})}{\sqrt{2}} + \frac{x(-\hat{i} + \hat{j})}{\sqrt{2}} + x \hat{k}$$

$$\therefore \vec{a} = \frac{2x\hat{j}}{\sqrt{2}} + x\hat{k} \implies \hat{a} = \frac{\sqrt{2}}{\sqrt{3}}\hat{j} + \frac{\hat{k}}{\sqrt{3}}$$

48. b. Let
$$\vec{r}$$
 be the new position. Then $\vec{r} = \lambda \hat{k} + \mu (\hat{i} + \hat{j})$

Also
$$\vec{r} \cdot \hat{k} = -\frac{1}{\sqrt{2}} \implies \lambda = -\frac{1}{\sqrt{2}}$$

Also,
$$\lambda^2 + 2\mu^2 = 1 \Rightarrow 2\mu^2 = \frac{1}{2} \Rightarrow \mu = \pm \frac{1}{2}$$

$$\therefore \vec{r} = \pm \frac{1}{2} (\hat{i} + \hat{j}) - \frac{\hat{k}}{\sqrt{2}}$$

49.

Fig. 2.39

(i)

Let
$$|\overrightarrow{AC}| = \lambda > 0$$

Then from $15 \mid \overrightarrow{AC} \mid = 3 \mid \overrightarrow{AB} \mid = 5 \mid \overrightarrow{AD} \mid$

$$|\overrightarrow{AB}| = 5\lambda$$

Let θ be the angle between \overrightarrow{BA} and \overrightarrow{CD} .

$$\Rightarrow \cos \theta = \frac{\overrightarrow{BA} \cdot \overrightarrow{CD}}{|\overrightarrow{BA}| |\overrightarrow{CD}|} = \frac{-\overrightarrow{b} \cdot (\overrightarrow{d} - \overrightarrow{c})}{|\overrightarrow{b}| |\overrightarrow{d} - \overrightarrow{c}|}$$

$$\operatorname{Now} - \overrightarrow{b} \cdot (\overrightarrow{d} - \overrightarrow{c}) = \overrightarrow{b} \cdot \overrightarrow{c} - \overrightarrow{b} \cdot \overrightarrow{d}$$

$$= |\overrightarrow{b}| |\overrightarrow{c}| \cos \frac{\pi}{3} - |\overrightarrow{b}| |\overrightarrow{d}| \cos \frac{2\pi}{3}$$

$$= (5\lambda)(\lambda) \frac{1}{2} + (5\lambda)(3\lambda) \frac{1}{2}$$

$$= \frac{5\lambda^2 + 15\lambda^2}{2}$$

Denominator of (i) = $|\vec{b}| |\vec{d} - \vec{c}|$

Now
$$|\vec{d} - \vec{c}|^2 = |\vec{d}|^2 + |\vec{c}|^2 - 2 \vec{c} \cdot \vec{d}$$

= $9\lambda^2 + \lambda^2 - 2(\lambda)(3\lambda)(1/2)$
= $10\lambda^2 - 3\lambda^2$
= $7\lambda^2$

Denominator of (i) = (5λ) ($\sqrt{7} \lambda$) = $5\sqrt{7} \lambda^2$

$$\therefore \cos \theta = \frac{10\lambda^2}{5\sqrt{7} \lambda^2} = \frac{2}{\sqrt{7}}$$

50. a. Let A be the origin.
$$\overrightarrow{AB} = \overrightarrow{a}$$
, $\overrightarrow{AD} = \overrightarrow{b}$

so,
$$\overrightarrow{AE} = \overrightarrow{b} + \frac{3}{2}\overrightarrow{a}$$
, $\overrightarrow{AG} = \overrightarrow{a} + 3\overrightarrow{b}$.

So the required ratio = $\frac{\frac{1}{2} \left| (\vec{a} + 3\vec{b}) \times \left(\vec{b} + \frac{3}{2} \vec{a} \right) \right|}{\frac{1}{2} |\vec{a} \times \vec{b}|}$ $= \frac{7}{2}$

51. b.Let
$$\vec{a} = \lambda \vec{b} + \mu \vec{c}$$

 \vec{a} is equally inclined to \vec{b} and \vec{d} where $\vec{d} = \hat{j} + 2\hat{k}$.

$$\Rightarrow \frac{\vec{a} \cdot \vec{b}}{ab} = \frac{\vec{a} \cdot \vec{d}}{ad}$$

$$\Rightarrow \frac{(\lambda \vec{b} + \mu \vec{c}) \cdot \vec{b}}{b} = \frac{(\lambda \vec{b} + \mu \vec{c}) \cdot \vec{d}}{d}$$

$$\Rightarrow \frac{[\lambda(2\hat{i} + \hat{j}) + \mu(\hat{i} - \hat{j} + \hat{k})] \cdot (2\hat{i} + \hat{j})}{\sqrt{5}} = \frac{[\lambda(2\hat{i} + \hat{j}) + \mu(\hat{i} - \hat{j} + \hat{k})] \cdot (\hat{j} + 2\hat{k})}{\sqrt{5}}$$

$$\Rightarrow \lambda(4+1) + \mu(2-1) = \lambda(1) + \mu(-1+2)$$

$$\Rightarrow 4\lambda = 0, \text{i.e., } \lambda = 0$$

$$\therefore \hat{a} = \frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}}$$

52. **a.** Area of
$$\triangle BCD = \frac{1}{2} |\overrightarrow{BC} \times \overrightarrow{BD}| = \frac{1}{2} |(b \hat{i} - c \hat{j}) \times (b \hat{i} - d \hat{k})|$$

$$= \frac{1}{2} |bd \hat{j} + bc \hat{k} + dc \hat{i}|$$

Fig. 2.40

$$= \frac{1}{2} \sqrt{b^2 c^2 + c^2 d^2 + d^2 b^2}$$
Now $6 = bc$; $8 = cd$; $10 = bd$

Now 6 = bc; 8 = ca; 10 = ba $b^2c^2 + c^2d^2 + d^2b^2 = 200$ Substituting the value in (i)

$$A = \frac{1}{2}\sqrt{200} = 5\sqrt{2}$$

53.
$$\mathbf{d} \cdot \vec{f} \left(\frac{5}{4} \right) = \left[\frac{5}{4} \right] \hat{i} + \left(\frac{5}{4} - \left[\frac{5}{4} \right] \right) \hat{j} + \left[\frac{5}{4} + 1 \right] \hat{k}$$
$$= \hat{i} + \left(\frac{5}{4} - 1 \right) \hat{j} + 2\hat{k}$$
$$= \hat{i} + \frac{1}{4} \hat{j} + 2\hat{k}$$

When
$$0 < t < 1$$
, $\vec{f}(t) = 0$ $\vec{i} + \{t - 0\}$ $\vec{j} + \vec{k} = t$ $\vec{j} + \vec{k}$
 $\vec{f}(\frac{5}{4}) \cdot \vec{f}(t) = 2 + \frac{t}{4}$

So
$$\cos \theta = \frac{2 + \frac{t}{4}}{\left| \vec{i} + \frac{1}{4} \vec{j} + 2\vec{k} \right| \left| t \vec{j} + \vec{k} \right|} = \frac{2 + \frac{t}{4}}{\sqrt{1 + \frac{1}{16} + 4\sqrt{1 + t^2}}}$$
$$= \frac{8 + t}{9\sqrt{1 + t^2}}$$

54. a.
$$(\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{u}$$
, where $\vec{u} = \vec{a} \times \vec{c}$

$$\Rightarrow \vec{a} \cdot (\vec{b} \times \vec{u}) = \vec{a} \cdot [\vec{b} \times (\vec{a} \times \vec{c})]$$

$$= \vec{a} \cdot [(\vec{b} \cdot \vec{c}) \vec{a} - (\vec{a} \cdot \vec{b}) \vec{c}]$$

$$= \vec{a} \cdot (\vec{b} \cdot \vec{c}) \vec{a} \quad (\because \vec{a} \cdot \vec{b} = 0)$$

$$= |\vec{a}|^2 (\vec{b} \cdot \vec{c})$$

55. d. $(\hat{i} + \hat{j}) \times (\hat{j} + \hat{k}) = \hat{i} - \hat{j} + \hat{k}$ so that unit vector perpendicular to the plane of $\hat{i} + \hat{j}$ and $\hat{j} + \hat{k}$ is $\frac{1}{\sqrt{3}} (\hat{i} - \hat{j} + \hat{k})$.

Similarly, the other two unit vectors are $\frac{1}{\sqrt{3}}$ $(\hat{i} + \hat{j} - \hat{k})$ and $\frac{1}{\sqrt{3}}$ $(-\hat{i} + \hat{j} + \hat{k})$.

The required volume = $\frac{3}{\sqrt{3}}\begin{vmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{vmatrix} = 4\sqrt{3}$

56. c.
$$\overrightarrow{d} \cdot \overrightarrow{c} = \overrightarrow{d} \cdot \overrightarrow{b} = \overrightarrow{d} \cdot \overrightarrow{c} = [\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}]$$

Then $|(\vec{d} \cdot \vec{c}) (\vec{a} \times \vec{b}) + (\vec{d} \cdot \vec{a}) (\vec{b} \times \vec{c}) + (\vec{d} \cdot \vec{b}) (\vec{c} \times \vec{a})| = 0$

$$\Rightarrow [\vec{a} \ \vec{b} \ \vec{c}] | \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}| = 0$$

$$\Rightarrow [\vec{a} \ \vec{b} \ \vec{c}] = 0$$
 (: \vec{d} is non-zero)

 $\Rightarrow \vec{a}, \vec{b}, \vec{c}$ are coplanar.

57. **a.**
$$(\vec{a} \times (\vec{a} \times (\vec{a} \times (\vec{a} \times \vec{b})))) = (\vec{a} \times (\vec{a} \times ((\vec{a} \times \vec{b}) \vec{a} - (\vec{a} \times \vec{b}) \vec{b})))$$

$$= (\vec{a} \times (\vec{a} \times (-4\vec{b})))$$

$$= -4(\overrightarrow{a} \times (\overrightarrow{a} \times \overrightarrow{b}))$$

$$= -4((\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{a} - (\overrightarrow{a} \cdot \overrightarrow{a}) \overrightarrow{b})$$

$$= -4(-4\overrightarrow{b}) = 16\overrightarrow{b} = 48\widehat{b}$$

58. d. Let
$$\vec{a} = 6\hat{i} + 6\hat{k}$$
, $\vec{b} = 4\hat{j} + 2\hat{k}$, $\vec{c} = 4\hat{j} - 8\hat{k}$
then $\vec{a} \times \vec{b} = -24\hat{i} - 12\hat{j} + 24\hat{k}$
 $= 12(-2\hat{i} - \hat{j} + 2\hat{k})$

∴ Area of the base of the parallelepiped =
$$\frac{1}{2} |\vec{a} \times \vec{b}|$$

= $\frac{1}{2} (12 \times 3)$
= 18

Height of the parallelepiped = length of projection of \vec{c} on $\vec{a} \times \vec{b}$

$$= \frac{|\vec{c} \cdot \vec{a} \times \vec{b}|}{|\vec{a} \times \vec{b}|}$$

$$= \frac{|12(-4-16)|}{36}$$

$$= \frac{20}{3}$$

 \therefore Volume of the parallelepiped = $18 \times \frac{20}{3} = 120$

59. c.
$$3 = \frac{1}{6} [\vec{a} \ \vec{b} \ \vec{c}]$$

$$\Rightarrow \vec{a} \vec{b} \vec{c} = 18$$

Volume of the required parallelepiped

$$= [\vec{a} + \vec{b} \ \vec{b} + \vec{c} \ \vec{c} + \vec{a}]$$
$$= 2 [\vec{a} \ \vec{b} \ \vec{c}] = 36$$

60. b. Here
$$[\vec{a} \ \vec{b} \ \vec{c}] = \pm 1$$

$$[\vec{a} + \vec{b} + \vec{c} \ \vec{a} + \vec{b} \ \vec{b} + \vec{c}] = (\vec{a} + \vec{b} + \vec{c}) \times (\vec{a} + \vec{b}) \cdot (\vec{b} + \vec{c})$$

$$= \vec{c} \times (\vec{a} + \vec{b}) \cdot (\vec{b} + \vec{c})$$

$$= (\vec{c} \times \vec{a} + \vec{c} \times \vec{b}) \cdot (\vec{b} + \vec{c})$$

$$= \vec{c} \times \vec{a} \cdot \vec{b} = [\vec{a} \ \vec{b} \ \vec{c}] = \pm 1$$

61.
$$\vec{a}$$
. Let $\vec{c} = \lambda (\vec{a} \times \vec{b})$.

Hence
$$\lambda(\vec{a} \times \vec{b}) \cdot (\hat{i} + 2\hat{j} - 7\hat{k}) = 10$$

$$\Rightarrow \lambda \begin{vmatrix} 2 & -3 & 1 \\ 1 & -2 & 3 \\ 1 & 2 & -7 \end{vmatrix} = 10$$

$$\Rightarrow \lambda = -1$$

$$\Rightarrow \lambda = -1$$

$$\Rightarrow \vec{c} = -(\vec{a} \times \vec{b})$$

62. d.
$$\vec{a} \perp \vec{b} \implies x - y + 2 = 0$$

$$\overrightarrow{a} \cdot \overrightarrow{c} = 4 \Longrightarrow x + 2y = 4$$

Solving we get x = 0; y = 2

$$\Rightarrow \vec{a} = 2\hat{i} + 2\hat{k}$$

$$\Rightarrow [\vec{a} \ \vec{b} \ \vec{c}] = \begin{vmatrix} 0 & 2 & 2 \\ 1 & -1 & 1 \\ 1 & 2 & 0 \end{vmatrix} = 8 = |\vec{a}|^2$$

63. c.
$$(\vec{a} \times \vec{b} \cdot \vec{c})^2 = |\vec{a}|^2 |\vec{b}|^2 |\vec{c}|^2 \sin^2 \theta \cos^2 \phi$$
 (θ is the angle between \vec{a} and \vec{b} , $\phi = 0$)

$$= \frac{1}{4} (a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2)$$

64. c.
$$\vec{r} \cdot \vec{a} = 0, |\vec{r} \times \vec{b}| = |\vec{r}| |\vec{b}| \text{ and } |\vec{r} \times \vec{c}| = |\vec{r}| |\vec{c}|$$

$$\Rightarrow \vec{r} \perp \vec{a}, \vec{b}, \vec{c}$$

$$\therefore [\vec{a} \vec{b} \vec{c}] = 0$$

65. b.
$$\overrightarrow{c} = \lambda (\overrightarrow{a} \times \overrightarrow{b})$$

$$\Rightarrow \vec{c} \cdot \vec{c} = \lambda (\vec{a} \times \vec{b}) \cdot \vec{c}$$

$$\Rightarrow \frac{1}{3} = \lambda$$

Also
$$|\overrightarrow{c}|^2 = \lambda^2 |\overrightarrow{a} \times \overrightarrow{b}|^2$$

$$\Rightarrow \frac{1}{3} = \frac{1}{9} (a^2 b^2 \sin^2 \theta) = \frac{1}{9} \times 2 \times 3 \sin^2 \theta$$

$$\Rightarrow \sin^2 \theta = \frac{1}{2}$$

$$\Rightarrow \theta = \frac{\pi}{4}$$

66. c.
$$4\vec{a} + 5\vec{b} + 9\vec{c} = 0 \Rightarrow \text{Vectors } \vec{a}, \vec{b} \text{ and } \vec{c} \text{ are coplanar.}$$

$$\Rightarrow \vec{b} \times \vec{c}$$
 and $\vec{c} \times \vec{a}$ are collinear $\Rightarrow (\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a}) = \vec{0}$.

(i)

67. **a.**
$$[\vec{a} \times \vec{b} \ \vec{a} \times \vec{c} \ \vec{d}]$$

$$= (\vec{a} \times \vec{b}) \cdot ((\vec{a} \times \vec{c}) \times \vec{d})$$

$$= (\vec{a} \times \vec{b}) \cdot ((\vec{a} \times \vec{c}) \times \vec{d})$$

$$= (\vec{a} \times \vec{b}) \cdot ((\vec{a} \times \vec{d}) \vec{c} - (\vec{c} \cdot \vec{d}) \vec{a})$$

$$= (\vec{a} \cdot \vec{d}) [\vec{a} \vec{b} \vec{c}]$$

68. a. Let
$$\overrightarrow{r} = x_1 \hat{a} + x_2 \hat{b} + x_3 (\hat{a} \times \hat{b})$$

$$\Rightarrow \overrightarrow{r} \cdot \hat{a} = x_1 + x_2 \hat{a} \cdot \hat{b} + x_3 \hat{a} \cdot (\hat{a} \times \hat{b}) = x_1$$
Also, $\overrightarrow{r} \cdot \hat{b} = x_1 \hat{a} \cdot \hat{b} + x_2 + x_3 \hat{b} \cdot (\hat{a} + \hat{b}) = x_2$
and $\overrightarrow{r} \cdot (\hat{a} \times \hat{b}) = x_1 \hat{a} \cdot (\hat{a} \times \hat{b}) + x_2 \hat{b} \cdot (\hat{a} \times \hat{b}) + x_3 (\hat{a} \times \hat{b}) \cdot (\hat{a} \times \hat{b}) = x_3$

$$\Rightarrow \overrightarrow{r} = (\overrightarrow{r} \cdot \hat{a}) \hat{a} + (\overrightarrow{r} \cdot \hat{b}) \hat{b} + (\overrightarrow{r} \cdot (\hat{a} \times \hat{b})) (\hat{a} \times \hat{b})$$

69. a.
$$[\vec{a} + (\vec{a} \times \vec{b}) \vec{b} + (\vec{a} \times \vec{b}) \vec{a} \times \vec{b}]$$

$$= (\vec{a} + (\vec{a} \times \vec{b})) \cdot ((\vec{b} + (\vec{a} \times \vec{b})) \times (\vec{a} \times \vec{b}))$$

$$= (\vec{a} + (\vec{a} \times \vec{b})) \cdot (\vec{b} \times (\vec{a} \times \vec{b}))$$

$$= (\vec{a} + (\vec{a} \times \vec{b})) \cdot (\vec{a} - (\vec{a} \cdot \vec{b}) \vec{b})$$

$$= \vec{a} \cdot \vec{a} = 1 \text{ (as } \vec{a} \cdot \vec{b} = 0, \vec{a} \cdot (\vec{a} \times \vec{b}) = 0)$$

70. **d.**
$$|\vec{a}| = 1, |\vec{b}| = 4, \vec{a} \cdot \vec{b} = 2$$

$$\vec{c} = (2\vec{a} \times \vec{b}) - 3\vec{b}$$

$$\Rightarrow \vec{c} + 3\vec{b} = 2\vec{a} \times \vec{b}$$

$$\therefore \vec{a} \cdot \vec{b} = 2$$

$$\Rightarrow |\vec{a}| \cdot |\vec{b}| \cos \theta = 2$$

$$\Rightarrow \cos \theta = \frac{2}{|\vec{a}| \cdot |\vec{b}|} = \frac{2}{4}$$

$$\Rightarrow \cos \theta = \frac{1}{2}$$

$$\therefore \theta = \frac{\pi}{3}$$

$$\Rightarrow |\vec{c} + 3\vec{b}|^2 = |2\vec{a} \times \vec{b}|^2$$

$$\Rightarrow |\vec{c}|^2 + 9|\vec{b}|^2 + 2\vec{c} \cdot 3\vec{b} = 4|\vec{a}|^2|\vec{b}|^2 \sin^2\theta$$

$$\Rightarrow |\vec{c}|^2 + 144 + 6\vec{b} \cdot \vec{c} = 48$$

$$\Rightarrow |\vec{c}|^2 + 96 + 6(\vec{b} \cdot \vec{c}) = 0$$

$$\vec{c} = 2\vec{a} \times \vec{b} - 3\vec{b}$$

$$\Rightarrow \vec{b} \cdot \vec{c} = 0 - 3 \times 16$$

$$\vec{b} \cdot \vec{c} = -48$$

Putting value of $\vec{b} \cdot \vec{c}$ in Eq. (i)

$$|\vec{c}|^2 + 96 - 6 \times 48 = 0$$

$$\Rightarrow$$
 $|\vec{c}|^2 = 48 \times 4$

$$\Rightarrow$$
 $|\vec{c}|^2 = 192$

Again, putting the value of $|\vec{c}|$ in Eq. (i),

$$192 + 96 + 6|\vec{b}| \cdot |\vec{c}| \cos \alpha = 0$$

$$\Rightarrow$$
 6×4×8 $\sqrt{3}$ cos α =-288

$$\Rightarrow \cos \alpha = -\frac{288}{6 \times 4 \times 8\sqrt{3}} = -\frac{3}{2\sqrt{3}} \Rightarrow \cos \alpha = -\frac{\sqrt{3}}{2}$$

$$\therefore \quad \alpha = \frac{5\pi}{6}$$

71. **d.**
$$((\vec{a} \times \vec{b}) + (\vec{a} \times \vec{c})) \times (\vec{b} \times \vec{c})$$

$$= (\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{b} \times \overrightarrow{c}) + (\overrightarrow{a} \times \overrightarrow{c}) \times (\overrightarrow{b} \times \overrightarrow{c})$$

$$=((\stackrel{\rightarrow}{a}\times\stackrel{\rightarrow}{b})\stackrel{\rightarrow}{\cdot}\stackrel{\rightarrow}{c})\stackrel{\rightarrow}{b}-((\stackrel{\rightarrow}{a}\times\stackrel{\rightarrow}{b})\stackrel{\rightarrow}{\cdot}\stackrel{\rightarrow}{b}\stackrel{\rightarrow}{c}+((\stackrel{\rightarrow}{a}\times\stackrel{\rightarrow}{c})\stackrel{\rightarrow}{\cdot}\stackrel{\rightarrow}{c})\stackrel{\rightarrow}{b}-((\stackrel{\rightarrow}{a}\times\stackrel{\rightarrow}{c})\stackrel{\rightarrow}{\cdot}\stackrel{\rightarrow}{b})\stackrel{\rightarrow}{c}$$

$$= [\vec{a} \vec{b} \vec{c}](\vec{b} + \vec{c})$$

$$\Rightarrow ((\vec{a} \times \vec{b}) + (\vec{a} \times \vec{c})) \times (\vec{b} \times \vec{c})) \cdot (\vec{b} - \vec{c})$$

$$= [\vec{a}\vec{b}\vec{c}](\vec{b} + \vec{c}).(\vec{b} - \vec{c})$$

$$= [\vec{a} \vec{b} \vec{c}](|\vec{b}|^2 - |c|^2) = 0$$

72. **a.**
$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}$$

$$\Rightarrow \vec{a} \times (\vec{a} \times \vec{b}) = \vec{a} \times \vec{c}$$

$$\Rightarrow (\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{a} - |\overrightarrow{a}|^2 \overrightarrow{b} = \overrightarrow{a} \times \overrightarrow{c}$$

$$\Rightarrow \vec{b} = \frac{\vec{\beta}\vec{a} - \vec{a} \times \vec{c}}{|\vec{a}|^2} \qquad (\because \vec{a} \cdot \vec{b} = \beta)$$

73. **b.** Taking dot product of $a(\vec{\alpha} \times \vec{\beta}) + b(\vec{\beta} \times \vec{\gamma}) + c(\vec{\gamma} \times \vec{\alpha}) = 0$ with $\vec{\gamma}$, $\vec{\alpha}$ and $\vec{\beta}$, respectively, we have

$$a[\vec{\alpha}\vec{\beta}\vec{\gamma}] = 0$$

$$b[\vec{\alpha}\vec{\beta}\vec{\gamma}] = 0$$

$$c[\vec{\alpha}\vec{\beta}\vec{\gamma}] = 0$$

: At least one of a, b and $c \neq 0$

$$\therefore [\vec{\alpha} \vec{\beta} \vec{\gamma}] = 0$$

Hence $\vec{\alpha}$, $\vec{\beta}$ and $\vec{\gamma}$ are coplanar.

74. **c.**
$$(\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{b} \times \overrightarrow{c}) = \overrightarrow{b}$$

$$\Rightarrow [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] \overrightarrow{b} = \overrightarrow{b}$$

$$\Rightarrow [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = 1$$

 \vec{a} , \vec{b} and \vec{c} cannot be coplanar.

75. c. Any vector \overrightarrow{r} can be represented in terms of three non-coplanar vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} as

$$\vec{r} = x(\vec{a} \times \vec{b}) + y(\vec{b} \times \vec{c}) + z(\vec{c} \times \vec{a})$$
 (i)

Taking dot product with \vec{a} , \vec{b} and \vec{c} , respectively, we have,

$$x = \frac{\overrightarrow{r \cdot c}}{\overrightarrow{abc}}, y = \frac{\overrightarrow{r \cdot a}}{\overrightarrow{abc}} \text{ and } z = \frac{\overrightarrow{r \cdot b}}{\overrightarrow{abc}}$$

From (i)

$$[\vec{a}\,\vec{b}\,\vec{c}]\vec{r} = \frac{1}{2}(\vec{a}\times\vec{b}+\vec{b}\times\vec{c}+\vec{c}\times\vec{a})$$

 \therefore Area of $\triangle ABC$

$$= \frac{1}{2} | \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} |$$

$$= | \vec{a} \vec{b} \vec{c} | \vec{r} |$$

a. Differentiate the curve

$$6x + 8 (xy_1 + y) + 4yy_1 = 0$$

$$m_T \text{ at } (1,0) \text{ is } 6 + 8(y_1(0)) = 0$$

$$y_1(0) = -\frac{3}{4}$$

$$m_N = \frac{4}{3}$$
Unit vector = $\pm \frac{(3\hat{i} + 4\hat{j})}{5}$

Again normal vector of magnitude $10 = \pm (6\hat{i} + 8\hat{j})$

77 **a.**
$$\{\vec{a} \times (\vec{b} + \vec{a} \times \vec{b})\} \cdot \vec{b}$$

$$= \{\vec{a} \times \vec{b} + \vec{a} \times (\vec{a} \times \vec{b})\} \cdot \vec{b}$$

$$= [\vec{a} \vec{b} \vec{b}] + \{(\vec{a} \cdot \vec{b}) \vec{a} - (\vec{a} \cdot \vec{a}) \vec{b}\} \cdot \vec{b}$$

$$= 0 + (\vec{a} \cdot \vec{b})^2 - (\vec{a} \cdot \vec{a})(\vec{b} \cdot \vec{b})$$

$$= \cos^2 \frac{\pi}{3} - 1 = -\frac{3}{4}$$

78. **a.**
$$\overrightarrow{r} \times \overrightarrow{a} = \lambda \overrightarrow{a} + \mu \overrightarrow{b} + \gamma \overrightarrow{a} \times \overrightarrow{b}$$

$$\therefore [\overrightarrow{r} \overrightarrow{a} \overrightarrow{a}] = \lambda \overrightarrow{a} \cdot \overrightarrow{a} + \mu \overrightarrow{b} \cdot \overrightarrow{a} + \gamma [\overrightarrow{a} \overrightarrow{b} \overrightarrow{a}]$$

$$0 = \lambda |\overrightarrow{a}|^2 + 0 + 0$$

$$\lambda = 0$$

$$\text{Also } [\overrightarrow{r} \overrightarrow{a} \overrightarrow{b}] = \lambda \overrightarrow{a} \cdot \overrightarrow{b} + \mu \overrightarrow{b} \cdot \overrightarrow{b} + \gamma [\overrightarrow{a} \overrightarrow{b} \overrightarrow{b}] = \mu$$

$$\text{Also } (\overrightarrow{r} \times \overrightarrow{a}) \times \overrightarrow{b} = \gamma (\overrightarrow{a} \times \overrightarrow{b}) \times \overrightarrow{b}$$

$$\Rightarrow (\overrightarrow{r} \cdot \overrightarrow{b}) \overrightarrow{a} - (\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{r} = \gamma \{(\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{b} - (\overrightarrow{b} \cdot \overrightarrow{b}) \overrightarrow{a}\}$$

$$\Rightarrow (\vec{r} \cdot \vec{b}) \vec{a} = -\gamma \vec{a} , \quad \gamma = -(\vec{r} \cdot \vec{b})$$
79. c. The given equation reduces to $[\vec{a} \ \vec{b} \ \vec{c}]^2 \ x^2 + 2[\vec{a} \ \vec{b} \ \vec{c}] x + 1 = 0 \Rightarrow D = 0$

80. b.
$$\vec{x} + \vec{c} \times \vec{y} = \vec{a}$$
 (i)

$$\vec{y} + \vec{c} \times \vec{x} = \vec{b} \tag{ii}$$

(i)

Taking cross with \vec{c}

$$\vec{c} \times \vec{y} + \vec{c} \times (\vec{c} \times \vec{x}) = \vec{c} \times \vec{b}$$

$$\Rightarrow (\vec{a} - \vec{x}) + (\vec{c} \cdot \vec{x})\vec{c} - (\vec{c} \cdot \vec{c})\vec{x} = \vec{c} \times \vec{b}$$

Also
$$\vec{x} + \vec{c} \times \vec{y} = \vec{a}$$

$$\Rightarrow$$
 $\vec{c} \cdot \vec{x} + \vec{c} \cdot (\vec{c} \times \vec{y}) = \vec{c} \cdot \vec{a}$

$$\Rightarrow \hat{c} \cdot \vec{x} + 0 = \vec{c} \cdot \vec{a}$$

$$\vec{c} \cdot \vec{x} = \vec{c} \cdot \vec{a}$$

$$\implies \vec{a} - \vec{x} + (\vec{c} \cdot \vec{a})\vec{c} - (\vec{c} \cdot \vec{c})\vec{x} = \vec{c} \times \vec{b}$$

$$\Rightarrow \vec{x}(1 + (\vec{c} \cdot \vec{c})) = \vec{b} \times \vec{c} + \vec{a} + (\vec{c} \cdot \vec{a}) \cdot \vec{c}$$

$$\therefore \ \vec{x} = \frac{\vec{b} \times \vec{c} + \vec{a} + (\vec{c} \cdot \vec{a})\vec{c}}{1 + \vec{c} \cdot \vec{c}}$$

Similarly on taking cross product of Eq. (i), we find

$$\vec{y} = \frac{\vec{a} \times \vec{c} + \vec{b} + (\vec{c} \cdot \vec{b})\vec{c}}{1 + \vec{c} \cdot \vec{c}}$$

81. c.
$$\overrightarrow{r} \times \overrightarrow{a} = \overrightarrow{b}$$

$$\Rightarrow \vec{d} \times (\vec{r} \times \vec{a}) = \vec{d} \times \vec{b}$$

$$\Rightarrow (\vec{a} \cdot \vec{d}) \vec{r} - (\vec{d} \cdot \vec{r}) \vec{a} = \vec{d} \times \vec{b}$$

$$\vec{r} \times \vec{c} = \vec{d}$$

$$\Rightarrow \vec{b} \times (\vec{r} \times \vec{c}) = \vec{b} \times \vec{d}$$

$$\Rightarrow (\vec{b} \cdot \vec{c}) \vec{r} - (\vec{b} \cdot \vec{r}) \vec{c} = \vec{b} \times \vec{d}$$
 (ii)

Adding (i) and (ii) we get,

$$(\overrightarrow{a} \cdot \overrightarrow{d} + \overrightarrow{b} \cdot \overrightarrow{c}) \overrightarrow{r} - (\overrightarrow{d} \cdot \overrightarrow{r}) \overrightarrow{a} - (\overrightarrow{b} \cdot \overrightarrow{r}) \overrightarrow{c} = \overrightarrow{0}$$

Now $\vec{r} \cdot \vec{d} = 0$ and $\vec{b} \cdot \vec{r} = 0$ as \vec{d} and \vec{r} as well as \vec{b} and \vec{r} are mutually perpendicular.

Hence,
$$(\vec{b} \cdot \vec{c} + \vec{a} \cdot \vec{d}) \vec{r} = \vec{0}$$

82. b. Let
$$\vec{a} \times \vec{b} = x\hat{i} + y\hat{j} + z\hat{k}$$
. Therefore,

$$[\vec{a} \ \vec{b} \ \hat{i}] = (\vec{a} \times \vec{b}) \cdot \hat{i} = x$$

$$[\vec{a}\vec{b}\hat{j}] = (\vec{a}\times\vec{b})\cdot\hat{j} = y$$

$$[\vec{a} \ \vec{b} \ \vec{k}] = (\vec{a} \times \vec{b}) \cdot \hat{k} = z$$

Hence,
$$[\vec{a}\ \vec{b}\ \hat{i}]\hat{i} + [\vec{a}\ \vec{b}\ \hat{j}]\hat{j} = [\vec{a}\ \vec{b}\ \hat{k}]\hat{k} = x\hat{i} + y\hat{j} + z\hat{k} = \vec{a} \times \vec{b}$$

83.
$$\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} = 5(\hat{i} + 2\hat{i} + 2\hat{k}) - 6(\hat{i} + \hat{i} + 2\hat{k})$$

$$\Rightarrow (1+\alpha)\hat{i} + \beta(1+\alpha)\hat{j} + \gamma(1+\alpha)(1+\beta)\hat{k} = -\hat{i} + 4\hat{j} - 2\hat{k}$$

$$\Rightarrow$$
 1 + α = -1, β = -4 and γ (-1)(-3) = -2

$$\Rightarrow \gamma = -\frac{2}{3}$$

84. b. If
$$\vec{a}(x)$$
 and $\vec{b}(x)$ are \perp , then $\vec{a} \cdot \vec{b} = 0$

$$\Rightarrow \sin x \cos 2x + \cos x \sin 2x = 0$$

$$\sin(3x) = 0 = \sin 0$$

$$3x = n\pi \quad \Rightarrow x = \frac{n\pi}{3}$$

Therefore, the two vectors are \perp for infinite values of 'x'.

85. b.
$$(\overrightarrow{a} \times \widehat{i}) \cdot (\overrightarrow{b} \times \widehat{i}) = \begin{vmatrix} \overrightarrow{a} \cdot \overrightarrow{b} & \overrightarrow{a} \cdot \widehat{i} \\ \overrightarrow{b} \cdot \widehat{i} & \overrightarrow{i} \cdot \widehat{i} \end{vmatrix} = (\overrightarrow{a} \cdot \overrightarrow{b}) - (\overrightarrow{a} \cdot \widehat{i})(\overrightarrow{b} \cdot \widehat{i})$$

Similarly,
$$(\vec{a} \times \hat{j}) \cdot (\vec{b} \times \hat{j}) = (\vec{a} \cdot \vec{b}) - (\vec{a} \cdot \hat{j})(\vec{b} \cdot \hat{j})$$

and
$$(\vec{a} \times \hat{k}) \cdot (\vec{b} \times \hat{k}) = \vec{a} \cdot \vec{b} - (\vec{a} \cdot \hat{k}) (\vec{b} \cdot \hat{k})$$

Let
$$\overrightarrow{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$
, $\overrightarrow{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$. Therefore,

$$(\overrightarrow{a} \cdot \widehat{i}) = a_1, \ \overrightarrow{a} \cdot \widehat{j} = a_2, \ \overrightarrow{a} \cdot \widehat{k} = a_3, \ \overrightarrow{b} \cdot \widehat{i} = b_1, \ \overrightarrow{b} \cdot \widehat{j} = b_2, \ (\overrightarrow{b} \cdot \widehat{k}) = b_3$$

$$\Rightarrow (\vec{a} \times \hat{i}) \cdot (\vec{b} \times \hat{i}) + (\vec{a} \times \hat{j}) \cdot (\vec{b} \times \hat{j}) + (\vec{a} \times \hat{k}) \cdot (\vec{b} \times \hat{k})$$

$$=3\vec{a}\cdot\vec{b} - (a_1b_1 + a_2b_2 + a_2b_3)$$

$$=3\vec{a}\cdot\vec{b}-\vec{a}\cdot\vec{b}=2\vec{a}\cdot\vec{b}$$

86. b.
$$(\vec{a} \times \vec{b}) \times (\vec{r} \times \vec{c}) = ((\vec{a} \times \vec{b}) \cdot \vec{c}) \cdot \vec{r} - ((\vec{a} \times \vec{b}) \cdot \vec{r}) \cdot \vec{c} = [\vec{a} \vec{b} \vec{c}] \cdot \vec{r} - [\vec{a} \vec{b} \vec{r}] \cdot \vec{c}$$

Similarly, $(\vec{b} \times \vec{c}) \times (\vec{r} \times \vec{a}) = [\vec{b} \vec{c} \vec{a}] \cdot \vec{r} - [\vec{b} \vec{c} \vec{r}] \cdot \vec{a}$

and, $(\vec{c} \times \vec{a}) \times (\vec{r} \times \vec{b}) = [\vec{c} \vec{a} \vec{b}] \cdot \vec{r} - [\vec{c} \vec{a} \vec{r}] \cdot \vec{b}$

$$\Rightarrow (\vec{a} \times \vec{b}) \times (\vec{r} \times \vec{c}) + (\vec{b} \times \vec{c}) \times (\vec{r} \times \vec{a}) + (\vec{c} \times \vec{a}) \times (\vec{r} \times \vec{b})$$

$$= 3[\vec{a} \vec{b} \vec{c}] \cdot \vec{r} - ([\vec{b} \vec{c} \vec{r}] \cdot \vec{a} + [\vec{c} \vec{a} \vec{r}] \cdot \vec{b} + [\vec{a} \vec{b} \vec{r}] \cdot \vec{c})$$

$$= 3[\vec{a} \vec{b} \vec{c}] \cdot \vec{r} - [\vec{a} \vec{b} \vec{c}] \cdot \vec{r} = 2[\vec{a} \vec{b} \vec{c}] \cdot \vec{r}$$

87. a. We have,

$$\vec{a} \cdot \vec{p} = \vec{a} \cdot \frac{\vec{(b \times c)}}{\vec{(abc)}} = \frac{\vec{a} \cdot \vec{(b \times c)}}{\vec{(abc)}} = \frac{\vec{(abc)}}{\vec{(abc)}} = 1$$

$$\vec{a} \cdot \vec{q} = \vec{a} \cdot \frac{\vec{c} \times \vec{a}}{\vec{(abc)}} = \frac{\vec{(abc)}}{\vec{(abc)}} = 0$$

Similarly,
$$\overrightarrow{a} \cdot \overrightarrow{r} = 0$$
, $\overrightarrow{b} \cdot \overrightarrow{p} = 0$, $\overrightarrow{b} \cdot \overrightarrow{q} = 1$, $\overrightarrow{b} \cdot \overrightarrow{r} = 0$, $\overrightarrow{c} \cdot \overrightarrow{p} = 0$, $\overrightarrow{c} \cdot \overrightarrow{q} = 0$ and $\overrightarrow{c} \cdot \overrightarrow{r} = 1$

$$\therefore (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) \cdot (\overrightarrow{p} + \overrightarrow{q} + \overrightarrow{r}) = \overrightarrow{a} \cdot \overrightarrow{p} + \overrightarrow{a} \cdot \overrightarrow{q} + \overrightarrow{a} \cdot \overrightarrow{r} + \overrightarrow{b} \cdot \overrightarrow{p} + \overrightarrow{b} \cdot \overrightarrow{q} + \overrightarrow{b} \cdot \overrightarrow{r} + \overrightarrow{c} \cdot \overrightarrow{p} + \overrightarrow{c} \cdot \overrightarrow{q} + \overrightarrow{c} \cdot \overrightarrow{r}$$

$$= 1 + 1 + 1 = 3$$

88. h A vector perpendicular to the plane of $\overrightarrow{A(a)}$, $\overrightarrow{B(b)}$ and $\overrightarrow{C(c)}$ is

$$(\vec{b} - \vec{a}) \times (\vec{c} - \vec{a}) = \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}.$$

Now for any point $\overrightarrow{R(r)}$ in the plane of A, B and C is

$$(\overrightarrow{r} - \overrightarrow{a}) \cdot (\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}) = 0.$$

$$\overrightarrow{r} \cdot (\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}) - \overrightarrow{a} \cdot (\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}) = 0$$

$$\overrightarrow{r} \cdot (\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}) = \overrightarrow{b} + \overrightarrow{a} \cdot \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{0}$$

$$\overrightarrow{r} \cdot (\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}) = \overrightarrow{a} \cdot \overrightarrow{b} \cdot \overrightarrow{c}$$

$$\overrightarrow{r} \cdot (\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}) = \overrightarrow{a} \cdot \overrightarrow{b} \cdot \overrightarrow{c}$$

89. c. Given that \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{a} are non-coplanar.

Again
$$\vec{a} \times (\vec{b} \times \vec{c}) \cdot (\vec{a} \times \vec{c}) = 0$$

$$\Rightarrow [(\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}] \cdot (\vec{a} \times \vec{c}) = 0$$

$$\Rightarrow (\vec{a} \cdot \vec{c}) [\vec{b} \vec{a} \vec{c}] = 0$$

$$\Rightarrow (\vec{a} \cdot \vec{c}) = 0$$

 $\Rightarrow [\overrightarrow{abc}] \neq 0$

(i)

$$\Rightarrow \vec{a} \text{ and } \vec{c} \text{ are perpendicular.}$$

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} \Rightarrow [\vec{a} \times (\vec{b} \times \vec{c})] \times \vec{c} = \vec{0}$$
(ii)

90. c. Consider a tetrahedron with vertices O(0,0,0), A(a,0,0), B(0,b,0) and C(0,0,c).

Its volume
$$V = \frac{1}{6} \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}$$

Now centroids of the faces OAB, OAC, OBC and ABC are $G_1(a/3, b/3, 0)$, $G_2(a/3, 0, c/3)$, $G_3(0, b/3, c/3)$ and $G_4(a/3, b/3, c/3)$, respectively.

$$G_4G_1 = \vec{c}/3$$
, $\overrightarrow{G_4G_2} = \vec{b}/3$, $\overrightarrow{G_4G_3} = \vec{a}/3$.

Volume of tetrahedron by centroids $V' = \frac{1}{6} \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \\ 3 & 3 & 3 \end{bmatrix} = \frac{1}{27}V$ $\Rightarrow K = 27$

91. **c.**
$$[(\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c}) \quad (\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a}) \quad (\vec{c} \times \vec{a}) \times (\vec{a} \times \vec{b})]$$

$$= [[\vec{a} \ \vec{b} \ \vec{c}] \ \vec{b} \quad [\vec{a} \ \vec{b} \ \vec{c}] \ \vec{c} \quad [\vec{a} \ \vec{b} \ \vec{c}] \cdot \vec{a}] = [\vec{a} \ \vec{b} \ \vec{c}]^3 \quad [\vec{b} \ \vec{c} \ \vec{a}] = [\vec{a} \ \vec{b} \ \vec{c}]^4$$

92. **d.**
$$\overrightarrow{r} = x_1(\overrightarrow{a} \times \overrightarrow{b}) + x_2(\overrightarrow{b} \times \overrightarrow{c}) + x_3(\overrightarrow{c} \times \overrightarrow{a})$$

$$\Rightarrow \overrightarrow{r} \cdot \overrightarrow{a} = x_2[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}], \overrightarrow{r} \cdot \overrightarrow{b} = x_3[\overrightarrow{b} \overrightarrow{c} \overrightarrow{a}]$$
and $\overrightarrow{r} \cdot \overrightarrow{c} = x_1[\overrightarrow{c} \overrightarrow{a} \overrightarrow{b}] = x_1[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]$

$$\Rightarrow x_1 + x_2 + x_3 = 4 \overrightarrow{r} \cdot (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c})$$

93. **a.** Let
$$\overrightarrow{v} = x\overrightarrow{a} + y\overrightarrow{b} + z\overrightarrow{a} \times \overrightarrow{b}$$

Given: $\vec{a} \cdot \vec{b} = 0$, $\vec{v} \cdot \vec{a} = 0$, $\vec{v} \cdot \vec{b} = 1$, $[\vec{v} \cdot \vec{a} \cdot \vec{b}] = 1$

$$\Rightarrow \overrightarrow{v} \cdot \overrightarrow{a} = x \overrightarrow{a} \cdot \overrightarrow{a} = x |\overrightarrow{a}|^2 \quad (\because \overrightarrow{a} \cdot \overrightarrow{b} = 0, \overrightarrow{a} \cdot \overrightarrow{a} \times \overrightarrow{b} = 0)$$

$$\Rightarrow x = 0$$

Again, $\vec{v} \cdot \vec{b} = y | \vec{b} |^2 \Rightarrow 1 = yb^2$

$$\therefore y = \frac{1}{h^2}$$
 (ii)

Again, $\overrightarrow{v} \cdot (\overrightarrow{a} \times \overrightarrow{b}) = z(\overrightarrow{a} \times \overrightarrow{b})^2$

$$\Rightarrow 1 = z(\vec{a} \times \vec{b})^2 \Rightarrow z = \frac{1}{|\vec{a} \times \vec{k}|^2}$$

Hence, $\vec{v} = \frac{1}{|\vec{b}|^2} \vec{b} + \frac{1}{|\vec{a}|^2} \vec{a} \times \vec{b}$

94. d. Volume of the parallelepiped formed by \vec{a}' , \vec{b}' and \vec{c}' is 4.

Therefore, the volume of the parallelepiped formed by \vec{a} , \vec{b} and \vec{c} is $\frac{1}{4}$.

$$\vec{b} \times \vec{c} = [\vec{a} \ \vec{b} \ \vec{c}] \vec{a'} = \frac{1}{4} \vec{a'}$$

$$|\vec{b} \times \vec{c}| = \frac{\sqrt{2}}{4} = \frac{1}{2\sqrt{2}}$$

Length of altitude =
$$\frac{1}{4} \times 2\sqrt{2} = \frac{1}{\sqrt{2}}$$

95. **d.**
$$\overrightarrow{a'} = \frac{\overrightarrow{b} \times \overrightarrow{c}}{[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]} = \frac{\widehat{i} + \widehat{j} - \widehat{k}}{2}$$

Multiple Correct Answers Type

1. a., b. We have,
$$|\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2(\vec{a} \cdot \vec{b})$$

$$\Rightarrow |\overrightarrow{a} - \overrightarrow{b}|^2 = |\overrightarrow{a}|^2 + |\overrightarrow{b}|^2 - 2|\overrightarrow{a}||\overrightarrow{b}|\cos 2\theta$$

$$\Rightarrow |\vec{a} - \vec{b}|^2 = 2 - 2\cos 2\theta \quad (\because |\vec{a}| = |\vec{b}| = 1)$$

$$\Rightarrow |\vec{a} - \vec{b}|^2 = 4 \sin^2 \theta$$

$$\Rightarrow |\vec{a} - \vec{b}| = 2|\sin\theta|$$

Now,
$$|\vec{a} - \vec{b}| < 1$$

$$\Rightarrow 2 |\sin \theta| < 1$$

$$\Rightarrow |\sin \theta| < \frac{1}{2}$$

$$\Rightarrow \theta \in [0, \pi/6) \text{ or } \theta \in (5\pi/6, \pi]$$

2. a., **c.**
$$\vec{a} \times (\vec{b} \times \vec{c}) + (\vec{a} \cdot \vec{b}) \vec{b} = (4 - 2x - \sin y) \vec{b} + (x^2 - 1) \vec{c}$$

$$\Rightarrow (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} + (\vec{a} \cdot \vec{b}) \vec{b} = (4 - 2x - \sin y) \vec{b} + (x^2 - 1) \vec{c}$$

Now,
$$(\overrightarrow{c} \cdot \overrightarrow{c}) \overrightarrow{a} = \overrightarrow{c}$$
. Therefore,

$$(\overrightarrow{c} \cdot \overrightarrow{c})(\overrightarrow{a} \cdot \overrightarrow{c}) = (\overrightarrow{c} \cdot \overrightarrow{c}) \Rightarrow \overrightarrow{a} \cdot \overrightarrow{c} = 1$$

$$\Rightarrow 1 + \vec{a} \cdot \vec{b} = 4 - 2x - \sin y, \ x^2 - 1 = -(\vec{a} \cdot \vec{b})$$

$$\Rightarrow 1 = 4 - 2x - \sin y + x^2 - 1$$

$$\Rightarrow$$
 sin y = $x^2 - 2x + 2 = (x - 1)^2 + 1$

But
$$\sin y \le 1 \Rightarrow x = 1$$
, $\sin y = 1$

$$\Rightarrow y = (4n+1)\frac{\pi}{2}, \quad n \in I$$

$$|\vec{a}| = |\vec{b}| = 1$$
 and $\cos \theta = \vec{a} \cdot \vec{c} = \vec{b} \cdot \vec{c}$

Now,
$$\vec{c} = \alpha \vec{a} + \beta \vec{b} + \gamma (\vec{a} \times \vec{b})$$
 (i)

$$\Rightarrow \vec{a} \cdot \vec{c} = \alpha(\vec{a} \cdot \vec{a}) + \beta(\vec{a} \cdot \vec{b}) + \gamma \{\vec{a} \cdot (\vec{a} \times \vec{b})\}$$

$$\Rightarrow \cos \theta = \alpha |\vec{a}|^2 \quad (\because \vec{a} \cdot \vec{b} = 0, \vec{a} \cdot (\vec{a} \times \vec{b}) = 0)$$

$$\Rightarrow \cos \theta = \alpha$$

Similarly, by taking dot product on both sides of (i) by \vec{b} , we get $\beta = \cos \theta$

$$\alpha = \beta$$

Again,
$$\vec{c} = \alpha \vec{a} + \beta \vec{b} + \gamma (\vec{a} \times \vec{b})$$

$$\Rightarrow |\vec{c}|^2 = |\alpha \vec{a} + \beta \vec{b} + \gamma (\vec{a} \times \vec{b})|^2$$

$$= \alpha^2 |\vec{a}|^2 + \beta^2 |\vec{b}|^2 + \gamma^2 |\vec{a} \times \vec{b}|^2 + 2\alpha\beta(\vec{a} \cdot \vec{b}) + 2\alpha\gamma\{\vec{a} \cdot (\vec{a} \times \vec{b})\} + 2\beta\gamma(\vec{b} \cdot \{\vec{a} \times \vec{b}\})$$

$$\Rightarrow 1 = \alpha^2 + \beta^2 + \gamma^2 |\vec{a} \times \vec{b}|^2$$

$$\Rightarrow 1 = 2\alpha^2 + \gamma^2 \{ |\overrightarrow{a}|^2 |\overrightarrow{b}|^2 \sin^2 \pi/2 \}$$

$$\Rightarrow 1 = 2\alpha^2 + \gamma^2 \Rightarrow \alpha^2 = \frac{1 - \gamma^2}{2}$$

But
$$\alpha = \beta = \cos \theta$$
.

$$1 = 2\alpha^2 + \gamma^2 \Rightarrow \gamma^2 = 1 - 2\cos^2\theta = -\cos 2\theta$$

$$\therefore \beta^2 = \frac{1 - \gamma^2}{2} = \frac{1 + \cos 2\theta}{2}$$

4. **a., b., c.** We have,

$$AM = \text{projection of } \vec{b} \text{ on } \vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}$$

$$\therefore \overrightarrow{AM} = \left(\frac{\overrightarrow{a}.\overrightarrow{b}}{|\overrightarrow{a}|^2}\right) \overrightarrow{a}$$

Now, in $\triangle ADM$

$$\overrightarrow{AD} = \overrightarrow{AM} + \overrightarrow{MD} \Rightarrow \overrightarrow{DM} = \overrightarrow{AM} - \overrightarrow{AD}$$

$$\Rightarrow \overrightarrow{DM} = \frac{(\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{a}}{|\overrightarrow{a}|^2} - \overrightarrow{b}$$

Also,
$$\overrightarrow{DM} = \frac{1}{|\vec{a}|^2} [(\vec{a} \cdot \vec{b}) \vec{a} - |\vec{a}|^2 \vec{b}]$$

Fig. 2.42

$$\Rightarrow \overrightarrow{MD} = \frac{1}{|\overrightarrow{a}|^2} [|\overrightarrow{a}|^2 \overrightarrow{b} - (\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{a}]$$

Now,
$$\frac{\vec{a} \times (\vec{a} \times \vec{b})}{|\vec{a}|^2} = \frac{1}{|\vec{a}|^2} [(\vec{a} \cdot \vec{b}) \vec{a} - (\vec{a} \cdot \vec{a}) \vec{b}] = \overrightarrow{DM}$$

5. **a., c.**
$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}$$
 and $(\vec{a} \times \vec{b}) \times \vec{c} = -(\vec{c} \cdot \vec{b}) \vec{a} + (\vec{a} \cdot \vec{c}) \vec{b}$

We have been given $(\vec{a} \times (\vec{b} \times \vec{c})) \cdot ((\vec{a} \times \vec{b}) \times \vec{c}) = 0$. Therefore,

$$((\overrightarrow{a} \cdot \overrightarrow{c}) \overrightarrow{b} - (\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{c}) \cdot ((\overrightarrow{a} \cdot \overrightarrow{c}) \overrightarrow{b} - (\overrightarrow{c} \cdot \overrightarrow{b}) \overrightarrow{a}) = 0$$

$$\Rightarrow (\overrightarrow{a} \cdot \overrightarrow{c})^2 | \overrightarrow{b}|^2 - (\overrightarrow{a} \cdot \overrightarrow{c})(\overrightarrow{b} \cdot \overrightarrow{c})(\overrightarrow{a} \cdot \overrightarrow{b}) - (\overrightarrow{a} \cdot \overrightarrow{b})(\overrightarrow{a} \cdot \overrightarrow{c})(\overrightarrow{b} \cdot \overrightarrow{c}) + (\overrightarrow{a} \cdot \overrightarrow{b})(\overrightarrow{b} \cdot \overrightarrow{c})(\overrightarrow{c} \cdot \overrightarrow{a}) = 0$$

$$\Rightarrow (\overrightarrow{a} \cdot \overrightarrow{c})^2 |\overrightarrow{b}|^2 = (\overrightarrow{a} \cdot \overrightarrow{c})(\overrightarrow{a} \cdot \overrightarrow{b})(\overrightarrow{b} \cdot \overrightarrow{c})$$

$$\Rightarrow (\vec{a} \cdot \vec{c})((\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{b}) - (\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{c})) = 0$$

$$\vec{a} \cdot \vec{c} = 0 \text{ or } (\vec{a} \cdot \vec{c}) |\vec{b}|^2 = (\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{c})$$

6. a., c. We have
$$[\stackrel{\rightarrow}{p}\stackrel{\rightarrow}{q}\stackrel{\rightarrow}{r}] = \frac{1}{\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{b}\stackrel{\rightarrow}{c}}$$
. Therefore,

$$[\stackrel{\rightarrow}{p}\stackrel{\rightarrow}{q}\stackrel{\rightarrow}{r}]>0$$

a.
$$x > 0, x[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] + \frac{[\overrightarrow{p} \overrightarrow{q} \overrightarrow{r}]}{x} \ge 2$$
 (using A.M. \ge G.M.)

h. Similarly, use $A.M. \ge G.M$.

7. **a., b., c., d.**
$$a_1 + a_2 \cos 2x + a_3 \sin^2 x = 0 \ \forall \ x \in R$$

$$\Rightarrow (a_1 + a_2) + \sin^2 x (a_1 - 2a_2) = 0$$

$$\Rightarrow a_1 + a_2 = 0 \text{ and } a_3 - 2a_2 = 0$$

$$\frac{a_1}{-1} = \frac{a_2}{1} = \frac{a_3}{2} = \lambda (\neq 0)$$

$$\Rightarrow a_1 = -\lambda, a_2 = \lambda, a_3 = 2\lambda$$

8. **a., b., c., d.** $\overrightarrow{a} \times \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \sin \theta \hat{n}$

$$\Rightarrow |\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}| \sin \theta$$

$$\Rightarrow \sin \theta = \frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}||}$$
 (i)

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

$$\Rightarrow \cos \theta = \frac{|\vec{a} \cdot \vec{b}|}{|\vec{a} \cdot \vec{b}|}$$
 (ii)

From (i) and (ii),

(i)

$$\sin^2 \theta + \cos^2 \theta = 1$$

$$\Rightarrow |\overrightarrow{a} \times \overrightarrow{b}|^2 + (\overrightarrow{a} \cdot \overrightarrow{b})^2 = |\overrightarrow{a}|^2 |\overrightarrow{b}|^2$$

If $\theta = \pi/4$, then $\sin \theta = \cos \theta = 1/\sqrt{2}$. Therefore.

$$|\vec{a} \times \vec{b}| = \frac{|\vec{a}||\vec{b}|}{\sqrt{2}}$$
 and $\vec{a} \cdot \vec{b} = \frac{|\vec{a}||\vec{b}|}{\sqrt{2}}$

$$|\vec{a} \times \vec{b}| = \vec{a} \cdot \vec{b}$$

$$\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n} = \frac{|\vec{a}| |\vec{b}|}{\sqrt{2}} \hat{n}$$

$$\vec{a} \times \vec{b} = (\vec{a} \cdot \vec{b}) \hat{n}$$

9. **a., b., c., d.** Since \overrightarrow{a} , \overrightarrow{b} and $\overrightarrow{a} \times \overrightarrow{b}$ are non-coplanar.

$$\vec{r} = x\vec{a} + y\vec{b} + z(\vec{a} \times \vec{b})$$

$$\vec{x} \times \vec{b} = \vec{a} \implies \vec{x} \times \vec{b} + z \{ (\vec{a} \cdot \vec{b}) \vec{b} - (\vec{b} \cdot \vec{b}) \vec{a} \} = \vec{a}$$

$$\Rightarrow -(1+z|\vec{b}|^2)\vec{a} + x\vec{a} \times \vec{b} = 0$$
 (since $\vec{a} \cdot \vec{b} = 0$)

$$\therefore x = 0 \text{ and } z = -\frac{1}{|\overrightarrow{b}|^2}$$

Thus, $\vec{r} = y\vec{b} - \frac{\vec{a} \times \vec{b}}{|\vec{b}|^2}$, where y is the parameter.

b., d. Since $\vec{a} = (1, 3, \sin 2\alpha)$ makes an obtuse angle with the z-axis, its z-component is negative.

$$\Rightarrow$$
 - 1 \leq sin 2 α < 0

$$\Rightarrow -1 \le \sin 2\alpha < 0$$

But
$$\vec{b} \cdot \vec{c} = 0$$
 (: orthogonal)

$$\tan^2 \alpha - \tan \alpha - 6 = 0$$

$$\therefore$$
 (tan α – 3) (tan α + 2) = 0

$$\Rightarrow$$
 tan $\alpha = 3, -2$

Now, $\tan \alpha = 3$. Therefore,

$$\sin 2\alpha = \frac{2\tan \alpha}{1 + \tan^2 \alpha} = \frac{6}{1+9} = \frac{3}{5}$$
 (not possible as $\sin 2\alpha < 0$)

Now, if $\tan \alpha = -2$,

$$\Rightarrow \sin 2\alpha = \frac{2\tan \alpha}{1 + \tan^2 \alpha} = \frac{-4}{1 + 4} = \frac{-4}{5}$$

$$\Rightarrow \tan 2\alpha > 0$$

$$\Rightarrow$$
 2 α is the third quadrant. Also, $\sqrt{\sin \alpha/2}$ is meaningful. If $0 < \sin \alpha/2 = 1$, then $\alpha = (4n+1) \pi - \tan^{-1} 2$ and $\alpha = (4n+2) \pi - \tan^{-1} 2$.

11. **b.,d.**
$$\overrightarrow{a} \times (\overrightarrow{r} \times \overrightarrow{a}) = \overrightarrow{a} \times \overrightarrow{b}$$

$$3\overrightarrow{r} - (\overrightarrow{a} \cdot \overrightarrow{r}) \overrightarrow{a} = \overrightarrow{a} \times \overrightarrow{b}$$
Also $|\overrightarrow{r} \times \overrightarrow{a}| = |\overrightarrow{b}|$

$$\Rightarrow \sin^2 \theta = \frac{2}{3}$$

$$\Rightarrow (1 - \cos^2 \theta) = \frac{2}{3}$$

$$\Rightarrow \frac{1}{3} = \cos^2 \theta$$

$$\Rightarrow \stackrel{\rightarrow}{a.r} = \pm 1$$

$$\Rightarrow 3\vec{r} \pm \vec{a} = \vec{a} \times \vec{b}$$

$$\Rightarrow \vec{r} = \frac{1}{3} (\vec{a} \times \vec{b} \pm \vec{a})$$

12. b., d.
$$(\vec{a} - \vec{b}) \times [(\vec{b} + \vec{a}) \times (2\vec{a} + \vec{b})] = \vec{b} + \vec{a}$$

$$\Rightarrow \{(\vec{a} - \vec{b}) \cdot (2\vec{a} + \vec{b})\}(\vec{b} + \vec{a}) - \{(\vec{a} - \vec{b}) \cdot (\vec{b} + \vec{a})\}(2\vec{a} + \vec{b}) = \vec{b} + \vec{a}$$

$$\Rightarrow (2 - \vec{a} \cdot \vec{b} - 1)(\vec{b} + \vec{a}) = \vec{b} + \vec{a}$$

$$\Rightarrow$$
 either $\vec{b} + \vec{a} = \vec{0}$ or $1 - \vec{a} \cdot \vec{b} = 1$

$$\Rightarrow$$
 either $\vec{b} = -\vec{a}$ or $\vec{a} \cdot \vec{b} = 0$

$$\Rightarrow$$
 either $\theta = \pi$ or $\theta = \pi/2$

13. **a., d.** Given
$$\vec{c} = \lambda_1 \vec{a} + \lambda_2 \vec{b} + \lambda_3 (\vec{a} \times \vec{b})$$

and
$$\overrightarrow{a} \cdot \overrightarrow{b} = 0$$
, $|\overrightarrow{a}| = 1$, $|\overrightarrow{b}| = 1$

From (i),
$$\vec{a} \cdot \vec{c} = \lambda_1$$
, $\vec{c} \cdot \vec{b} = \lambda_2$

and
$$\vec{c} \cdot (\vec{a} \times \vec{b}) = |\vec{a} \times \vec{b}|^2 \lambda_3$$

$$= (1.1 \sin 90^\circ)^2 \lambda_3 = \lambda_3$$

Hence
$$\lambda_1 + \lambda_2 + \lambda_3 = (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}$$

14. **b., c., d.** Obviously, $\frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|}$ is a vector in the plane of \vec{a} and \vec{b} and hence perpendicular to

(i)

 $\vec{a} \times \vec{b}$. It is also equally inclined to \vec{a} and \vec{b} as it is along the angle bisector.

15. a. d.
$$|\vec{a} + \vec{b}| = |\vec{a} - 2\vec{b}|$$

$$\Rightarrow \vec{a} \cdot \vec{b} = \frac{|\vec{b}|^2}{2}$$

Also
$$\overrightarrow{a} \cdot \overrightarrow{b} + \frac{1}{|\overrightarrow{b}|^2 + 2}$$

$$= \frac{|\vec{b}|^2 + 2}{2} + \frac{1}{|\vec{b}|^2 + 2} - 1$$

$$\geq \sqrt{2} - 1$$
 (using A.M. \geq G.M.)

16. b., d.
$$\vec{V_1} = \vec{V_2}$$

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$$

$$\Rightarrow (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{b} \cdot \vec{c}) \vec{a}$$

$$\Rightarrow (\vec{a} \cdot \vec{b}) \vec{c} = (\vec{b} \cdot \vec{c}) \vec{a}$$

 \Rightarrow either \vec{c} and \vec{a} are collinear or \vec{b} is perpendicular to both \vec{a} and $\vec{c} \Rightarrow \vec{b} = \lambda (\vec{a} \times \vec{c})$

17. **b..** c. We have $\overrightarrow{A} + \overrightarrow{B} = \overrightarrow{a}$

$$\Rightarrow \overrightarrow{A} \cdot \overrightarrow{a} + \overrightarrow{B} \cdot \overrightarrow{a} = \overrightarrow{a} \cdot \overrightarrow{a}$$

$$\Rightarrow 1 + \overrightarrow{B} \cdot \overrightarrow{a} = a^2 \text{ (given } \overrightarrow{A} \cdot \overrightarrow{a} = 1\text{)}$$

$$\Rightarrow \vec{B} \cdot \vec{a} = a^2 - 1 \tag{i}$$

Also $\overrightarrow{A} \times \overrightarrow{B} = \overrightarrow{b}$

$$\Rightarrow \vec{a} \times (\vec{A} \times \vec{B}) = \vec{a} \times \vec{b}$$

$$\Rightarrow (\overrightarrow{a} \cdot \overrightarrow{B}) \overrightarrow{A} - (\overrightarrow{a} \cdot \overrightarrow{A}) \overrightarrow{B} = \overrightarrow{a} \times \overrightarrow{b}$$

$$\Rightarrow (a^2 - 1)\vec{A} - \vec{B} = \vec{a} \times \vec{b} \quad \text{(using (i) and } \vec{a} \cdot \vec{A} = 1)$$
 (ii)

and
$$\vec{A} + \vec{B} = \vec{a}$$
 (iii)

From (ii) and (iii)

$$\vec{A} = \frac{(\vec{a} \times \vec{b}) + \vec{a}}{a^2}$$

$$\vec{B} = \vec{a} - \left\{ \frac{(\vec{a} \times \vec{b}) + \vec{a}}{a^2} \right\}$$
or $\vec{B} = \frac{(\vec{b} \times \vec{a}) + \vec{a}(a^2 - 1)}{a^2}$
Thus $\vec{A} = \frac{(\vec{a} \times \vec{b}) + \vec{a}}{a^2}$ and $\vec{B} = \frac{(\vec{b} \times \vec{a}) + \vec{a}(a^2 - 1)}{a^2}$

18. c., d. Since $[\vec{a} \vec{b} \vec{c}] = 0$, \vec{a} , \vec{b} and \vec{c} are coplanar vectors. Further, since \vec{d} is equally inclined to \vec{a} , \vec{b} and \vec{c} ,

$$\vec{d} \cdot \vec{a} = \vec{d} \cdot \vec{b} = \vec{d} \cdot \vec{c} = 0$$

$$\vec{d} \cdot \vec{x} = \vec{d} \cdot \vec{y} = \vec{d} \cdot \vec{z} = 0$$

$$\vec{d} \cdot \vec{r} = 0$$

19. **b., d.** Let $\vec{\alpha} = \hat{i} - \hat{j} - \hat{k}$, $\vec{\beta} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{\gamma} = -\hat{i} + \hat{j} + \hat{k}$. Let required vector $\vec{a} = x\hat{i} + y\hat{j} + z\hat{j}$.

 $\vec{\alpha}, \vec{\beta}, \vec{\gamma}$ are coplanar

$$\Rightarrow \begin{vmatrix} x & y & z \\ 1 & 1 & 1 \\ -1 & 1 & 1 \end{vmatrix} = 0 \Rightarrow y = z$$

Also, \vec{a} and $\vec{\alpha}$ are perpendicular

$$\Rightarrow x - y - z = 0$$

$$\Rightarrow x = zy$$

 \Rightarrow Options b and d are correct.

20. b., d.

Fig. 2.43

(i)

21. **a., b., c.** Consider $\vec{V}_1 \cdot \vec{V}_2 = 0 \implies A = 90^\circ$

Fig. 2.44

Using the sine law,
$$\left| \frac{\vec{b} - (\hat{a} \cdot \vec{b}) \hat{a}}{\sin \theta} \right| = \frac{\sqrt{3} |\hat{a} \times \vec{b}|}{\cos \theta}$$

$$\Rightarrow \tan \theta = \frac{1}{\sqrt{3}} \frac{|\vec{b} - (\hat{a} \cdot \vec{b})\hat{a}|}{|\hat{a} \times \vec{b}|}$$

$$= \frac{1}{\sqrt{3}} \frac{|(\hat{a} \times \vec{b}) \times \hat{a}|}{|\hat{a} \times \vec{b}|}$$

$$= \frac{1}{\sqrt{3}} \frac{|(\hat{a} \times \vec{b}) \times \hat{a}|}{|\hat{a} \times \vec{b}|}$$

$$= \frac{1}{\sqrt{3}} \frac{|\hat{a} \times \vec{b}| |\hat{a}| \sin 90^{\circ}}{|\hat{a} \times \vec{b}|} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \theta = \frac{\pi}{6}$$

22. **a., b.** Given,
$$\frac{1}{6}\hat{i} - \frac{1}{3}\hat{j} + \frac{1}{3}\hat{k} = (\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d})$$

$$= [\vec{a}\vec{b}\vec{d}]\vec{c} - [\vec{a}\vec{b}\vec{c}]\vec{d}$$

$$= [\vec{a}\vec{b}\vec{d}]\vec{c}$$

 $[\because \vec{a}, \vec{b} \text{ and } \vec{c} \text{ are coplanar}]$

$$[\vec{a} \ \vec{b} \ \vec{d}] = (\vec{a} \times \vec{b}) \cdot \vec{d}$$

$$= |\vec{a} \times \vec{b}| |\vec{d}| \cos \theta \ (\because \vec{d} \perp \vec{a}, \vec{d} \perp \vec{b}, \ \because \vec{d} \parallel \vec{a} \times \vec{b})$$

$$= ab \sin 30^{\circ} \cdot 1 \cdot (\pm 1) \ (\because \theta = 0 \text{ or } \pi)$$

$$= 1 \cdot 1 \cdot \frac{1}{2} \cdot 1(\pm 1) = \pm \frac{1}{2}$$

From (i),

$$\vec{c} = \pm \left(\frac{1}{3}\hat{i} - \frac{2}{3}\hat{j} + \frac{2}{3}\hat{k}\right) = \pm \frac{\hat{i} - 2\hat{j} + 2\hat{k}}{3}$$

23. **a., b., c.** We know that
$$\vec{a} + \vec{b} + \vec{c} = \vec{0}$$
, then $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$
Given $\vec{a} + 2\vec{b} + 3\vec{c} = \vec{0}$ $\Rightarrow 2\vec{a} \times \vec{b} = 6\vec{b} \times \vec{c} = 3\vec{c} \times \vec{a}$
Hence $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = 2(\vec{a} \times \vec{b})$ or $6(\vec{b} \times \vec{c})$ or $3(\vec{c} \times \vec{a})$

24. **a., b.**
$$\vec{u} = \vec{a} - (\vec{a} \cdot \vec{b}) \vec{b}$$

$$= \vec{a} (\vec{b} \cdot \vec{b}) - (\vec{a} \cdot \vec{b}) \vec{b}$$

$$= \vec{b} \times (\vec{a} \times \vec{b})$$

$$\Rightarrow |\vec{u}| = |\vec{b} \times (\vec{a} \times \vec{b})|$$

$$= |\vec{b}| |\vec{a} \times \vec{b}| \sin 90^{\circ}$$

$$= |\vec{b}| |\vec{a} \times \vec{b}|$$

$$= |\vec{v}|$$

Also
$$\vec{u} \cdot \vec{b} = \vec{b} \cdot \vec{b} \times (\vec{a} \times \vec{b})$$

= $[\vec{b} \ \vec{b} \ \vec{a} \times \vec{b}]$
= 0

$$\Rightarrow |\overrightarrow{v}| = |\overrightarrow{u}| + |\overrightarrow{u} \cdot \overrightarrow{b}|$$

25. **a., c.**
$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}$$
, $\overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{a}$

Taking cross with \vec{b} in the first equation, we get $\vec{b} \times (\vec{a} \times \vec{b}) = \vec{b} \times \vec{c} = \vec{a}$

$$\Rightarrow |\vec{b}|^2 \vec{a} - (\vec{a} \cdot \vec{b}) \vec{b} = \vec{a} \Rightarrow |\vec{b}| = 1 \text{ and } \vec{a} \cdot \vec{b} = 0$$

Also
$$|\vec{a} \times \vec{b}| = |\vec{c}| \Rightarrow |\vec{a}| |\vec{b}| \sin \frac{\pi}{2} = |\vec{c}| \Rightarrow |\vec{a}| = |\vec{c}|$$

26. b.,d.
$$\overrightarrow{d} \cdot \overrightarrow{a} = [\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] \cos y = -\overrightarrow{d} \cdot (\overrightarrow{b} + \overrightarrow{c})$$

$$\Rightarrow \cos y = -\frac{\vec{d} \cdot (\vec{b} + \vec{c})}{\vec{a} \cdot \vec{b} \cdot \vec{c}}$$

Similarly,
$$\sin x = -\frac{\overrightarrow{d} \cdot (\overrightarrow{a} + \overrightarrow{b})}{[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]}$$
 and $\frac{\overrightarrow{d} \cdot (\overrightarrow{a} + \overrightarrow{c})}{[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]} = -2$

$$\therefore \sin x + \cos y + 2 = 0$$

$$\Rightarrow \sin x + \cos y = -2$$

$$\Rightarrow$$
 sin $x = -1$, cos $y = -1$

Since we want the minimum value of $x^2 + y^2$, $x = -\pi/2$, $y = \pi$

 \therefore The minimum value of $x^2 + y^2$ is $5\pi^2/4$

27. **b., c.**
$$\vec{a} \times (\vec{b} \times \vec{c}) = \frac{1}{2}\vec{b}$$

$$\Rightarrow (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c} = \frac{1}{2}\vec{b}$$

$$\Rightarrow \vec{a} \cdot \vec{c} = \frac{1}{2} \text{ and } \vec{a} \cdot \vec{b} = 0$$

$$\Rightarrow 1 \cdot 1\cos\alpha = \frac{1}{2} \text{ and } \vec{a} \perp \vec{b}$$

$$\Rightarrow \alpha = \frac{\pi}{2} \text{ and } \vec{a} \perp \vec{b}$$

28. **a., b., c.**
$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

$$\overrightarrow{BC} = \frac{2\overrightarrow{u}}{|u|} - \frac{\overrightarrow{u}}{|u|} + \frac{\overrightarrow{v}}{|v|} = \frac{\overrightarrow{u}}{|u|} + \frac{\overrightarrow{v}}{|v|}$$

$$\overrightarrow{AB} \cdot \overrightarrow{BC} = \left(\frac{\overrightarrow{u}}{|u|} - \frac{\overrightarrow{v}}{|v|}\right) \left(\frac{\overrightarrow{u}}{|u|} + \frac{\overrightarrow{v}}{|v|}\right) = (\widehat{u} - \widehat{v}) \cdot (\widehat{u} + \widehat{v}) = 1 - 1 = 0$$

$$(|\vec{u}| | |\vec{v}|)(|\vec{u}| | |\vec{v}|)$$

$$\Rightarrow \angle B = 90^{\circ}$$

$$\Rightarrow 1 + \cos 2A + \cos 2B + \cos 2C = 0$$

29. a., b., c. Let
$$\overrightarrow{A} = \overrightarrow{a} \times \overrightarrow{b}$$
, $\overrightarrow{B} = \overrightarrow{c} \times \overrightarrow{d}$ and $\overrightarrow{C} = \overrightarrow{e} \times \overrightarrow{f}$

We know that $\vec{A} \cdot (\vec{B} \times \vec{C}) = \vec{B} \cdot (\vec{C} \times \vec{A}) = \vec{C} \cdot (\vec{A} \times \vec{B})$

$$= (\vec{a} \times \vec{b}) \cdot [(\vec{c} \times \vec{d}) \times (\vec{e} \times \vec{f})]$$

$$= (\vec{a} \times \vec{b}) \cdot [\{(\vec{c} \times \vec{d}) \cdot \vec{f}\} \vec{e} - \{(\vec{c} \times \vec{d}) \cdot \vec{e}\} \vec{f}\}$$

$$= [\vec{c} \vec{d} \vec{f}] [\vec{a} \vec{b} \vec{e}] - [\vec{c} \vec{d} \vec{e}] [\vec{a} \vec{b} \vec{f}]$$

Similarly, other parts can be obtained.

30. a., c. Here
$$(\overrightarrow{la} + \overrightarrow{mb}) \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{b} \Rightarrow \overrightarrow{la} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{b}$$

$$\Rightarrow l(\vec{a} \times \vec{b})^2 = (\vec{c} \times \vec{b}) \cdot (\vec{a} \times \vec{b}) \Rightarrow l = \frac{(\vec{c} \times \vec{b}) \cdot (\vec{a} \times \vec{b})}{(\vec{a} \times \vec{b})^2}$$

Similarly,
$$m = \frac{(\overrightarrow{c} \times \overrightarrow{a}) \cdot (\overrightarrow{b} \times \overrightarrow{a})}{(\overrightarrow{b} \times \overrightarrow{a})^2}$$

b., c., d. $(\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{c} \times \overrightarrow{d}) \cdot (\overrightarrow{a} \times \overrightarrow{d}) = 0$

31. **b., c., d.**
$$(\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{c} \times \overrightarrow{d}) \cdot (\overrightarrow{a} \times \overrightarrow{d}) = 0$$

$$\Rightarrow (\vec{a} \vec{c} \vec{d}) \vec{b} - \vec{b} \vec{c} \vec{d} \vec{a}) \cdot (\vec{a} \times \vec{d}) = 0$$

$$\Rightarrow [\overrightarrow{a} \overrightarrow{c} \overrightarrow{d}][\overrightarrow{b} \overrightarrow{a} \overrightarrow{d}] = 0$$

 \Rightarrow Either \overrightarrow{c} or \overrightarrow{b} must lie in the plane of \overrightarrow{a} and \overrightarrow{d} .

32. **a., b.** Let
$$\overrightarrow{EB} = p$$
, \overrightarrow{AB} and $\overrightarrow{CE} = q \overrightarrow{CD}$.

Fig. 2.45

Then 0 < p and $q \le 1$

Since
$$\overrightarrow{EB} + \overrightarrow{BC} + \overrightarrow{CE} = \overrightarrow{0}$$

$$pm(2\hat{i}-6\hat{j}+2\hat{k})+(\hat{i}-2\hat{j})+qn(-6\hat{i}+15\hat{j}-3\hat{k})=\vec{0}$$

$$\Rightarrow (2pm + 1 - 6qn)\hat{i} + (-6pm - 2 + 15qn)\hat{j} + (2pm - 6qn)\hat{k} = \vec{0}$$

$$\Rightarrow 2pm - 6qn + 1 = \vec{0}, -6pm - 2 + 15qn = \vec{0}, 2pm - 6qn = \vec{0}$$

Solving these, we get

$$p = 1/(2m)$$
 and $q = 1/(3n)$

$$\therefore 0 < 1/(2m) \le 1$$
 and $0 < 1/(3n) \le 1$

 $\implies m \ge 1/2 \text{ and } n \ge 1/3$

$$\vec{V}_1 = \vec{l} \vec{a} + m \vec{b} + n \vec{c}$$
33. **a., b., d.** $\vec{V}_2 = \vec{n} \vec{a} + \vec{l} \vec{b} + m \vec{c}$ when \vec{a} , \vec{b} and \vec{c} are non-coplanar.
$$\vec{V}_3 = \vec{m} \vec{a} + n \vec{b} + \vec{l} \vec{c}$$

Therefore,

$$[\overrightarrow{V}_1 \overrightarrow{V}_2 \overrightarrow{V}_3] = \begin{vmatrix} l & m & n \\ n & l & m \\ m & n & l \end{vmatrix} = 0$$

$$\Rightarrow$$
 $(l+m+n)[(l-m)^2+(m-n)^2+(n-l)^2]=0$

$$\Rightarrow l + m + n = 0 \tag{i}$$

Obviously, $lx^2 + mx + n = 0$ is satisfied by x = 1 due to (i).

$$l^3 + m^3 + n^3 = 3lmn$$

$$\Rightarrow$$
 $(l+m+n)(l^2+m^2+n^2-lm-mn-ln)=0$, which is true

a., b., c. It is given that $\overrightarrow{\alpha}$, \overrightarrow{b} and $\overrightarrow{\gamma}$ are coplanar vectors. Therefore, $[\vec{\alpha} \, \vec{\beta} \, \vec{\gamma}] = 0$

$$\Rightarrow \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 0$$

$$\Rightarrow 3abc - a^3 - b^3 - c^3 = 0$$

$$\Rightarrow a^3 + b^3 + c^3 - 3abc = 0$$

$$\Rightarrow$$
 $(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0$

$$\Rightarrow a+b+c=0 \quad [\because a^2+b^2+c^2-ab-bc-ca\neq 0]$$

$$\Rightarrow \overrightarrow{v} \cdot \overrightarrow{\alpha} = \overrightarrow{v} \cdot \overrightarrow{\beta} = \overrightarrow{v} \cdot \overrightarrow{\gamma} = 0$$

$$\Rightarrow \overrightarrow{v}$$
 is perpendicular to $\overrightarrow{\alpha}$, $\overrightarrow{\beta}$ and $\overrightarrow{\gamma}$

b., d. For \vec{A} , \vec{B} and \vec{C} to form a left-handed system 35.

$$[\overrightarrow{ABC}] < 0$$

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 1 & 1 & 5 \end{vmatrix} = 11\hat{i} - 6\hat{j} - \hat{k}$$
 (i)

(i) is satisfied by options (b) and (d).

Reasoning Type

1. **b.** A vector along the bisector is $\frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|} = \frac{-5\hat{i} + 7\hat{j} + 2\hat{k}}{9}$

Hence $\vec{c} = -5\hat{i} + 7\hat{j} + 2\hat{k}$ is along the bisector. It is obvious that \vec{c} makes an equal angle with \vec{a} and \vec{b} . However, Statement 2 does not explain Statement 1, as a vector equally inclined to given two vectors is not necessarily coplanar.

2. **c.** Component of vector $\vec{b} = 4\hat{i} + 2\hat{j} + 3\hat{k}$ in the direction of $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ is $\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{a}|} = \frac{\vec{a}}{|\vec{a}| |\vec{a}|}$ or $3\hat{i} + 3\hat{j} + 3\hat{k}$.

Then component in the direction perpendicular to the direction of $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ is $\vec{b} - 3\hat{i} + 3\hat{j} + 3\hat{k} = \hat{i} - \hat{j}$

3. d. $\overrightarrow{AD} = 2\hat{j} - \hat{k}$, $\overrightarrow{BD} = -2\hat{i} - \hat{j} - 3\hat{k}$ and $\overrightarrow{CD} = 2\hat{i} - \hat{j}$

Volume of tetrahedron is $\frac{1}{6} [\overrightarrow{AD} \overrightarrow{BD} \overrightarrow{CD}] = \frac{1}{6} \begin{vmatrix} 0 & 2 & -1 \\ -2 & -1 & -3 \\ 2 & -1 & 0 \end{vmatrix} = \frac{8}{3}$.

Also, the area of the triangle \overrightarrow{ABC} is $\frac{1}{2} | \overrightarrow{AB} \times \overrightarrow{AC}| = \frac{1}{2} \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 2 \\ -2 & 3 & -1 \end{vmatrix}$ $= \frac{1}{2} |-9\hat{i} - 2\hat{j} + 12\hat{k}|$ $= \frac{\sqrt{229}}{2}$

Then $\frac{8}{3} = \frac{1}{3} \times (\text{distance of } D \text{ from base } ABC) \times (\text{area of triangle } ABC)$

Distance of D from base $ABC = 16 / \sqrt{229}$

4. b. $\overrightarrow{r} \cdot \overrightarrow{a} = \overrightarrow{r} \cdot \overrightarrow{b} = \overrightarrow{r} \cdot \overrightarrow{c} = 0$ only if \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are coplanar.

$$\Rightarrow [\vec{a} \vec{b} \vec{c}] = 0$$

Hence, Statement 2 is true.

Also,
$$[\vec{a} - \vec{b} \ \vec{b} - \vec{c} \ \vec{c} - \vec{a}] = 0$$
 even if $[\vec{a} \ \vec{b} \ \vec{c}] \neq 0$.

Hence, Statement 2 is not the correct explanation for Statement 1.

5. a. Let the three given unit vectors be \hat{a} , \hat{b} and \hat{c} . Since they are mutually perpendicular, $\hat{a} \cdot (\hat{b} \times \hat{c}) = 1$. Therefore,

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = 1$$

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 1$$

Hence, $a_1 \hat{i} + b_1 \hat{j} + c_1 \hat{k}$, $a_2 \hat{i} + b_2 \hat{j} + c_2 \hat{k}$ and $a_3 \hat{i} + b_3 \hat{j} + c_3 \hat{k}$ may be mutually perpendicular.

6. d.
$$\overrightarrow{A} \times ((\overrightarrow{A} \cdot \overrightarrow{B}) \overrightarrow{A} - (\overrightarrow{A} \cdot \overrightarrow{A}) \overrightarrow{B}) \cdot \overrightarrow{C}$$

$$= \left(\underbrace{\vec{A} \times (\vec{A} \cdot \vec{B}) \vec{A}}_{A \times (\vec{A} \cdot \vec{A}) \vec{A} \times \vec{A}} - (\vec{A} \cdot \vec{A}) \vec{A} \times \vec{B} \right) \cdot \vec{C} = -|\vec{A}|^2 [\vec{A} \vec{B} \vec{C}]$$

Now,
$$|\vec{A}|^2 = 4 + 9 + 36 = 49$$

$$[\overrightarrow{A}\overrightarrow{B}\overrightarrow{C}] = \begin{vmatrix} 2 & 3 & 6 \\ 1 & 1 & -2 \\ 1 & 2 & 1 \end{vmatrix} = 2(1+4)-1(3-12)+1(-6-6)$$

$$=10+9-12=7$$

$$\therefore |-|\overrightarrow{A}|^2 [\overrightarrow{A}\overrightarrow{B}\overrightarrow{C}]| = 49 \times 7 = 343$$

7. **b.** Let
$$\overrightarrow{d} = \lambda_1 \overrightarrow{a} + \lambda_2 \overrightarrow{b} + \lambda_3 \overrightarrow{c}$$

$$\Rightarrow [\overrightarrow{d} \overrightarrow{a} \overrightarrow{b}] = \lambda_3 [\overrightarrow{c} \overrightarrow{a} \overrightarrow{b}] \Rightarrow \lambda_3 = 1$$

 $[\vec{c} \ \vec{a} \ \vec{b}] = 1$ (because \vec{a} , \vec{b} and \vec{c} are three mutually perpendicular unit vectors)

Similarly, $\lambda_1 = \lambda_2 = 1$

$$\Rightarrow \overrightarrow{d} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$$

Hence Statement 1 and Statement 2 are correct, but Statement 2 does not explain Statement 1 as it does not give the value of dot products.

8. a. Statement 2 is true (see properties of dot product)

Also,
$$(\hat{i} \times \vec{a}) \cdot \vec{b} = \hat{i} \cdot (\vec{a} \times \vec{b})$$

$$\Rightarrow \stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b} = (\hat{i} \cdot (\stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b})) \hat{i} + (\hat{j} \cdot (\stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b})) \hat{j} + (\hat{k} \cdot (\stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b})) \hat{k}$$

Linked Comprehension Type

For Problems 1-3

1. b., 2. c., 3. d.

Sol.

Taking dot product of $\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w} = \overrightarrow{a}$ with \overrightarrow{u} , we have

$$1 + \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w} = \overrightarrow{a} \cdot \overrightarrow{u} = \frac{3}{2} \Rightarrow \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w} = \frac{1}{2}$$
 (i)

Similarly, taking dot product with \vec{v} , we have

$$\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{w} \cdot \overrightarrow{v} = \frac{3}{4}$$
 (ii)

Also, $\overrightarrow{a} \cdot \overrightarrow{u} + \overrightarrow{a} \cdot \overrightarrow{v} + \overrightarrow{a} \cdot \overrightarrow{w} = \overrightarrow{a} \cdot \overrightarrow{a} = 4$

$$\Rightarrow \vec{a} \cdot \vec{w} = 4 - \left(\frac{3}{2} + \frac{7}{4}\right) = \frac{3}{4}$$

Again, taking dot product with w, we have

$$\overrightarrow{u} \cdot \overrightarrow{w} + \overrightarrow{v} \cdot \overrightarrow{w} = \frac{3}{4} - 1 = -\frac{1}{4}$$
 (iii)

Adding (i), (ii) and (iii), we have

$$2(\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w} + \overrightarrow{v} \cdot \overrightarrow{w}) = 1$$

$$\Rightarrow \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w} + \overrightarrow{v} \cdot \overrightarrow{w} = \frac{1}{2}$$
 (iv)

Subtracting (i), (ii) and (iii) from (iv), we have

$$\overrightarrow{v} \cdot \overrightarrow{w} = 0$$
, $\overrightarrow{u} \cdot \overrightarrow{w} = -\frac{1}{4}$ and $\overrightarrow{u} \cdot \overrightarrow{v} = \frac{3}{4}$

Now, the equations $\vec{u} \times (\vec{v} \times \vec{w}) = \vec{b}$ and $(\vec{u} \times \vec{v}) \times \vec{w} = \vec{c}$ can be written as $(\vec{u} \cdot \vec{w}) \vec{v} - (\vec{u} \cdot \vec{v}) \vec{w} = \vec{b}$

and
$$(\overrightarrow{u} \cdot \overrightarrow{w}) \overrightarrow{v} - (\overrightarrow{v} \cdot \overrightarrow{w}) \overrightarrow{u} = \overrightarrow{c} \Rightarrow -\frac{1}{4} \overrightarrow{v} - \frac{3}{4} \overrightarrow{w} = \overrightarrow{b}, -\frac{1}{4} \overrightarrow{v} = \overrightarrow{c}, \text{i.e.}, \overrightarrow{v} = -4 \overrightarrow{c}$$

$$\Rightarrow \overrightarrow{c} - \frac{3}{4} \overrightarrow{w} = \overrightarrow{b} \Rightarrow \overrightarrow{w} = \frac{4}{3} (\overrightarrow{c} - \overrightarrow{b}) \text{ and } \overrightarrow{u} = \overrightarrow{a} - \overrightarrow{v} - \overrightarrow{w} = \overrightarrow{a} + 4 \overrightarrow{c} - \frac{4}{3} \overrightarrow{c} + \frac{4}{3} \overrightarrow{b} = \overrightarrow{a} + \frac{4}{3} \overrightarrow{b} + \frac{8}{3} \overrightarrow{c}$$

For Problems 4-6

4. d., 5. c., 6. b.

Sol.

Given that $|\vec{x}| = |\vec{y}| = |\vec{z}| = \sqrt{2}$ and they are inclined at an angle of 60° with each other.

$$\therefore \vec{x} \cdot \vec{y} = \vec{y} \cdot \vec{z} = \vec{z} \cdot \vec{x} = \sqrt{2} \cdot \sqrt{2} \cos 60^\circ = 1$$

$$\vec{x} \times (\vec{y} \times \vec{z}) = \vec{a} \implies (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} = \vec{a} \implies \vec{y} - \vec{z} = \vec{a}$$
 (i)

Similarly,
$$\vec{y} \times (\vec{z} \times \vec{x}) = \vec{b} \Rightarrow \vec{z} - \vec{x} = \vec{b}$$
 (ii)

$$\overrightarrow{y} = \overrightarrow{a} + \overrightarrow{z}, \ \overrightarrow{x} = \overrightarrow{z} - \overrightarrow{b}$$
 (from (i) and (ii))

Now, $\overrightarrow{x} \times \overrightarrow{y} = \overrightarrow{c}$

$$\Rightarrow (\vec{z} - \vec{b}) \times (\vec{z} + \vec{a}) = \vec{c}$$

$$\Rightarrow \overrightarrow{z} \times \overrightarrow{a} - \overrightarrow{b} \times \overrightarrow{z} - \overrightarrow{b} \times \overrightarrow{a} = \overrightarrow{c}$$

$$\Rightarrow \vec{z} \times (\vec{a} + \vec{b}) = \vec{c} + (\vec{b} \times \vec{a})$$
 (iv)

$$\Rightarrow (\overrightarrow{a} + \overrightarrow{b}) \times \{\overrightarrow{z} \times (\overrightarrow{a} + \overrightarrow{b})\} = (\overrightarrow{a} + \overrightarrow{b}) \times \overrightarrow{c} + (\overrightarrow{a} + \overrightarrow{b}) \times (\overrightarrow{b} \times \overrightarrow{a})$$

$$\Rightarrow (\vec{a} + \vec{b})^2 \vec{z} - \{(\vec{a} + \vec{b}) \cdot \vec{z}\}(\vec{a} + \vec{b}) = (\vec{a} + \vec{b}) \times \vec{c} + |\vec{a}|^2 \vec{b} - |\vec{b}|^2 \vec{a} + (\vec{a} \cdot \vec{b})(\vec{b} - \vec{a})$$
 (v)

Now, (i)
$$\Rightarrow |\vec{a}|^2 = |\vec{y} - \vec{z}|^2 = 2 + 2 - 2 = 2$$

Similarly, (ii) $\Rightarrow |\vec{b}|^2 = 2$

Also (i) and (ii)
$$\Rightarrow \vec{a} + \vec{b} = \vec{y} - \vec{x} \Rightarrow |\vec{a} + \vec{b}|^2 = 2$$
 (vi)

Also
$$(\vec{a} + \vec{b}) \cdot \vec{z} = (\vec{y} - \vec{x}) \cdot \vec{z} = \vec{y} \cdot \vec{z} - \vec{x} \cdot \vec{z} = 1 - 1 = 0$$

and
$$\vec{a} \cdot \vec{b} = (\vec{y} - \vec{z}) \cdot (\vec{z} - \vec{x})$$

$$= \overrightarrow{y} \cdot \overrightarrow{z} - \overrightarrow{x} \cdot \overrightarrow{y} - |z|^2 + \overrightarrow{x} \cdot \overrightarrow{z} = -1$$

Thus from (v), we have $2\vec{z} = (\vec{a} + \vec{b}) \times \vec{c} + 2(\vec{b} - \vec{a}) - (\vec{b} - \vec{a})$ or $\vec{z} = (1/2)[(\vec{a} + \vec{b}) \times \vec{c} + \vec{b} - \vec{a}]$

$$\vec{y} = \vec{a} + \vec{z} = (1/2)[(\vec{a} + \vec{b}) \times \vec{c} + \vec{b} + \vec{a}] \text{ and } \vec{x} = \vec{z} - \vec{b} = (1/2)[(\vec{a} + \vec{b}) \times \vec{c} - (\vec{a} + \vec{b})]$$

For Problems 7-9

7.b., 8.a., 9.c.

Sol.

Giver

$$\overrightarrow{x} \times \overrightarrow{y} = \overrightarrow{a}$$
 (i)

$$\overrightarrow{y} \times \overrightarrow{z} = \overrightarrow{b}$$
 (ii)

$$\overrightarrow{x} \cdot \overrightarrow{b} = \gamma \tag{iii}$$

$$\overrightarrow{x} \cdot \overrightarrow{y} = 1$$
 (iv)

$$y \cdot z = 1$$
 (v)

From (ii), $\overrightarrow{x} \cdot (\overrightarrow{v} \times \overrightarrow{z}) = \overrightarrow{x} \cdot \overrightarrow{b} = \gamma \Rightarrow [\overrightarrow{x} \ \overrightarrow{v} \ \overrightarrow{z}] = \gamma$

From (i) and (ii), $(\overrightarrow{x} \times \overrightarrow{y}) \times (\overrightarrow{y} \times \overrightarrow{z}) = \overrightarrow{a} \times \overrightarrow{b}$

$$\therefore [\overrightarrow{x} \ \overrightarrow{y} \ \overrightarrow{z}] \overrightarrow{y} - [\overrightarrow{y} \ \overrightarrow{y} \ \overrightarrow{z}] \overrightarrow{x} = \overrightarrow{a} \times \overrightarrow{b} \implies \overrightarrow{y} = \frac{\overrightarrow{a} \times \overrightarrow{b}}{\gamma}$$
 (vi)

Also from (i), we get $(\overrightarrow{x} \times \overrightarrow{v}) \times \overrightarrow{v} = \overrightarrow{a} \times \overrightarrow{v}$

$$\Rightarrow (\vec{x} \cdot \vec{y}) \vec{y} - (\vec{y} \cdot \vec{y}) \vec{x} = \vec{a} \times \vec{y} \Rightarrow \vec{x} = (1/|\vec{y}|^2)(\vec{y} - \vec{a} \times \vec{y}) = \frac{\gamma^2}{|\vec{a} \times \vec{b}|^2} \left| \vec{a} \times \vec{b} - \vec{a} \times (\vec{a} \times \vec{b}) - \vec{a} \times (\vec{a} \times \vec{b}) \right|$$

$$\Rightarrow \vec{x} = \frac{\gamma}{|\vec{a} \times \vec{b}|^2} [\vec{a} \times \vec{b} - \vec{a} \times (\vec{a} \times \vec{b})]$$
Also from (ii), $(\vec{y} \times \vec{z}) \times \vec{y} = \vec{b} \times \vec{y} \Rightarrow |\vec{y}|^2 \vec{z} - (\vec{z} \cdot \vec{y}) \vec{y} = \vec{b} \times \vec{y}$

$$\Rightarrow \vec{z} = \frac{1}{|\vec{y}|^2} [\vec{y} + \vec{b} \times \vec{y}] = \frac{\gamma}{|\vec{a} \times \vec{b}|^2} [\vec{a} \times \vec{b} + \vec{b} \times (\vec{a} \times \vec{b})]$$

For Problems 10-12

10. b., 11. b., 12. d.

Sol.

$$\vec{P} \times \vec{B} = \vec{A} - \vec{P} \text{ and } |\vec{A}| = |\vec{B}| = 1 \text{ and } \vec{A} \cdot \vec{B} = 0 \text{ is given}$$

$$\text{Now } \vec{P} \times \vec{B} = \vec{A} - \vec{P}$$

$$(\vec{P} \times \vec{B}) \times \vec{B} = (\vec{A} - \vec{P}) \times \vec{B} \text{ (taking cross product with } \vec{B} \text{ on both sides)}$$

$$\Rightarrow (\vec{P} \cdot \vec{B}) \vec{B} - (\vec{B} \cdot \vec{B}) \vec{P} = \vec{A} \times \vec{B} - \vec{P} \times \vec{B}$$

$$\Rightarrow (\vec{P} \cdot \vec{B}) \vec{B} - \vec{P} = \vec{A} \times \vec{B} - \vec{A} + \vec{P}$$

$$\Rightarrow 2\vec{P} = \vec{A} - \vec{A} \times \vec{B} - (\vec{P} \cdot \vec{B}) \vec{B}$$

$$\Rightarrow \vec{P} = \frac{\vec{A} - \vec{A} \times \vec{B} - (\vec{P} \cdot \vec{B}) \vec{B}}{2}$$
(ii)

Taking dot product with \overrightarrow{B} on both sides of (i), we get

$$\vec{P} \cdot \vec{B} = \vec{A} \cdot \vec{B} - \vec{P} \cdot \vec{B}$$

$$\Rightarrow \vec{P} \cdot \vec{B} = 0$$

$$\Rightarrow \vec{P} = \frac{\vec{A} + \vec{B} \times \vec{A}}{2}$$
(iii)

Now

$$(\overrightarrow{P} \times \overrightarrow{B}) \times \overrightarrow{B} = (\overrightarrow{P} \cdot \overrightarrow{B}) \overrightarrow{B} - (\overrightarrow{B} \cdot \overrightarrow{B}) \overrightarrow{P} = -\overrightarrow{P}$$

$$\overrightarrow{P}, \overrightarrow{A}, \overrightarrow{P} \times \overrightarrow{B} (= \overrightarrow{A} - \overrightarrow{P}) \text{ are dependent}$$

Also
$$\vec{P} \cdot \vec{B} = 0$$

and
$$|\vec{P}|^2 = \left| \frac{\vec{A} - \vec{A} \times \vec{B}}{2} \right|^2$$

$$= \frac{|\vec{A}|^2 + |\vec{A} \times \vec{B}|^2}{4}$$

$$= \frac{1+1}{4} = \frac{1}{2} \implies |\vec{P}| = \frac{1}{\sqrt{2}}$$

For Problems 13–15 13. b., 14. a., 15. c. Sol.

13. **b**
$$\vec{a_i} = \left[(2\hat{i} + 3\hat{j} - 6\hat{k}) \cdot \frac{(2\hat{i} - 3\hat{j} + 6\hat{k})}{7} \right] \frac{2\hat{i} - 3\hat{j} + 6\hat{k}}{7} = \frac{-41}{49} (2\hat{i} - 3\hat{j} + 6\hat{k})$$

$$\vec{a_2} = \frac{-41}{49} \left((2\hat{i} - 3\hat{j} + 6\hat{k}) \cdot \frac{(-2\hat{i} + 3\hat{j} + 6\hat{k})}{7} \right) \frac{(-2\hat{i} + 3\hat{j} + 6\hat{k})}{7}$$

$$= \frac{-41}{(49)^2} (-4 - 9 + 36) (-2\hat{i} + 3\hat{j} + 6\hat{k}) = \frac{943}{49^2} (2\hat{i} - 3\hat{j} - 6\hat{k})$$

14. a.
$$\vec{a_1} \cdot \vec{b} = \frac{-41}{49} (2\hat{i} - 3\hat{j} + 6\hat{k}) \cdot (2\hat{i} - 3\hat{j} + 6\hat{k}) = -41$$

15. c. \vec{a} , \vec{a}_1 and \vec{b} are coplanar because \vec{a}_1 and \vec{b} are collinear.

For Problems 16-18

16. b., 17. c., 18. a.

Sol.

Point G is
$$\left(\frac{4}{3}, \frac{1}{3}, \frac{8}{3}\right)$$
. Therefore,

$$\left|\overrightarrow{AG}\right|^2 = \left(\frac{5}{3}\right)^2 + \frac{1}{9} + \left(\frac{5}{3}\right)^2 = \frac{51}{9}$$

$$\Rightarrow \left|\overrightarrow{AG}\right| = \frac{\sqrt{51}}{3}$$

$$\overrightarrow{AB} = -4\hat{i} + 4\hat{j} + 0\hat{k}$$

$$\overrightarrow{AC} = 2\hat{i} + 2\hat{j} + 2\hat{k}$$

Fig. 2.46

$$\therefore \overrightarrow{AB} \times \overrightarrow{AC} = -8 \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 0 \\ 1 & 1 & 1 \end{vmatrix}$$
$$= 8(\hat{i} + \hat{j} - 2\hat{k})$$

Area of
$$\triangle ABC = \frac{1}{2} | \overrightarrow{AB} \times \overrightarrow{AC} | = 4\sqrt{6}$$

 $\overrightarrow{AD} = -3\hat{i} - 5\hat{j} + 3\hat{k}$

The length of the perpendicular from the vertex D on the opposite face = | projection of \overrightarrow{AD} on $\overrightarrow{AB} \times \overrightarrow{AC}$ |

$$= \left| \frac{(-3\hat{i} - 5\hat{j} + 3\hat{k})(\hat{i} + \hat{j} - 2\hat{k})}{\sqrt{6}} \right|$$

$$= \left| \frac{-3 - 5 - 6}{\sqrt{6}} \right| = \frac{14}{\sqrt{6}}$$

For Problems 19–21 19. c., 20. b., 21. d. Sol.

19. **c.** Let point
$$D$$
 be (a_1, a_2, a_3)
 $a_1 + 1 = 3 \Rightarrow a_1 = 2$
 $a_2 + 0 = 1 \Rightarrow a_2 = 1$
 $a_3 - 1 = 7 \Rightarrow a_3 = 8$
 $\therefore D(2, 1, 8)$

$$\vec{d} = \begin{vmatrix} (\overrightarrow{AB}) \times (\overrightarrow{AD}) \\ | \overrightarrow{AB} | \end{vmatrix}$$

$$\overrightarrow{AB} = -\hat{i} + \hat{j} - 5\hat{k}$$

$$\overrightarrow{AD} = 0\hat{i} + 2\hat{j} + 4\hat{k}$$

$$\overrightarrow{AB} \times \overrightarrow{AD} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 1 & -5 \\ 0 & 2 & 4 \end{vmatrix}$$

$$= 14\hat{i} + 4\hat{j} - 2\hat{k}$$

$$= 2(7\hat{i} + 2\hat{j} - \hat{k})$$

 $\Rightarrow d = 2\sqrt{2}$

$$\vec{n} = 7\hat{i} + 2\hat{j} - \hat{k} \text{ is normal to the plane } P = (8, 2, -12).$$

$$|\overrightarrow{AP}| = 6\hat{i} + 3\hat{j} - 16\hat{k}$$

$$\therefore \text{ distance } d = \left| \frac{\overrightarrow{AP} \cdot \vec{n}}{|\overrightarrow{n}|} \right|$$

$$= \left| \frac{42 + 6 + 16}{\sqrt{49 + 4 + 1}} \right|$$

$$= \frac{64}{\sqrt{54}}$$

$$= \frac{64}{3\sqrt{6}} = \frac{64\sqrt{6}}{18} = \frac{32\sqrt{6}}{9}$$

21. d. Vector normal to the plane

$$\overrightarrow{AD} \times \overrightarrow{AB} = +2(7\hat{i}+2\hat{j}-\hat{k})$$

Projection on xy = 2

Projection on yz = 14

Projection on zx = 4

For Problems 22-24

22. d., 23. c., 24. c.

Sol.

Let
$$\vec{r} = x\hat{i} + y\hat{j}$$

 $x^2 + y^2 + 8x - 10y + 40 = 0$, which is a circle
centre $C(-4, 5)$, radius $r = 1$
 $p_1 = \max\{(x+2)^2 + (y-3)^2\}$
 $p_2 = \min\{(x+2)^2 + (y-3)^2\}$
Let P be $(-2, 3)$. Then
 $CP = 2\sqrt{2}, r = 1$
 $p_2 = (2\sqrt{2} - 1)^2$
 $p_1 = (2\sqrt{2} + 1)^2$
 $p_1 + p_2 = 18$
Slope $= AB = \left(\frac{dy}{dx}\right)_{(2,2)} = -2$
Equation of AB , $2x + y = 6$
 $\overrightarrow{OA} = 2\hat{i} + 2\hat{j}$, $\overrightarrow{OB} = 3\hat{i}$
 $\overrightarrow{AB} = \hat{i} - 2\hat{j}$
 $\overrightarrow{AB} \cdot \overrightarrow{OB} = (\hat{i} - 2\hat{j})(3\hat{i}) = 3$

Matrix-Match Type

- 1. $a \rightarrow p, q, r, s; b \rightarrow p, q; c \rightarrow p, r; d \rightarrow r$
 - a. Given equations are consistent if

$$(\hat{i} + \hat{j}) + \lambda(\hat{i} + 2\hat{j} - \hat{k}) = (\hat{i} + 2\hat{j}) + \mu(-\hat{i} + \hat{j} + a\hat{k})$$

$$\Rightarrow 1 + \lambda = 1 - \mu, 1 + 2\lambda = 2 + \mu, -\lambda = a\mu$$

$$\Rightarrow \lambda = 1/3 \text{ and } \mu = -1/3$$

$$\Rightarrow a = 1$$

b.
$$\vec{a} = \lambda \hat{i} - 3 \hat{j} - \hat{k}$$

 $\vec{b} = 2\lambda \hat{i} + \lambda \hat{j} - \hat{k}$

Angle between \overrightarrow{a} and \overrightarrow{b} is acute. Therefore,

$$\vec{a} \cdot \vec{b} > 0$$

$$\Rightarrow 2\lambda^2 - 3\lambda + 1 > 0$$

$$\Rightarrow (2\lambda - 1)(\lambda - 1) > 0$$

$$\Rightarrow \lambda \in \left(-\infty, \frac{1}{2}\right) \cup (1, \infty)$$

Also \vec{b} makes an obtuse angle with the axes. Therefore,

$$\vec{b} \cdot \hat{i} < 0 \Rightarrow \lambda < 0$$

$$\vec{b} \cdot \hat{j} < 0 \Rightarrow \lambda < 0$$
(ii)

Combining these two, we get $\lambda = -4, -2$

c. If vectors $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} + 2\hat{j} + (1+a)\hat{k}$ and $3\hat{i} + a\hat{j} + 5\hat{k}$ are coplanar, then

$$\begin{vmatrix} 2 & -1 & 1 \\ 1 & 2 & 1+a \\ 3 & a & 5 \end{vmatrix} = 0$$

$$\Rightarrow a^2 + 2a - 8 = 0$$

$$\Rightarrow (a+4)(a-2) = 0$$

$$\Rightarrow a = -4, 2$$

d.
$$\vec{A} = 2\hat{i} + \lambda \hat{j} + 3\hat{k}$$

 $B = 2\hat{i} + \lambda \hat{j} + \hat{k}$
 $C = 3\hat{i} + \hat{j} + 0.\hat{k}$
 $\vec{A} + \lambda \vec{B} = 2(1 + \lambda)\hat{i} + (\lambda + \lambda^2)\hat{j} + (3 + \lambda)\hat{k}$

Now
$$(\vec{A} + \lambda \vec{B}) \perp \vec{C}$$
. Therefore,

$$(\vec{A} + \lambda \vec{B}) \cdot \vec{C} = 0$$

$$\Rightarrow 6(1 + \lambda) + (\lambda + \lambda^2) + 0 = 0$$

$$\Rightarrow \lambda^2 + 7\lambda + 6 = 0$$

$$\Rightarrow (\lambda + 6)(\lambda + 1) = 0$$

$$\Rightarrow \lambda = -6, = -1$$

$$\Rightarrow |2\lambda| = 12, 2$$

$a \rightarrow r$; $b \rightarrow p$; $c \rightarrow s$; $d \rightarrow q$

a. If \vec{a} , \vec{b} and \vec{c} are mutually perpendicular, then

$$[\overrightarrow{a} \times \overrightarrow{b} \quad \overrightarrow{b} \times \overrightarrow{c} \quad \overrightarrow{c} \times \overrightarrow{a}] = [\overrightarrow{a} \stackrel{\rightarrow}{b} \stackrel{\rightarrow}{c}]^2 = (|\overrightarrow{a}| |\overrightarrow{b}| |\overrightarrow{c}|)^2 = 16$$

Given \vec{a} and \vec{b} are two unit vectors, i.e., $|\vec{a}| = |\vec{b}| = 1$ and angle between them is $\pi/3$.

$$\sin \theta = \frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|} \Rightarrow \sin \frac{\pi}{3} = |\vec{a} \times \vec{b}|$$

$$\frac{\sqrt{3}}{2} = |\vec{a} \times \vec{b}|$$

$$[\vec{a} \ \vec{b} + \vec{a} \times \vec{b} \ \vec{b}] = [\vec{a} \ \vec{b} \ \vec{b}] + [\vec{a} \ \vec{a} \times \vec{b} \ \vec{b}]$$

$$= 0 + [\vec{a} \ \vec{a} \times \vec{b} \ \vec{b}]$$

$$= (\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{a})$$

$$= -(\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{b})$$

$$= -|\vec{a} \times \vec{b}|^2$$

$$= -\frac{3}{4}$$

If \vec{b} and \vec{c} are orthogonal, $\vec{b} \cdot \vec{c} = 0$.

Also, it is given that $\vec{b} \times \vec{c} = \vec{a}$. Now

$$[\vec{a} + \vec{b} + \vec{c} \quad \vec{a} + \vec{b} \quad \vec{b} + \vec{c}] = [\vec{a} \quad \vec{a} + \vec{b} \quad \vec{b} + \vec{c}] + [\vec{b} + \vec{c} \quad \vec{a} + \vec{b} \quad \vec{b} + \vec{c}]$$

$$= [\vec{a} \quad \vec{b} \quad \vec{c}]$$

$$= \vec{a} \cdot (\vec{b} \times \vec{c})$$

$$= \vec{a} \cdot \vec{a} = |\vec{a}|^2 = 1 \quad \text{(because } \vec{a} \text{ is a unit vector)}$$

d.
$$[\overrightarrow{x} \overrightarrow{y} \overrightarrow{a}] = 0$$

Therefore, \vec{x} , \vec{y} and \vec{a} are coplanar. (i)

$$\begin{bmatrix} \vec{x} & \vec{y} & \vec{b} \end{bmatrix} = 0$$

Therefore, \vec{x} , \vec{y} and \vec{b} are coplanar. (ii)

Also,
$$\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = 0$$

Therefore, \vec{a} , \vec{b} and \vec{c} are coplanar (iii)

From (i), (ii) and (iii),

 \overrightarrow{x} , \overrightarrow{y} and \overrightarrow{c} are coplanar. Therefore,

$$\begin{bmatrix} \overrightarrow{x} & \overrightarrow{y} & \overrightarrow{c} \end{bmatrix} = 0$$

3. $a \rightarrow q$; $b \rightarrow s$; $c \rightarrow p$; $d \rightarrow r$

a. $|\vec{a} + \vec{b} + \vec{c}| = \sqrt{6} \Rightarrow \vec{a^2} + \vec{b^2} + \vec{c^2} + 2\vec{a} \cdot \vec{b} + 2\vec{b} \cdot \vec{c} + 2\vec{c} \cdot \vec{a} = 6$ $|\vec{a}| = 1$

h
$$\vec{a}$$
 is perpendicular to $\vec{b} + \vec{c} \Rightarrow \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = 0$ (i)

$$\vec{b}$$
 is perpendicular to $\vec{a} + \vec{c} \Rightarrow \vec{b} \cdot \vec{c} + \vec{b} \cdot \vec{c} = 0$ (ii)

$$\vec{c}$$
 is perpendicular to $\vec{a} + \vec{b} \Rightarrow \vec{c} \cdot \vec{a} + \vec{a} \cdot \vec{c} \cdot \vec{b} = 0$ (iii)

From (i), (ii) and (iii), we get

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$$

$$\therefore |\vec{a} + \vec{b} + \vec{c}| = 7$$

c.
$$(\overrightarrow{a} \cdot \overrightarrow{c})(\overrightarrow{b} \cdot \overrightarrow{d}) - (\overrightarrow{b} \cdot \overrightarrow{c})(\overrightarrow{a} \cdot \overrightarrow{d}) = 21$$

d. We know that
$$[\vec{a} \times \vec{b} \quad \vec{b} \times \vec{c} \quad \vec{c} \times \vec{a}] = [\vec{a} \ \vec{b} \ \vec{c}]^2$$

and
$$[\vec{a} \ \vec{b} \ \vec{c}]^2 = \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c} \end{vmatrix}$$
$$= \begin{vmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{vmatrix}$$

$$\therefore \quad [\vec{a} \ \vec{b} \ \vec{c}] = 4\sqrt{2}$$

4.
$$a \rightarrow s; b \rightarrow r; c \rightarrow q; d \rightarrow p$$

a.
$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 1 & 2 \\ -1 & -2 & -1 \end{vmatrix} = 3\hat{i} - 3\hat{j} + 3\hat{k}$$

Hence, the area of the triangle is $\frac{3\sqrt{3}}{2}$.

b. The area of the parallelogram is
$$3\sqrt{3}$$
.

c. The area of a parallelogram whose diagonals are
$$2\vec{a}$$
 and $4\vec{b}$ is $\frac{1}{2}|2\vec{a} \times 4\vec{b}| = 12\sqrt{3}$.

d The volume of the parallelepiped =
$$|(\vec{a} \times \vec{b}) \cdot \vec{c}| = \sqrt{9 + 36 + 9} = 3\sqrt{6}$$

5.
$$a \rightarrow p, r; b \rightarrow q; c \rightarrow s; d \rightarrow p$$

a. Vectors
$$-3\hat{i} + 3\hat{j} + 4\hat{k}$$
 and $\hat{i} + \hat{j}$ are coplanar with \vec{a} and \vec{b} .

$$\mathbf{b.} \quad \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 2 & 2 \\ -2 & 1 & 2 \end{vmatrix}$$

$$= 2\hat{i} - 2\hat{j} + 3\hat{k}$$

c. If
$$\vec{c}$$
 is equally inclined to \vec{a} and \vec{b} , then we must have $\vec{a} \cdot \vec{c} = \vec{b} \cdot \vec{c}$, which is true for $\vec{c} = \hat{i} - \hat{j} + 5\hat{k}$.

d. Vector is forming a triangle with
$$\vec{a}$$
 and \vec{b} . Then $\vec{c} = \vec{a} + \vec{b} = -3\hat{i} + 3\hat{j} + 4\hat{k}$

6.
$$a \rightarrow q$$
; $b \rightarrow s$; $c \rightarrow p$; $d \rightarrow r$

a.
$$|\vec{a} + \vec{b}| = |\vec{a} + 2\vec{b}|$$

$$a^{2} + b^{2} + 2 \overrightarrow{a} \cdot \overrightarrow{b} = a^{2} + 4b^{2} + 4 \overrightarrow{a} \cdot \overrightarrow{b}$$

$$\Rightarrow 2 \overrightarrow{a} \cdot \overrightarrow{b} = -3b^{2} < 0$$

Hence, angle between \vec{a} and \vec{b} is obtuse.

b.
$$|\vec{a} + \vec{b}| = |\vec{a} - 2\vec{b}|$$

$$\Rightarrow a^2 + b^2 + 2 \overrightarrow{a} \cdot \overrightarrow{b} = a^2 + 4b^2 - 4 \overrightarrow{a} \cdot \overrightarrow{b}$$

$$\Rightarrow 6\vec{a}\cdot\vec{b} = 3b^2$$

Hence, angle between \vec{a} and \vec{b} is acute.

c.
$$|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$$

 $\Rightarrow \vec{a} \cdot \vec{b}$
 $\Rightarrow \vec{a} \text{ is perpendicular to } \vec{b}$.

d. $\vec{c} \times (\vec{a} \times \vec{b})$ lies in the plane of vectors \vec{a} and \vec{b} . A vector perpendicular to this plane is parallel to $\vec{a} \times \vec{b}$.

7.
$$a \rightarrow r; b \rightarrow s; c \rightarrow q; d \rightarrow p$$

$$[\vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times \vec{a}] = 36$$

$$\Rightarrow [\vec{a} \ \vec{b} \ \vec{c}] = 6$$

 \Rightarrow Volume of tetrahedron formed by vectors \vec{a} , \vec{b} and \vec{c} is $\frac{1}{6} [\vec{a} \ \vec{b} \ \vec{c}] = 1$.

$$[\overrightarrow{a} + \overrightarrow{b} \quad \overrightarrow{b} + \overrightarrow{c} \quad \overrightarrow{c} + \overrightarrow{a}] = 2[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}] = 12$$

$$\vec{a} - \vec{b}$$
, $\vec{b} - \vec{c}$ and $\vec{c} - \vec{a}$ are coplanar $\Rightarrow [\vec{a} - \vec{b} \ \vec{b} - \vec{c} \ \vec{c} - \vec{a}] = 0$

Integer Answer Type

1. (5) Let angle between \vec{a} and \vec{b} be θ .

We have
$$|\vec{a}| = |\vec{b}| = 1$$

Now
$$|\vec{a} + \vec{b}| = 2\cos\frac{\theta}{2}$$
 and $|\vec{a} - \vec{b}| = 2\sin\frac{\theta}{2}$

Consider
$$F(\theta) = \frac{3}{2} \left(2\cos\frac{\theta}{2} \right) + 2 \left(2\sin\frac{\theta}{2} \right)$$

$$\therefore F(\theta) = 3\cos\frac{\theta}{2} + 4\sin\frac{\theta}{2}, \ \theta \in [0, \pi]$$

2. (1) Since angle between \vec{u} and \hat{i} is 60°,

$$\vec{u} \cdot i = |\vec{u}| |\hat{i}| \cos 60^{\circ} = \frac{|\vec{u}|}{2}$$

Given that $|\vec{u} - \hat{i}|, |\vec{u}|, |\vec{u} - 2\hat{i}|$ are in G.P., so $|\vec{u} - \hat{i}|^2 = |\vec{u}| |\vec{u} - 2\hat{i}|$

Squaring both sides, $[|\vec{u}|^2 + |\hat{i}|^2 - 2\vec{u} \cdot \hat{i}]^2 = |\vec{u}|^2 [|\vec{u}|^2 + 4|\hat{i}|^2 - 4\vec{u} \cdot \hat{i}]$

$$[|\vec{u}|^2 + 1 - \frac{2|\vec{u}|}{2}]^2 = |\vec{u}|^2 [|\vec{u}|^2 + 4 - 4\frac{|\vec{u}|}{2}] \Rightarrow |\vec{u}|^2 + 2|\vec{u}| - 1 = 0 \Rightarrow |\vec{u}| = -\frac{2 \pm 2\sqrt{2}}{2} \Rightarrow |\vec{u}| = \sqrt{2} - 1$$

3. (2)
$$\overline{AB} = 2\hat{i} + \hat{j} + \hat{k}$$
, $\overline{AC} = (t+1)\hat{i} + 0\hat{j} - \hat{k}$

$$\overline{AB} \times \overline{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 1 \\ t+1 & 0 & -1 \end{vmatrix} = -\hat{i} + (t+3)\hat{j} - (t+1)\hat{k}$$

$$|\overrightarrow{AB} \times \overrightarrow{AC}| = \sqrt{1 + (t+3)^2 + (t+1)^2} = \sqrt{2t^2 + 8t + 11}$$

Area of
$$\triangle ABC = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| \Rightarrow \Delta = \frac{1}{2} \sqrt{2t^2 + 8t + 1}$$

Let
$$f(t) = \Delta^2 = \frac{1}{4} (2t^2 + 8t + 1)$$

$$f'(t) = 0 \Rightarrow t = -2$$

At
$$t = -2$$
, $f''(t) > 0$

So Δ is minimum at t=-2

4. (7)
$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$

$$\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$$

$$\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$$

L.H.S. =
$$[3\vec{a} + \vec{b} \ 3\vec{b} + \vec{c} \ 3\vec{c} + \vec{a}]$$

$$= [3\vec{a}\ 3\vec{b}\ 3\vec{c}\] + [\vec{b}\ \vec{c}\ \vec{a}\]$$

$$= 3^3 [\vec{a} \ \vec{b} \ \vec{c}] + [\vec{a} \ \vec{b} \ \vec{c}]$$

$$= 28 \left[\vec{a} \ \vec{b} \ \vec{c} \right]$$

5. **(4)**
$$\vec{a} = \alpha \hat{i} + 2 \hat{j} - 3 \hat{k}$$
, $\vec{b} = \hat{i} + 2 \alpha \hat{j} - 2 \hat{k}$, $\vec{c} = 2 \hat{i} - \alpha \hat{j} + \hat{k}$

$$\{(\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c})\} \times (\vec{c} \times \vec{a}) = \vec{0}$$

$$\Rightarrow \{ [\vec{a} \ \vec{b} \ \vec{c}] \vec{b} - [\vec{a} \ \vec{b} \ \vec{b}] \vec{c} \} \times (\vec{c} \times \vec{a}) = \vec{0}$$

$$\Rightarrow [\vec{a} \ \vec{b} \ \vec{c}] \vec{b} \times (\vec{c} \times \vec{a}) = \vec{0}$$

$$\Rightarrow \quad [\vec{a}\ \vec{b}\ \vec{c}] \quad ((\vec{a}\cdot\vec{b})\vec{c} - (\vec{b}\cdot\vec{c})\vec{a}) = \vec{0}$$

$$\Rightarrow$$
 $[\vec{a} \ \vec{b} \ \vec{c}] = 0$ (: \vec{a} and \vec{c} are not collinear)

$$\Rightarrow \begin{vmatrix} \alpha & 2 & -3 \\ 1 & 2\alpha & -2 \\ 2 & -\alpha & 1 \end{vmatrix}$$

$$\Rightarrow \alpha(2\alpha - 2\alpha) - 2(1+4) - 3(-\alpha - 4\alpha) = 0$$

$$\Rightarrow 10 - 15\alpha = 0$$

$$\therefore \alpha = 2/3$$

6. (9) Since \vec{x} and \vec{y} are non-collinear vectors, therefore \vec{x} , \vec{y} and $\vec{x} \times \vec{y}$ are non-coplanar vectors.

$$[(a-2)\alpha^{2} + (b-3)\alpha + c] + [(a-2)\beta^{2} + (b-3)\beta\beta + c]\vec{y} + [(a-2)\gamma^{2} + (b-3)\gamma + c](\vec{x} \times \vec{y}) = 0$$

Coefficient of each vector \vec{x} , \vec{y} and $\vec{x} \times \vec{y}$ is zero.

$$(a-2)\alpha^{2} + (b-3)\alpha + c = 0$$
$$(a-2)\beta^{2} + (b-3)\beta + c = 0$$
$$(a-2)\gamma^{2} + (b-3)\beta + c = 0$$

The above three equations will satisfy if the coefficients of α , β and γ are zero because α , β and γ are three distinct real numbers

$$a-2=0 \Rightarrow a=2$$
,
 $b-3=0 \Rightarrow b=3$ and $c=0$
 $\therefore a^2 + b^2 + c^2 = 2^2 + 3^2 + 0^2 = 4 + 9 = 13$

7. (1) Given, $\overrightarrow{u} \times \overrightarrow{v} + \overrightarrow{u} = \overrightarrow{w}$ and $\overrightarrow{w} \times \overrightarrow{u} = \overrightarrow{v}$

$$\Rightarrow (\overrightarrow{u} \times \overrightarrow{v} + \overrightarrow{u}) \times \overrightarrow{u} = \overrightarrow{v} \Rightarrow (\overrightarrow{u} \times \overrightarrow{v}) \times \overrightarrow{u} = \overrightarrow{v} \Rightarrow \overrightarrow{v} - (\overrightarrow{u} \cdot \overrightarrow{v}) = \overrightarrow{v} \Rightarrow (\overrightarrow{u} \cdot \overrightarrow{v}) \overrightarrow{u} = 0 \Rightarrow (\overrightarrow{u} \cdot \overrightarrow{v}) = 0$$

Now,
$$[\overrightarrow{u} \overrightarrow{v} \overrightarrow{w}] = \overrightarrow{u} \cdot (\overrightarrow{v} \times \overrightarrow{w})$$

$$=\vec{u}\cdot(\vec{v}\times(\vec{u}\times\vec{v}+\vec{u}))=\vec{u}\cdot(\vec{v}\times(\vec{u}\times\vec{v})+\vec{v}\times\vec{u})=\vec{u}(\vec{v}^2\vec{u}-(\vec{u}\cdot\vec{v})\vec{v}+\vec{v}\times\vec{u})=\vec{v}^2\vec{u}^2=1$$

8. (7) Let the vertices are A, B, C, D and O is the origin.

$$\vec{OA} = \hat{i} - 6\hat{j} + 10\hat{k}, \ \vec{OB} = \hat{i} - 3\hat{j} + 7\hat{k}, \ \vec{OC} = -5\hat{i} - \hat{j} + \lambda\hat{k}, \ \vec{OD} = 7\hat{i} - 4\hat{j} + 7\hat{k}$$

$$\therefore \vec{AB} = \vec{OB} - \vec{OA} = -2\hat{i} + 3\hat{j} - 3\hat{k}$$

$$\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = 4\hat{i} + 5\hat{j} + (\lambda - 10)\hat{k}$$

$$\overrightarrow{AD} = \overrightarrow{OD} - \overrightarrow{OA} = 6\hat{i} + 2\hat{j} - 3\hat{k}$$

Volume of tetrahedron =
$$\frac{1}{6} \begin{bmatrix} \overrightarrow{AB} \ \overrightarrow{AC} \ \overrightarrow{AD} \end{bmatrix}$$

= $\frac{1}{6} \begin{vmatrix} -2 & 3 & -3 \\ 4 & 5 & \lambda - 10 \\ 6 & 2 & -3 \end{vmatrix}$
= $\frac{1}{6} \{ -2(-15 - 2\lambda + 20) - 3(-12 - 6\lambda + 60) - 3(8 - 30) \}$
= $\frac{1}{6} \{ 4\lambda - 10 - 144 + 18\lambda + 66 \}$
= $\frac{1}{6} (22\lambda - 88) = 11$ (given)

$$\Rightarrow 2\lambda - 8 = 6$$

$$\therefore \lambda = 7$$

9. (6) Let
$$\vec{R} = x\hat{i} + y\hat{j} + z\hat{k}$$

$$\vec{u} = \hat{i} - 2\hat{j} + 3\hat{k}; \vec{v} = 2\hat{i} + \hat{j} + 4\hat{k}; \vec{w} = \hat{i} + 3\hat{j} + 3\hat{k}$$

$$(\vec{u} \cdot \vec{R} - 15)\hat{i} + (\vec{v} \cdot \vec{R} - 30)\hat{j} + (\vec{w} \cdot \vec{R} - 25)\hat{k} = \vec{0}$$
 (given)

So
$$\vec{u} \cdot \vec{R} = 15 \Rightarrow x - 2y + 3z = 15$$
 (i)

$$\vec{v} \cdot \vec{R} = 30 \Rightarrow 2x + y + 4z = 30 \tag{ii}$$

$$\vec{w} \cdot \vec{R} = 25 \Rightarrow x + 3y + 3z = 25 \tag{iii}$$

Solving, we get

$$x=4$$

$$y = 2$$

$$z = 5$$

10. (6)
$$2\vec{V} + \vec{V} \times (\hat{i} + 2\hat{j}) = (2\hat{i} + \hat{k})$$
 (i)

$$\Rightarrow 2\vec{V} \cdot (\hat{i} + 2\hat{j}) + 0 = (2\hat{i} + \hat{k}) \cdot (\hat{i} + 2\hat{j})$$

$$\Rightarrow 2\vec{V} \cdot (\hat{i} + 2\hat{j}) = 2$$

$$\Rightarrow |\vec{V} \cdot (\hat{i} + 2\hat{j})|^2 = 1$$

$$\Rightarrow |\vec{V}|^2 \cdot |\hat{i} + 2\hat{j}|^2 \cos^2 \theta = 1 \qquad (\theta \text{ is the angle between } \vec{V} \text{ and } \hat{i} + 2\hat{j})$$

$$\Rightarrow |\vec{V}|^2 5(1 - \sin^2 \theta) = 1$$

$$\Rightarrow |\vec{V}|^2 5 \sin^2 \theta = 5 |\vec{V}|^2 - 1 \tag{ii}$$

$$\Rightarrow |2\vec{V} + \vec{V} \times (\hat{i} + 2\hat{j})|^2 = |2\hat{i} + \hat{k}|^2$$

$$\Rightarrow 4|\vec{V}|^2 + |\vec{V} \times (\hat{i} + 2\hat{j})|^2 = 5$$

$$\Rightarrow 4|\vec{V}|^2 + |\vec{V}|^2 \cdot |\hat{i}| + 2\hat{j}|^2 \sin^2 \theta = 5$$

$$\Rightarrow 4|\vec{V}|^2 + 5|\vec{V}|^2 \sin^2\theta = 5$$

$$\Rightarrow 4|\vec{V}|^2 + 5|\vec{V}|^2 - 1 = 5$$

$$\Rightarrow 9|\vec{V}|^2 = 6$$

$$\Rightarrow 3|\vec{V}| = \sqrt{6}$$

$$\Rightarrow 3|\vec{V}| = \sqrt{6} = \sqrt{m}$$

$$\therefore m = 6$$

11. (1)
$$\overrightarrow{a} \cdot \overrightarrow{b} = 0 \Rightarrow \overrightarrow{a} \perp \overrightarrow{b}$$

$$\overrightarrow{a} \cdot \overrightarrow{c} = 0 \Rightarrow \overrightarrow{a} \perp \overrightarrow{c}$$

$$\Rightarrow \vec{a} \perp \vec{b} - \vec{c}$$

$$|\overrightarrow{a} \times \overrightarrow{b} - \overrightarrow{a} \times \overrightarrow{c}| = |\overrightarrow{a} \times (\overrightarrow{b} - \overrightarrow{c})| = |\overrightarrow{a}| |\overrightarrow{b} - \overrightarrow{c}| = |\overrightarrow{b} - \overrightarrow{c}|$$

Now
$$|\vec{b} - \vec{c}|^2 = |\vec{b}|^2 + |\vec{c}|^2 - 2|\vec{b}||\vec{c}|\cos\frac{\pi}{3} = 2 - 2x \times \frac{1}{2} = 1$$

$$|\overrightarrow{b} - \overrightarrow{c}| = 1$$

12. (6) Here
$$\vec{OA} = \vec{a}$$
, $\vec{OB} = 10\vec{a} + 2\vec{b}$, $\vec{OC} = \vec{b}$

q = Area of parallelogram with OA and OC as adjacent sides.

$$\therefore q = |\overrightarrow{a} \times \overrightarrow{b}|$$
 (i)

Fig. 2.49

$$p = \text{Area of quadrilateral } OABC$$

$$= \text{Area of } \triangle OAB + \text{are of } \triangle OBC$$

$$= \frac{1}{2} | \overrightarrow{a} \times (10 \overrightarrow{a} + 2 \overrightarrow{b}) | + \frac{1}{2} | (10 \overrightarrow{a} + 2 \overrightarrow{b}) \times \overrightarrow{b} |$$

$$= | \overrightarrow{a} \times \overrightarrow{b} | + 5 | \overrightarrow{a} \times \overrightarrow{b} |$$

$$p = 6 | \overrightarrow{a} \times \overrightarrow{b} |$$

$$\Rightarrow p = 6 q \quad \text{[From Eq. (i)]}$$

$$k = 6$$

13. (9) Here
$$\vec{F} = 3\hat{i} - \hat{j} - 2\hat{k}$$

$$\overrightarrow{AB} = \text{P.V. of } B - \text{P.V. of } A$$

$$\therefore \overrightarrow{AB} = (-\hat{i} - \hat{j} - 2\hat{k}) - (-3\hat{i} - 4\hat{j} + \hat{k})$$

Let $\vec{s} = \vec{AB}$ be the displacement vector

Now work done =
$$\vec{F} \cdot \vec{s}$$

= $(3\hat{i} - \hat{j} - 2\hat{k}) \cdot (2\hat{i} + 3\hat{j} - 3\hat{k})$
= $6 - 3 + 6 = 9$

Archives

Subjective Type

Let with respect to O, position vectors of points A, B, C, D, E and F be \vec{a} , \vec{b} , \vec{c} , \vec{d} , \vec{e} and \vec{f} . Let perpendiculars from A to EF and from B to DF meet each other at H. Let position vectors of H be \vec{r} . We join CH. In order to prove the statement given in the question, it is sufficient to prove that CH is perpendicular to DE.

Now, as
$$OD \perp BC \Rightarrow \vec{d} \cdot (\vec{b} - \vec{c}) = 0$$

$$\Rightarrow \vec{d} \cdot \vec{b} = \vec{d} \cdot \vec{c} \tag{i}$$

as
$$OE \perp AC \Rightarrow \overrightarrow{e} \cdot (\overrightarrow{c} - \overrightarrow{a}) = 0 \Rightarrow \overrightarrow{e} \cdot \overrightarrow{c} = \overrightarrow{e} \cdot \overrightarrow{a}$$
 (ii)

as
$$OF \perp AB \Rightarrow \vec{f} \cdot (\vec{a} - \vec{b}) = 0 \Rightarrow \vec{f} \cdot \vec{a} = \vec{f} \cdot \vec{b}$$
 (iii)

Also
$$AH \perp EF \Rightarrow (\overrightarrow{r} - \overrightarrow{a}) \cdot (\overrightarrow{e} - \overrightarrow{f}) = 0$$

$$\Rightarrow \overrightarrow{r} \cdot \overrightarrow{e} - \overrightarrow{r} \cdot \overrightarrow{f} - \overrightarrow{a} \cdot \overrightarrow{e} + \overrightarrow{a} \cdot \overrightarrow{f} = 0$$
 (iv)

and
$$BH \perp FD \Rightarrow (\vec{r} - \vec{b}) \cdot (\vec{f} - \vec{d}) = 0$$

$$\Rightarrow \vec{r} \cdot \vec{f} - \vec{r} \cdot \vec{d} - \vec{b} \cdot \vec{f} + \vec{b} \cdot \vec{d} = 0 \tag{v}$$

Adding (iv) and (v), we get

$$\vec{r} \cdot \vec{e} - \vec{a} \cdot \vec{e} + \vec{a} \cdot \vec{f} - \vec{r} \cdot \vec{d} - \vec{b} \cdot \vec{f} + \vec{b} \cdot \vec{d} = 0$$

$$\Rightarrow \vec{r} \cdot (\vec{e} - \vec{d}) - \vec{e} \cdot \vec{c} + \vec{d} \cdot \vec{c} = 0$$

$$\Rightarrow (\vec{r} - \vec{c}) \cdot (\vec{e} - \vec{d}) = 0$$

$$\Rightarrow \vec{CH} \cdot \vec{ED} = 0 \Rightarrow CH \perp ED$$
(using (i), (ii) and (iii))

2. $\overrightarrow{OA_1}$ $\overrightarrow{OA_2}$,..., $\overrightarrow{OA_n}$. All vectors are of same magnitude, say a, and angle between any two consecutive vectors is the same, that is, $2\pi/n$. Let \hat{p} be the unit vector parallel to the plane of the polygon.

Fig. 2.50

$$\therefore \text{ Let } \overrightarrow{OA}_{1} \times \overrightarrow{OA}_{2} = a^{2} \sin \frac{2\pi}{n} \hat{p}$$

$$\text{Now, } \sum_{i=1}^{n-1} \overrightarrow{OA}_{i} \times \overrightarrow{OA}_{i+1} = \sum_{i=1}^{n-1} a^{2} \sin \frac{2\pi}{n} \hat{p}$$

$$= (n-1) a^{2} \sin \frac{2\pi}{n} \hat{p}$$

$$= (n-1) [-\overrightarrow{OA}_{2} \times \overrightarrow{OA}_{1}] \text{ (Using (i))}$$

$$= (1-n) [\overrightarrow{OA}_{2} \times \overrightarrow{OA}_{1}] = \text{R.H.S.}$$

3.
$$\vec{A} \times \vec{X} = \vec{B}$$

$$\Rightarrow (\vec{A} \times \vec{X}) \times \vec{A} = \vec{B} \times \vec{A}$$

$$\Rightarrow (\vec{A} \cdot \vec{A}) \vec{X} - (\vec{X} \cdot \vec{A}) \vec{A} = \vec{B} \times \vec{A}$$

$$\Rightarrow (\vec{A} \cdot \vec{A}) \vec{X} - c \vec{A} = \vec{B} \times \vec{A}$$

$$\Rightarrow \vec{X} = \frac{\vec{B} \times \vec{A} + c \vec{A}}{(\vec{A} \cdot \vec{A})}$$

4. Let the position vectors of points A, B, C, D be $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} , respectively, with respect to some origin.

$$|\overrightarrow{AB} \times \overrightarrow{CD} + \overrightarrow{BC} \times \overrightarrow{AD} + \overrightarrow{CA} \times \overrightarrow{BD}|$$

$$= [|(\overrightarrow{b} - \overrightarrow{a}) \times (\overrightarrow{d} - \overrightarrow{c}) + (\overrightarrow{c} - \overrightarrow{b}) \times (\overrightarrow{d} - \overrightarrow{a}) + (\overrightarrow{a} - \overrightarrow{c}) \times (\overrightarrow{d} - \overrightarrow{b})|]$$

$$=2|\overrightarrow{b}\times\overrightarrow{a}+\overrightarrow{c}\times\overrightarrow{b}+\overrightarrow{a}\times\overrightarrow{c}| \tag{i}$$

= $2(2 \times (\text{area of } \Delta ABC))$

 $= 4 \times (area of \Delta ABC)$

5. Given that \vec{a} , \vec{b} and \vec{c} are three coplanar vectors. Therefore, there exist scalars x, y and z, not all zero, such that

$$\vec{xa} + \vec{yb} + \vec{c} = \vec{0} \tag{i}$$

Taking dot product of \overrightarrow{a} and (i), we get

$$\overrightarrow{xa} \stackrel{\rightarrow}{a} + y \stackrel{\rightarrow}{a} \stackrel{\rightarrow}{b} + z \stackrel{\rightarrow}{a} \stackrel{\rightarrow}{c} = 0$$
 (ii)

Again taking dot product of \vec{b} and (i), we get

$$\overrightarrow{a} \cdot \overrightarrow{b} \cdot \overrightarrow{a} + y \overrightarrow{b} \cdot \overrightarrow{b} + z \overrightarrow{b} \cdot \overrightarrow{c} = 0$$
 (iii)

Now Eqs. (i), (ii) and (iii) form a homogeneous system of equations, where x, y and z are not all zero, Therefore the system must have a non-trivial solution, and for this, the determinant of coefficient matrix should be zero, i.e.,

$$\begin{vmatrix} \vec{a} & \vec{b} & \vec{c} \\ \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \end{vmatrix} = 0$$

6. We are given that $\vec{A} = 2\hat{i} + \hat{k}$, $\vec{B} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{C} = 4\hat{i} - 3\hat{j} + 7\hat{k}$ and to determine a vector \vec{R} such that $\vec{R} \times \vec{B} = \vec{C} \times \vec{B}$ and $\vec{R} \cdot \vec{A} = 0$, let $\vec{R} = x\hat{i} + y\hat{j} + z\hat{k}$

Then $\overrightarrow{R} \times \overrightarrow{B} = \overrightarrow{C} \times \overrightarrow{B}$

$$\Rightarrow \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ 1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & -3 & 7 \\ 1 & 1 & 1 \end{vmatrix}$$

$$\Rightarrow (y-z) \; \hat{i} \; -(x-z) \; \hat{j} + \left(x-y\right) \hat{k} \; = -10 \; \hat{i} \; + (x-z) \; \hat{j} + 7 \; \hat{k}$$

$$y - z = -10$$

$$x-z=-3$$

$$x-y=7$$
 (iii)

Also
$$\overrightarrow{R} \cdot \overrightarrow{A} = 0$$

$$\Rightarrow 2x + z = 0 \tag{iv}$$

Substituting y = x - 7 and z = -2x from (iii) and (iv), respectively in (i), we get

$$x - 7 + 2x = -10$$

$$\Rightarrow 3x = -3$$

$$\Rightarrow$$
 $x = -1$, $y = -8$ and $z = 2$

7. We have, $\vec{a} = cx \hat{i} - 6 \hat{j} - 3 \hat{k}$

$$\vec{b} = x \,\hat{i} + 2 \,\hat{j} + 2cx \,\hat{k}$$

Now we know that $\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos\theta$

As the angle between \vec{a} and \vec{b} is obtuse, $\cos \theta < 0 \Rightarrow \vec{a} \cdot \vec{b} < 0$

$$\Rightarrow cx^2 - 12 + 6cx < 0$$

$$\Rightarrow$$
 $-cx^2-6cx+12>0$, $x \in R$

$$\Rightarrow$$
 - $c > 0$ and $D < 0$

$$\Rightarrow c < 0$$
 and $36c^2 + 48c < 0$

$$\Rightarrow c < 0$$
 and $(3c + 4) > 0$

$$\Rightarrow c < 0$$
 and $c > -4/3$

$$\Rightarrow -4/3 < c < 0$$

8.
$$(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) + (\vec{a} \times \vec{c}) \times (\vec{d} \times \vec{b}) + (\vec{a} \times \vec{d}) \times (\vec{b} \times \vec{c})$$

Here $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = -(\vec{c} \times \vec{d} \cdot \vec{b}) \vec{a} + (\vec{c} \times \vec{d} \cdot \vec{a}) \vec{b}$

$$= [\vec{a} \ \vec{c} \ \vec{d}] \vec{b} - [\vec{b} \ \vec{c} \ \vec{d}] \vec{a} \tag{i}$$

$$(\vec{a} \times \vec{c}) \times (\vec{d} \times \vec{b}) = -(\vec{d} \times \vec{b} \cdot \vec{c}) \vec{a} + (\vec{d} \times \vec{b} \cdot \vec{a}) \vec{c}$$

$$= [\vec{a} \vec{d} \vec{b}] \vec{c} - [\vec{c} \vec{d} \vec{b}] \vec{a}$$
 (ii)

$$(\vec{a} \times \vec{d}) \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{d} \cdot \vec{c}) \vec{b} - (\vec{a} \times \vec{d} \cdot \vec{b}) \vec{c}$$

$$= -\begin{bmatrix} \vec{a} & \vec{c} & \vec{d} \end{bmatrix} \vec{b} - \begin{bmatrix} \vec{a} & \vec{d} & \vec{b} \end{bmatrix} \vec{c}$$
 (iii)

(Note: Here we have tried to write the given expression in such a way that we can get terms involving \vec{a} and other similar terms which can get cancelled)

Adding (i), (ii) and (iii), we get

Given vector =
$$-2 \begin{bmatrix} \vec{b} & \vec{c} & \vec{d} \end{bmatrix} \stackrel{\rightarrow}{a} = k \stackrel{\rightarrow}{a}$$

 \Rightarrow Given vector is parallel to \vec{a} .

Fig. 2.51

We are given AD = 4

Volume of tetrahedron =
$$\frac{2\sqrt{2}}{3}$$

$$\Rightarrow \frac{1}{3}$$
 (Area of ΔABC) $p = \frac{2\sqrt{2}}{3}$

$$\therefore \frac{1}{2} | \overrightarrow{BA} \times \overrightarrow{BC} | p = 2\sqrt{2}$$

$$\frac{1}{2} |(\hat{j} + \hat{k}) \times 2\hat{i}| p = 2\sqrt{2}$$

$$\Rightarrow |\hat{j} - \hat{k}| p = 2\sqrt{2}$$

$$\Rightarrow \sqrt{2} p = 2\sqrt{2}, p = 2$$

We have to find the P.V. of point E. Let it divide median AF in the ratio λ : 1.

P.V. of E is
$$\frac{\lambda \cdot 2\hat{i} + (\hat{i} + \hat{j} + \hat{k})}{\lambda + 1}$$
. Therefore,

$$\overrightarrow{AE} = \text{P.V. or } E - \text{P.V. of } A = \frac{\lambda (\hat{i} - \hat{j} - \hat{k})}{\lambda + 1}$$

$$|\overrightarrow{AE}|^2 = 3\left(\frac{\lambda}{\lambda + 1}\right)^2 \tag{ii}$$

Now,
$$4+3\left(\frac{\lambda}{\lambda+1}\right)^2 = 16$$

$$\left(\frac{\lambda}{\lambda+1}\right) = \pm 2$$

$$\lambda = -2 \text{ or } -2/3$$

Putting the value of λ in (i), we get the P.V. of possible positions of E as $-\hat{i} + 3\hat{j} + 3\hat{k}$ or $3\hat{i} - \hat{j} - \hat{k}$.

10. Given that \vec{a} , \vec{b} and \vec{c} are three unit vectors inclined at an angle θ with each other.

Also \vec{a} , \vec{b} and \vec{c} are non-coplanar. Therefore, $[\vec{a} \ \vec{b} \ \vec{c}] \neq 0$.

Also given that $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} = p\vec{a} + q\vec{b} + r\vec{c}$.

Taking dot product on both sides with \vec{a} , we get

$$p + q\cos\theta + r\cos\theta = \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} \tag{1}$$

Similarly, taking dot product on both sides with \overrightarrow{b} and \overrightarrow{c} , we get, respectively,

$$p\cos\theta + q + r\cos\theta = 0$$

and
$$p \cos \theta + q \cos \theta + r = [\vec{a} \ \vec{b} \ \vec{c}]$$
 (iii)

(ii)

Adding (i), (ii) and (iii), we get

$$p+q+r = \frac{2[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]}{2\cos\theta+1}$$
 (iv)

Multiplying (iv) by $\cos \theta$ and subtracting (i) from it, we get

$$p(\cos\theta - 1) = \frac{2\vec{a}\vec{b}\vec{c}\cos\theta}{2\cos\theta + 1} - \vec{a}\vec{b}\vec{c}$$

or
$$p(\cos \theta - 1) = \frac{-[\vec{a} \vec{b} \vec{c}]}{2\cos \theta + 1}$$

$$\Rightarrow p = \frac{[\vec{a} \ \vec{b} \ \vec{c}]}{(1 - \cos \theta)(1 + 2\cos \theta)}$$

Similarly, (iv) $\times \cos \theta$ – (ii) gives

$$q = \frac{-2 \left[\vec{a} \ \vec{b} \ \vec{c}\right] \cos \theta}{\left(1 + 2 \cos \theta\right) \left(1 - \cos \theta\right)}$$

and (iv) $\times \cos \theta$ – (iii) gives

$$r(\cos\theta - 1) = \frac{2[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}]\cos\theta}{2\cos\theta + 1} - [\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}]$$

$$\Rightarrow r = \frac{-[\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{b}\stackrel{\rightarrow}{c}]}{(2\cos\theta + 1)(\cos\theta - 1)}$$

But we have to find p, q and r in terms of θ only.

So let us find the value of $[\vec{a} \ \vec{b} \ \vec{c}]$

We know that

$$[\vec{a} \vec{b} \vec{c}]^{2} = \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{c} \cdot \vec{c} \end{vmatrix}$$

$$= \begin{vmatrix} 1 & \cos \theta & \cos \theta \\ \cos \theta & 1 & \cos \theta \\ \cos \theta & \cos \theta & 1 \end{vmatrix}$$

On operating $C_1 \rightarrow C_1 + C_2 + C_3$, we get

$$\begin{vmatrix}
1 + 2\cos\theta & \cos\theta & \cos\theta \\
1 + 2\cos\theta & 1 & \cos\theta \\
1 + 2\cos\theta & \cos\theta & 1
\end{vmatrix}$$

$$= (1 + 2\cos\theta) \begin{vmatrix} 1 & \cos\theta & \cos\theta \\ 1 & 1 & \cos\theta \\ 1 & \cos\theta & 1 \end{vmatrix}$$

Operating $R_1 \to R_1 - R_2$ and $R_2 \to R_2 - R_3$, we get

$$= (1 + 2\cos\theta) \begin{vmatrix} 0 & \cos\theta - 1 & 0 \\ 0 & 1 - \cos\theta & \cos\theta - 1 \\ 1 & \cos\theta & 1 \end{vmatrix}$$

Expanding along C_1

$$= (1 + 2\cos\theta)(1 - \cos\theta)^2$$

$$\therefore [\vec{a} \ \vec{b} \ \vec{c}] = (1 - \cos \theta) \sqrt{1 + 2 \cos \theta}$$

Thus, we get

$$p = \frac{1}{\sqrt{1 + 2\cos\theta}}, q = \frac{-2\cos\theta}{\sqrt{1 + 2\cos\theta}}, r = \frac{1}{\sqrt{1 + 2\cos\theta}}$$

11. We have,
$$(\vec{A} + \vec{B}) \times (\vec{A} + \vec{C})$$

$$= \vec{A} \times \vec{A} + \vec{B} \times \vec{A} + \vec{A} \times \vec{C} + \vec{B} \times \vec{C}$$

$$= \vec{B} \times \vec{A} + \vec{A} \times \vec{C} + \vec{B} \times \vec{C} \quad (\because \vec{A} \times \vec{A} = \vec{0})$$

Thus
$$[(\vec{A} + \vec{B}) \times (\vec{A} + \vec{C})] \times (\vec{B} \times \vec{C})$$

$$= [\overrightarrow{B} \times \overrightarrow{A} + \overrightarrow{A} \times \overrightarrow{C} + \overrightarrow{B} \times \overrightarrow{C}] \times (\overrightarrow{B} \times \overrightarrow{C})$$

$$= (\vec{B} \times \vec{A}) \times (\vec{B} \times \vec{C}) + (\vec{A} \times \vec{C}) \times (\vec{B} \times \vec{C}) \quad (\because x \times x = 0)$$

$$=\{(\vec{B}\times\vec{A})\cdot\vec{C}\}\vec{B}-\{(\vec{B}\times\vec{A})\cdot\vec{B}\}\vec{C}+\{(\vec{A}\times\vec{C})\cdot\vec{C}\}\vec{B}-\{(\vec{A}\times\vec{C})\cdot\vec{B}\}\vec{C}$$

$$= \begin{bmatrix} \overrightarrow{B} & \overrightarrow{A} & \overrightarrow{C} \end{bmatrix} \overrightarrow{B} - \begin{bmatrix} \overrightarrow{A} & \overrightarrow{C} & \overrightarrow{B} \end{bmatrix} \overrightarrow{C}$$

$$= [\overrightarrow{A} \overrightarrow{C} \overrightarrow{B}] \{ \overrightarrow{B} - \overrightarrow{C} \}$$

Thus, L.H.S. of the given expression

$$= [\vec{A} \ \vec{C} \ \vec{B}] (\vec{B} - \vec{C}) \cdot (\vec{B} + \vec{C})$$

$$= [\vec{A} \ \vec{C} \ \vec{B}] \{ (\vec{B} - \vec{C}) \cdot (\vec{B} + \vec{C}) \}$$

$$= [\vec{A} \ \vec{C} \ \vec{B}] \{ |\vec{B}|^2 - |\vec{C}|^2 \} = 0 \quad (\because |B| = |C|)$$

Alternative method:

Since $[(\vec{A} + \vec{B}) \times (\vec{A} + \vec{C})] \times (\vec{B} + \vec{C}) \cdot (\vec{B} + \vec{C})$ is scalar triple product of $(\vec{A} + \vec{B}) \times (\vec{A} + \vec{C})$, $\vec{B} + \vec{C}$ and $\vec{B} + \vec{C}$, its value is 0.

12. a. We have
$$\overrightarrow{u} \cdot \overrightarrow{v} = |\overrightarrow{u}|| \overrightarrow{v} | \cos \theta$$

and
$$\overrightarrow{u} \times \overrightarrow{v} = |\overrightarrow{u}||\overrightarrow{v}| \sin \theta \hat{n}$$

(where θ is the angle between \overrightarrow{u} and \overrightarrow{v} and \overrightarrow{n} is a unit vector perpendicular to both \overrightarrow{u} and \overrightarrow{v})

$$\Rightarrow (\overrightarrow{u} \cdot \overrightarrow{v})^2 + |\overrightarrow{u} \times \overrightarrow{v}|^2 = |\overrightarrow{u}|^2 |\overrightarrow{v}|^2 (\cos^2 \theta + \sin^2 \theta) = |\overrightarrow{u}|^2 |\overrightarrow{v}|^2.$$

b.
$$(1 - \overrightarrow{u} \cdot \overrightarrow{v})^2 + |\overrightarrow{u} + \overrightarrow{v} + (\overrightarrow{u} \times \overrightarrow{v})|^2$$

$$= 1 - 2\overrightarrow{u} \cdot \overrightarrow{v} + (\overrightarrow{u} \cdot \overrightarrow{v})^2 + |\overrightarrow{u}|^2 + |\overrightarrow{v}|^2 + |\overrightarrow{u} \times \overrightarrow{v}|^2 + 2\overrightarrow{u} \cdot \overrightarrow{v}$$

$$(\because \overrightarrow{u} \cdot (\overrightarrow{u} \times \overrightarrow{v}) = \overrightarrow{v} \cdot (\overrightarrow{u} \times \overrightarrow{v}) = 0)$$

$$= 1 + |\overrightarrow{u}|^2 + |\overrightarrow{v}|^2 + (\overrightarrow{u} \cdot \overrightarrow{v})^2 + |\overrightarrow{u} \times \overrightarrow{v}|^2$$

$$= 1 + |\overrightarrow{u}|^2 + |\overrightarrow{v}|^2 + |\overrightarrow{u}|^2 |\overrightarrow{v}|^2$$

$$= (\overrightarrow{1} + |\overrightarrow{u}|^2) (\overrightarrow{1} + |\overrightarrow{v}|^2)$$

13.
$$[\overrightarrow{u} \ \overrightarrow{v} \ \overrightarrow{w}] = (\overrightarrow{u} \times \overrightarrow{v}) \cdot (\overrightarrow{v} - \overrightarrow{w} \times \overrightarrow{u}) = (\overrightarrow{u} \times \overrightarrow{v}) \cdot (\overrightarrow{u} \times \overrightarrow{w})$$

$$= \begin{vmatrix} \overrightarrow{u} \ \overrightarrow{v} \ \overrightarrow{u} & \overrightarrow{u} & \overrightarrow{w} \\ \overrightarrow{u} \cdot \overrightarrow{u} & \overrightarrow{u} \cdot \overrightarrow{w} \\ \overrightarrow{v} \cdot \overrightarrow{u} & \overrightarrow{v} \cdot \overrightarrow{w} \end{vmatrix}$$

Now, $\overrightarrow{u} \cdot \overrightarrow{u} = 1$

$$\vec{u} \cdot \vec{w} = \vec{u} \cdot (\vec{v} - \vec{w} \times \vec{u}) = \vec{u} \cdot \vec{v} - [\vec{u} \ \vec{w} \ \vec{u}] = \vec{u} \cdot \vec{v}$$

$$\vec{v} \cdot \vec{w} = \vec{v} \cdot (\vec{v} - \vec{w} \times \vec{u}) = 1 - [\vec{v} \ \vec{w} \ \vec{u}] = 1 - [\vec{u} \ \vec{v} \ \vec{w}]$$

$$\therefore [\vec{u} \ \vec{v} \ \vec{w}] = \begin{vmatrix} 1 & \cos \theta \\ \cos \theta & 1 - [\vec{u} \ \vec{v} \ \vec{w}] \end{vmatrix} \quad (\theta \text{ is the angle between } \vec{u} \text{ and } \vec{v})$$

$$= 1 - [\vec{u} \ \vec{v} \ \vec{w}] - \cos^2 \theta$$

$$\therefore \vec{[u \ v \ w]} = \frac{1}{2} \sin^2 \theta \le \frac{1}{2}$$

Equality holds when $\sin^2 \theta = 1$, i.e., $\theta = \pi/2$, i.e., $\overrightarrow{u} \perp \overrightarrow{v}$.

14. Given data are insufficient to uniquely determine the three vectors as there are only six equations involving nine variables.

Therefore, we can obtain infinite number of sets of three vectors, $\vec{v_1}, \vec{v_2}$ and $\vec{v_3}$, satisfying these conditions.

From the given data, we get

$$\overrightarrow{v_1} \cdot \overrightarrow{v_1} = 4 \Rightarrow |\overrightarrow{v_1}| = 2$$

$$\overrightarrow{v_2} \cdot \overrightarrow{v_2} = 2 \Longrightarrow |\overrightarrow{v_2}| = \sqrt{2}$$

$$\vec{v_3} \cdot \vec{v_3} = 29 \Rightarrow |\vec{v_3}| = \sqrt{29}$$

Also
$$\overrightarrow{v_1} \cdot \overrightarrow{v_2} = -2$$

$$\Rightarrow |v_1| |v_2| \cos \theta = -2$$
 (where θ is the angle between $\overrightarrow{v_1}$ and $\overrightarrow{v_2}$)

$$\Rightarrow \cos \theta = \frac{-1}{\sqrt{2}}$$

$$\Rightarrow \theta = 135^{\circ}$$

Since any two vectors are always coplanar, let us suppose that \vec{v}_1 and \vec{v}_2 are in the x-y plane. Let \vec{v}_1 be along the positive direction of the x-axis. Then $\vec{v}_1 = 2\hat{i}$. $(\because |\vec{v}_1| = 2)$

As \vec{v}_2 makes an angle 135° with \vec{v}_1 and lies in the x-y plane, also keeping in mind $|\vec{v}_2| = \sqrt{2}$, we obtain $\vec{v}_2 = -\hat{i} \pm \hat{j}$

Again let
$$\vec{v}_3 = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$$

$$\vec{v}_3 \cdot \vec{v}_1 = 6 \Rightarrow 2 \alpha = 6 \Rightarrow \alpha = 3$$

and
$$\overrightarrow{v_3} \cdot \overrightarrow{v_2} = -5 \Rightarrow -\alpha \pm \beta = -5 \Rightarrow \beta = \pm 2$$

Also
$$|\overrightarrow{v}_3| = \sqrt{29} \implies \alpha^2 + \beta^2 + \gamma^2 = 29$$

$$\Rightarrow \gamma = \pm 4$$

Hence
$$\vec{v}_3 = 3\hat{i} \pm 2\hat{j} \pm 4\hat{k}$$

15. Given that $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$

$$\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$$

$$\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_2 \hat{k}$$
 where a_r, b_r, c_r $(r = 1, 2, 3)$ are all non-negative real numbers

Also
$$\sum_{r=1}^{3} (a_r + b_r + c_r) = 3L$$

To prove $V \le L^3$, where V is the volume of the parallelepiped formed by the vectors \vec{a} , \vec{b} and \vec{c} , we have

$$V = [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

$$\Rightarrow V = (a_1 b_2 c_3 + a_2 b_3 c_1 + a_3 b_1 c_2) - (a_1 b_3 c_2 + a_2 b_1 c_3 + a_3 b_2 c_1)$$
 (i)

Now we know that $A.M. \ge G.M.$, therefore

$$\frac{(a_1 + b_1 + c_1) + (a_2 + b_2 + c_2) + (a_3 + b_3 + c_3)}{3} \ge [(a_1 + b_1 + c_1) (a_2 + b_2 + c_2) (a_3 + b_3 + c_3)]^{1/3}$$

$$\Rightarrow \frac{3L}{3} \ge [(a_1 + b_1 + c_1) (a_2 + b_2 + c_2) (a_3 + b_3 + c_3)]^{1/3}$$

$$\Rightarrow L^3 \ge (a_1 + b_1 + c_1) (a_2 + b_2 + c_2) (a_3 + b_3 + c_3)$$

$$= a_1 b_2 c_3 + a_2 b_3 c_1 + a_3 b_1 c_2 + 24 \text{ more such terms}$$

$$\geq a_1 b_2 c_3 + a_2 b_3 c_1 + a_3 b_1 c_2 \quad (\because a_r, b_r, c_r \geq \text{or } r = 1, 2, 3)$$

$$\geq (a_1 b_2 c_3 + a_2 b_3 c_1 + a_3 b_1 c_2) - (a_1 b_3 c_2 + a_2 b_1 c_2 + a_3 b_2 c_1) \quad \text{(same reason)}$$

$$= V(\text{from (i)})$$

Thus, $L^3 \ge V$

16. We know that
$$[\vec{x} \times \vec{y} \ \vec{y} \times \vec{z} \ \vec{z} \times \vec{x}] = [\vec{x} \ \vec{y} \ \vec{z}]^2$$

Also a vector along the bisector of given two unit vectors \overrightarrow{u} , \overrightarrow{v} is $\overrightarrow{u} + \overrightarrow{v}$.

A unit vector along the bisector is $\begin{array}{c} \overrightarrow{u} + \overrightarrow{v} \\ \overrightarrow{u} + \overrightarrow{v} \end{array}$

$$|\vec{u} + \vec{v}|^2 = 1 + 1 + 2\vec{u} \cdot \vec{v} = 2 + 2\cos\alpha = 4\cos^2\frac{\alpha}{2}$$

$$\Rightarrow \vec{x} = \frac{\vec{u} + \vec{v}}{2\cos\frac{\alpha}{2}}$$

Similarly,
$$\vec{y} = \frac{\vec{v} + \vec{w}}{2\cos \beta/2}$$
 and $\vec{z} = \frac{\vec{u} + \vec{w}}{2\cos \gamma/2}$

$$\Rightarrow [\overrightarrow{x} \ \overrightarrow{y} \ \overrightarrow{z}] = \frac{1}{8} [\overrightarrow{u} + \overrightarrow{v} \ \overrightarrow{v} + \overrightarrow{w} \ \overrightarrow{u} + \overrightarrow{w}] \sec \frac{\alpha}{2} \sec \frac{\beta}{2} \sec \frac{\gamma}{2}$$

$$= \frac{1}{8} 2 [\overrightarrow{u} \ \overrightarrow{v} \ \overrightarrow{w}] \sec \frac{\alpha}{2} \sec \frac{\beta}{2} \sec \frac{\gamma}{2}$$

$$= \frac{1}{4} [\overrightarrow{u} \ \overrightarrow{v} \ \overrightarrow{w}] \sec \frac{\alpha}{2} \sec \frac{\beta}{2} \sec \frac{\gamma}{2}$$

$$\Rightarrow [\vec{x} \times \vec{y} \ \vec{y} \times \vec{z} \ \vec{z} \times \vec{x}] = [\vec{x} \ \vec{y} \ \vec{z}]^{2}$$

$$1 \rightarrow \rightarrow \rightarrow \alpha \qquad \alpha \qquad \alpha$$

$$= \frac{1}{16} [\overrightarrow{u} \vec{v} \vec{w}]^2 \sec^2 \frac{\alpha}{2} \sec^2 \frac{\beta}{2} \sec^2 \frac{\gamma}{2}$$

17. Given that
$$\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$$

and
$$\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$$
 (ii)

(i)

Subtracting (ii) from (i), we get

$$\vec{a} \times (\vec{c} - \vec{b}) = (\vec{b} - \vec{c}) \times \vec{d}$$

$$\Rightarrow \vec{a} \times (\vec{c} - \vec{b}) = \vec{d} \times (\vec{c} - \vec{b})$$

$$\Rightarrow \vec{a} \times (\vec{c} - \vec{b}) - \vec{d} \times (\vec{c} - \vec{b}) = 0$$

$$\Rightarrow (\vec{a} - \vec{d}) \times (\vec{c} - \vec{d}) = 0$$

$$\Rightarrow (\vec{a} - \vec{d}) | | (\vec{c} - \vec{d}) \quad (\because \vec{a} - \vec{d} \neq 0, \vec{c} - \vec{b} \neq 0)$$

 \Rightarrow Angle between $\vec{a} - \vec{d}$ and $\vec{c} - \vec{b}$ is either 0 or 180°.

$$\Rightarrow (\vec{a} - \vec{d}) \cdot (\vec{c} - \vec{b}) = |\vec{a} - \vec{d}| |\vec{c} - \vec{b}| \cos 0 \neq 0$$
 as $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} all are different.

18. The following figure shows the possible situation for planes P_1 and P_2 and the lines L_1 and L_2 :

Fig. 2.52

Now if we choose points A, B and C as A on L_1 , B on the line of intersection of P_1 and P_2 but other than the origin and C on L_2 again other than the origin, then we can consider

A corresponds to one of A', B', C'

B corresponds to one of the remaining of A', B' and C'

C corresponds to third of A', B' and C', e.g., $A' \equiv C$; $B' \equiv B$; $C' \equiv A$

Hence one permutation of [A B C] is [CBA]. Hence proved.

19. Given that the incident ray is along \hat{v} , the reflected ray is along \hat{w} and the normal is along \hat{a} , outwards. The given figure can be redrawn as shown.

Fig. 2.53

We know that the incident ray, the reflected ray, and the normal lie in a plane, and the angle of incidence = angle of reflection.

Therefore, \hat{a} will be along the angle bisector of \hat{w} and $-\hat{v}$, i.e.,

$$\hat{a} = \frac{\hat{w} + (-\hat{v})}{|\hat{w} - \hat{v}|}$$
 (i)

But \hat{a} is a unit vector

where
$$|\hat{w} - \hat{v}| = OC = 2OP$$

$$=21\hat{w}\log\theta=2\cos\theta$$

Substituting this value in (i),

$$\hat{a} = \frac{\hat{w} - \hat{v}}{2\cos\theta}$$

$$\Rightarrow \hat{w} = \hat{v} + (2\cos\theta)\hat{a}$$

$$\Rightarrow \hat{a} = \hat{v} - 2(\hat{a} \cdot \hat{v})\hat{a} \quad (\hat{a} \cdot \hat{v} = -\cos\theta)$$

Objective Type

Fill in the blanks

1. Given that
$$|\vec{A}| = 3$$
; $|\vec{B}| = 4$; $|\vec{C}| = 5$

$$\vec{A} \perp (\vec{B} + \vec{C}) \Rightarrow \vec{A} \cdot (\vec{B} + \vec{C}) = 0 \Rightarrow \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C} = 0$$
 (i)

$$\vec{B} \perp (\vec{C} + \vec{A}) \Rightarrow \vec{B} \cdot (\vec{C} + \vec{A}) = 0 \Rightarrow \vec{B} \cdot \vec{C} + \vec{B} \cdot \vec{A} = 0$$
 (ii)

$$\vec{C} \perp (\vec{A} + \vec{B}) \Rightarrow \vec{C} \cdot (\vec{A} + \vec{B}) = 0 \Rightarrow \vec{C} \cdot \vec{A} + \vec{C} \cdot \vec{B} = 0$$
 (iii)

Adding (i), (ii) and (iii), we get

$$2(\vec{A} \cdot \vec{B} + \vec{B} \cdot \vec{C} + \vec{C} \cdot \vec{A}) = 0$$
 (iv)

Now, $|\vec{A} + \vec{B} + \vec{C}|^2$

$$= (\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C}) \cdot (\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C})$$

$$= |\vec{A}|^2 + |\vec{B}|^2 + |\vec{C}|^2 + 2(\vec{A} \cdot \vec{B} + \vec{B} \cdot \vec{C} + \vec{C} \cdot \vec{A})$$

$$=9+16+25+0$$

$$=50$$

$$\therefore |\vec{A} + \vec{B} + \vec{C}| = 5\sqrt{2}$$

2. Required unit vector

$$\hat{a} = \frac{\overrightarrow{PQ} \times \overrightarrow{PR}}{|\overrightarrow{PQ} \times \overrightarrow{PR}|}$$

$$\overrightarrow{PQ} = \hat{i} + \hat{j} - 3\hat{k}; \overrightarrow{PR} = -\hat{i} + 3\hat{j} - \hat{k}$$

$$\therefore \overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & -3 \\ -1 & 3 & -1 \end{vmatrix}$$

$$= 8\hat{i} + 4\hat{j} + 4\hat{k}$$

$$\therefore \hat{n} = \frac{8\hat{i} + 4\hat{j} + 4\hat{k}}{4\sqrt{6}} = \frac{2\hat{i} + \hat{j} + \hat{k}}{\sqrt{6}}$$

3. Area of
$$\triangle ABC = \frac{1}{2} | \overrightarrow{BA} \times \overrightarrow{BC} |$$

$$\overrightarrow{BA} = -\hat{i} - 2\hat{j} + 3\hat{k}$$

$$\overrightarrow{BC} = \hat{i} - 2\hat{j} + 3\hat{k}$$

$$\therefore \text{ Area} = \frac{1}{2} \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & -2 & 3 \\ 1 & -2 & 3 \end{vmatrix} = \frac{1}{2} |6\hat{j} + 4\hat{k}|$$

$$= |3\hat{j} + 2\hat{k}|$$

$$= \sqrt{9+4} = \sqrt{13}$$

4.
$$\frac{\vec{A} \cdot \vec{B} \times \vec{C}}{\vec{C} \times \vec{A} \cdot \vec{B}} + \frac{\vec{B} \cdot \vec{A} \times \vec{C}}{\vec{C} \cdot \vec{A} \times \vec{B}}$$
$$= \frac{[\vec{A} \cdot \vec{B} \cdot \vec{C}]}{[\vec{A} \cdot \vec{B} \cdot \vec{C}]} + \frac{-[\vec{A} \cdot \vec{B} \cdot \vec{C}]}{[\vec{A} \cdot \vec{B} \cdot \vec{C}]} = 0$$

5. Given
$$\vec{A} = \hat{i} + \hat{j} + \hat{k}$$
 and $\vec{C} = \hat{j} - \hat{k}$
Let $\vec{B} = x\hat{i} + y\hat{j} + z\hat{k}$

Given that
$$\vec{A} \times \vec{B} = \vec{C} \implies \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ x & y & z \end{vmatrix} = \hat{j} - \hat{k}$$

$$\Rightarrow (z-y) i + (x-z) \hat{j} + (y-x) \hat{k} = \hat{j} - \hat{k}$$

$$\Rightarrow z - y = 0, x - z = 1 \text{ and } y - x = -1$$
(i)

Also,
$$\vec{A} \cdot \vec{B} = 3$$

$$\Rightarrow x + y + z = 3 \tag{ii}$$

(i)

(ii)

(iii)

Using (i) and (ii), we get

$$y = 2/3, x = 5/3, z = 2/3$$

$$\therefore \vec{B} = \frac{5}{3}\hat{i} + \frac{2}{3}\hat{j} + \frac{2}{3}\hat{k}$$

6. Let
$$\vec{c} = \alpha \hat{i} + \beta \hat{j}$$

Given that $\vec{b} \perp \vec{c}$

$$\therefore \vec{b} \cdot \vec{c} = 0.$$

$$\Rightarrow (4\hat{i} + 3\hat{j}) \cdot (\alpha \hat{i} + \beta \hat{j}) = 0$$

$$\Rightarrow 4\alpha + 3\beta = 0$$

$$\Rightarrow \frac{\alpha}{3} = \frac{\beta}{-4} = \lambda$$

$$\Rightarrow \alpha = 3 \lambda, \beta = -4 \lambda$$

Now let $\vec{a} = x\hat{i} + y\hat{j}$ be the required vectors.

Given that projection of \vec{a} along \vec{b}

$$=\frac{\vec{a}\cdot\vec{b}}{|\vec{b}|}$$

$$=\frac{4x+3y}{\sqrt{4^2+3^2}}=1$$

$$\Rightarrow 4x + 3y = 5$$

Also projection of \vec{a} along \vec{c}

$$\Rightarrow \frac{\overrightarrow{a} \cdot \overrightarrow{c}}{\overrightarrow{c}} = 2$$

$$\Rightarrow \frac{\alpha x + \beta y}{\sqrt{\alpha^2 + \beta^2}} = 2$$

$$\Rightarrow 3\lambda x - 4\lambda y = 10 \lambda$$

 \Rightarrow 3x -4y = 10

Solving (ii) and (iii), we get x = 2, y = -1

 \therefore The required vector is $2\hat{i} - \hat{j}$.

7.

Fig. 2.54

Component of \vec{a} along \vec{b}

$$\overrightarrow{OD} = OA \cos \theta \cdot \frac{\overrightarrow{b}}{|\overrightarrow{b}|}$$

$$= \left(\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|}\right) \frac{\overrightarrow{b}}{|\overrightarrow{b}|} = \left(\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|^2}\right) \overrightarrow{b}$$

Component of \vec{a} perpendicular to \vec{b}

$$\overrightarrow{DA} = \overrightarrow{a} - \overrightarrow{OD}$$

$$= \overrightarrow{a} - \left(\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|^2}\right) \overrightarrow{b}$$

8. Let $x\hat{i} + y\hat{j} + z\hat{k}$ be a unit vector coplanar with $\hat{i} + \hat{j} + 2\hat{k}$ and $\hat{i} + 2\hat{j} + \hat{k}$ and also perpendicular to $\hat{i} + \hat{j} + \hat{k}$

Then,
$$\begin{vmatrix} x & y & z \\ 1 & 1 & 2 \\ 1 & 2 & 1 \end{vmatrix} = 0$$

$$\Rightarrow -3x + y + z = 0 \tag{i}$$

and
$$x + y + z = 0$$
 (ii)

Solving the above by cross-product method, we get $\frac{x}{0} = \frac{y}{4} = \frac{z}{-4}$ or $\frac{x}{0} = \frac{y}{1} = \frac{z}{-1} = \lambda$ (say) $\Rightarrow x = 0, y = \lambda, z = -\lambda$

As $x\hat{i} + y\hat{j} + z\hat{k}$ is a unit vector,

$$\Rightarrow$$
 0 + λ^2 + λ^2 = 1

⇒
$$\lambda^2 = \frac{1}{2}$$
 ⇒ $\lambda = \pm \frac{1}{\sqrt{2}}$
∴ The required vector is $\frac{\hat{j} - \hat{k}}{\sqrt{2}}$ or $\frac{-\hat{j} + \hat{k}}{\sqrt{2}}$.

9. A vector normal to the plane containing vectors \hat{i} and $\hat{i} + \hat{j}$ is

$$\vec{p} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{vmatrix} = \hat{k}$$

A vector normal to the plane containing vectors $\hat{i} - \hat{j}$, $\hat{i} + \hat{k}$ is

$$\vec{q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 0 \\ 1 & 0 & 1 \end{vmatrix} = -\hat{i} - \hat{j} + \hat{k}.$$

Vector \vec{a} is parallel to vector $\vec{p} \times \vec{q}$

$$\vec{p} \times \vec{q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 0 & 1 \\ -1 & -1 & 1 \end{vmatrix} = \hat{i} - \hat{j}$$

 \therefore A vector in direction of \vec{a} is $\hat{i} - \hat{j}$

Now if θ is the angle between \vec{a} and $\hat{i} - 2\hat{j} + 2\hat{k}$, then

$$\cos \theta = \pm \frac{1 \cdot 1 + (-1) \cdot (-2)}{\sqrt{1+1} \sqrt{1+4+4}} = \pm \frac{3}{\sqrt{2} \cdot 3}$$

$$\Rightarrow \cos \theta = \pm \frac{1}{\sqrt{2}} \Rightarrow \theta = \frac{\pi}{4} \text{ or } \frac{3\pi}{4}$$

10. Let $\vec{\alpha}, \vec{\beta}, \vec{\gamma}$ be any three mutually perpendicular non-coplanar unit vectors and \vec{a} be any vector, then $\vec{a} = (\vec{a} \cdot \vec{\alpha}) \vec{\alpha} + (\vec{a} \cdot \vec{\beta}) \vec{\beta} + (\vec{a} \cdot \vec{\gamma}) \vec{\gamma}$

Here \vec{b} , \vec{c} are two mutually perpendicular vectors, therefore \vec{b} , \vec{c} and $\frac{\vec{b} \times \vec{c}}{\vec{c}}$ are three mutually perpendicular non-coplanar unit vectors.

Hence
$$\vec{a} = (\vec{a} \cdot \vec{b}) \vec{b} + (\vec{a} \cdot \vec{c}) \vec{c} + (\vec{a} \cdot \vec{b} \times \vec{c}) \vec{b} \times \vec{c}$$

$$= (\vec{a} \cdot \vec{b}) \vec{b} + (\vec{a} \cdot \vec{c}) \vec{c} + (\vec{a} \cdot \vec{b} \times \vec{c}) \vec{c} + (\vec{b} \times \vec{c})$$

11.
$$\overrightarrow{a} \times (\overrightarrow{a} \times \overrightarrow{c}) + \overrightarrow{b} = \overrightarrow{0}$$

$$\Rightarrow (\overrightarrow{a} \cdot \overrightarrow{c}) \overrightarrow{a} - (\overrightarrow{a} \cdot \overrightarrow{a}) \overrightarrow{c} + \overrightarrow{b} = \overrightarrow{0}$$

$$\Rightarrow 2\cos\theta \cdot \vec{a} - \vec{c} + \vec{b} = \vec{0}$$
 (using $|\vec{a}| = 1, |\vec{b}| = 1, |\vec{c}| = 2$)

$$\Rightarrow (2\cos\theta \stackrel{\rightarrow}{a} - \stackrel{\rightarrow}{c})^2 = (-\stackrel{\rightarrow}{b})^2$$

$$\Rightarrow 4\cos^2\theta \cdot |\vec{a}|^2 + |\vec{c}|^2 - 2\cdot 2\cos\theta \cdot |\vec{a}\cdot\vec{c}| = |\vec{b}|^2$$

$$\Rightarrow 4\cos^2\theta + 4 - 8\cos\theta \cdot \cos\theta = 1$$

$$\Rightarrow 4\cos^2\theta - 8\cos^2\theta + 4 = 1$$

$$\Rightarrow 4 \cos^2 \theta = 3$$

$$\Rightarrow \cos \theta = \pm \sqrt{3}/2$$

For θ to be acute, $\cos \theta = \frac{\sqrt{3}}{2} \Rightarrow \theta = \frac{\pi}{6}$

12. Given that \vec{a} , \vec{b} , \vec{c} and \vec{d} are position vectors of points A, B, C and D, respectively, such that

$$(\overrightarrow{a} - \overrightarrow{d}) \cdot (\overrightarrow{b} - \overrightarrow{c}) = (\overrightarrow{b} - \overrightarrow{d}) \cdot (\overrightarrow{c} - \overrightarrow{a}) = 0$$

$$\Rightarrow \overrightarrow{DA} \cdot \overrightarrow{CB} = \overrightarrow{DB} \cdot \overrightarrow{AC} = 0$$

Fig. 2.55

$$\Rightarrow \overrightarrow{DA} \perp \overrightarrow{CB}$$
 and $\overrightarrow{DB} \perp \overrightarrow{AC}$

Clearly, D is the orthocentre of ΔABC .

13. $q = \text{area of parallelogram with } \overrightarrow{OA} \text{ and } \overrightarrow{OC} \text{ as adjacent sides}$

$$= |\overrightarrow{OA} \times \overrightarrow{OC}|$$

$$= |\vec{a} \times \vec{b}|$$

p =area of quadrilateral OABC

$$=\frac{1}{2}|\overrightarrow{OA}\times\overrightarrow{OB}|+\frac{1}{2}|\overrightarrow{OB}\times\overrightarrow{OC}|=\frac{1}{2}[|\overrightarrow{a}\times(10\overrightarrow{a}+2\overrightarrow{b})|+|(10\overrightarrow{a}+2\overrightarrow{b})\times\overrightarrow{b}|]$$

$$= \frac{1}{2} |(12\vec{a} \times \vec{b})| = 6|\vec{a} \times \vec{b}| \Rightarrow k = 6$$

14.
$$\vec{a} \cdot \vec{b} = -1 + 3 = 2$$

$$|\overrightarrow{a}| = 2, |\overrightarrow{b}| = 2$$

$$\cos\theta = \frac{2}{2\times 2} = \frac{1}{2}$$

 $\theta = \frac{\pi}{3}$ but its value is $\frac{2\pi}{3}$ as it is opposite to the side of maximum length.

True or false

1. \vec{A} , \vec{B} and \vec{C} are three unit vectors such that $\vec{A} \cdot \vec{B} = \vec{A} \cdot \vec{C} = 0$ (i) and the angle between \vec{B} and \vec{C} is $\pi/3$. Now Eq. (i) shows that \vec{A} is perpendicular to both \vec{B} and \vec{C} .

$$\Rightarrow \vec{B} \times \vec{C} = \lambda \vec{A}$$
, where λ is any scalar.

$$\Rightarrow |\vec{B} \times \vec{C}| = |\lambda \vec{A}|$$

$$\Rightarrow$$
 sin $\pi/3 = \pm \lambda$ (as $\pi/3$ is the angle between \overrightarrow{B} and \overrightarrow{C})

$$\Rightarrow \lambda = \pm \sqrt{3}/2$$

$$\Rightarrow \vec{B} \times \vec{C} = \pm \frac{\sqrt{3}}{2} \vec{A}$$

$$\Rightarrow \vec{A} = \pm \frac{2}{\sqrt{3}} \; (\vec{B} \times \vec{C})$$

Therefore, the given statement is false.

2.
$$\vec{X} \cdot \vec{A} = 0 \Rightarrow \text{ either } \vec{A} = 0 \text{ or } \vec{X} \perp \vec{A}$$

$$\vec{X} \cdot \vec{B} = 0 \Rightarrow \text{ either } \vec{B} = 0 \text{ or } \vec{X} \perp \vec{B}$$

$$\vec{X} \cdot \vec{C} = 0 \Rightarrow \text{ either } \vec{C} = 0 \vec{X} \perp \vec{C}$$

In any of the three cases, $\vec{A}, \vec{B}, \vec{C} = 0 \Rightarrow [\vec{A} \vec{B} \vec{C}] = 0$

Otherwise if $\vec{X} \perp \vec{A}$, $\vec{X} \perp \vec{B}$ and $\vec{X} \perp \vec{C}$, then \vec{A} , \vec{B} and \vec{C} are coplanar.

$$\Rightarrow [\vec{A} \vec{B} \vec{C}] = 0$$

Therefore, the statement is true.

3. Clearly vectors $\vec{a} - \vec{b}$, $\vec{b} - \vec{c}$, $\vec{c} - \vec{a}$ are coplanar

$$\Rightarrow [\overrightarrow{a} - \overrightarrow{b} \overrightarrow{b} - \overrightarrow{c} \overrightarrow{c} - \overrightarrow{a}] = 0$$

Therefore, the given statement is false.

Multiple choice questions with one correct answer

1.
$$\mathbf{a} \cdot \vec{A} \cdot (\vec{B} + \vec{C}) \times (\vec{A} + \vec{B} + \vec{C}) = \vec{A} \cdot [\vec{B} \times \vec{A} + \vec{B} \times \vec{B} + \vec{B} \times \vec{C} + \vec{C} \times \vec{A} + \vec{C} \times \vec{B} + \vec{C} \times \vec{C}]$$

$$= \vec{A} \cdot \vec{B} \times \vec{A} + \vec{A} \cdot \vec{B} \times \vec{C} + \vec{A} \cdot \vec{C} \times \vec{A} + \vec{A} \cdot \vec{C} \times \vec{B} \quad \text{(using } \vec{a} \times \vec{a} = 0\text{)}$$

$$= 0 + [\vec{A} \cdot \vec{B} \cdot \vec{C}] + 0 + [\vec{A} \cdot \vec{C} \cdot \vec{B}]$$

$$= [\vec{A} \cdot \vec{B} \cdot \vec{C}] - [\vec{A} \cdot \vec{B} \cdot \vec{C}]$$

$$= 0$$

2. d.
$$|(\vec{a} \times \vec{b}) \cdot \vec{c}| = |\vec{a}| |\vec{b}| |\vec{c}|$$

$$\Rightarrow \|\vec{a}\|\vec{b}|\sin\theta \hat{n}\cdot\vec{c}| = |\vec{a}||\vec{b}||\vec{c}|$$

$$\Rightarrow |\vec{a}||\vec{b}||\vec{c}||\sin\theta\cos\alpha| = |\vec{a}||\vec{b}||\vec{c}|$$

$$\Rightarrow |\sin \theta| |\cos \alpha| = 1$$

$$\Rightarrow \theta = \pi/2$$
 and $\alpha = 0$

$$\Rightarrow \vec{a} \perp \vec{b}$$
 and $\vec{c} \parallel \hat{n}$ or perpendicular to both \vec{a} and \vec{b}

$$\Rightarrow \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$$

3. d. Volume of parallelopiped =
$$[\vec{a} \ \vec{b} \ \vec{c}]$$

$$= \begin{vmatrix} 2 & -2 & 0 \\ 1 & 1 & -1 \\ 3 & 0 & -1 \end{vmatrix} = 2(-1) + 2(-1 + 3) = 2$$

4. d. Given that \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are non-coplanar. Therefore,

$$[\vec{a} \ \vec{b} \ \vec{c}] \neq 0$$

Also
$$\vec{p} = \frac{\vec{b} \times \vec{c}}{\vec{a} \vec{b} \vec{c}}, \vec{q} = \frac{\vec{c} \times \vec{a}}{\vec{a} \vec{b} \vec{c}}, \vec{r} = \frac{\vec{a} \times \vec{b}}{\vec{a} \vec{b} \vec{c}}$$
 (i)

Now,
$$(\overrightarrow{a} + \overrightarrow{b}) \cdot \overrightarrow{p} + (\overrightarrow{b} + \overrightarrow{c}) \cdot \overrightarrow{q} + (\overrightarrow{c} + \overrightarrow{a}) \cdot \overrightarrow{r}$$

$$= (\overrightarrow{a} + \overrightarrow{b}) \cdot \frac{\overrightarrow{b} \times \overrightarrow{c}}{[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}]} + (\overrightarrow{b} + \overrightarrow{c}) \cdot \frac{\overrightarrow{c} \times \overrightarrow{a}}{[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}]} + (\overrightarrow{c} + \overrightarrow{a}) \cdot \frac{\overrightarrow{a} \times \overrightarrow{b}}{[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}]}$$

$$= \frac{\vec{a} \cdot \vec{b} \times \vec{c}}{[\vec{a} \ \vec{b} \ \vec{c}]} + \frac{\vec{b} \cdot \vec{c} \times \vec{a}}{[\vec{a} \ \vec{b} \ \vec{c}]} + \frac{\vec{c} \cdot \vec{a} \times \vec{b}}{[\vec{a} \ \vec{b} \ \vec{c}]} \quad [\because \vec{b} \cdot \vec{b} \times \vec{c} = \vec{c} \cdot \vec{c} \times \vec{a} = \vec{a} \cdot \vec{a} \times \vec{b} = 0]$$

$$= \frac{\vec{a} \vec{b} \vec{c}}{\vec{a} \vec{b} \vec{c}} + \frac{\vec{a} \vec{b} \vec{c}}{\vec{a} \vec{b} \vec{c}} + \frac{\vec{a} \vec{b} \vec{c}}{\vec{a} \vec{b} \vec{c}} + \frac{\vec{a} \vec{b} \vec{c}}{\vec{a} \vec{b} \vec{c}}$$

$$= 1 + 1 + 1$$

5. **a.** Let
$$\vec{d} = x\hat{i} + y\hat{j} + z\hat{k}$$

where
$$x^2 + y^2 + z^2 = 1$$
 (i)

(ii)

(iii)

 $(\vec{d} \text{ being a unit vector})$

$$\vec{a} \cdot \vec{a} \cdot \vec{d} = 0$$

$$\Rightarrow x - y = 0 \Rightarrow x = y$$

$$[\vec{b} \ \vec{c} \ \vec{d}] = 0$$

$$\Rightarrow \begin{vmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ x & y & z \end{vmatrix} = 0$$

$$\Rightarrow x + y + z = 0$$

$$\Rightarrow$$
 2x + z = 0 (using (ii))

$$\Rightarrow z = -2x$$

From (i), (ii) and (iii)

$$x^2 + x^2 + 4x^2 = 1$$

$$x = \pm \frac{1}{\sqrt{6}}$$

$$\therefore \vec{d} = \pm \left(\frac{1}{\sqrt{6}} \hat{i} + \frac{1}{\sqrt{6}} \hat{j} - \frac{2}{\sqrt{6}} \vec{k} \right) = \pm \left(\frac{\hat{i} + \hat{j} - 2\hat{k}}{\sqrt{6}} \right)$$

6. a. Since
$$\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} + \vec{c}}{\sqrt{2}}$$

$$\therefore (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} = \frac{1}{\sqrt{2}} \vec{b} + \frac{1}{\sqrt{2}} \vec{c}$$

Since \vec{b} and \vec{c} are non-coplanar

$$\Rightarrow \vec{a} \cdot \vec{c} = \frac{1}{\sqrt{2}}$$
 and $\vec{a} \cdot \vec{b} = -\frac{1}{\sqrt{2}}$

$$\Rightarrow \cos \theta = -\frac{1}{\sqrt{2}} \quad \text{(because } \vec{a} \text{ and } \vec{b} \text{ are unit vectors)}$$

$$\Rightarrow \theta = \frac{3\pi}{4}$$

7. **b.** Since
$$\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w} = 0$$
,

$$|\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w}|^2 = 0$$

$$\Rightarrow |\overrightarrow{u}|^2 + |\overrightarrow{v}|^2 + |\overrightarrow{w}|^2 + 2(\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{w} + \overrightarrow{w} \cdot \overrightarrow{u}) = 0$$

$$\Rightarrow$$
 9 + 16 + 25 + 2 $(\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{w} + \overrightarrow{w} \cdot \overrightarrow{u}) = 0$

$$\Rightarrow \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{w} + \overrightarrow{w} \cdot \overrightarrow{u} = -25$$

8. **d.**
$$(\vec{a} + \vec{b} + \vec{c}) \cdot [(\vec{a} + \vec{b}) \times (\vec{a} + \vec{c})]$$

$$= (\vec{a} + \vec{b} + \vec{c}) \cdot [\vec{a} \times \vec{a} + \vec{a} \times \vec{c} + \vec{b} \times \vec{a} + \vec{b} \times \vec{c}]$$

$$= (\vec{a} + \vec{b} + \vec{c}) \cdot [\vec{a} \times \vec{c} + \vec{b} \times \vec{a} + \vec{b} \times \vec{c}]$$

$$= (\vec{a} + \vec{b} + \vec{c}) \cdot [\vec{a} \times \vec{c} + \vec{b} \times \vec{a} + \vec{b} \times \vec{c}]$$

$$= \vec{a} \cdot \vec{b} \times \vec{c} + \vec{b} \cdot \vec{a} \times \vec{c} + \vec{c} \cdot \vec{b} \times \vec{a}$$

$$= [\vec{a} \vec{b} \vec{c}] - [\vec{a} \vec{b} \vec{c}] - [\vec{a} \vec{b} \vec{c}]$$

$$= -[\vec{a} \vec{b} \vec{c}]$$

9. **b.** As \vec{p} , \vec{q} and \vec{r} are three mutually perpendicular vectors of same magnitude, so let us consider $\vec{p} = a \hat{i}, \vec{q} = a \hat{j}, \vec{r} = a \hat{k}$

Also let
$$\vec{x} = x_1 \hat{i} + y_1 \hat{j} + z_1 \hat{k}$$

Given that \vec{x} satisfies the equation

$$\vec{p} \times [(\vec{x} - \vec{q}) \times \vec{p}] + \vec{q} \times [(\vec{x} - \vec{r}) \times \vec{q}] + \vec{r} \times [(\vec{x} - \vec{p}) \times \vec{r}] = 0$$

$$\text{Now } \vec{p} \times [(\vec{x} - \vec{q}) \times \vec{p}] = \vec{p} \times [\vec{x} \times \vec{p} - \vec{q} \times \vec{p}]$$

$$= \vec{p} \times (\vec{x} \times \vec{p}) - \vec{p} \times (\vec{q} \times \vec{p})$$

$$= (\vec{p} \cdot \vec{p}) \vec{x} - (\vec{p} \cdot \vec{x}) \vec{p} - (\vec{p} \cdot \vec{p}) \vec{q} + (\vec{p} \cdot \vec{q}) \vec{p}$$
(i)

 $=a^{2} \vec{x} - a^{2} x_{1} \hat{i} - a^{3} \hat{j} + 0$

$$\vec{q} \times [(\vec{x} - \vec{r}) \times \vec{q}] = a^2 \vec{x} - a^2 y_1 \hat{j} - a^3 \hat{k}$$

and
$$\overrightarrow{r} \times [(\overrightarrow{x} - \overrightarrow{p}) \times \overrightarrow{r}] = a^2 \overrightarrow{x} - a^2 z_1 \hat{k} - a^3 \hat{i}$$

Substituting these values in the equation, we get

$$3a^{2} \vec{x} - a^{2} (x_{1} \hat{i} + y_{1} \hat{j} + z_{1} \hat{k}) - a^{2} (a\hat{i} + a\hat{j} + a\hat{k}) = 0$$

$$\Rightarrow 3a^{2} \vec{x} - a^{2} \vec{x} - a^{2} (\vec{p} + \vec{q} + \vec{r}) = \vec{0}$$

$$\Rightarrow 2a^{2} \vec{x} = (\vec{p} + \vec{q} + \vec{r}) a^{2}$$

$$\Rightarrow \vec{x} = \frac{1}{2} (\vec{p} + \vec{q} + \vec{r})$$

10. **b.**
$$|(\vec{a} \times \vec{b}) \times \vec{c}| = |\vec{a} \times \vec{b}| |\vec{c}| \sin 30^{\circ}$$

$$= \frac{1}{2} |\vec{a} \times \vec{b}| |\vec{c}| \qquad (i)$$

We have,
$$\vec{a} = 2\hat{i} + \hat{j} - 2\hat{k}$$
 and $\vec{b} = \hat{i} + \hat{j}$

$$\Rightarrow \vec{a} \times \vec{b} = 2\hat{i} - 2\hat{i} + \hat{k}$$

$$\Rightarrow |\vec{a} \times \vec{b}| = \sqrt{9} = 3$$

Also given
$$|\vec{c} - \vec{a}| = 2\sqrt{2}$$

$$\Rightarrow |\overrightarrow{c} - \overrightarrow{a}|^2 = 8$$

$$\Rightarrow |\overrightarrow{c}|^2 + |\overrightarrow{a}|^2 - 2\overrightarrow{a} \cdot \overrightarrow{c} = 8$$

Given $|\vec{a}| = 3$ and $\vec{a} \cdot \vec{c} = |\vec{c}|$, using these we get

$$|\vec{c}|^2 - 2|\vec{c}| + 1 = 0$$

$$\Rightarrow (|\overrightarrow{c}|-1)^2 = 0$$

$$\Rightarrow |\vec{c}| = 1$$

Substituting values of $|\vec{a} \times \vec{b}|$ and $|\vec{c}|$ in (i), we get

$$|(\vec{a} \times \vec{b}) \times \vec{c}| = \frac{1}{2} \times 3 \times 1 = \frac{3}{2}$$

11. **a.** As \vec{c} is coplanar with \vec{a} and \vec{b} , we take $\vec{c} = \alpha \vec{a} + \beta \vec{b}$ where α and β are scalars.

As \vec{c} is perpendicular to \vec{a} , using (i), we get,

$$0 = \alpha \stackrel{\rightarrow}{a} \cdot \stackrel{\rightarrow}{a} + \beta \stackrel{\rightarrow}{b} \cdot \stackrel{\rightarrow}{a}$$

$$\Rightarrow 0 = \alpha(6) + \beta(2 + 2 - 1) = 3(2\alpha + \beta)$$

$$\Rightarrow \beta = -2\alpha$$

Thus,
$$\overrightarrow{c} = \alpha (\overrightarrow{a} - 2\overrightarrow{b}) = \alpha (-3i + 3k) = 3\alpha (-i + k)$$

$$\Rightarrow |\overrightarrow{c}|^2 = 18\alpha^2$$

$$\Rightarrow 1 = 18\alpha^2$$

$$\Rightarrow \alpha = \pm \frac{1}{3\sqrt{2}}$$

$$\therefore \vec{c} = \pm \frac{1}{\sqrt{2}} (-j + k)$$

12. **b.** Given $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ (by triangle law). Therefore,

$$\vec{a} \times (\vec{a} + \vec{b} + \vec{c}) = \vec{a} \times \vec{0}$$

$$\overrightarrow{a} \times \overrightarrow{a} + \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{0}$$

$$\vec{a} \times \vec{b} = \vec{c} \times \vec{a}$$

Similarly by taking cross product with \vec{b} , we get $\vec{a} \times \vec{b} = \vec{b} \times \vec{c}$

$$\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$$

a. Given that $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are vectors such that $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \vec{0}$

(i)

(i)

 P_1 is the plane determined by vectors \vec{a} and \vec{b} . Therefore, normal vectors \vec{n}_1 to P_1 will be given by $\vec{n}_1 = \vec{a} \times \vec{b}$

Similarly, P_2 is the plane determined by vectors \vec{c} and \vec{d} . Therefore, normal vectors $\vec{n_2}$ to P_2 will be given by

$$\vec{n_2} = \vec{c} \times \vec{d}$$

Substituting the values of $\vec{n_1}$ and $\vec{n_2}$ in (i), we get

$$\vec{n_1} \times \vec{n_2} = \vec{0}$$

Hence, $\overrightarrow{n}_1 || \overrightarrow{n}_2$

Hence, the planes will also be parallel to each other.

Thus angle between the planes = 0.

a. \vec{a} , \vec{b} and \vec{c} are unit coplanar vectors, $2\vec{a} - \vec{b}$, $2\vec{b} - 2\vec{c}$ and $2\vec{c} - \vec{a}$ are also coplanar vectors, being linear combination of \vec{a} , \vec{b} and \vec{c} .

Thus, $[2\vec{a} - \vec{b} \ 2\vec{b} - \vec{c} \ 2\vec{c} - \vec{a}] = 0$

b. \hat{a} , \hat{b} and \hat{c} are unit vectors.

Now $x = |\hat{a} - \hat{b}|^2 + |\hat{b} - \hat{c}|^2 + |\hat{c} - \hat{a}|^2$

$$= \frac{1}{2}(\hat{a}\cdot\hat{a} + \hat{b}\cdot\hat{b} + \hat{c}\cdot\hat{c}) - 2\hat{a}\cdot\hat{b} - 2\hat{b}\cdot\hat{c} - 2\hat{c}\cdot\hat{a}$$

$$= 2^{(\hat{a} \cdot \hat{b} + \hat{b} \cdot \hat{c} + \hat{c} \cdot \hat{a})}$$

$$\Rightarrow 6 - 2(\hat{a} \cdot \hat{b} + \hat{b} \cdot \hat{c} + \hat{c} \cdot \hat{a})$$

Also, $|\hat{a} + \hat{b} + \hat{c}| \ge 0$

Also,
$$|a+b+c| \ge 0$$

$$\Rightarrow \hat{a} \cdot \hat{a} + \hat{b} \cdot \hat{b} = \hat{c} \cdot \hat{c} + 2(\hat{a} \cdot \hat{b} + \hat{b} \cdot \hat{c} + \hat{c} \cdot \hat{a}) \ge 0$$

$$\Rightarrow$$
 3 + 2 $(\hat{a} \cdot \hat{b} + \hat{b} \cdot \hat{c} + \hat{c} \cdot \hat{a}) \ge 0$

$$\Rightarrow 2(\hat{a}\cdot\hat{b}+\hat{b}\cdot\hat{c}+\hat{c}\cdot\hat{a}) \geq -3$$

$$\Rightarrow -2(\hat{a}\cdot\hat{b}+\hat{b}\cdot\hat{c}+\hat{c}\cdot\hat{a}) \leq 3$$

$$\Rightarrow 6 - 2 (\hat{a} \cdot \hat{b} + \hat{b} \cdot \hat{c} + \hat{c} \cdot \hat{a}) \le 9$$
 (ii)

From (i) and (ii), $x \le 9$

Therefore, x does not exceed 9.

16. b. Given that \overrightarrow{a} and \overrightarrow{b} are two unit vectors.

$$|\vec{a}| = 1$$
 and $|\vec{b}| = 1$

Also given that $(\vec{a} + 2\vec{b}) \cdot (5\vec{a} - 4\vec{b}) = 0$

$$\Rightarrow 5|\vec{a}|^2 - 8|\vec{b}|^2 - 4\vec{a} \cdot \vec{b} + 10\vec{b} \cdot \vec{a} = 0$$

$$\Rightarrow 5-8+6\overrightarrow{a}\cdot\overrightarrow{b}=0$$

 \Rightarrow 6 $|\vec{a}|$ $|\vec{b}|$ cos $\theta = 3$ (where θ is the angle between \vec{a} and \vec{b})

$$\Rightarrow \cos \theta = 1/2$$

$$\Rightarrow \theta = 60^{\circ}$$

17. **c.** Given that $\vec{V} = 2\hat{i} + \hat{j} - \hat{k}$ and $\vec{W} = \hat{i} + 3\hat{k}$ and \vec{U} is a unit vector

$$|\vec{U}| = 1$$

Now,
$$[\overrightarrow{U} \ \overrightarrow{V} \ \overrightarrow{W}] = \overrightarrow{U} \cdot (\overrightarrow{V} \times \overrightarrow{W})$$

$$= \overrightarrow{U} \cdot (2 \hat{i} + \hat{j} - \hat{k}) \times (\hat{i} + 3 \hat{k})$$

$$= \overrightarrow{U} \cdot (3 \hat{i} - 7 \hat{j} - \hat{k})$$

=
$$\sqrt{3^2 + 7^2 + 1^2}$$
 cos θ which is maximum when cos $\theta = 1$

Therefore, maximum value of $[\vec{U} \ \vec{V} \ \vec{W}] = \sqrt{59}$

18. c. Volume of parallelopiped formed by $\vec{u} = \hat{i} + a\hat{j} + \hat{k}$, $\vec{v} = \hat{j} + a\hat{k}$, $\vec{w} = a\hat{i} + \hat{k}$ is

$$V = \begin{bmatrix} \overrightarrow{u} & \overrightarrow{v} & \overrightarrow{w} \end{bmatrix} = \begin{vmatrix} 1 & a & 1 \\ 0 & 1 & a \\ a & 0 & 1 \end{vmatrix}$$

$$= 1 (1 - 0) - a (0 - a^{2}) + 1 (0 - a)$$

$$=1+a^3-a$$

For V to be minimum, $\frac{dV}{da} = 0$

$$\Rightarrow 3a^2 - 1 = 0$$

$$\Rightarrow a = \pm \frac{1}{\sqrt{3}}$$

But
$$a > 0 \Rightarrow a = \frac{1}{\sqrt{3}}$$

19. c. $(\vec{a} \times \vec{b}) \times \vec{a} = (\vec{a} \cdot \vec{a}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{a}$ $(\hat{j} - \hat{k}) \times (\hat{i} + \hat{j} + \hat{k}) = (\sqrt{3})^2 \vec{b} - (\hat{i} + \hat{j} + \hat{k})$

$$\Rightarrow 3\vec{b} = 3\hat{i} \Rightarrow \vec{b} = \hat{i}$$

20. c. Any vector coplanar to
$$\vec{a}$$
 and \vec{b} can be written as $\vec{r} = \mu \vec{a} + \lambda \vec{b}$

$$\vec{r} = (\mu + 2\lambda) \hat{i} + (-\mu + \lambda) \hat{j} + (\mu + \lambda) \hat{k} \text{ since } \vec{r} \text{ is orthogonal to } 5\hat{j} + 2\hat{j} + 6\hat{k}$$

$$\Rightarrow 5(\mu + 2\lambda) + 2(-\mu + \lambda) + 6(\mu + \lambda) = 0$$

$$\Rightarrow 9\mu + 18\lambda = 0$$

$$\Rightarrow \lambda = -\frac{1}{2}\mu$$

$$\therefore \vec{r} = \lambda(3\hat{j} - \hat{k})$$

Since \hat{r} is a unit vector, $\hat{r} = \frac{3\hat{i} - \hat{k}}{\sqrt{10}}$

21. c. We observe that
$$\vec{a} \cdot \vec{b}_1 = \vec{a} \cdot \vec{b} - \left(\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2}\right) \vec{a} \cdot \vec{a} = \vec{a} \cdot \vec{b} - \vec{a} \vec{b} = 0$$

$$\vec{a} \cdot \vec{c_2} = \vec{a} \left(\vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} - \frac{\vec{c} \cdot \vec{b_1}}{|\vec{b_1}|^2} \vec{b_1} \right)$$

$$= \vec{a} \cdot \vec{c} - \frac{\vec{a} \cdot \vec{c}}{|\vec{a}|^2} |\vec{a}|^2 - \frac{\vec{c} \cdot \vec{b_1}}{|\vec{b_1}|^2} (\vec{a} \cdot \vec{b_1})$$

$$= \vec{a} \cdot \vec{c} - \vec{a} \cdot \vec{c} - 0 \quad (\because \vec{a} \cdot \vec{b_1} = 0)$$

And
$$\vec{b_1} \cdot \vec{c_2} = \vec{b_1} \cdot \left(\vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} - \frac{\vec{c} \cdot \vec{b_1}}{|\vec{b_1}|^2} \vec{b_1} \right)$$

$$= \vec{b_1} \cdot \vec{c} - \frac{(\vec{c} \cdot \vec{a}) (\vec{b_1} \cdot \vec{a})}{|\vec{a}|^2} - \frac{\vec{c} \cdot \vec{b_1}}{|\vec{b_1}|^2} \vec{b_1} \cdot \vec{b_1}$$

$$= \vec{b_1} \cdot \vec{c} - 0 - \vec{b_1} \cdot \vec{c} \quad \text{(using } \vec{b_1} \cdot \vec{a} = 0\text{)}$$

22. a. A vector in the plane of
$$\vec{a}$$
 and \vec{b} is $\vec{u} = \mu \vec{a} + \lambda \vec{b} = (\mu + \lambda) \hat{i} + (2\mu - \lambda) \hat{j} + (\mu + \lambda) \hat{k}$

Projection of
$$\vec{u}$$
 on $\vec{c} = \frac{1}{\sqrt{3}}$

$$\Rightarrow \frac{\vec{u} \cdot \vec{c}}{|\vec{c}|} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \overrightarrow{u} \cdot \overrightarrow{c} = 1$$

$$\Rightarrow |\mu + \lambda + 2\mu - \lambda - \mu - \lambda| = 1$$

$$\Rightarrow |2\mu - \lambda| = 1$$

$$\Rightarrow \lambda = 2\mu \pm 1$$

$$\Rightarrow \vec{u} = 2\hat{i} + \hat{j} + 2\hat{k} \text{ or } 4\hat{i} - \hat{j} + 4\hat{k}$$

23. **a.**
$$|\overrightarrow{OP}| = |\hat{a}\cos t + \hat{b}\sin t|$$

 $= (\cos^2 t + \sin^2 t + 2\cos t\sin t \ \hat{a}\cdot \hat{b})^{1/2}$
 $= (1 + 2\cos t\sin t \ \hat{a}\cdot \hat{b})^{1/2}$
 $= (1 + \sin 2t \ \hat{a}\cdot \hat{b})^{1/2}$

$$\therefore |\overrightarrow{OP}|_{\text{max}} = (1 + \hat{a} \cdot \hat{b})^{1/2} \text{ when } t = \pi/4$$

$$\hat{u} = \frac{\hat{a} + \hat{b}}{\sqrt{2} \frac{|\hat{a} + \hat{b}|}{\sqrt{2}}}$$
$$= \frac{\hat{a} + \hat{b}}{|\hat{a} + \hat{b}|}$$

- **24.** c. $(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = 1$ is possible only when $|\vec{a} \times \vec{b}| = |\vec{c} \times \vec{d}| = 1$ and $(\vec{a} \times \vec{b}) \parallel (\vec{c} \times \vec{d})$. Since $\vec{a} \cdot \vec{c} = \frac{1}{2}$ and if $\vec{b} \parallel \vec{d}$, then $|\vec{c} \times \vec{d}| \neq 1$
- **25. b.** Angle between vectors \overrightarrow{AB} and \overrightarrow{AD} is given by

$$\cos \theta = \frac{\vec{AB} \cdot \vec{AD}}{|\vec{AB}| \cdot |\vec{AD}|} = \frac{-2 + 20 + 22}{\sqrt{4 + 100 + 121} \sqrt{1 + 4 + 4}} = \frac{8}{9}$$

$$\Rightarrow \cos\alpha = \cos(90^\circ - \theta) = \sin\theta = \frac{\sqrt{17}}{9}$$

26. a

Fig. 2.56

Evaluating midpoint of PR and QS which gives $M = \begin{bmatrix} \hat{i} \\ 2 + \hat{j} \end{bmatrix}$, same for both.

$$\overrightarrow{PQ} = \overrightarrow{SR} = 6\hat{i} + \hat{j}$$

$$\overrightarrow{PS} = \overrightarrow{QR} = -\hat{i} + 3\hat{j}$$

$$\Rightarrow \overrightarrow{PQ} \cdot \overrightarrow{PS} \neq 0$$

$$\overrightarrow{PO} \parallel \overrightarrow{SR}, \overrightarrow{PS} \parallel \overrightarrow{OR} \text{ and } |\overrightarrow{PO}| = |\overrightarrow{SR}|, |\overrightarrow{PS}| = |\overrightarrow{OR}|$$

Hence, *PQRS* is a parallelogram but not rhombus or rectangle.

27. **c.**
$$\vec{v} = \lambda \vec{a} + \mu \vec{b}$$

$$= \lambda(\hat{i} + \hat{j} + \hat{k}) + \mu(\hat{i} - \hat{j} + \hat{k})$$
Projection of \vec{v} on \vec{c}

$$\frac{\vec{v} \cdot \vec{c}}{|\vec{c}|} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \frac{[(\lambda + \mu)\hat{i} + (\lambda - \mu)\hat{j} + (\lambda + \mu)\hat{k}] \cdot (\hat{i} - \hat{j} - \hat{k})}{\sqrt{3}} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \lambda + \mu - \lambda + \mu - \lambda - \mu = 1$$

$$\Rightarrow \mu - \lambda = 1$$

$$\Rightarrow \lambda = \mu - 1$$

$$\Rightarrow \vec{v} = (\mu - 1)(\hat{i} + \hat{j} + \hat{k}) + \mu(\hat{i} - \hat{j} + \hat{k})$$

$$\Rightarrow \vec{v} = (2\mu - 1)\hat{i} - \hat{j} + (2\mu - 1)\hat{k}$$
At $\mu = 2$, $\vec{v} = 3\hat{i} - \hat{i} + 3\hat{k}$

Multiple choice questions with one or more than one correct answer

1. **c.** We are given that
$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$

$$\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$$

$$\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$$
Then $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}^2 = [\vec{a} \ \vec{b} \ \vec{c}]^2$

$$= (|\vec{a} \times \vec{b}| \cdot 1 \cos 0^{\circ})^{2} \quad (\text{since } \vec{c} \text{ is } \pm \text{ to } \vec{a} \text{ and } \vec{b}, \vec{c} \text{ is } \pm \text{ to } \vec{a} \times \vec{b})$$

$$= (|\vec{a} \times \vec{b}|)^{2}$$

$$= (|\vec{a}| |\vec{b}| \cdot \sin \frac{\pi}{6})^{2}$$

$$= (\frac{1}{2} \sqrt{a_{1}^{2} + a_{2}^{2} + a_{3}^{2}} \sqrt{b_{1}^{2} + b_{2}^{2} + b_{3}^{2}})^{2}$$

$$= \frac{1}{4} (a_{1}^{2} + a_{2}^{2} + a_{3}^{2}) (b_{1}^{2} + b_{2}^{2} + b_{3}^{2})$$

2. **b** We know that if \hat{n} is perpendicular to \vec{a} as well as \vec{b} , then

$$\hat{n} = \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|} \text{ or } \frac{\vec{b} \times \vec{a}}{|\vec{b} \times \vec{a}|}$$

As $\vec{a} \times \vec{b}$ and $\vec{b} \times \vec{a}$ represent two vectors in opposite directions, we have two possible values of \hat{n}

3. **a., c.** We have $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} - \hat{k}$, $\vec{c} = \hat{i} + \hat{j} - 2\hat{k}$ Any vector in the plane of \vec{b} and \vec{c} is

$$\vec{u} = \mu \vec{b} + \lambda \vec{c}$$

$$= \mu(\hat{i} + 2\hat{j} - \hat{k}) + \lambda (\hat{i} + \hat{j} - 2\hat{k})$$

$$= (\mu + \lambda) \hat{i} + (2\mu + \lambda) \hat{j} - (\mu + 2\lambda) \hat{k}$$

Given that the magnitude of projection of \overrightarrow{u} on \overrightarrow{a} is $\sqrt{2/3}$

$$\Rightarrow \sqrt{\frac{2}{3}} = \begin{vmatrix} \overrightarrow{u} \cdot \overrightarrow{a} \\ \overrightarrow{u} \cdot \overrightarrow{a} \end{vmatrix}$$

$$\Rightarrow \sqrt{\frac{2}{3}} = \left| \frac{2(\mu + \lambda) - (2\mu + \lambda) - (\mu + 2\lambda)}{\sqrt{6}} \right|$$

$$\Rightarrow |-\lambda - \mu| = 2$$

$$\Rightarrow \lambda + \mu = 2 \text{ or } \lambda + \mu = -2$$

Therefore, the required vector is either $2\hat{i} + 3\hat{j} - 3\hat{k}$ or $-2\hat{i} - \hat{j} + 5\hat{k}$.

4. c. $[\stackrel{\rightarrow}{u}\stackrel{\rightarrow}{v}\stackrel{\rightarrow}{w}] = [\stackrel{\rightarrow}{v}\stackrel{\rightarrow}{w}\stackrel{\rightarrow}{u}] = [\stackrel{\rightarrow}{w}\stackrel{\rightarrow}{u}\stackrel{\rightarrow}{v}]$

but
$$\begin{bmatrix} \overrightarrow{v} & \overrightarrow{u} & \overrightarrow{w} \end{bmatrix} = - \begin{bmatrix} \overrightarrow{u} & \overrightarrow{v} & \overrightarrow{w} \end{bmatrix}$$

- 5. a., c. Dot product of two vectors gives a scalar quantity.
- **6. a., c.** We have $\vec{v} = \vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n} = \sin \theta \hat{n}$, where \vec{a} and \vec{b} are unit vectors. Therefore,

$$|\overrightarrow{v}| = \sin \theta$$

Now,
$$\vec{u} = \vec{a} - (\vec{a} \cdot \vec{b}) \vec{b}$$

$$= \vec{a} - \vec{b} \cos \theta \text{ (where } \vec{a} \cdot \vec{b} = \cos \theta \text{)}$$

$$\therefore |\overrightarrow{u}|^2 = |\overrightarrow{a} - \overrightarrow{b}\cos\theta|^2$$

$$= 1 + \cos^2 \theta - 2 \cos \theta \cdot \cos \theta$$

$$= 1 - \cos^2 \theta = \sin^2 \theta = |\nu|^2$$

$$\Rightarrow |\overrightarrow{u}| = |\overrightarrow{v}|$$

Also,
$$\vec{u} \cdot \vec{b} = \vec{a} \cdot \vec{b} - (\vec{a} \cdot \vec{b}) (\vec{b} \cdot \vec{b})$$

= $\vec{a} \cdot \vec{b} - \vec{a} \cdot \vec{b}$

$$=0$$

$$|\vec{u} \cdot \vec{b}| = 0$$

$$|\vec{v}| = |\vec{u}| + |\vec{u} \cdot \vec{b}|$$
 is also correct.

7. a., c., d.

$$\vec{a} = \frac{1}{3} (2\hat{i} - 2\hat{j} + \hat{k})$$

$$|\vec{a}|^2 = \frac{1}{9} (4+4+1) = 1 \Rightarrow |\vec{a}| = 1$$

Let
$$\vec{b} = 2\hat{i} - 4\hat{j} + 3\hat{k}$$
. Then

$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \frac{5}{\sqrt{29}} \Rightarrow \theta \neq \frac{\pi}{3}$$

Let
$$\vec{c} = -\hat{i} + \hat{j} - \frac{1}{2} \hat{k} = \frac{-3}{2} \hat{a} \Rightarrow \vec{c} \mid \vec{a}$$

Let
$$\vec{d} = 3\hat{i} + 2\hat{j} + 2\hat{k}$$
. Then $\vec{a} \cdot \vec{d} = 0 \Rightarrow \vec{a} \perp \vec{d}$

8. b., d. Normal to plane P_1 is

$$\vec{n}_1 = (2\hat{j} + 3\hat{k}) \times (4\hat{j} - 3\hat{k}) = -18\hat{i}$$

Normal to plane P_2 is

$$\vec{n}_2 = (\hat{j} - \hat{k}) \times (3\hat{i} + 3\hat{j}) = 3\hat{i} - 3\hat{j} - 3\hat{k}$$

$$\vec{A}$$
 is parallel to $\pm (\vec{n_1} \times \vec{n_2}) = \pm (-54 \hat{j} + 54 \hat{k})$

Now, the angle between \vec{A} and $2\hat{i} + \hat{j} - 2\hat{k}$ is given by

$$\cos \theta = \pm \frac{(-54\hat{j} + 54\hat{k}) \cdot (2\hat{i} + \hat{j} - 2\hat{k})}{54\sqrt{2} \cdot 3} = \pm \frac{1}{\sqrt{2}}$$

$$\theta = \pi/4$$
 or $3\pi/4$

9. a., **d.** Any vector in the plane of $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$ is

$$\vec{r} = \lambda(\hat{i} + \hat{j} + 2\hat{k}) + \mu(\hat{i} + 2\hat{j} + \hat{k})$$

$$= (\lambda + \mu)\hat{i} + (\lambda + 2\mu)\hat{j} + (2\lambda + \mu)\hat{k}$$

Also \vec{r} is perpendicular to the vector $\hat{i} + \hat{j} + \hat{k}$

$$\Rightarrow \vec{r} \cdot \vec{c} = 0$$

$$\Rightarrow \lambda + \mu = 0$$

Possible vectors are $\hat{j} - \hat{k}$ or $-\hat{j} + \hat{k}$

Integer Answer Type

1. (5)
$$E = (2\vec{a} + \vec{b}) \cdot [|\vec{a}|^2 \vec{b} - (\vec{a} \cdot \vec{b}) \vec{a} - 2(\vec{a} \cdot \vec{b}) \vec{b} + 2|\vec{b}|^2 \vec{a}]$$

$$\vec{a} \cdot \vec{b} = \frac{2-2}{\sqrt{70}} = 0$$

$$|\vec{a}| = 1$$

$$|b| = 1$$

$$\Rightarrow E = (2\vec{a} + \vec{b}) \cdot [2|\vec{b}|^2 \vec{a} + |\vec{a}|^2 \vec{b}]$$

$$= 4|\vec{a}|^2 |\vec{b}|^2 + |\vec{a}|^2 (\vec{a} \cdot \vec{b}) + 2|\vec{b}|^2 (\vec{b} \cdot \vec{a}) + |\vec{a}|^2 |\vec{b}|^2$$

$$= 5|\vec{a}|^2 |\vec{b}|^2 = 5$$

$$2. \quad (9) \ \vec{r} \times \vec{b} = \vec{c} \times \vec{b}$$

taking cross product with \vec{a}

$$\vec{a}\times(\vec{r}\times\vec{b})=\vec{a}\times(\vec{c}\times\vec{b})$$

$$\Rightarrow (\vec{a} \cdot \vec{b})\vec{r} - (\vec{a} \cdot \vec{r})\vec{b} = \vec{a} \times (\vec{c} \times \vec{b})$$

$$\Rightarrow \vec{r} = -3\hat{i} + 6\hat{j} + 3\hat{k}$$

$$\Rightarrow \vec{r} \cdot \vec{b} = 3 + 6 = 9$$