Underground cable

An underground cable consist of three component

- (i) Conductor or core: It provides conducting path for the current.
- (ii) Dielectric or insulator: Dielectric withstands operating voltage and isolates conductor from the remaining objects.
- (iii) Sheath: Sheath does not allow the moisture content and protect conductor from electro chemical factor.

Note:

The most commonly used dielectrics in power cables are impregnated paper, butyl, rubber, PVC, polythene, cross linked polyethylene.

Classification of Cable

1. Based on Voltage

- (a) Low voltage (LV): 1 kV
- (b) High voltage (HV): 11 kV
- (c) Super voltage (SV): 22 kV-33 kV
- (d) Extra high voltage (EHV): 66 kV
- (e) Extra super voltage (ESV): 132 kV and above.

2. Based on Core

- (a) Single core
- (b) 3-core
- (c) 3.5 core: it is used for secondary distribution purpose.

Parameters of Single Core Cables

Resistance

Insulation Resistance

$$R_{ins} = \frac{\rho}{2\pi} \ln \left(\frac{R}{r}\right)$$
 ohms/metre

 ρ = Resistivity of the insulating material

Conductor

R = Inside radius of sheath

r = Conductor radius

Resistivity of insulating material at any temperature t

$$\rho_t = \rho_0 \ e^{-\alpha t}$$

Note:

• In cable, insulation resistance is inversely proportion to length of the cable

$$R_{ins} \propto \frac{1}{I}$$

As temperature increases R_{ins} decreases.

Capacitance

Capacitance between core and sheath

$$C = \frac{2\pi \epsilon_0 \epsilon_r r}{\ln \left(\frac{R}{r}\right)} F/m$$

where, q = Charge on the surface of the conductor per metre length of cable.

∈, = Relative permittivity of dielectric

□ Dielectric loss

 $P_d = VI\cos\phi = \omega CV^2\delta$

where, C = Capacitance of the cable

V = Line to neutral voltage

P_d = Dielectric loss

Electrostatic Stresses

where,

Gradient at a Distance x from the Centre of the Conductor Within the Dielectric Material.

(Electric stress in a single core cable)

∈ = Permittivity of the dielectric

E = Electric field intensity

 $\lambda = \text{Charge per unit length}$

Potential

$$V = \frac{\lambda}{2\pi \epsilon} \ln\left(\frac{R}{r}\right)$$

where,

r = Radius of conductor

R = Inner radius of the sheath

V = Potential of conductor with respect to the sheath

Gradient is Maximum at the Surface of the Conductor

$$g_{\text{max}} = \frac{V}{r \ln \frac{R}{r}}$$

Gradient is Minimum at the Inner Radius of the Conductor

$$g_{\min} = \frac{V}{R \ln \frac{R}{r}}$$

Note:

- The most economical size of the cable is one in which $\frac{R}{r} = e = 2.718$. § that the stress at the surface of core is reduce which will increase the lift of cable.
- Reason of failure of cable is formation of a void between any 2 layers insulating material. Void near the surface of core will be more serious that that of the void in other location.
- Characteristic impedance of cable is 40Ω .
- In overhead transmission line inductor is dominant but in cable capacitant is more dominant.

Grading of Cables

The electrostatic stress in a single core cable has maximum value g_m at the conductor surface and decreases as we move towards sheath. The method of equilising the stress in the dielectric of the cable is known as grading of cable.

1. Dielectric Grading (or) Capacitance Grading

In dielectric grading a homogeneous dielectric is replaced by different dielectrics such that

$$r < r_1 < r_2$$

So,

$$\epsilon_1 > \epsilon_2 > \epsilon_3$$

The voltage between conductor and sheath

$$V = V_1 + V_2 + V_3$$

$$V = g_{1\text{max}} r In \left(\frac{r_1}{r}\right) + g_{2\text{max}} r_1 In \left(\frac{r_2}{r_1}\right) + g_{3\text{max}} r_2 In \left(\frac{R}{r_2}\right)$$

For uniform dielectric stress

$$g_{1 \text{ max}} = g_{2 \text{ max}} = g_{3 \text{ max}} = g_{\text{max}}$$

$$V = g_{\text{max}} \left[rIn \left(\frac{r_1}{r} \right) + r_1 In \left(\frac{r_2}{r_1} \right) + r_2 In \left(\frac{R}{r_2} \right) \right]$$

Capacitance of the cable

$$C = \frac{2\pi \epsilon_0}{\frac{1}{\epsilon_1} In\left(\frac{r_1}{r}\right) + \frac{1}{\epsilon_2} In\left(\frac{r_2}{r_1}\right) + \frac{1}{\epsilon_3} In\left(\frac{R}{r_2}\right)}$$

2. Intersheath grading

In intersheath grading an identical dielectric material is utilised throughout the total thickness of the cable. It is divided into 2 or more layers by providing intersheath.

 Voltage between conductor and outer sheath (for uniform potential gradient i.e. g_{1 max} = g_{2 (mx)} = g_{max}

$$V = g_{\text{max}} \left[rIn \left(\frac{r_1}{r} \right) + r_1 In \left(\frac{R}{r_1} \right) \right]$$

· Condition for most economical cable for intersheath grading.

$$V_1 = \frac{V}{e}$$

where, V_1 = Voltage between conductor and intersheath V = Voltage between conductor and sheath

Most economical radius of conductor

$$r = \frac{V_1}{g_{\text{max}}} = \frac{V}{eg_{\text{max}}}$$

· Most economical radius of intersheath

$$r_1 = \frac{V}{g_{max}}$$

· Most economical radius of outersheath