

M	ATHEMATIC DPP		P No. 36	Total Ma Max. Time		
Topic :	Complex Num	ber		-		
Туре	of Questions				M.M., Min.	
Multip Subje	ole choice objectiv ctive Questions (r	e (no negative marking ve (no negative markin no negative marking) (no negative marking)	ng) Q.7, 8 (5 n Q. 9,10,11,12,14 (4 n	narks, 4 min.)	[18, 18] [10, 8] [20, 25] [8, 8]	
1.	The number of com (A) 1	plex numbers z such that (B) 2	z − 1 = z + 1 = z − (C) ∞	il equals (D) 0		
2.	If α and β are the re(A) -1	poots of the equation $x^2 - x$ (B) 1	$\alpha + 1 = 0$, then $\alpha^{2009} + \beta^2$ (C) 2	²⁰⁰⁹ = (D) -2		
3.	If ω be an imaginary cube root of unity, then the $(1-\omega-\omega^2)^3+(\omega-1-\omega^2)^3+(\omega^2-\omega-1)^3$ is: (A) divisible by 3 but not by 8 (C) divisible by both 3 & 8		(B) divisible by 8 l	he number : (B) divisible by 8 but not by 3 (D) none of these		
4.	If the imaginary part of the expression $\frac{z-1}{e^{i\theta}} + \frac{e^{i\theta}}{z-1}$ be zero, then the locus of z is					
	(A) a straight line parallel to x-axis(C) a circle of radius 1		(B) a parabola (D) a straight lin	(B) a parabola(D) a straight line passing through (1, 0)		
5.	The reflection of the (A) 4 – 3i	e complex number (2 – i) i (B) 3 + 4i		z̄ is (D) 1 − 2i		
6.	If z_1 , z_2 , z_3 , z_4 are imaginary 5 th roots of unity, then the value of $\sum_{r=1}^{16} (z_1^r + z_2^r + z_3^r + z_4^r)$, is					
	(A) 0	(B) -1	(C) 20	(D) 19		
7.	If z_1 and z_2 are two complex numbers satisfying the equation					
	$\left \frac{z_1 + z_2}{z_1 - z_2} \right = 1 \text{ then } z_1/z_2 \text{ is a number which is}$					
	(A) positive real	(B) negative real	(C) imaginary	(D) purely imagi	nary	
8.	The complex number z satisfying $ z + \overline{z} + z - \overline{z} = 2$ and $ z - 1 + z - i = 2$ is/are					
	(A) i	(B) – i	(C) ¹ / _:	(D) $\frac{1}{3}$		

$$\textbf{9.} \qquad \text{Compute the product }, \left[1+\left(\frac{1+i}{2}\right)\right]\left[1+\left(\frac{1+i}{2}\right)^2\right]\left[1+\left(\frac{1+i}{2}\right)^{2^2}\right] \dots \\ \left[1+\left(\frac{1+i}{2}\right)^{2^n}\right] \quad \text{where } n \geq 2$$

- 10. Let A and B be two complex numbers such that $\frac{A}{B} + \frac{B}{A} = 1$, then prove that the origin and the two points represented by A and B form vertices of an equilateral triangle.
- 11. Find the equation of line joining the points (1 + i) and 2 i in complex plane.
- 12. Let $z_1 = 10 + 6i$ and $z_2 = 4 + 2i$ be two complex nubmers and z be a complex number such that $\arg\left(\frac{z-z_1}{z-z_2}\right) = \frac{\pi}{4}$. Find the centre and radius of the locus of complex number z.
- 13. Match the column :

Column- I Column-II

- (A) If ω_1 , ω_2 be imaginary cube roots of unity, then $\omega_1^4 + \omega_2^4$ is equal to (p) $-\frac{1}{\omega_1\omega_2}$
- (B) If $\omega \neq 1$ be nth roots of unity, then $\omega + \omega^2 + \omega^3 + \dots + \omega^{n-1}$ is equal to (q) -1
- (C) If z_1 and z_2 be two nth roots of unity, then $arg\left(\frac{z_1}{z_2}\right)$ is a multiple of (r) $\frac{2\pi}{n}$
- (D) If $\omega \neq 1$ be nth roots of unity, then value of $(1-\omega)$ $(1-\omega^2)$ $(1-\omega^{n-1})$ (s) n is equal to
- **14.** Draw the locus of z:

(i)
$$\arg (z-1+i) \le -\frac{\pi}{3}$$

(ii)
$$|z+1-i|=|z-2|$$

(iii)
$$|z| \le 1$$
 and $-\frac{\pi}{4} \le arg(z) \le \frac{\pi}{4}$

(iv)
$$\arg\left(\frac{z+i}{z-i}\right) = \frac{2\pi}{3}$$

Answers Key

- **1.** (A) **2.** (B) **3.** (C) **4.** (C)

- **5**. (D)
- **6.** (B) **7.** (C)(D)
- **8.** (A)(B)(C)(D)
- 9. $\left(1-\frac{1}{2^{2^n}}\right)$ (1 + i)

11.
$$z(1+2i) - \overline{z}(1-2i) - 6i = 0$$

12. centre: 9 + i, radius =
$$\sqrt{26}$$

13. (A)
$$\rightarrow$$
 (p,q), (B) \rightarrow (p,q), (C) \rightarrow (r), (D) \rightarrow (s)