Chapter 3

Algebra

Ex 3.1

Question 1. Fill in the blanks.

- 1. The exponential form 14⁹ should be read as _____
- 2. The expanded form of $p^3 q^2$ is _
- 3. When base is 12 and exponent is 17, its e×ponential form is _____
- 4. The value of $(14 \times 21)^0$ is _____

Answers:

14 Power 9
 p × p × p × q × q
 12¹⁷
 1

Question 2. Say True or False.

```
1. 2^3 \times 3^2 = 65

2. 2^9 \times 3^2 = (2 \times 3)^{9 \times 2}

3. 3^4 \times 3^7 = 3^{11}

4. 2^0 \times 1000^0

5. 2^3 < 3^2
```

Answers:

- 1. False
- 2. False
- 3. True
- 4. True
- 5. True

Question 3. Find the value of the following.

- 1. 26
- 2. 11^2

- 3. 54
- **4.** 9³

Solution:

1. $2^{6} = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 64$ 2. $11^{2} = 11 \times 11 = 121$ 3. $5^{4} = 5 \times 5 \times 5 \times 5 = 625$ 4. $9^{3} = 9 \times 9 \times 9 = 729$

Question 4. Express the following in e×ponential form.

1. $6 \times 6 \times 6 \times 6$ 2. $t \times t$ 3. $5 \times 5 \times 7 \times 7 \times 7$ 4. $2 \times 2 \times a \times a$

Solution:

- 1. $6 \times 6 \times 6 \times 6 = 6^{1+1+1+1} = 64$ [Since $a^m \times a^n = a^{m+n}$]
- 2. $t \times t = t^{1+1} = t^2$
- 3. $5 \times 5 \times 7 \times 7 \times 7 = 5^{1+1} \times 7^{1+1+1} = 5^2 \times 7^3$
- 4. $2 \times 2 \times a \times a = 2^{1+1} \times a^{1+1} = 2^2 \times a^2 = (2a)^2$

Question 5.

E×press each of the following numbers using e×ponential form, (i) 512 (ii) 343 (iii) 729 (iv) 3125

Solution:

(ii) 343

 $343 = 7 \times 7 \times 7 = 7^{1+1+1}$ = 7³ [Using product rule]

(iii) 729

729	3	729
	3	243
	3	81
	3	9
	3	3
		1

 $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3$ $= 3^{6} [Using product rule]$

(iv) 3125

 $3125 = 5 \times 5 \times 5 \times 5 \times 5$ = 5⁵ [Using product rule]

Question 6. Identify the greater number in each of the following. (i) 63 or 36 (ii) 53 or 35 (iii) 28 or 82

Solution:

(i) 6³ or 3⁶ $6^3 = 6 \times 6 \times 6 = 36 \times 6 = 216$ $3^6 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 729$ 729 > 216 gives $3^6 > 6^3$ \therefore 36 is greater. (ii) 5³ or 3⁵ $5^3 = 5 \times 5 \times 5 = 125$ $3^5 = 3 \times 3 \times 3 \times 3 \times 3 = 243$ 243 > 125 gives $3^5 > 5^3$ \therefore 3⁵ is greater. (iii) 2^8 or 8^2 $2^8 = 2 \times 2 = 256$ $8^2 = 8 \times 8 = 64$ 256 > 64 gives $2^8 > 8^2$ \therefore 2⁸ is greater. **Question 7.** Simplify the following (i) 72 × 34 (ii) 32 × 24 (iii) 52 × 104 Solution: (i) $7^2 \times 3^4 = (7 \times 7) \times (3 \times 3 \times 3 \times 3)$ $=49 \times 81 = 3969$ (ii) $3^2 \times 2^4 = (3 \times 3) \times (2 \times 2 \times 2 \times 2)$ $= 9 \times 16 = 144$ (iii) $5^2 \times 10^4 = (5 \times 5) \times (10 \times 10 \times 10 \times 10)$ $= 25 \times 10000 = 2,50,000$ **Question 8.** Find the value of the following. (i) (-4)2 (ii) (-3) × (-2)3 (iii) (-2)3 × (-10)3 Solution: (i) $(-4)^2 = (-1)^2 \times (4)^2$ [since $a^m \times b^m = (a \times b)^m$] $= 1 \times 16 = 16$ [since (-1)ⁿ = 1 if n is even]

(ii) $(-3) \times (-2)^3 = (-1) \times (-3) \times (-1)^3 \times (-2)^3$ = $(-1)^4 \times 24$ [Grouping the terms of same base] = 24 (iii) $(-2)^3 \times (-10)^3 = (-1)^3 \times (-2)^3 \times (-1)^3 \times (-10)^3$ = $(-1)^{3+3} \times 2^3 \times 10^3$ [Grouping the terms of same base] = $(-1)^6 \times (2 \times 10)^3$ [$\because a^m \times b^m = (a \times b)^m$] = 1×20^3 [since $(-1)^n = 1$ if n is even] = 8000

Question 9. Simplify using laws of exponents. (i) 35 × 38 (ii) a4 × a10 (iii) 7x × 72 (iv) 25 ÷ 23 (v) 188 ÷ 184 (vi) (64)3 (vii) (xm)0 (viii) 95 × 35 (ix) 3y × 12y (x) 256 × 56

Solution:

201000	D [1]:			
			$3^{5+8} = 3^{13}$	[since $a^m \times a^n = a^{m+n}$]
(ii)	$a^{4} \times a^{10}$	=	$a^{4+10} = a^{14}$	
(iii)	$7^x \times 7^2$	=	7^{x+2}	
			$2^{5-3} = 2^2$	[since $\frac{a^m}{a^n} = a^{m-n}$]
(v)	$18^8 \div 18^4$	=	$18^{8-4} = 18^4$	u
			$6^{4\times 3} = 6^{12}$	[since $(a^m)^n = a^{m \times n}$]
(vii)	$(x^m)^0$	=	$x^{m \times 0} = x^0 = 1$	[since $(a^m)^n = a^{m \times n}; a^0 = 1$]
(viii)	$9^{5} \times 3^{5}$	=	$(9 \times 3)^5 = 27^5$	[since $a^m \times b^m = (a \times b)^m$]
(ix)	$3^{y} \times 12^{y}$	=	$(3 \times 12)^{\nu} = 36^{\nu}$	
(x)	$25^6 \times 5^6$	-	$(25 \times 5)^6 = 125^6$	

Question 10. If a = 3 and b = 2, then find the value of the following. (i) ab + ba (ii) aa - bb

(iii) (a + b)b (iv) (a – b)a Solution: (i) $a^{b} + b^{a}$ a = 3 and b = 2we get $3^2 + 2^3 = (3 \times 3) + (2 \times 2 \times 2) = 9 + 8 = 17$ (ii) $(a^{a} - b^{b})$ Substituting a = 3 and b = 2we get $3^2 - 2^2 = (3 \times 3 \times 3) - (2 \times 2) = 27 - 4 = 23$ (iii) $(a + b)^{b}$ Substituting a = 3 and b = 2we get $(3 + 2)^2 = 5^2 = 5 \times 5 = 25$ (iv) $(a - b)^{a}$ Substituting a = 3 and b = 2we get $(3 - 2)^3 = 1^3 = 1 \times 1 \times 1 = 1$ Question 11. Simplify and express each of the following in exponential form: (i) $45 \times 42 \times 44$ (ii) (32 × 33)7 (iii) $(52 \times 58) \div 5s$ (iv) $20 \times 30 \times 40$ (v) $55 \times a8 \times b343 \times a5 \times b2$ Solution: (i) $4^5 \times 4^2 \times 4^4 = 4^{5+2+4} = 4^{11}$ [Using product rule] (ii) $(3^2 \times 3^3)^7 = (3^{2+3})^7 = (3^5)^7 = 3^{5\times7} = 3^{35}$ [Using product rule] (iii) $(5^2 \times 5^8) \div 5^5 = 5^{2+8} \div 5^5$ [Using product rule] $(10-5) = 5^{10-5} = 5^{5}$ (iv) $2^0 \times 3^0 \times 4^0 = (2 \times 3 \times 4)^0 = 24^0 = 1$ $= 5^{10} \div 5^5 = 5^{10-5} = 5^5$ $[:: a^0 = 1]$ (v) $\frac{5^5 \times a^8 \times b^3}{4^3 \times a^5 \times b^2} = 4^{5-3} \times a^{8-5} \times b^1$ [Using quotient rule] $= 4^2 \times a^3 \times b^1 = 4 \times 4 \times a^3 \times b = 16a^3b$

Objective Type Questions

Question 12. $a \times a \times a \times a \times a$ equal to (i) a5 (ii) 5 a

(iii) 5a (iv) a + 5
Answer: (i) a ⁵
Question 13. The exponential form of 72 is (i) 72 (ii) 27 (iii) 22 × 33 (iv) 23 × 32
Answer: (iv) $2^3 \times 3^2$
Question 14. The value of x in the equation $a13 = x3 \times a10$ is (i) a (ii) 13 (iii) 3 (iv) 10
Answer: (i) a
Question 15. How many zeros are there in 10010? (i) 2 (ii) 3 (iii) 100 (iv) 20
Answer: (iv) 20
Question 16. 240 + 240 is equal to (i) 440 (ii) 280 (iii) 241 (iv) 480

Answer: (iii) 2⁴¹

Ex 3.2

Question 1. Fill in the blanks.

(i) Unit digit of 124 × 36 × 980 is _____

(ii) When the unit digit of the base and its expanded form of that number is 9, then the exponent must be _____ power.

Answers:

(i) 0 (ii) Odd

Question 2. Match the following:

	Group A Exponential form		Group B Unit digit of the number
(i)	2010	(a)	6
(ii)	12111	(b)	4
(iii)	444 ⁴¹	(c)	0
(iv)	25 ¹⁰⁰	(d)	1
(v)	716 ⁸³	(e)	9
(vi)	729 ⁷²⁵	(f)	5

Answer:

(i) - c (ii) - d (iii) - b (iv) - f (v) - a (vi) - e

Question 3. Find the unit digit of expanded form. (i) 2523 (ii) 1110 (iii) 4615

(iv) 10012 (v) 2921 (vi) 1912 (vii) 2425 (viii) 3416

Solution:

(i) 25²³ Unit digit of base 25 is 5 and power is 23. Thus the unit digit of 25²³ is 5.

(ii) 11^{10} Unit digit of base 11 is 1 and power is 10. Thus the unit digit of 11^{10} is 1.

(iii) 46¹⁵ Unit digit of base 46 is 6 and power is 15. Thus the unit digit of 46¹⁵ is 6.

(iv) 100¹²
Unit digit of base 100 is 0 and power is 12. Thus the unit digit of 100¹² is 0.

(v) 29^{21} Unit digit of base 29 is 9 and power is 21 (odd power). Therefore, unit digit of 29^{21} is 9.

(vi) 19¹²
Unit digit of base 19 is 9 and power is 12 (even power).
Therefore, unit digit of 19¹² is 1.

(vii) 24^{25} Unit digit of base 24 is 4 and power is 25 (odd power). Therefore, unit digit of 24^{25} is 4.

(viii) 34^{16} Unit digit of base 34 is 4 and power is 16 (even power). Therefore, unit digit of 34^{16} is 6.

Question 4. Find the unit digit of the following numeric expressions. (i) 11420 + 11521 + 11622 (ii) 1000010000 + 111111111

Solution: (i) $114^{20} + 115^{21} + 116^{22}$ In 114^{20} unit digit of base 114 is 4 and power is 20 (even power). \therefore Unit digit of 114^{20} is 6. In 115^{21} unit digit of base 115 is 5 and power is 21 (Positive Integer). ∴ Unit digit of 115²¹ is 5.
In 116²² unit digit of base 116 is 6 and power is 22 (Positive Integer).
∴ Unit digit of 116²² is 6.
∴ Unit digit of 114²⁰ + 115²¹ + 116²² can be obtained by adding 6 + 5 + 6 = 17.
Unit digit of 114²⁰ + 115²¹ + 116²² is 7.

(ii) $10000^{10000} + 11111^{1111}$ In 10000^{10000} the unit digit of base 10000 is 0 and power is 10000. Unit digit of 10000^{10000} is 0. In 11111^{1111} the unit digit of base 11111 is 1 and power is 11111. Unit digit of 11111^{11111} is 1. Unit digit of $10000^{100000} + 11111^{11111}$ is 0 + 1 = 1

Objective Type Question

Question 5. Observe the equation (10 + y)4 = 50625 and find the value of y. (i) 1 (ii) 5 (iii) **4** (iv) 0 Answer: (ii) 5 Question 6. The unit digit of $(32 \times 65)0$ is (i) 2 (ii) 5 (iii) **0** (iv) 1 Answer: (iv) 1 **Question 7.** The unit digit of the numeric expression 1071 + 1072 + 1073 is (i) 0 (ii) 3 (iii) **1** (iv) 2

Answer:

(i) 0

Ex 3.3

Question 1. Fill in the blanks.

(i) The degree of the term a³b²c⁴d² is _____

(ii) Degree of the constant term is _____

(iii) The coefficient of leading term of the expression $3z^2y + 2x - 3$ is _____

Answers:

(i) 11 (ii) 0

(iii) 3

Question 2. Say True or False.

(i) The degree of m^2 n and mn^2 are equal.

(ii) $7a^2b$ and $-7ab^2$ are like terms.

(iii) The degree of the expression $-4x^2$ yz is -4

(iv) Any integer can be the degree of the expression.

Answers:

(i) True(ii) False(iii) False(iv) True

Question 3.

Find the degree of the following terms.

(i) 5x² (ii) -7 ab (iii) 12pq² r² (iv) -125 (v) 3z

Solution:

(i) $5x^2$ In $5x^2$, the exponent is 2. Thus the degree of the expression is 2. (ii) -7ab In -7ab, the sum of powers of a and b is 2. (That is 1 + 1 = 2). Thus the degree of the expression is 2.

(iii) $12pq^2 r^2$ In $12pq^2 r^2$, the sum of powers of p, q and r is 5. (That is 1 + 2 + 2 = 5). Thus the degree of the expression is 5.

(iv) -125
Here – 125 is the constant term. Degree of constant term is 0.
∴ Degree of -125 is 0.

(v) 3zThe exponent is 3z is 1.Thus the degree of the expression is 1.

Question 4.

Find the degree of the following expressions.

(i) $x^3 - 1$ (ii) $3x^2 + 2x + 1$ (iii) $3t^4 - 5st^2 + 7s^2t^2$ (iv) $5 - 9y + 15y^2 - 6y^3$ (v) $u^5 + u^4v + u^3v^2 + u_2v^3 + uv^4$

Solution:

(i) x³ - 1
The terms of the given expression are x³, -1
Degree of each of the terms: 3,0
Terms with highest degree: x³.
Therefore, degree of the expression is 3.

(ii) $3x^2 + 2x + 1$ The terms of the given expression are $3x^2$, 2x, 1 Degree of each of the terms: 2, 1, 0 Terms with highest degree: $3x^2$ Therefore, degree of the expression is 2.

(iii) $3t^4 - 5st^2 + 7s^2t^2$ The terms of the given expression are $3t^4$, $-5st^2$, $7s^3t^2$ Degree of each of the terms: 4, 3, 5 Terms with highest degree: $7s^2t^2$ Therefore, degree of the expression is 5. (iv) $5 - 9y + 15y^2 - 6y^3$ The terms of the given expression are 5, -9y, $15y^2$, $-6y^3$ Degree of each of the terms: 0, 1, 2, 3 Terms with highest degree: $-6y^3$ Therefore, degree of the expression is 3.

(v) $u^5 + u^4v + u^3v^2 + u_2v^3 + uv^4$ The terms of the given expression are u^5 , u^4v , u^3v^2 , u^2v^3 , uv^4 Degree of each of the terms: 5, 5, 5, 5, 5 Terms with highest degree: u^5 , u^4v , u^3v^2 , u^2v^3 , uv^4 Therefore, degree of the expression is 5.

Question 5. Identify the like terms : 12x3y2z, – y3x2z, 4z3y2x, 6x3z2y, -5y3x2z

Solution: $-y^3 x^2 z$ and $-5y^3 x^2 z$ are like terms.

Question 6. Add and find the degree of the following expressions. (i) (9x + 3y) and (10x - 9y)(ii) (k2 - 25k + 46) and (23 - 2k2 + 21 k)(iii) (3m2n + 4pq2) and (5nm2 - 2q2p)

Solution:

(i) (9x + 3y) and (10x - 9y)This can be written as (9x + 3y) + (10x - 9y)Grouping the like terms, we get (9x + 10x) + (3y - 9y) = x(9 + 10) + y(3 - 0) = 19x + y(-6) = 19x - 6yThus degree of the expression is 1.

(ii) $(k^2 - 25k + 46)$ and $(23 - 2k^2 + 21k)$ This can be written as $(k^2 - 25k + 46) + (23 - 2k^2 + 21k)$ Grouping the like terms, we get $(k^2 - 2k^2) + (-25k + 21k) + (46 + 23)$ $= k^2 (1 - 2) + k(-25 + 21) + 69 = -1k^2 - 4k + 69$ Thus degree of the expression is 2.

(iii) $(3m^2n + 4pq^2)$ and $(5nm^2 - 2q^2p)$ This can be written as $(3m^2n + 4pq^2) + (5nm^2 - 2q^2p)$ Grouping the like terms, we get $(3m^2n + 5m^2n) + (4pq^2 - 2pq^2)$ $= m^2n(3 + 5) + pq^2(4 - 2) = 8m^2n + 2pq^2$ Thus degree of the expression is 3. Question 7. Simplify and find the degree of the following expressions. (i) 10x2 - 3xy + 9y2 - (3x2 - 6xy - 3y2)(ii) 9a4 - 6a3 - 6a4 - 3a2 + 7a3 + 5a2(iii) 4x2 - 3x - [8x - (5x2 - 8)]

Solution:

(i) $10x^2 - 3xy + 9y^2 - (3x^2 - 6xy - 3y^2)$ = $10x^2 - 3xy + 9y^2 + (-3x^2 + 6xy + 3y^2)$ = $10x^2 - 3xy + 9y^2 - 3x^2 + 6xy + 3y^2$ = $(10x^2 - 3x^2) + (-3xy + 6xy) + (9y^2 + 3y^2)$ = $x^2(10 - 3) + xy(-3 + 6) + y^2(9 + 3)$ = $x^2(7) + xy(3) + y^2(12)$ Hence, the degree of the expression is 2.

(ii) $9a^4 - 6a^3 - 6a^4 - 3a^2 + 7a^3 + 5a^2$ = $(9a^4 - 6a^4) + (-6a^3 + 7a^3) + (-3a^2 + 5a^2)$ = $a^4(9-6) + a^3(-6+7) + a^2(-3+5)$ = $3a^4 + a^3 + 2a^2$ Hence, the degree of the expression is 4.

(iii) $4x^2 - 3x - [8x - (5x^2 - 8)]$ = $4x^2 - 3x - [8x + 5x^2 + 8)]$ = $4x^2 - 3x - [8x - 5x^2 - 8]$ = $4x^2 - 3x - 8x + 5x^2 - 8$ ($4x^2 + 5x^2$) + (- 3x - 8x) - 8 = $x^2(4+5) + x(-3-8) - 8$ = $x^2(9) + x(-11) - 8$ = $9x^2 - 11x - 8$ Hence, the degree of the expression is 2.

Objective Type Question

Question 8. 3p2 – 5pq + 2q2 + 6pq – q2 +pq is a (i) Monomial (ii) Binomial (iii) Trinomial (iv) Quadrinomial

Answer: (iii) Trinomial

Question 9. The degree of 6x7 – 7x3 + 4 is (i) 7 (ii) 3 (iii) 6 (iv) 4 Answer: (i) 7

Question 10.

If p(x) and q(x) are two expressions of degree 3, then the degree of p(x) + q(x) is (i) 6 (ii) 0 (iii) 3 (iv) Undefined

Answer:

(iii) 3

Ex 3.4

Miscellaneous Practice Problems

```
Question 1.

62 \times 6m = 65, find the value of 'm'

Solution:

62 \times 6m = 65

62+m = 65 [Since am × an= am+n]

Equating the powers, we get

2 + m = 5

m = 5 - 2 = 3
```

Question 2. Find the unit digit of 124128×126124

Solution: In 124¹²⁸, the unit digit of base 124 is 4 and the power is 128 (even power). Therefore, unit digit of 124^{128} is 4. Also in 126^{124} , the unit digit of base 126 is 6 and the. power is 124 (even power). Therefore, unit digit of 126^{124} is 6. Product of the unit digits = $6 \times 6 = 36$ \therefore Unit digit of the $124^{128} \times 126^{124}$ is 6.

Question 3. Find the unit digit of the numeric expression: 1623 + 7148 + 5961

Solution:

In 16^{23} , the unit digit of base 16 is 6 and the power is 23 (odd power). Therefore, unit digit of 16^{23} is 6.

In 71^{48} , the unit digit of base 71 is 1 and the power is 48 (even power). Therefore, unit digit of 71^{48} is 1.

Also in 59⁶¹, the unit digit of base 59 is 9 and the power is 61 (odd power). Therefore, unit digit of 59⁶¹ is 9.

Sum of the unit digits = 6 + 1 + 9 = 16

 \therefore Unit digit of the given expression is 6.

Question 4.

Find the value of

$$\frac{(-1)^6 \times (-1)^7 \times (-1)^8}{(-1)^3 \times (-1)^5}$$

Solution:

$$\frac{(-1)^{6} \times (-1)^{7} \times (-1)^{8}}{(-1)^{3} \times (-1)^{5}} = \frac{(-1)^{6+7+8}}{(-1)^{3+5}} = \frac{(-1)^{21}}{(-1)^{8}} = (-1)^{21-8}$$
[By Quotient rule]
= $(-1)^{13} = -1$ [Since the power 13 is odd positive number]
 $\therefore \frac{(-1)^{6} \times (-1)^{7} \times (-1)^{8}}{(-1)^{3} \times (-1)^{5}} = 1$

Question 5. Identify the degree of the expression, 2a3be + 3a3b + 3a3c – 2a2b2c2

Solution:

The terms of the given expression are $2a^{3}bc$, $3a^{3}b + 3a^{3}c - 2a^{2}b^{2}c^{2}$ Degree of each of the terms: 5,4,4,6. Terms with the highest degree: $-2a^{2}b^{2}c^{2}$ Therefore degree of the expression is 6.

Question 6. If p = -2, q = 1 and r = 3, find the value of 3p2q2r.

Solution:

Given p = -2; q = 1; r = 3 $\therefore 3p^2q^2r = 3 \times (-2)^2 \times (1)^2 \times (3)$ $= 3 \times (-2 \times 1)^2 \times (3)$ [Since $a^m \times b^m = (a \times b)^m$] $= 3 \times (-2)^2 \times (3)$ = $3 \times (-1)^2 \times 2^2 \times 3$ = $3^{1+1} \times 1 \times 4$ [Since $a^m \times a^n = a^{m+n}$] = $3^2 \times 4 = 9 \times 4$ $\therefore 3p^2q^2r = 36$

Challenge Problems

Question 7.

LEADERS is a WhatsApp group with 256 members. Every one of its member is an admin for their own WhatsApp group with 256 distinct members. When a message is posted in LEADERS and everybody forwards the same to their own group, then how many members in total will receive that message?

Solution:

Members of the groups LEADERS = 256 Members is individual groups of the members of LEADERS = 256 Total members who receive the message

2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

= $256 \times 256 = 2^8 \times 2^8$ $2^{8+8} = 2^{16}$ = 65536Totally 65536 members receive the message.

Question 8. Find x such that 3x+2 = 3x + 216.

Solution: Given $3^{x+2} = 3^x + 216$; $3^{x+2} = 3^x + 216$ Dividing throught by 3^x , we get

$\frac{3^{x+2}}{3^x}$,	$\frac{3^x}{3^x}+\frac{2^3\times 3^3}{3^x}$
3^{x+2-x}	=	$3^{x-x} + (2^3 \times 3^{3-x})$
32	=	$3^0 + 2^3 \times 3^{3-x}$
$3^2 - 3^0$	=	$2^3 \times 3^{3-x}$
9 - 1	=	$2^3 \times 3^{3-x}$
8	= '	$2^3 \times 3^{3-x}$
$\frac{2^{3}}{2^{3}}$	=	3 ^{3-x}
2 ³⁻³	=	3^{3-x}
2 ⁰	=	3^{3-x}
1	=	3 ^{3-x}
3 ⁰	=	3^{3-x}
Equating th	e pov	vers of same base

Equating the powers of same base

 $\begin{array}{rcl} 0 & = & 3-x \\ x & = & 3 \end{array}$

Question 9. If $X = 5x^2 + 7x + 8$ and $Y = 4x^2 - 7x + 3$, then find the degree of X + Y.

Solution:

Given $x = 5x^2 + 7x + 8$ $X + Y = 5x^2 + 7x + 8 + (4x^2 - 7x + 3)$ $= (5x^2 + 4x^2) + (7x - 7x) + (8 + 3)$ $= x^2 (5 + 4) + x(7 - 7) + (8 + 3) = 9x^2 + 11$ Degree of the expression is 2.

Question 10. Find the degree of (2a2 + 3ab – b2) – (3a2 -ab- 3b2)

Solution: $(2a^2 + 3ab - b^2) - (3a^2 - ab - 3b^2)$ $= (2a^2 + 3ab - b^2) + (-3a^2 + ab + 3b^2)$ $= 2a^2 + 3ab - b^2 - 3a^2 + ab + 3b^2$ $= 2a^2 - 3a^2 + 3ab + ab + 3b^2 - b^2$ $= 2a^2 - 3a^2 + ab (3 + 1) + b^2(3 - 1)$ $= -a^2 + 4 ab + 2b^2$ Hence degree of the expression is 2. Question 11. Find the value of w, given that x = 4, y = 4, z = -2 and $w = x^2 - y^2 + z^2 - xyz$.

Solution:

Given x = 3; y = 4 and z = -2. $w = x^2 - y^2 + z^2 - xyz$ $w = 3^2 - 4^2 + (-2)^2 - (3)(3)(-2)$ w = 9 - 16 + 4 + 24 w = 37 - 16w = 21

Question 12.

Simplify and find the degree of $6x^2 + 1 - [8x - (3x^2 - 7 - (4x^2 - 2x + 5x + 9))]$

Solution:

 $6x^{2} + 1 - [8x - (3x^{2} - 7 - (4x^{2} - 2x + 5x + 9))]$ = $6x^{2} + 1 - [8x - [3x^{2} - 7 - 4x^{2} - 2x + 5x + 9]]$ = $6x^{2} + 1 - [8x - 3x^{2} + 7 + 4x^{2} - 2x + 5x + 9]]$ = $6x^{2} - 1 - [8x + 3x^{2} - 7 - 4x^{2} + 2x - 5x - 9]$ = $6x^{2} + 3x^{2} - 4x^{2} - 8x + 2x - 5x - 1 - 7 - 9]$ = $x^{2}(6 + 3 - 4) + x(8 + 2 - 5) - 15$ = $5x^{2} - 11x - 15$ Degree of the expression is 2.

Question 13.

The two adjacent sides of a rectangle are $2x^2 - 5xy + 3z^2$ and $4xy - x^2 - z^2$. Find the perimeter and the degree of the expression.

Solution: Let the two adjacent sides of the rectangle as $l = 2x^2 - 5xy + 3z^2$ and $b = 4xy - x^2y + 3z^2$

$$A = D = 4xy - x^2y + 3z^2$$

B $2x^2 - 5xy + 3z^2$ C

Perimeter of the rectangle = $2(l + b) = 2(2x^2 - 5xy + 3z^2 + 4xy - x^2 - z^2)$ = $4x^2 - 10xy + 6z^2 + 8xy - 2x^2 - 2z^2$ = $4x^2 - 2x^2 - 10xy + 8xy + 6z^2 - 2z^2$ = $x^2(4 - 2) + xy(-10 + 8) + z^2(6 - 2z^2)$ Perimeter = $2x^2 - 2xy + 4z^2$ Degree of the expression is 2.