Sequences and Series

Case Study Based Questions

Read the following passages and answer the questions that follow:

1. A.M. and G.M. Inequality

Let a, b be two positive real numbers, then

$$(\sqrt{a}-\sqrt{b})^2$$
 20

 \Rightarrow a+b-2 $\sqrt{ab} \ge 0$

$$\Rightarrow \frac{a+b}{2} \ge \sqrt{ab}$$

A.M≥ G.M.

Equality holds iff a = b

i.e.,
$$A.M. = G.M.$$
 iff $a = b$

The A.M. and G.M. inequality for two variables can be generalised to n variables.

If a₁, a₂, a₃....a_n are n positive real numbers, then

$$\frac{a_1 + a_2 + a_3 + \dots + a_n}{n} \ge (a_1, a_2, a_3 \dots a_n)^{\frac{1}{n}}.$$

- (A) If x, y, z are positive integers, then find value of the expression (x + y) (y + z) (z + x).
- **(B)** Find the minimum value of the expression $3^x + 3^{1-x}$, $x \in \mathbb{R}$ and if three positive real numbers a, b, c are in A.P. and abc = 4, then find the minimum possible value of b.
- **(C)** Find the common ratio of a GP whose sum of infinite terms is 8 and its second term is 2.

Ans. (A) A.M.> G.M.

$$\therefore \quad \frac{x+y}{2} > \sqrt{xy}$$

$$\frac{y+z}{2} > \sqrt{yz}$$

And
$$\frac{z+x}{2} > \sqrt{zx}$$

On multiplying three inequalities, we get

$$\frac{x+y}{2}$$
, $\frac{y+z}{2}$, $\frac{z+x}{2}$ > $\sqrt{(xy)(yz)(xz)}$

$$\Rightarrow$$
 $(x + y) (y + z) (z + x) > 8xyz$

(B) :- A.M.
$$\geq$$
 G.M.

$$\begin{array}{ccc} \therefore & \frac{a_1 + a_2 + a_3 + \dots + 2a_n}{n} \ge (a_1, a_2, a_3, \dots 2a_n)^{\frac{1}{n}} \\ \Rightarrow & \frac{3^x + 3^{1-x}}{2} \ge \sqrt{3^x \cdot 3^{1-x}} \\ \Rightarrow & 3^x + 3^{1-x} \ge 2\sqrt{3} \end{array}$$

So, the minimum value of $3^x + 3^{1-x}$ is $2\sqrt{3}$.

Given a, b, c are in A.P.

So,
$$2b = a + c$$

and abc = 4

We know that, A.M. \geq G.M.

So,
$$\frac{a+b+c}{3} \ge (abc)^{1/3}$$

$$\Rightarrow \frac{2b+b}{3} \ge (4)^{1/3} \text{ [using (i) and (ii)]}$$

$$\Rightarrow \frac{3b}{3} \ge (2^2)^{1/3}$$

$$\Rightarrow b \ge 2^{\frac{2}{3}}$$

So, the minimum possible value of b is $2^{\frac{2}{3}}$.

(C) Let a be the first term and r be the common ratio of the G.P.

Given,
$$ar= 2$$
 and $S_{\infty} = 8 = \frac{a}{1-r}$

$$\Rightarrow \qquad 8 = \frac{2}{r(1-r)} \qquad \left[\because a = \frac{2}{r}\right]$$

$$\Rightarrow \qquad 4r(1-r) = 1$$

$$\Rightarrow \qquad 4r - 4r^2 - 1 = 0$$

$$\Rightarrow \qquad 4r^2 - 4r + 1 = 0$$

$$\Rightarrow \left(r - \frac{1}{2}\right)(4r - 2) = 0$$

$$\Rightarrow \qquad r = \frac{1}{2}$$

2. A sequence of non-zero numbers is said to be a geometric progression, if the ratio of each term, except the first one, by its preceding term is always constant. Rahul, being a

plant lover, decides to open a nursery and he bought few plants and pots. He wants to place pots in such a way that the number of pots in the first row is 2, in second row is 4 and in the third row is 8 and so on.....

(A) The constant multiple by which the number of pots is increasing in every row is:

- (a) 2
- (b) 4
- (c) 8
- (d) 1

(B) The number of pots in 8th row is:

- (a) 156
- (b) 256
- (c)300
- (d) 456

(C) The difference in number of pots placed in 7th row and 5th row is:

- (a) 86
- (b) 50
- (c) 90
- (d) 96

(D) Total number of pots upto 10th row is:

- (a) 1046
- (b) 2046
- (c) 1023
- (d) 1024

(E) If Rahul wants to place 510 pots in total, then the total number of rows

formed in this arrangement is:

- (a)7
- (b) 8
- (c) 9
- (d)5

Ans. (A) (a) 2

Explanation: The number of pots in each row is 2, 4, 8....

This forms a geometric progression,

Where
$$a = 2$$
, $r = \frac{4}{2} = 2$

Hence, the constant multiple by which the number of pots is increasing in every row is 2.

(B) (b) 256

Explanation: Number of pots in 8th row = ag

=
$$a_8$$

 $a_8 = ar^{8-1} = 2(2)^7 = 2^8 = 256$

(C) (d) 96

Explanation: Number of pots in 7th row,

$$a_7 = 2(2)^{7-1} = 2.2^6 = 2^7 = 128$$

Number of pots in 5th row,

$$a_5 = 2(2)^{5-1} = 2.2^4 = 2^5 = 32$$

Required answer = 128 - 32 = 96

(D) (b) 2046

Explanation: Total number of pots upto 10th row

$$S_{10} = \frac{a(r^{10} - 1)}{r - 1} = \frac{2(2^{10} - 1)}{2 - 1}$$
$$= \frac{2(1024 - 1)}{1} = 2046$$

(E) (b) 8

Explanation: Let there be n number of rows.

$$S_n = 510 = \frac{2(2^n - 1)}{2 - 1}$$

$$\Rightarrow \frac{510}{2} = 2^n - 1$$

$$\Rightarrow$$
 255 = 2ⁿ - 1

$$\Rightarrow$$
 256 = 2ⁿ

$$\Rightarrow$$
 $2^8 = 2^n$

$$\Rightarrow$$
 $n = 8$

- 3. A person was employed in a company on the condition that he will be paid rupees 2,
- 4, 6, 8, 10,... for the work done in the company on 1st, 2nd 3rd day.
- (A) Name the progression of amount received by the person.
- (a) A.P.
- (b) G.P.
- (c) A.P. and G.P.
- (d) None
- (B) The common difference of the sequence is:
- (a) 1
- (b) 2
- (c) 3
- (d) 4
- (C) The first term of the sequence is:
- (a) 2
- (b) 4
- (C)6
- (d) 8
- (D) The total amount received in 10 days in rupees is:
- (a) 115
- (b) 105
- (c) 120

(d) 110

(E)

Assertion (A): If the numbers $\frac{-2}{7}$, k, $\frac{-7}{2}$ are in GP, then $k = \pm 1$.

Reason (R): If a_1 , a_2 , a_3 are in GP, then $\frac{a_2}{a_1} = \frac{a_3}{a_2}$.

- (a) Both (A) and (R) are true and (R) is the correct explanation of (A).
- (b) Both (A) and (R) are true but (R) is not the correct explanation of (A).
- (c) (A) is true but (R) is false.
- (d) (A) is false but (R) is true.

Ans. (A) (a) A.P.

Explanation: The given series 2, 4, 6, 8, is

A.P. because the common difference is same as

(B) (b) 2

 $a_2 - a_1 = 2$

 $a_3 - a_2 = 2$

Explanation: The common difference as the

A.P. 2, 4, 6, 8,...

 a_2 - a_1 =4-2=2

 a_3 - a_2 =6-4=2

a₄-a3=8-6=2

(C) (a) 2

Explanation: The first term of A.P 2, 4, 6, 8. is 2.

(D) (d) 110

Explanation: Here a = 2, d = 2 and n = 10

So,

$$S_{10} = \frac{10}{2} [2 \times 2 + (10 - 1)2]$$

$$= \frac{10}{2} [4 + 18]$$

$$= \frac{10}{2} [22]$$

$$= 10 \times 11 = ₹ 110$$

(E) (a) Both (A) and (R) are true and (R) is the correct explanation of (A).

Explanation: If $-\frac{2}{7}$, $k, -\frac{7}{2}$ are in *GP*

Then,
$$\frac{a_2}{a_1} = \frac{a_3}{a_2}$$

$$\left[\because \text{ common ration } (r) = \frac{a_2}{a_1} = \frac{a_3}{a_2} = \frac{a_4}{a_3} = \dots\right]$$

$$\frac{k}{\frac{2}{2}} = \frac{\frac{7}{2}}{k}$$

$$\Rightarrow \frac{7}{-2}k = \frac{-7}{2} \times \frac{1}{k}$$

$$\Rightarrow 2k \times 2k = -7 \times (-2)$$

$$\Rightarrow 14k^2 = 14$$

$$\Rightarrow k^2 = 1$$

$$k^2 = 1$$

$$\Rightarrow$$
 $k = \pm 1$

12. A group of students obtain the sum of first n

natural number is $\frac{n(n+1)}{2}$ named as A_n , sum of

square of n natural number is $\frac{n(n+1)(2n+1)}{6}$

named as B_n and sum of cubes of n natural

number is
$$\left(\frac{n(n+1)}{2}\right)^3$$
 named as C_n .

- (A) Find the value of A₅, and B₃..
- **(B)** Find the value of C₂, and the sum of first n natural number is also the sum of n numbers of A.P whose first term is 1 and common difference is also 1.
- **(C)** What is the geometric mean of 6 and 24?

Ans.

(A)
$$A_n = \frac{n(n+1)}{2}$$

So, Put $n = 5$
We get $A_5 = \frac{5(5+1)}{2}$
 $= \frac{5 \times 6}{2}$
 $= 3 \times 5$
 $= 15$
 $B_n = \frac{n(n+1)(2n+1)}{6}$
So put $n = 3$
 $B_3 = \frac{3(3+1)(6+1)}{6}$
 $= \frac{3 \times 4 \times 7}{6}$
 $= \frac{28}{2}$
 $= 14$

$$C_{n} = \left(\frac{n(n+1)}{2}\right)^{3}$$
Put $n = 2$

$$C_{2} = \left(\frac{2(2+1)}{2}\right)^{3}$$

$$= (3)^{3}$$

$$= 27$$

$$A_{n} = \frac{n(n+1)}{2}$$
and $S_{n} = 1 + 2 + 3 + \dots n$

$$= \frac{n}{2}[2a + (n-1)d]$$

$$= \frac{n}{2}[2 + (n-1)1]$$

$$=\frac{n}{2}[2+n-1]$$

$$=\frac{n(n+1)}{2}$$

(C) Given two data values are 6 and 24. So, n = 2.

So, to find the geometric mean of 6 and 24, we have to take the square root for the product of 6 and 24.

Geometric Mean = $\sqrt{6x24}$

Geometric Mean = $\sqrt{(144)}$

Thus, the square root of 144 is 12.

Therefore, the geometric mean of 6 and 24 is 12.