

Fundamental concept and Permutations without repetition

		Fui	шатентат сопсерт апа Регп	nutations without repetition
			Basic Level	
l .	$(n-r+1)^n P_{r-1} =$			
	(a) $^{n-1}P_r$	(b) $^{n+1}P_r$	(c) $^{n}P_{r}$	(d) ${}^{n}P_{r-1}$
2.	If ${}^{5}P_{r} = 120$, then t	the value of r is		
	(a) 2	(b) 3+	(c) 5	(d) 4
3.		nen the value of n is	() 5	[Rajasthan PET 1989]
	(a) 2	(b) 3	(c) 4	(d) 5
1.	The value of n . ^{$n-1$} P			[DCE 1998]
•	(a) $^{n}P_{r}$	(b) $^{n-1}P_{r-1}$	(c) $^{n+1}P_{r+1}$	(d) $^{n-1}P_r$
		, .		(u) 1,
5.		$^{n-n}P_2=12$, then m , n are equal		
		(b) 6, 2	(c) 7, 3	(d) 9, 6
5.	If $K+5 P_{K+1} = \frac{11(K-1)}{2}$	$\frac{1}{K+3}P_K$ then the values of K a	are	
	(a) 2 and 6	(b) 2 and 11	(c) 7 and 11	(d) 6 and 7
7.		_	lage. The number of different v	vays in which a villager can go to
	the town and retu (a) 25	(b) 20	(c) 10	(d) 5
3.		can be formed from the letter		(u) 5
	(a) 124	(b) 240	(c) 360	(d) 720
).			gits1, 2, 3, 4 when the repetition	n is not allowed
	(a) 4P_4	(b) 4P_3	(c) ${}^4P_1 + {}^4P_2 + {}^4P_3$	(d) ${}^4P_1 + {}^4P_2 + {}^4P_3 + {}^4P_4$
0.	How many number the digits are not		00 can be formed with the help	of the digits 1, 2, 3, 4, 5, 6 when
	(a) 20	(b) 40	(c) 60	(d) 80
1.	4 buses runs betv	veen Bhopal and Gwalior. If	a man goes from Gwalior to Bh	nopal by a bus and comes back to
	-	er bus, then the total possible	•	
	(a) 12	(b) 16	(c) 4	(d) 8
2.	, ,	s can 10 true-false questions	•	(4) 4004
	(a) 20	(b) 100	(c) 512	(d) 1024 and come out from a different gate
١3٠	(a) 7	(b) 8 × 8	(c) 8 + 7	(d) 8×7
4.				he order of their presentation in
•	, ()	J : ::::: 12 13 3 13 44.04.	0	[BIT Ranchi 1991; Pb. CET 1991]
	(a) 4 ways	(b) 12 ways	(c) 256 ways	(d) 24 ways
ا5.	The product of an	y r consecutive natural numb	ers is always divisible by	

22	2 Permutations and	d Combinations		
	(a) r!	(b) r ²	(c) r ⁿ	(d) None of these
16.	The number of way	rs in which first, second and t	hird prizes can be given to 5 co	ompetitors is
	(a) 10	(b) 60	(c) 15	(d) 125
17.	In a railway composeats is	artment there are 6 seats. Tl	he number of ways in which	6 passengers can occupy these 6
				[Karnataka CET 2001]
	(a) 36	(b) 30	(c) 720	(d) 120
18.	If any number of fla	ags are used, how many signa	ls can be given with the help o	of 6 flags of different colours
	(a) 1956	(b) 1958	(c) 720	(d) None of these
19.	The number of way	s of painting the faces of a cu	be with six different colours is	s
	(a) 1	(b) 6	(c) 6!	(d) None of these
		Adv	vance Level	
20.	The value of $2^n \{1.3.$	$5(2n-3)(2n-1)$ } is		
	(a) $\frac{(2n)!}{n!}$	(b) $\frac{(2n)!}{2^n}$	(c) $\frac{n!}{(2n)!}$	(d) None of these
21.	If ${}^{56}P_{r+6}$: ${}^{54}P_{r+3} = 308$	300:1, then $r =$		[Roorkee 1983; Kurukshetra CEE
	1998]			
	(a) 31	(b) 41	(c) 51	(d) None of these
22.	The value of ${}^{n}P_{r}$ is	equal to		
	(a) $^{n-1}P_r + r^{-n-1}P_{r-1}$	(b) $n^{n-1}P_r + {n-1}P_{r-1}$	(c) $n(^{n-1}P_r + ^{n-1}P_{r-1})$	(d) $^{n-1}P_{r-1} + ^{n-1}P_r$
23.	The exponent of 3 i	n 100 ! is		
	(a) 33	(b) 44	(c) 48	(d) 52
24.	The number of posi	itive integral solutions of abc	= 30 is	[UPSEAT 2001]
	(a) 30	(b) 27	(c) 8	(d) None of these
25.	The number of 4 di	git even numbers that can be	formed using 0, 1, 2, 3, 4, 5, 6	without repetition is
	(a) 120	(b) 300	(c) 420	(d) 20
26.	The number of five	digits numbers that can be fo	ormed without any restriction	is
	(a) 990000	(b) 100000	(c) 90000	(d) None of these
27.	How many number	s less than 1000 can be made	from the digits 1, 2, 3, 4, 5, 6	(repetition is not allowed)
	(a) 156	(b) 160	(c) 150	(d) None of these
28.	How many even nu not allowed)	mbers of 3 different digits ca		2, 3, 4, 5, 6, 7, 8, 9 (repetition is
	(a) 224	(b) 280	(c) 324	(d) None of these
29.	_	r divisible by 3 has to formed sys in which this can be done i	_	s, 4 and 5 without repetition. The
	(a) 216	(b) 240	(c) 600	(d) 3125
30.		=	_	ur cages are so small that five out e to accommodate ten animals in
	(a) 66400	(b) 86400	(c) 96400	(d) None of these
31.	How many number	· · · =	gits 3, 4, 5, 6, 7, 8 lying bet	ween 3000 and 4000 which are
	(a) 60	(b) 12	(c) 120	(d) 24
	()	(0)	(0) 1=0	(~)

		Number of I	Permutations with Repetition
(a) 81	(b) 243	(c) 486	(d) None of these
number of people f	orecast the result of each m	natch and no two people make	a win or loss or draw for a team. As the same forecast for the series of ectly for all matches will contain n
(a) $\sum_{n=4}^{9} {}^{n}P_{4}$	(p) 33 (3i)	(c) 30 (3!)	(d) None of these
	f 5 digit numbers of differer	nt digits in which the digit in t	he middle is the largest is
(a) 15	(b) 13	(c) 12	(d) 11
The number of disti		that $0 < x < 1$ and $x = \frac{p}{q}$, when	
(a) ${}^{n}P_{3}$	(b) $n^3 - {}^nP_3$	(c) $3n^2 - 2n$	(d) $3n^2(n-1)$
two coordinates are	-		
		number of triplets (x, y, z) of	the elements of A in which at least
(a) 1200	(b) 1500	(c) 1600	(d) 1630
_	more than once in each nu		1 of digits from 0, 1, 2, 3, 4, 3 but
(a) 4!2! The number of pos	` '		r of digits from 0, 1, 2, 3, 4, 5 but
	ranging them on the assump (b) 11!	otion that the books of the san (c) 5! 4! 3! 2!	ne subject are all together is (d) None of these
	•	-	placed on a shelf. The number of
(a) 12!	(b) $\frac{12!}{3!4!}$	(c) $\frac{12!}{(3!)4}$	(d) 369,000
SHCII IS	101	121	[Karnataka CET 1996]
3 copies each of 4 shelf is	different books are availab	ole. The number of ways in w	which these can be arranged on the
(a) 106656	(b) 101276	(c) 117312	(d) 811273
number is	[AMU 1997]		3, 5, 7 no digit is repeated in any
(a) 6	(b) 12	(c) 24	(d) 30
repeated	[AMU 1999]	() =	(1)
		· · · =	om the digits 3, 4, 5, 6, if no digit is
(a) 36	(b) 60	(c) 84	(d) 120
			, 4, 5 when no digit is repeated [Raja
is (a) 133320	(b) 533280	(c) 53328	(d) None of these
(a) 9000000	· ·	` '	(d) None of these 8 (repetition of digits not allowed)
	(b) 4500000	im of whose digits is even is (c) 8100000	(d) Nana of those
(a) 9	(b) 18	(c) 10	(d) None of these
(3) (

The number of permutations of the letters $x^2y^4z^3$ will be

45.

224	4 Permutations and	l Combinations		
	(a) $\frac{9!}{2!4!}$	(b) $\frac{9!}{2!4!3!}$	(c) $\frac{9!}{4!3!}$	(d) 9!
6.	How many numbers the digit 5 is used to		be formed in which the digits 3	, 4 and $ au$ are used only once and
	(a) 30	(b) 60	(c) 45	(d) 90
7•	The number of diff together is	ferent arrangements whic	h can be made from the letter	s of the word SERIES taken all
	(a) $\frac{6!}{2!2!}$	(b) $\frac{6!}{4!}$	(c) 6!	(d) None of these
8.	How many words ca	an be formed with the lette	rs of the word MATHEMATICS by	rearranging them
	(a) $\frac{11!}{2!2!}$	(b) $\frac{11!}{2!}$	(c) $\frac{11!}{2!2!2!}$	(d) 11!
9.	How many words ca	an be made out from the le	tters of the word INDEPENDENC	CE, in which vowels always come
	O			[Roorkee 1989]
	(a) 16800	(b) 16630	(c) 1663200	(d) None of these
ο.	In how many ways		alls can be arranged in a row	
	(a) 1260	(b) 2880	(c) 9!	(d) 10!
1.		s, the number of ways of m		
	(a) 3 × 5	(b) 3^5	(c) 5^3	(d) $5^3 - 1$
2.		, ,	s of the word "BANANA" is	[Rajasthan PET 1997, 200
	(a) 60	(b) 120	(c) 720	(d) 24
3.			ormed using the digits 1, 2, 3, 2,	
J .	(a) 420	(b) 840	(c) 2520	(d) 5040
4.				, 3, 4, 5, 6 when the repetition is
				[Pb. CET 1999]
	(a) 60	(b) 108	(c) 36	(d) 30
5.	_	ne digits so that the odd dig		of the number 223355888 by
	(a) 16	(b) 36	(c) 60	(d) 180
6.		4, 5, 6 how many even nu		
	(a) 24	(b) 48	(c) 72	(d) 120
7.		ll functions from the set A	to the set A. If $n(A) = k$ then $n(S)$	
	(a) k!	(b) k^k	(c) $2^k - 1$	(d) 2^k
8.		, ,	orn on the four fingers of one ha	
	(a) 4^6	(b) 6C_4	(c) 6^4	(d) None of these
_		·		
9.		=	among 3 students, if each studen	
_	(a) 4!	(b) 3 ⁴	(c) $3^4 - 1$	(d) 3^3
о.	In how many ways box	3 letters can be posted in a	4 letter-boxes, if all the letters a	re not posted in the same letter-

There are 4 parcels and 5 post-offices. In how many different ways the registration of parcel can be made

(c) 77

(c) 5^4

(d) 81

(d) $5^4 - 4^5$

(b) 60

(b) 4⁵

(a) 63

(a) 20

62.	How many numbers is allowed)	lying between 10 and 1000 ca	n be formed from the digits	1, 2, 3, 4, 5, 6, 7, 8, 9 (repetition
	(a) 1024	(b) 810	(c) 2346	(d) None of these
63.		of an alphabet are given. Wor	, , , ,	ed from these given letters. Then
		which have at least one letter		G
	[IIT 1980; MNR 1998, 9	99; DCE 2001]	_	
	(a) 69760	(b) 30240	(c) 99748	(d) None of these
64.		re arranged in a row. The n	umber of ways in which the	number of tails is equal to the
	number of heads is			
_	(a) 20	(b) 9	(c) 120	(d) 40
65.		_	ent things taken not more th	nan r at a time, when each thing
	may be repeated any	number of times is		
	(a) $\frac{n(n^n-1)}{n(n^n-1)}$	(b) $\frac{n^r - 1}{n - 1}$	(c) $\frac{n(n^r-1)}{n-1}$	(d) None of these
	n 1	n 1	<i>n</i> 1	
66.		ess than 10000 can be made w		
	(a) 256	(b) 4095	(c) 4096	(d) 4680
67.			that can be made with digits	s 1, 2, 3, 4, if the all digits are to
	= =	umber at least once, is	()0-	(1)
CO	(a) 1560	(b) 840	(c) 1080	(d) 480
68.		_	_	f each of three books and single
	=	e total number of ways in whi		
	(a) $\frac{(a+b+c+a)!}{a!b!c!}$	(b) $\frac{(a+2b+3c+d)!}{a!(b!)^2(c!)^3}$	(c) $\frac{(a+2b+3c+a)!}{a!b!c!}$	(d) None of these
69.		s of arranging 2 <i>m</i> white conetrical with respect to a cent		s in a straight line so that the
	arrangement is symm	-		
	(a) $(m+n)!$	(b) $\frac{(m+n)!}{m!n!}$	(c) $\frac{2(m+n)!}{m!n!}$	(d) None of these
	m + 1 1 66	<i></i>	<i>m</i> : <i>n</i> :	
70.		digit odd numbers that can be		
	(a) 216	(b) 375	(c) 400	(d) 720
71.	The number of ways	of arranging the letter AAAAA	BBB CCC D EE F in a row wh	en no two C's are together is
	(a) $\frac{15!}{}$ - 3!	(b) $\frac{15!}{5!3!3!2!} - \frac{13!}{5!3!2!}$	(c) $\frac{12!}{} \times \frac{^{13}P_3}{}$	(d) $\frac{12!}{} \times {}^{13}P_2$
	5!3!3!2!	5!3!3!2! 5!3!2!	5!3!2! 3!	5!3!2!
72.	The number of 4 digitidentical, is	t numbers that can be made v	with the digits 1, 2, 3, 4 and	5 in which at least two digits are
	(a) $4^5 - 5!$	(h) 505	(a) 600	(d) Name of these
	(a) 4 -3!	(b) 505	(c) 600	(d) None of these
				Conditional Permutations
		Bas	ric Level	
73.	The number of word occur together, is	s which can be formed from	the letters of the word MAX	IMUM, if two consonants cannot
	(a) 4!	(b) 3! × 4!	(c) 7!	(d) None of these
74.		· ·		ged such that two vowels do not
	occur together is			-
	(a) 1200	(b) 2400	(c) 14400	(d) None of these
75.	How many words ca	n be formed form the letters	of the word COURTESY, wh	nose first letter is C and the last
	letter is Y			
	(a) 6 !	(b) 8 !	(c) 2 (6) I	(d) 2 (7)!

76.	How many words of (a) 12	can be made from the letters (b) 24	of the word DELHI, if L come (c) 60	es in the middle in every word (d) 6
77•		ys in which the letters of the	e word ARRANGE can be arra	anged such that both R do not come
	together is			
	(a) 360	(b) 900	(c) 1260	[MP PET 1993] (d) 1620
78.		· · =		h <i>B</i> and <i>H</i> never come together[IIT 197
,	(a) 360	(b) 300	(c) 240	(d) 120
79.		can be made from the letters	· · · -	
-	(a) 18270	(b) 17280	(c) 12780	(d) None of these
80.	•	rls in a class of 10 students. wo of the three girls are toge		ys in which they can be seated in a
	(a) $7! \times {}^{6}P_{3}$	(b) $7! \times {}^8P_3$	(c) 7!×3!	(d) $\frac{10!}{3!7!}$
81.	In how many ways	can 5 boys and 5 girls stand	in a row so that no two girls	may be together
	(a) $(5!)^2$	(b) 5!×4!	(c) $5! \times 6!$	(d) 6×5!
82.	The number of arra	angements of the letters of th	ne word BANANA in which tw	o N's do not appear adjacently is [IIT
	(a) 40	(b) 60	(c) 80	(d) 100
83.	The number of way	ys in which 5 boys and 3 girls	can be seated in a row so th	at each girl in between two boys [Kera
	(a) 2880	(b) 1880	(c) 3800	(d) 2800
84.	The number of wor	rds that can be formed out of	the letters of the word ART	ICLE so that the vowels occupy even
				[Karnataka CET 2003]
_	(a) 36	(b) 574	(c) 144	(d) 754
85.	students receive th	ie same grade, is		grade of A , B , C or D so that no two
	(a) 3^4	(b) 4^3	(c) 4P_3	(d) 4C_3
86.	The number of way play in the same set		an be made up from seven ma	arried couples if no husband and wife
	(a) 210	(b) 420	(c) 840	(d) None of these
		Ac	lvance Level	
87.	How many number	rs greater 40000 can be form		
	(a) 12	(b) 24	(c) 36	(d) 48
88.		<i>n</i> books can be arranged in a	•	•
	(a) $n!-(n-2)!$	(b) $(n-1)!(n-2)$	(c) $n!-2(n-1)$	(d) $(n-2)n!$
89.		rs between 5000 and 10,000 e than once in each number	can be formed using the dig	gits 1, 2, 3, 4, 5, 6, 7, 8, 9 each digit
	(a) $5 \times {}^{8}P_{3}$	(b) $5 \times {}^{8}C_{3}$	(c) $5! \times {}^{8}P_{3}$	(d) $5! \times {}^{8}C_{3}$
90.	Find the total num	ber of 9 digit numbers which	have all the digits different	[IIT 1982]
-	(a) 9 × 9!	(b) 9!	(c) 10 !	(d) None of these
91.		d) are rolled. The number of		
-	(a) 1296	(b) 625	(c) 671	(d) None of these
92.				e, 3, 7, 0, 8, 6 when the digits occur
-	only once in each n		3	[MP PET 1984]

(d) 80

	(a) 18	(b) 432	(c) 108	(d) 144
94.	All letters of the word	AGAIN are permuted in all po	ssible ways and the words	so formed (with or without
	meaning) are written as	s in dictionary, then the 50 th wo	rd is	
	(a) NAAGI	(b) IAANG	(c) NAAIG	(d) INAGA
95.	choose the chairs from	red 1 to 8. Two women and thr amongst the chairs marked 1 of possible arrangements is		
	(a) ${}^{6}C_{3} \times {}^{4}C_{2}$	(b) ${}^4C_2 \times {}^4P_3$	(c) ${}^4P_2 \times {}^4P_3$	(d) None of these
96.		r of permutations of $x+2$ thing me and c the number of perm e of x is		-
	(a) 15	(b) 12	(c) 10	(d) 18
97.	The number of ways in	which ten candidates A_1, A_2, \dots	A_{10} can be ranked such that	A_1 is always above A_{10} is
	(a) 5!	(b) 2 (5!)	(c) 10!	(d) $\frac{1}{2}$ (10!)
98.		consisting of 7 lettered words od at the alphabetical order, as i [Orissa JEE 2003]	-	
	(a) 530	(b) 480	(c) 531	(d) 481
99.		rs are to deliver lectures in sev The number of ways in which a before C, is		_
	(a) 420	(b) 120	(c) 210	(d) None of these
100.	Let $A = \{x : x \text{ is a prime}\}$	e number and $x < 30$ }. The num	ber of different rational nu	mbers whose numerator and
	denominator belong to	A is		
	(a) 90	(b) 180	(c) 91	(d) None of these
101.		s of 9 different non-zero digits ddle and all the digits in the last	_	-
	(a) 2 (4!)	(b) $(4!)^2$	(c) 8!	(d) None of these
102.	How many ways are the	ere to arrange the letters in the	word GARDEN with the vow	els in alphabetical order[AIEEE
	(a) 480	(b) 240	(c) 360	(d) 120
				Circular Permutations
		Basic Le	evel	
103.	If eleven members of a then the number of arra	committee sit at a round table	so that the president and se	ecretary always sit together,
	(a) 10! × 2	(b) 10!	(c) 9! × 2	(d) None of these
104.	In how many ways can	5 keys be put in a ring		
	(a) $\frac{4!}{2}$	(b) $\frac{5!}{2}$	(c) 4!	(d) 5!
	_	2		
105.	together	1 12 gentlemen sit around a ro		citied gentlemen are always
	(a) 9!	(b) 10!	(c) 3!10!	(d) 3!9!

(c) 120 The sum of the digits in the unit place of all numbers formed with the help of 3, 4, 5, 6 taken all at a time is [Pb. CET 19]

(a) 100

93.

(b) 90

106.	n gentlemen can be m	[MP PET 1982]		
	(a) $\frac{1}{2}(n+1)!$ ways	(b) $(n-1)!$ ways	(c) $\frac{1}{2}(n-1)!$ ways	(d) $(n+1)!$ ways
107.	In how many ways 7 together	men and 7 women can be	seated around a round table s	such that no two women can sit
			[EAMCET 1990; MP P	ET 2001; DCE 2001; UPSEAT 2002]
	(a) $(7!)^2$	(b) 7!×6!	(c) $(6!)^2$	(d) 7!
108.	The number of circula	or permutations of n differen	nt objects is	
	(a) n!	(b) n	(c) $(n-2)!$	(d) $(n-1)!$
		Adv	rance Level	
109.		nn 15 members of a council and the Deputy secretary or		en the Secretary is to sit on one
	(a) $2 \times 12!$	(b) 24	(c) 2 × 15!	(d) None of these
110.	-		y different ways can they and ed on either side of the host	the host be seated at a circular
	(a) 20!	(b) 2.18!	(c) 18!	(d) None of these
111.	12 persons are to be a the total number of ar	=	two particular persons among	them are not to be side by side,
	(a) 9(10!)	(b) 2 (10!)	(c) 45 (8!)	(d) 10!
112.	The number of ways t		ours be string as a necklace is	[EAMCET 2002]
	(a) 2520	(b) 2880	(c) 5040	(d) 4320
113.	The number of ways is given by	n which 6 men and 5 wome		o two women are to sit together
	(a) 6 L v = L	(h) 20		[AIEEE 2003; Rajasthan PET 2003]
114.	(a) 6! × 5!	(b) 30	(c) 5! × 4!	(d) $7! \times 5!$ d 4 sit on the other round table
114.	(a) 5! × 3!			(d) ${}^{10}C_6 \times 5! \times 3! \times 2!$
			• • • • • • • • • • • • • • • • • • • •	
115.	-	among whom two are broth is exactly one person betwe	_	hich we can arrange them round
	(a) 18!	(b) 2 (18!)	(c) 2 (19!)	(d) None of these
116.	-		d two times a day on two ident ferent orders (1 month = 30 da	ical round tables. For how many ys)
	(a) 42 months	(b) 21 months	(c) $\frac{21}{2}$ months	(d) None of these
		Funda	mental concept and Numbe	r of Combinations without
		Ba	asic Level	
117.	If n is even and the va	lue of ${}^{n}C_{r}$ is maximum, the	en r =	
	(a) $\frac{n}{2}$	(b) $\frac{n+1}{2}$	(c) $\frac{n-1}{2}$	(d) None of these

134.	If $^{43}C_{r-6} = ^{43}C_{3r+1}$, th	en the value of r is		[Kerala (Engg.) 2002]
	(a) 12	(b) 8	(c) 6	(d) 10
135.	The least value of n	atural number n satisfy	ying $C(n,5) + C(n,6) > C(n+1,5)$ is	[EAMCET 2002]
	(a) 11	(b) 10	(c) 12	(d) 13
136.	If ${}^{n}C_{r}$ denotes the	ne number of comb	inations of n things taken r at	a time, then the expression
	${}^{n}C_{r+1} + {}^{n}C_{r-1} + 2 \times {}^{n}C_{r}$,	equals		
				[AIEEE 2003]
	(a) $^{n+2}C_r$	(b) $^{n+2}C_{r+1}$	(c) $^{n+1}C_r$	(d) $^{n+1}C_{r+1}$
137.	${}^{5}C_{1} + {}^{5}C_{2} + {}^{5}C_{3} + {}^{5}C_{4} +$	$^{5}C_{5}$ is equal to		[Rajasthan PET 1989]
	(a) 30	(b) 31	(c) 32	(d) 33
138.		en the value of $C(22,n)$		[Rajasthan PET 1993]
	(a) 924	(b) 308	(c) 462	(d) 231
130.	If ${}^{20}C_r = {}^{20}C_{r-10}$, then		(6) 40-	[Rajasthan PET 1988]
139.	(a) 816	(b) 1632	(c) 4896	(d) None of these
140		A.P. then the value of		
140.				[AMU 1989]
1.41	(a) 14 or 7	(b) 11	(c) 17	(d) 8
141.	-		a college, out of which a team of 9 how many ways can the team be formed	
	(a) 36	(b) 108	(c) 99	(d) 165
142.	There are 16 vacand clerks be appointed	cies for clerks in a cei	rtain office, 20 applications are receiv	ved. In how many ways can the
	(a) 3800	(b) 3876	(c) 969	(d) 4845
143.	In how many ways a is always to be taken		ers can be formed out of 8 gentlemen a	nd 4 ladies, if one particular lady
	(a) 140	(b) 330	(c) 560	(d) None of these
144.	How many words ca	n be formed by taking	3 consonants and 2 vowels out of 5 co	nsonants and 4 vowels
	(a) ${}^5C_3 \times {}^4C_2$	(b) $\frac{{}^5C_3 \times {}^4C_2}{5}$	(c) ${}^5C_3 \times {}^4C_3$	(d) $({}^5C_3 \times {}^4C_2)(5)!$
145.	A male and a female ways can the selecti		an institution. If 10 ladies and 15 gent	lemen apply, then in how many
	(a) 125	(b) 145	(c) 150	(d) None of these
146.			everybody else. The total number of	
	number of persons i	n the room is		
	(a) 11	(b) 12	(c) 13	(d) 14
147.	There are 9 chairs in chair. In how many		persons are to be seated, out of which	h one is guest with one specific
	(a) 6720	(b) 60480	(c) 30	(d) 346
148.		-	h student of a class sends greeting car er of greeting cards exchanged by the s	
	(a) $^{20}C_2$	(b) $2.^{20}C_2$	(c) $2.^{20} P_2$	(d) None of these
149.			a time to the Zoological gardens, as oft The number of times he will go to the	
	(a) 336	(b) 112	(c) 56	(d) None of these
150.			balls be drawn from a bag containing 1	

(d) 2(15!)

(d) None of these

(d) None of these

[EAMCET 1991; Pb. CET 2000]

${}^{n}C_{2} = 44:3$, then for which of the state of the		(d) $r = 5$
3 (b) $r = 4$ $C_r + \dots + {}^rC_r =$ C_r (b) ${}^{n+1}C_{r+1}$ ution set of ${}^{10}C_{x-1} > 2$. ${}^{10}C_x$ is 2, 3} (b) {4, 5, 6} $C_r = \frac{1}{2}$ (b) $C_r = \frac{1}{2}$ (c) $C_r = \frac{1}{2}$ (d) $C_r = \frac{1}{2}$ (e) $C_r = \frac{1}{2}$ (f) $C_r =$	(c) $r=6$ (c) $^{n+2}C_r$ (c) $\{8, 9, 10\}$	(d) $r=5$ [AMU 2002] (d) 2^n (d) $\{9, 10, 11\}$
$C_r + \dots + {}^r C_r =$ C_r (b) ${}^{n+1} C_{r+1}$ ution set of ${}^{10} C_{x-1} > 2$. ${}^{10} C_x$ is 2, 3} (b) $\{4, 5, 6\}$ $C_n = C_n$ (b) ${}^{n+m+2} C_n$ $C_n = C_n$ $C_n = C_n$ $C_n = C_n$	(c) $^{n+2}C_r$ (c) $\{8, 9, 10\}$	[AMU 2002] (d) 2 ⁿ (d) {9, 10, 11}
Cr (b) $^{n+1}C_{r+1}$ ution set of $^{10}C_{x-1} > 2$. $^{10}C_x$ is 2, 3} (b) {4, 5, 6} $_n =$ (b) $^{n+m+2}C_n$ (c) $^{n+m+2}C_n$ (c) $^{n+m+2}C_n$ (d) $^{n+m+2}C_n$ (e) $^{n+m+2}C_n$ (f) $^{n+m+2}C_n$	(c) {8, 9, 10}	(d) 2 ⁿ (d) {9, 10, 11}
ution set of ${}^{10}C_{x-1} > 2$. ${}^{10}C_x$ is 2, 3} (b) {4, 5, 6} ${}^{n} = $ (b) ${}^{n+m+2}C_n$ ${}^{n} = $ (c) ${}^{n+m+2}C_n$ ${}^{n} = $ (d) ${}^{n+m+2}C_n$	(c) {8, 9, 10}	(d) {9, 10, 11}
(a) $\{2, 3\}$ (b) $\{4, 5, 6\}$	(c) {8, 9, 10}	
$c_n = \frac{1}{C_{n+1}} C_{n+1}$ (b) $c_n = \frac{1}{C_n} C_n$ (b) $c_2 = \frac{1}{C_n} C_n$ (b) $c_2 = \frac{1}{C_n} C_n$		
C_{n+1} (b) C_n	(c) $^{n+m+3}C_{n-1}$	(d) None of these
C_2 , then ${}^{\alpha}C_2$ is equal to	(c) $^{n+m+3}C_{n-1}$	(d) None of these
C_4 (b) $^{m-1}C_4$		
	(c) $3^{m+2}C_4$	(d) $3^{m+1}C_4$
$\sum_{j=1}^{4} {}^{18-j}C_3$ is equal to		
(b) $^{18}C_4$	(c) $^{14}C_7$	(d) None of these
$\sum_{r=0}^{n} \frac{1}{{}^{n}C_{r}} \text{ then } \sum_{r=0}^{n} \frac{r}{{}^{n}C_{r}} \text{ equals}$		[IIT 1998]
$1)a_n$ (b) na_n	(c) $\frac{1}{2}na_n$	(d) None of these
		n played one match with each other. The [West Bengal JEE 1992; Kurukshetra CEE
(b) 18	(c) 9	(d) 13
_		number of ways in which it can be done
(b) 3!7!	(c) $^{10}P_3.7!$	(d) None of these
nber of times the digit 5 will b	e written when listing the integers	s from 1 to 1000 is
(b) 272	(c) 300	(d) None of these
		., 200. The number of factors out of the
	(b) 18 sons, amongst whom are A, B its to speak before B and B wa (b) 3!7! inber of times the digit 5 will b (b) 272 itible two factors products are	(b) 18 (c) 9 sons, amongst whom are A, B and C to speak at a function. The ats to speak before B and B wants to speak before C is (b) 3!7! (c) 10 P ₃ .7! The ats to speak before C is the a

(c) ${}^{18}C_9$

(c) 15!

(c) 208

151. There are 15 persons in a party and each person shake hand with another, then total number of hand shakes is [Rajast

153. In a cricket championship there are 36 matches. The number of teams if each plays one match with other are [Karnata

152. A fruit basket contains 4 oranges, 5 apples and 6 mangoes. The number of ways person make selection of fruits

(a) ${}^8C_5 \times {}^{10}C_4$

(b) ${}^{10}C_5 \times {}^8C_4$

(b) $^{15}C_{2}$

from among the fruits in the basket is

232 Permutations and Combinations (a) 5040 (b) 7180 (c) 8150 (d) None of these 165. A car will hold 2 in the front seat and 1 in the rear seat. If among 6 persons 2 can drive, then the number of ways in which the car can be filled is (a) 10 (c) 30 (d) None of these **166.** The expression $^{n+1}C_2 + 2(^2C_2 + ^3C_2 + + ^nC_2)$ can be reduced to (a) $\frac{n(n+1)}{2}$ (b) $\frac{n(n-1)}{2}$ (c) $\frac{n(n+1)(2n+1)}{6}$ (d) $\frac{n(2n+1)}{3}$ **167.** The value of $({}^{7}C_{0} + {}^{7}C_{1}) + ({}^{7}C_{1} + {}^{7}C_{2}) + \dots + ({}^{7}C_{6} + {}^{7}C_{7})$ is [AMU 1990, 92] (b) $2^8 - 2$ (c) $2^8 - 1$ (d) 2^8 **168.** The expression ${}^{n}C_{r} + 4.{}^{n}C_{r-1} + 6.{}^{n}C_{r-2} + 4.{}^{n}C_{r-3} + {}^{n}C_{r-4}$ equals [AMU 1993, 91] (b) $2^{n+4}C_{r-1}$ (d) $11.^{n}C_{r}$ Number of Combinations with Repetition and All possible Selections Basic Level 169. Ramesh has 6 friends. In how many ways can he invite one or more of them at a dinner (b) 62 (c) 63170. Out of 10 white, 9 black and 7 red balls, the number of ways in which selection of one or more balls can be made, is (a) 881 (b) 891 (c) 879 (d) 892 171. Out of 6 books, in how many ways can a set of one or more books be chosen [MP PET 1984] (b) 63 (c) 62 (d) 65 172. In an examination there are three multiple choice questions and each question has 4 choices. Number of ways in which a student can fail to get all answers correct, is [Pb. CET 1990; UPSEAT 2001] (a) 11 (b) 12 (c) 27 173. The total number of different combinations of one or more letters which can be made from the letters of the word 'MISSISSIPPI' is (b) 148 (c) 149 (d) None of these 174. The total number of ways of selecting six coins out of 20 one rupee coins, 10 fifty paise coins and 7 twenty five paise coins is (c) ${}^{37}C_6$ (a) 28 (d) None of these (b) 56 Advance Level 175. In an election there are 8 candidates, out of which 5 are to be chosen. If a voter may vote for any number of candidates but not greater then the number to be chosen, then in how many ways can a voter vote

(c) 8 (d) 6 177. The number of ways of dividing 52 cards amongst four players so that three players have 17 cards each and the fourth player just one card, is

176. In an election the number of candidates is 1 greater than the persons to be elected. If a voter can vote in 254

(b) 52!

ways, then the number of candidates is

(c) $\frac{52!}{17!}$

(c) 218

(d) None of these

			1 01111	acacione and comemacione =35		
178.	more than 32 tee	-	-	without a tooth. Also no person has er only the positioning of the teeth		
	(a) 2^{32}	(b) $(32)^2 - 1$	(c) $2^{32}-1$	(d) 2^{32-1}		
179.		ays in which four letters of th				
_, 5.				[Kurukshetra CEE 1996; Pb. CET 1995]		
	(a) 136	(b) 192	(c) 1680	(d) 2454		
180.		itted to select at least one and vays in which he can select co		ction of $2n+1$ (distinct) coins. If the		
	(a) 4	(b) 8	(c) 16	(d) 32		
181.	The total number	of ways of selecting five lette	ers from the letters of the wor	rd 'INDEPENDENT' is		
	(a) 70	(b) 3320	(c) 120	(d) None of these		
182.	There are n different books and p copies of each in a library. The number of ways in which one or more book can be selected is					
	(a) $p^n + 1$	(b) $(p+1)^n - 1$	(c) $(p+1)^n - p$	(d) p^n		
		Conditio	onal Combinations Deran	gement, Division into groups		
		Contaction	rati compilations, Deruit	gement, Division into groups		
			Basic Level			
183.	In how many wa together	ays can 21 English and 19 Hi	ndi books be placed in a ro	ow so that no two Hindi books are		
	(a) 1540	(b) 1450	(c) 1504	(d) 1405		
184.	The number of w contains more that	-	lls can be distributed among	ten identical boxes such that no box		
	(a) 10!	(b) $\frac{10!}{5!}$	(c) $\frac{10!}{(5!)^2}$	(d) None of these		
185.	In how many way	ys can two balls of the same co	olour be selected out of 4 blac	ck and 3 white balls		
	(a) 5	(b) 6	(c) 9	(d) 8		
186.	Ten persons are a next to each other	_	r of ways of selecting four pe	ersons so that no two persons sitting		
	(a) 34	(b) 36	(c) 35	(d) None of these		
187.	_	et team there are 16 players in these, can be chosen, so as to	_	2 wicket-keepers. How many team one wicket-keeper		
	(a) 650	(b) 720	(c) 750	(d) 800		
188.		f words which can be formed least one vowel, is	out of the letters a, b, c, d,	e, f taken 3 together such that each		
	(a) 72	(b) 48	(c) 96	(d) None of these		
189.	Out of 6 boys and have a majority o		e formed. In how many ways	s can this be done if the group is to		
				[MP PET 1994		
	(a) 120	(b) 90	(c) 100	(d) 80		
190.		taining 10 distinct elements.				
	(a) 10!	(b) 10 ¹⁰	(c) 2 ¹⁰	(d) $2^{10} - 1$		
191.	friends, if two of	the friends will not attend the	e party together is	ey may be selected from among ter		
	(a) 112	(b) 140	(c) 164	(d) None of these		
192.	The number of w	ays in which <i>mn</i> students can	be distributed equally among	n sections is		

	(a) $(mn)^n$	(b) $\frac{(mn)!}{(m!)^n}$	(c) $\frac{mn}{m!}$	(d) $\frac{mn}{m!n!}$
193.	There are 3 candidate votes can be given is	s for a post and one is to	be selected by the votes of 7	men. The number of ways in which
	(a) 7^3	(b) 3^7	(c) ${}^{7}C_{3}$	(d) None of these
194.	In how many ways car	n 10 balls be divided betwe	een two boys, one receiving	two and the other eight balls
	(a) 45	(b) 75	(c) 90	(d) None of these
195.	The number of ways number of apples, is	in which thirty five apple	es can be distributed amon	g 3 boys so that each can have any
	(a) 1332	(b) 666	(c) 333	(d) None of these
196.	The number of ways least one prize is	in which six different pr	izes can be distributed amo	ng three children each receiving at
	(a) 270	(b) 540	(c) 1080	[JMIEEE 1997] (d) 2160
		Ad	lvance Level	
197.		_	person when none of them go	
400	(a) 70	(b) 35	(c) 64	(d) 192
198.	he does not get two ca	ards of the same suit and s	ame denomination is	a man can be dealt 26 cards so that
	(a) ${}^{52}C_{26}.2^{26}$	(b) $^{104}C_{26}$	(c) $2.^{52}C_{26}$	(d) None of these
199.	Choose the correct nu of books	mber of ways in which 15	different books can be divid	ded into five heaps of equal number
				[MP PET 1982]
	(a) $\frac{15!}{5!(3!)^5}$	(b) $\frac{15!}{(3!)^5}$	(c) $^{15}C_5$	(d) $^{15}P_5$
200.	participants. The num	ber of games that the mer		ant played two games with the other s proved to exceed by 66 the number s
	(a) 6	(b) 11	(c) 13	(d) None of these
201.		colours are to be placed in we place the balls so tha		zes. Each box can hold all five balls.
	(a) 50	(b) 100	(c) 150	(d) 200
202.		nite balls, three black balls t one black ball is to be in		many ways can three balls be drawn
	(a) 64	(b) 45	(c) 46	(d) None of these
203.	In how many ways car least one women	n a committee be formed	of 5 members from 6 men a	nd 4 women if the committee has at
	(2) 196	(b) 246	(a) 252	[Rajasthan PET 1987; IIT 1968]
204	(a) 186 Six '+' and four '-' sig	(b) 246	(c) 252	(d) None of these signs come together, then the total
204.	number of ways are	5113 are to placed in a stre	argine fine 30 that no two	[IIT 1988]
	(a) 15	(b) 18	(c) 35	(d) 42
205.		s that can be made from 5 n and 1 blue ball is to be i		ferent blue balls and 3 different red
	(a) 3700	(b) 3720	(c) 4340	(d) None of these
206.	In an election there as in how many ways car		vacancies. A voter can vote	maximum to three candidates, then

			1 Clinut	ations and Combinations 235
207.				(d) 25 5 women have to be included in a ority and men are in majority are
208.		(b) 2702, 3360 rs in which 10 persons can persons will not go in the s	_	(d) 2702, 1008 may be 5 on each boat, supposing
	(a) $\frac{1}{2}(^{10}C_5)$	(b) $2(^{8}C_{4})$	(c) $\frac{1}{2}(^{8}C_{5})$	(d) None of these
209.	_		e the capacity to accommodate must not be included in the tea	only 5. In how many ways can we
	(a) ${}^{8}P_{5}$	(b) $^{7}P_{5}$	(c) ${}^{7}C_{3}(4!)$	(d) ${}^{7}C_{3}(5!)$
210.	The number of way even numbers is	s in which we can select th	nree numbers from 1 to 30 so a	as to exclude every selection of all
	(a) 4060	(b) 3605	(c) 455	(d) None of these
211.	In a steamer there a to be shipped. They		d there are horses, cows and ca	alves (not less than 12 each) ready
	(a) $3^{12}-1$	(b) 3^{12}	(c) $(12)^3 - 1$	(d) None of these
212.	There are $(n+1)$ wh	nite and $(n+1)$ black balls ϵ	each set numbered 1 to $n+1$.	The number of ways in which the
	balls can be arrange	ed in a row so that the adjac	cent balls are of different colou	rs is
	(a) $(2n+2)!$	(b) $(2n+2)! \times 2$	(c) $(n+1)! \times 2$	(d) $2\{(n+1)!\}^2$
213.			ning, swimming and riding. Ho alues one for running, 2 for swi	w many prize lists could be made mming and 3 for riding
	(a) $16^3 \times 15 \times 14^2$	(b) $16^3 \times 15^2 \times 14$	(c) $16 \times 15 \times 14$	(d) None of these
214.	•	s in which a committee of ains at least 3 ladies is		a 8 gentlemen and 4 ladies so that
	(a) 252	(b) 672	(c) 444	(d) 420
215.		_		e must choose at least 4 from the
	=	The number of choices ava		(1) - (6
216	(a) 140	(b) 196	(c) 280	(d) 346
210.		_	(c) 3^8	t none of the boxes is empty is [AIEEE
	(a) 8C_3	(b) 21	* *	(d) 5
	play a match again each team will play where each team w where they will play (a) 54	st each other. From each g y against others once. Fou vill play against the others y the best of three matches. (b) 53	group 3 top teams will qualify or top teams of this round will sonce. Two top teams of this or The minimum number of match (c) 38	o groups. Teams of each group will for the next round. In this round I qualify for the semifinal round, round will go to the final round, thes in the next World Cup will be (d) None of these
218.	Let $a = \hat{i} + \hat{j} + \hat{k}$ and	r be a variable vector su	ch that $\hat{r}.\hat{i},\hat{r}.\hat{j}$ and $\hat{r}.\hat{k}$ are pos-	itive integers. If $\vec{r} \cdot \vec{a} \le 12$ then the
	number of values of	\vec{r} is		
	(a) $^{12}C_9 - 1$	(b) $^{12}C_3$	(c) $^{12}C_9$	(d) None of these
219.			His wife also has 7 relatives, 3 at 3 of them are the man's relat	women and 4 men. In how many tives and 3 his wife's
	(a) 485		(b) 484	
	(c) 468		(d) None of these	
220.	consists of the same	e number of persons. The ni	umber of friends he should invi	
	(a) 5	(b) 10	(c) 8	(d) None of these
				Geometrical Problems

221.		es that can be formed by 5 poi	-	s on a parallel line is							
	(a) ${}^{8}C_{3}$	(b) ${}^{8}C_{3} - {}^{5}C_{3}$	(c) ${}^{8}C_{3} - {}^{5}C_{3} - 1$	(d) None of these							
222.		r of points of intersection of 2	o straight lines will be								
	(a) 190	(b) 220	(c) 200	(d) None of these							
223.		agonals, then the number of it		[MP PET 1998; Pb. CET 1996]							
224	(a) 7	(b) 11 an be drawn by means of 9 no	(c) 8	(d) None of these							
224.	(a) 84	(b) 72	(c) 144	(d) 126							
225.		als in a polygon of m sides is		(d) 120)2; MP PET 1999; UPSEAT 1999; DCE 1999]							
	(a) $\frac{-m(m-5)}{2!}$	(b) $\frac{1}{2!}m(m-1)$	(c) $\frac{-m(m-3)}{2!}$	(d) $\frac{1}{2!}m(m-2)$							
226.	In a plane there are 1 joining these points as	_	ollinear, then the number	of triangles that can be formed by							
				[Rajasthan PET 1990]							
	(a) 60	(b) 116	(c) 120	(d) None of these							
227.	-	a plane out of which 6 are co	ollinear, then how many	lines can be drawn by joining these							
	points			[Rajasthan PET 1986; MP PET 1987]							
	(a) 106	(b) 105	(c) 60	(d) 55							
228.	The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is										
	1		[West	Bengal JEE 1993; Rajasthan PET 2001]							
	(a) 6	(b) 18	(c) 12	(d) 9							
229.		number of points of intersecti									
	(a) 32	(b) 64	(c) 76	(d) 104							
230.	=	n a plane, no three of which an es that can be formed by joini		pt 8 which are all in a straight line.							
	(a) 504	(b) 552	(c) 560	(d) 1120							
231.	Let T_n denote the number of triangles which can be formed using the vertices of a regular polygon of n sides. If										
	$T_{n+1} - T_n = 21$ then <i>n</i> eq	uals									
	(a) 5	(b) 7	(c) 6	(d) 4							
232.	Out of 10 points in a g (a) 100	plane 6 are in a straight line. T (b) 150	The number of triangles f (c) 120	formed by joining these points are [Rajast (d) None of these							
233.	The number of straigh	nt lines that can be formed by	joining 20 points no thre	ee of which are in the same straight							
	line except 4 of them which are in the same line										
	(a) 183	(b) 186	(c) 197	(d) 185							
234.	=	oints on the circumference of es is equal to the number of po		pentagons that can be formed with e value of n is							
	(a) 7	(b) 8	(c) 15	(d) 30							
235.	Given six line segmen is [AMU 2002]	ts of lengths 2, 3, 4, 5, 6, 7 un	its, the number of triang	le that can be formed by these lines							
	(a) ${}^{6}C_{3}-7$	(b) ${}^{6}C_{3}-6$	(c) ${}^6C_3 - 5$	(d) ${}^{6}C_{3}-4$							
236.	-	onals, then the number of its s		•							
	(a) 8	(b) 9	(c) 10	(d) 11							
237.				the number of parallelograms thus							

						9,
	(a) 20	(b) 60		(c) 101		[Kurukshetra CEE 1999] (d) 126
238.	The maximum numbe		ection of 8 cir			
	(a) 16	(b) 24		(c) 28		(d) 56
239.	-	=	_		=	s are concyclic. The number of
	different circles that of	_	h at least 3 p		e points is	
	(a) 116	(b) 120		(c) 117		(d) None of these
			Advance	Level		
240.	The sides AB, BC, CA triangles that can be o		_	-	and 5 points ly	ring on them. The number of
	(a) 205	(b) 220	•	(c) 210		(d) None of these
241.	Six 'x's have to be pla different ways can thi		of the figure s	such that ead	ch row contain	s at least one ×. In how many
	(a) 28	(b) 27		(c) 26		(d) None of these
242.	The straight lines I_1 ,	I_2, I_3 are parallel and	d lie in the sa	ıme plane. A	total number	of m points are taken on I_1 , n
	points on I_2 , k poin	ts on I_3 . The maxi	mum numbe	r of triangle	es formed with	vertices at these points are
	[IIT 1993; UPSEAT	2001]				
	(a) $^{m+n+k}C_3$	(b) $^{m+n+k}C_3 - ^mC_3$	$_{3}^{n}C_{3}^{n}-^{k}C_{3}^{n}$	(c) ${}^{m}C_{3} +$	${}^{n}C_{3} + {}^{k}C_{3}$	(d) None of these
243.	Six points in a plane	e be joined in all p	ossible ways	by indefini	te straight line	es, and if no two of them be
			-	-	_	otion of the original 6 points).
	The number of distinct	t points of intersect	ion is equal t	0		
	(a) 105	(b) 45		(c) 51		(d) None of these
244.		_	_			ne of them being the point A.
	the number of triangle	_		ien (1) A is (excluded (11) A	is included. Then the ratio of
	_			m + n -	- 2	
	(a) $\frac{m+n-2}{m+n}$	(b) $\frac{m+n-2}{2}$		(c) $\frac{m+n}{m+n}$	2 + 2	(d) None of these
45.	There are n straight	lines in a plane, no	two of which	are paralle	and no three	pass through the same point.
	Their points of interse	_		_		
	(a) $\frac{n(n-1)(n-2)}{8}$	(b) $\frac{n(n-1)(n-2)}{6}$	(n-3)	(c) $\frac{n(n-1)}{n}$	$\frac{(n-2)(n-3)}{8}$	(d) None of these
246.	-	-			_	arallelograms thus formed is [Ka
40.	(a) $\binom{m}{2}^2$	(b) $\binom{m+1}{2}^2$	res paramer co	(c) $\binom{m+2}{2} C_2$	=	(d) None of these
	2,	2,	andich 40 ma		•	• •
47•	_	es pass through one	point, no li	ne passes th	rough both po	I 11 pass through the point B . ints A and B and no two are
	(a) 535	(b) 601		(c) 728	-	(d) None of these
48.		a plane of which p p	oints are coll		nany lines can	be formed from these points[Kar
	(a) $^{(n-p)}C_2$	(b) ${}^{n}C_{2} - {}^{p}C_{2}$		(c) ${}^{n}C_{2} - {}^{p}$	-	(d) ${}^{n}C_{2} - {}^{p}C_{2} - 1$
249.	ABCD is a convex one	adrilateral. 3. 4. 5 a	nd 6 points a	· · ·	-	, BC, CD and DA respectively.
-491	The number of triang	les with vertices on o		s is	the class HD	
	(a) 270	(b) 220		(c) 282		(d) 342
250.	The number of triangle	les that can be forme	ed joining the	angular poi	nts of decagon,	is

(a) 30 (c) 90 (d) 120 (b) 45 251. The number of triangles whose vertices are at the vertices of an octagon but none of whose sides happen to come from the sides of the octagon is (a) 24 (b) 52 (c) 48(d) 16 252. In a polygon no three diagonals are concurrent. If the total number of points of intersection of diagonals interior to the polygon be 70, then the number of diagonals of the polygon is (b) 28 (d) None of these (a) 20 (c) 8

253. There are n(>2) points in each of two parallel lines. Every point on one line is joined to every point on the other line by a line segment drawn within the lines. The number of points (between the lines) in which these segments intersect is

(a)
$${}^{2n}C_2 - 2.{}^{n}C_1 + 2$$
 (b) ${}^{2n}C_2 - 2.{}^{n}C_2$ (c) ${}^{n}C_2 \times {}^{n}C_2$

254. *m* parallel lines in a plane are intersected by a family of *n* parallel lines. The total number of parallelograms so formed is

(a)
$$\frac{(m-1)(n-1)}{4}$$
 (b) $\frac{mn}{4}$ (c) $\frac{m(m-1)n(n-1)}{2}$ (d) $\frac{mn(m-1)(n-1)}{4}$

255. There are three coplanar parallel lines. If any p points are taken on each of the lines, the maximum number of triangles with vertices at these points

(a)
$$3p^2(p-1)+1$$
 (b) $3p^2(p-1)$ (c) $p^2(4p-3)$ (d) None of these

			Multinomial Theo	rem, Number of Divi	sors and	d Miscellaneous
			Basic Level			
256.	If ${}^{n}P_{r} = 720.{}^{n}C_{r}$, then r	is equal to				[Kerala (Engg.) 2001]
	(a) 6	(b) 5	(c)	4	(d) 7	
257.	If ${}^{n}P_{4} = 24. {}^{n}C_{5}$, then the	value of n is			I	Karnataka CET 2001]
	(a) 10	(b) 15	(c)	9	(d) 5	
258.	If ${}^{n}P_{3} + {}^{n}C_{n-2} = 14 n$, then	n =				
	(a) 5	(b) 6	(c)	8	(d) 10	
259.	If ${}^{n}P_{4} = 30 {}^{n}C_{5}$, then $n =$					[MP PET 1995]
	(a) 6	(b) 7	(c)	8	(d) 9	
260.	If ${}^{n}P_{r} = 840, {}^{n}C_{r} = 35$, then	n is equal to				[EAMCET 1986]
	(a) 1	(p) 3	(c)	5	(d) 7	
261.	If ${}^{n}C_{r} = {}^{n}C_{r-1}$ and ${}^{n}P_{r} = {}^{n}P_{r}$	P_{r+1} , then the v	alue of <i>n</i> is			
	(a) 3	(b) 4	(c)	2	(d) 5	

262. ${}^{n}P_{r} \div {}^{n}C_{r} =$ (c) $\frac{1}{r!}$ (a) n! (b) (n-r)!(d) r!

[MP PET 1984]

263. If a, b, c, d, e are prime integers, then the number of divisors of ab^2c^2de excluding 1 as a factor, is

(c) 36 (b) 72 (d) 71

264. The number of proper divisors of 1800 which are also divisible by 10, is (a) 18 (b) 34 (c) 27 (d) None of these

265. The number of odd proper divisors of $3^{p}.6^{m}.21^{n}$ is

(a) (p+1)(m+1)(n+1)-2 (b) (p+m+n+1)(n+1)-1(d) None of these (c) (p+1)(m+1)(n+1)-1

266. The number of proper divisors of $2^{p}.6^{q}.15^{r}$ is

	(a) $(p+q+1)(q+r+1)(r+q+1)$	+1)	(b) $(p+q+1)(q+r+1)(r+1)-2$									
	(c) $(p+q)(q+r)r-2$		(d) None of these									
267.	The number of even proper divisors of 1008 is											
	(a) 23	(b) 24	(c) 22	(d) None of these								
		Advance	2 Level									
268.	The number of number	s of 4 digits which are not divis	sible by 5 are									
	(a) 7200	(b) 3600	(c) 14400	(d) 1800								
269.	A set contains $(2n+1)$ elements. The number of subsets of the set which contain at most n elements is											
	(a) 2^n	(b) 2^{n+1}	(c) 2^{n-1}	(d) 2^{2n}								
270.	The number of ways in to any question is	ı which an examiner can assign	ign 30 marks to 8 questions, awarding not less than 2 m									
	(a) $^{21}C_7$	(b) $^{30}C_{16}$	(c) $^{21}C_{16}$	(d) None of these								
271.	In a certain test a_i st	idents gave wrong answers to	o at least i questions where $i=1,2,3,k$. No student gav									
	more than k wrong answers. The total numbers of wrong answers given is											
	(a) $a_1 + 2a_2 + 3a_3 + \dots + k$	ca_k	(b) $a_1 + a_2 + a_3 + \dots + a_k$									
	(c) Zero		(d) None of these									
272.	Number of ways of se	election of 8 letters from 24	letters of which 8 are a,	8 are b and the rest unlike								
is gi	ven by											
	(a) 2^7	(b) 8.2^8	(c) 10.2^7	(d) None of these								
273.	The number of ordered	triplets of positive integers wh	nich are solutions of the equa	tion $x + y + z = 100$ is								
	(a) 6005	(b) 4851	(c) 5081	(d) None of these								
274.		n examination in which there ways in which one can get 2 <i>m</i> m		imum of <i>m</i> marks from each								
	(a) $^{2m+3}C_3$	(b) $\frac{1}{3}(m+1)(2m^2+4m+1)$	(c) $\frac{1}{3}(m+1)(2m^2+4m+3)$	(d) None of these								
275.	The sum $\sum_{i=0}^{m} {10 \choose i} {20 \choose m-i}$	$, \left(\text{where } \binom{p}{q} = 0 \text{ if } p < q \right), \text{ is maxim}$	num when <i>m</i> is	[IIT Screening 2002]								
	(a) 5	(b) 15	(c) 10	(d) 20								
276.	The number of divisors	s of the form $4n+2(n \ge 0)$ of the	integer 240 is									
	(a) 4	(b) 8	(c) 10	(d) 3								

Permutations and

Assignment (Basic and Advance Level)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
С	С	d	a	b	d	a	d	d	a	a	d	d	d	a	b	С	a	a	a
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
b	a	с	b	С	c	a	a	a	b	b	с	b	a	c	b	a	с	c	d
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
С	d	d	b	b	b	a	c	a	a	С	a	a	b	c	С	b	a	b	b
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
С	b	a	a	С	С	a	b	b	d	С	b	a	С	a	b	b	С	d	b
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
С	a	a	c	c	b	d	b	a	a	c	a	С	С	d	b	d	a	d	c
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
b	С	С	a	d	b	b	d	a	b	a	a	a	С	b	b	a	С	b	b
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
С	d	a	b	d	a	d	b	a	c	d	С	d	a	a	b	b	d	a	a
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
d	d	b	d	c	b	a	b	с	b	b	b	b	b	b	С	a	d	b	С
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
b	a	С	b	b	c	b	a	с	c	b	d	С	a	c	С	a	С	d	a
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
a	b	a	c	c	c	b	c	с	b	b	b	b	С	b	b	b	a	a	c
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
С	a	b	c	b	d	d	b	d	b	b	d	b	a	b	b	b	b,c	a	b
221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
с	a	b	a	c	b	a	b	d	a	b	a	d	b	b	с	b	d	c	a
241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260
С	b	с	a	С	С	a	С	d	d	d	a	c	d	c	a	С	a	С	d
261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276				
a	d	d	а	b	b	а	а	d	а	b	С	b	С	b	а				