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Matrices and
Chapter Determinants

“Mathematics is the music of reason”
- Sylvester

e
B9G6 73U

7.1 Introduction

The beginnings of matrices and determinants go back to the second century BC although traces
can be seen back to the fourth century BC. However, it was not until near the end of the seventeenth
century that the ideas reappeared and development really got underway. It is not surprising that
the beginnings of matrices and determinants should arise through the study of systems of linear
equations. The Babylonians studied problems which lead to simultaneous linear equations and some
of these are preserved in clay tablets which survive till now.

The evolution of the theory of ‘matrices’ is the result of ,..P‘- —
attempts to obtain compact and simple methods for solving |
systems of linear equations. It also began with the study of

@ transformations of geometric objects. In 1850, it was James "I |
Joseph Sylvester an English Mathematician and lawyer,
coined the word ‘Matrix’ (originally from Latin: Ma ter |
means  Mother — Collin’s Dictionary). Matrices are now
one of the most powerful tools in mathematics.

Generally, a matrix is nothing but a rectangular array iy
of objects. These matrices can be visualised in day-to-day
applications where we use matrices to represent a military parade or a school assembly or vegetation.

The term ‘determlnant’ was first coined by Carl F Gauss in Disquisitiones arithmeticae

; B8 (1801) while studying quadratic forms. But the
B concept is not the same as that of modern day
determinant. In the same work Gauss laid out the
* coefficients of his quadratic forms in rectangular
arrays where he described matrix multiplication.

| It was Cauchy (in 1812)
M who used determinant in its
v " modern sense and studied it in

detail. He reproved the earlier results and gave new results of his own on minors
and adjoints. It was Arthur Cayley whose major contribution was in developing
the algebra of matrices and also published the theory of determinants in 1841.
In that paper he used two vertical lines on either side of the array to denote the
determinant, a notation which has now become standard. In 1858, he published

Sylvester
(1814 - 1897)

1 Matrices and Determinants
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Memoir on the theory of matrices which was remarkable for containing the first abstract definition
of a matrix. He showed that the coefficient arrays studied earlier for quadratic forms and for linear
transformations were special cases of his general concept. They simplify our work to a great extent
when compared with other straight forward methods which would involve tedious computation.
The mathematicians James Joseph Sylvester (1814 — 1897), William Rowan Hamilton (1805 —
1865), and Arthur Cayley (1821 — 1895) played important roles in the development of matrix theory.
English mathematician Cullis was the first to use modern bracket notation for matrices in 1913.
The knowledge of matrices is absolutely necessary not only within the branches of mathematics but
also in other areas of science, genetics, economics, sociology, modern psychology and industrial
management.

Matrices are also useful for representing coefficients in systems of linear equations. Matrix
notations and operations are used in electronic spreadsheet programs on computers, which in turn are
used in different areas of business like budgeting, sales projection, cost estimation, and in science, for
analyzing the results of an experiment etc.

Interestingly, many geometric operations such as magnification, rotation and reflection through
a plane can also be represented mathematically by matrices. Economists use matrices for social
accounting, input-output tables and in the study of inter-industry economics. Matrices are also
used in communication theory and network analysis in electrical engineering. They are also used in

Cryptography.
In this chapter, we now first discuss matrices and their various properties. Then we continue to

study determinants, basic properties, minors and their cofactors. Here we now restrict the discussion
up to determinants of order 3 only.

@j Learning Objectives

On completion of this chapter, the students are expected to

¢ visualise difficult problems in a simple manner in terms of matrices.

o understand different types of matrices and algebra of matrices.

e compute determinant values through expansion and using properties of determinants.

o apply the concepts of matrices and determinants to find the area of a triangle and collinearity
of three points.

7.2 Matrices

A matrix is a rectangular array or arrangement of entries or elements displayed in rows and
columns put within a square bracket [ ].

In general, the entries of a matrix may be real or complex numbers or functions of one variable
(such as polynomials, trigonometric functions or a combination of them) or more variables or any
other object. Usually, matrices are denoted by capital letters 4, B, C, ... etc. In this chapter the entries
of matrices are restricted to either real numbers or real valued functions on real variables.

General form of a matrix
If a matrix 4 has m rows and »n columns, then it is written as

A=[a;] 1<i<m,0<j<n.

mxn %

XI - Mathematics 2
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That is,
n columns
Column 1 Column 2 Column;  Column n
by f '
_all ap, - 4y al,,_<— Row 1
Ay Ay o Oy a,, |« Row 2
: i m TOWS
A=]a, =
[ 7 ]mxn ail ai2 e aij e am <« ROW l
_aml amZ cee amj oo amn | <« ROW m
Note that m and n are positive integers.
The following are some examples of matrices :
— 7 -9 12 0 | R
2 0 -1 o 1
x ) 34 = 2
A=|1 4 5|, B=|sim— 2 x 4 |,and C= 2 .
9 -8 6 4 e -3 4
X
cos— 1 3 -6
|72 | _\/g 2 a |

In a matrix, the horizontal lines of elements are known as rows and the vertical lines of elements
are known as columns. Thus 4 has 3 rows and 3 columns, B has 3 rows and 4 columns, and C has 4
rows and 3 columns.

Definition 7.1
If a matrix 4 has m rows and n columns then the order or size of the matrix 4 is defined to be
m x n (read as m by n).

The objects a,,, a,,, ..., a,, are called elements or entries of the matrix 4 =[a,],,, - The element

mxn *

a; is common to i row and j* column and is called (7, /)" element of 4. Observe that the i row and

alj

J™ column of 4 are 1xn and mx1 matrices respectively and are given by [a, a,, ... a,] and

a

mj
We shall now visualize the representation and construction of matrices for simplifying day-to-day

problems.

Illustration 7.1

Consider the marks scored by a student in different subjects and in different terminal examinations.
They are exhibited in a tabular form as given below :

Tamil English Mathematics Science Social Science
Exam 1 48 71 80 62 55
Exam 2 70 68 91 73 60
Exam 3 77 84 95 82 62

This tabulation represents the above information in the form of matrix. What does the entry in the

third row and second column represent?

Matrices and Determinants
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The above information may be represented in the form of a 3 x 5 matrix 4 as

48 71 80 62 55
A=[70 68 91 73 60|
77 84 95 82 62

The entry 84 common to the third row and the second column in the matrix represents the mark
scored by the student in English Exam 3.

Example 7.1
Suppose that a matrix has 12 elements. What are the possible orders it can have? What if it has
7 elements?
Solution
The number of elements is the product of number of rows and number of columns. Therefore,
we will find all ordered pairs of natural numbers whose product is 12. Thus, all the possible
orders of the matrix are 1x12, 12x1, 2x6, 6x2, 3x4 and 4x3.
Since 7 is prime, the only possible orders of the matrix are 1 x 7 and 7 x 1.

Example 7.2
Construct a 2 x 3 matrix whose (i, /) element is given by

3

al.j:7|2i—3j| (1<i<2, 1<j<3).
Solution

In general, a 2 x 3 matrix is given by 4 =

|: ay Ay :|
BB
By definition of a, , we easily have g, = 7 |12-3= el and other entries of the matrix

3 73
5 B =
o5 s

2 2

A may be computed similarly. Thus, the required matrix 4 is

7.2.1 Types of Matrices

Row, Column, Zero matrices

Definition 7.2
A matrix having only one row is called a row matrix.

Forinstance, 4=[4],,=[1 0 — 1.1 V2 2] is arow matrix. More generally, 4=[q,],, =[],
1s a row matrix of order 1xn.

Definition 7.3
A matrix having only one column is called a column matrix.

XI - Mathematics 4
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x+1
. X . . . .
For instance, [4],,, = 3 1s a column matrix whose entries are real valued functions of real
x

4

variable x. More generally, 4=[q,],., =[a, ], 1s a column matrix of order mx1.

mx1

Definition 7.4

A matrix 4=[a,],,, is said to be a zero matrix or null matrix or void matrix denoted by O if

mxXn

a; =0 forall valuesof 1<i<mand 1< j<n.

0 0 0
0 0 0O
Forinstance, [0], |0 O 0| and |:0 0 0 :|are zero matrices of order 1x1, 3x3 and 2x4
0 0 0

respectively.
A matrix 4 is said to be a non-zero matrix if at least one of the entries of 4 is non-zero.

Square, Diagonal, Unit, Triangular matrices

Definition 7.5
A matrix in which number of rows is equal to the number of columns, is called a square
matrix. That is, a matrix of order n x n is often referred to as a square matrix of order ».

a b c
Forinstance, A=|d ¢ [ | is asquare matrix of order 3.
g h I
(Definition 7.6 A
In a square matrix 4 =[a,],,, of order n, the elements a,;,a,,,4;,...,a,, are called the principal
\_diagonal or simply the diagonal or main diagonal or leading diagonal elements. )
(Definition 7.7 )
\_ A square matrix 4=[q,],,, is called a diagonal matrix if a, =0 whenever i # ;. )

Thus, in a diagonal matrix all the entries except the entries along the main diagonal are zero. For
instance,

(@, 0 0 - 0]
25 0 0 a, 0 - 0
r 0
A=] 0 3 0 ,B:[O }C=[6], andD=| 0 0 a,
0 0 05 : S
0 a,, |

are diagonal matrices of order 3, 2, 1, and n respectively.
Is a square zero matrix, a diagonal matrix?
Definition 7.8

A diagonal matrix whose entries along the principal diagonal are equal is called a
Scalar matrix.

5 Matrices and Determinants
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cif i=j

That is, a square matrix 4=[a )
0if i#j

i Ln 18 said to be a scalar matrix if a; = {

where c is a fixed number. For instance,

V2

¢c 0 - 0]R

0 0
5 0 0 ¢ - O|R
4= 2o ,B:{O 5},C=[\/§]andD:: C S ’

n

0
0
are scalar matrices of order 3, 2, 1, and n respectively.

Observe that any square zero matrix can be considered as a scalar matrix with scalar 0.

Definition 7.9
A square matrix in which all the diagonal entries are 1 and the rest are all zero is called a

unit matrix. Thus, a square matrix 4 =[a,]

o : - Lif i=j
o 18 s2id to be a unit matrixif ¢, =7 = 7.
Oif i#j

We represent the unit matrix of order n as /,. For instance,

Lo o 10 0| R

10 0 1 0|R,
L=01=| . 5=[0 1 0and],=|, :
0 1 ' '

0 0 1|R

are unit matrices of order 1, 2, 3 and n respectively.
Note 7.1
Unit matrix is an example of a scalar matrix.

There are two kinds of triangular matrices namely upper triangular and lower triangular matrices.

Definition 7.10
A square matrix is said to be an upper triangular matrix if all the elements below the main
diagonal are zero.

Thus, the square matrix 4=[a
For instance,

i Lo 18 said to be an upper triangular matrix if a; =0 forall i > ;.

4 3 0 4, a, - 4,
-5 2 0 a, - a,
0 7 38, o 1 and | . " .| areall upper triangular matrices.
0 0 2 Do oo
0 0 0 a
Definition 7.11

A square matrix is said to be a lower triangular matrix if all the elements above the main
diagonal are zero.

More precisely, a square matrix A4=[a is said to be a lower triangular matrix if

ij ]n><n

a; =0 foralli < j. For instance,

XI - Mathematics 6
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a, 0 0
2 0 0 2 0 0 2 0 0
4 1 0f, |4 1 o0, [_9 3}, and 0:21 a:22 .. |are all lower triangular
0 0 O 8 -5 7 ' '
anl anZ ann
matrices.

Definition 7.12

A square matrix which is either upper triangular or lower triangular is called a triangular
matrix.

Observe that a square matrix that is both upper and lower triangular simultaneously will turn out
to be a diagonal matrix.

7.2.2 Equality of Matrices

Definition 7.13

Two matrices 4=[a,] and B =[b,] are equal (written as A = B) if and only if
(i) both A and B are of the same order
(ii) the corresponding entries of A and B are equal. That is, a, = b, for all i and j.

For instance, if

2.5 -1
Y 1 3 |, then we must have x=2.5 ——lu—L andv—E
@ u v ﬁ E ’ ) ’ \/5 5. @

Definition 7.14

Two matrices A and B are called unequal if either of condition (i) or (ii) of Definition 7.13 does
not hold.

4 -3 8 -5
For instance, [O ] # [ 4] as the corresponding entries are not equal. Also

8 0
_ 3 5 -8
0 8 :| # |3 4 |as the orders are not the same.
- 6 7
Example 7.3

. | 3x+4y 6 x=2y 2 6 4
Find x, y, a, and b if = .

at+b 2a-b -3 5 -5 -3
Solution

As the orders of the two matrices are same, they are equal if and only if the corresponding
entries are equal. Thus, by comparing the corresponding elements, we get

3x+4y=2, x-2y=4, a+b=5, and 2a—-b=-5.

Solving these equations, we get x=2, y=-1,a=0, and b=5.

7 Matrices and Determinants
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7.2.3 Algebraic Operations on Matrices
Basic operations on matrices are

(1) multiplication of a matrix by a scalar,
(2) addition/subtraction of two matrices, and
(3) multiplication of two matrices.

There is no concept of dividing a matrix by another matrix and thus, the operation 4 , where 4
and B are matrices, is not defined. B

(1) Multiplication of a matrix by a scalar

Fora given matrix 4=[a,]
for all i and ;.

i ) a b c ka kb ke
For instance, if 4= , then kA4 =
d e f kd ke kf

and a scalar &, we define a new matrix k4 =[b,],,,, where b,y = kaij

mxn

In particular if £ =-1, we obtain —4 =[-a,]
Don’t say — 4 as a negative matrix.

This — A4 is called negative of the matrix A4.

mxn *

(2) Addition and Subtraction of two matrices

If A and B are two matrices of the same order, then their sum denoted by 4 + B, is again a matrix
of same order, obtained by adding the corresponding entries of 4 and B.

More precisely, if 4=[a,] are two matrices, then the sum 4 + B of 4 and B is

a matrix given by

mxn and B = [by ]m><n

A+ B =[c;],., where ¢, =a, +b,foralliand;.

mxXn

Similarly subtraction 4 — B is defined as A—B = A4+(-1)B.
Thatis, A-B=[d,]
all).

Note 7.2
(i) If 4 and B are not of the same order, then 4 + B and A — B are not defined.

where d; =a,—b;, V iandj. (The symbol v denotes for every or for

mxn 2

(i1) The addition and subtraction can be extended to any finite number of matrices.

Example 7.4
Compute 4 + Band 4 — B if

A:[4 5007

-1 0 05

V3 N5 73
:| and B = 1 1
1 = =
3 4
Solution
By the definitions of addition and subtraction of matrices, we have

4+3 245 143 4-3 0 -03
A+B= and 4—B =
0 3 L, 11
3 4 3 4
XI - Mathematics 8
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Example 7.5
Find the sum A + B+ C if 4, B, C are given by

in’ : 0 -1
4o s1n29 1  B= oS 62 0 and C = .
cot"@ 0 —cosec’d 1 -1 0
Solution
By the definition of sum of matrices, we have

in’ 2 - 1 0
A+B+C:[Sln O+cos"@+0 1+0 1]:[ :| '

cot’ @—cosec’d—1 0+1+0 -2 1

Example 7.6
Determine 38 +4C — D if B, C, and D are given by

2 3 0 -1 -2 3 0 4 -1
B: 5 C: 5 D: .
[1 i 5] [—1 0 2} [5 6 —5]

Solution
6 9 0 —4 -8 12 0O 4 1 2 -3 13
3B+4C—-D = 4 + — .
3 -3 15 -4 0 8 -5 -6 5 -6 -9 28

Example 7.7
Simplify :

secd tan@ tan@ secl
sec @ —tan @ .
tan@ secé secd tan@

Solution
If we denote the given expression by 4, then using the scalar multiplication rule, we get

e sec’d  secftand tan’0  tanfsec| |1 O
secOtanf  sec’ @ sectanf  tan’ @ 0 1|
(3) Multiplication of matrices

(Definition 7.15
A matrix A is said to be conformable for multiplication with a matrix B if the number of

\columns of A is equal to the number of rows of B.

That is, if 4=[a,],,, and B=[b,]
B is denoted by 4B and its order is m x p.

are given two matrices, then the product of matrices 4 and

mxn nxp

The order of AB is mX p =(number of rows of 4)x (number of columns of B).

must be same
A lB

mXxn nxp

|

product is of order mx p

9 Matrices and Determinants
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If A=[a, a, ... a,],, and B =

n _nx]

bl
element which is defined by 4B =[q, a, ... a,] :2 =[ab +a,b, +...
bn
For instance,
-2
[1 23] 3 [=[1(-2)+23)+3(5)]=[-2+6+15]=][19].
5
In general,
a,  dp A, b, b,
a a a b, b
ifA=[a,],., = ' 7 | and B=[h,],,, = 21 22
aml amZ amn bnl an
all a12 aln _bll b12
@ AB _ a21 a22 a2n b21 b22
aml am 2 amn L bnl bn 2
Ci G Cip ]
c c a
and the product 4B =[c,],,, = :21 :22 ?p ,
le cm2 Cmp i

1j

n
2j | . .
where ¢,=[a; a, .. a,]| " |= Zaikbkj, since ¢; is an element.

. k=1
by
Example 7.8
0 ¢ b
If A=|c 0 a|, compute 4°
b a 0
Solution 0 ¢c 6|0 ¢ b ¢, C, G
A*=A4=|c 0 al||lc 0 a Cy €y Cy
b a O0|[b a O €y €y Cy
XI - Mathematics 10
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0
where ¢, =[0 ¢ b]|c|=0-0+c-c+b-b=c’+b* and other elements ¢, may be computed similarly.
b
Finally, we easily obtain that
0+c*+b*> 0+0+ab O+ac+0 b* +c? ab ac
A2=|0+0+ab c*+0+a* bc+0+0 |=| ab c*+ad° bc
0+ac+0 bc+0+0 b°+a’+0 ac bc a’+b’
Example 7.9
I 1 2||x
Solve forxif [x 2 —-1]|-1 4 1 ([2[=0.
-1 -1 2|1
Solution
11 2][x]
[x 2 —-1]|-1 -4 1{[2] =0
-1 -1 2|1

That is, [x—2+1 x-8+1 2x+2+4+2]|2| = O

[x—1 x-7 2x+4]|2| = O

x(x=D+2(x=7)+12x+4) = 0
X 43x-10 = 0 = x=-5,2.

Note 7.3
We have the following important observations:

(1) If4=[a;],., and B=[b;],.,, and m # p, then the product AB is defined but not BA.

(2) The fundamental properties of real numbers namely,

nxp?

ab=ba Va,be R
ab=ac=b=cVa,b,ceR, az0

ab=0=a=0 orb=0V a,beR.
Can we discuss these in matrices also?
(1) Evenif AB and BA are defined, then AB = BA is not necessarily true.

For instance, we consider

11 Matrices and Determinants
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and observe that 4B # BA, since

5 0 0 2
AB = and BA =
M EEE

In this case we say that 4 and B do not commute (with respect to multiplication)

Observe that AB = BA is also possible. For instance,

. 2 =2 1 2 -2 0
if 4= and B = then, AB=BA =
-2 1 2 2 0 -2

In this case we say that 4 and B commute with respect to multiplication.

(i1)  Cancellation property does not hold for matrix multiplication. That is, 4 # O, B, and C

are three square matrices of same order nxn with n>1, then AB = AC does not imply
B=C and BA = CA does not imply B = C.

As a simple demonstration of these facts, we observe that for instance,
1 olfo o] [1 o][o o] [0 0
1 o)1 1 1 0][2 3] |o o0

but oo;é’o“
u
11 2

(ii1) Itis possible that AB = O with A # O and B # O; Equivalently, 4B = O is not necessarily
imply either 4 = O or B = O. The following relation demonstrates this fact :

1 0f|0 O] [0 O
1 of|1 1 0 0
(3) Ingeneral, for any two matrices 4 and B which are conformable for addition and multiplication,
for the below operations, we have

e (A+ B)’ need not be equal to A4* +2 4B + B*
e 4* — B” need not be equal to (4+ B)(4A— B).

Example 7.10

I -1 2 1 -3
IfA=|-2 1 3| and B=|-1 1 | find AB and BA if they exist.
0 -3 4 1 2

Solution
The order of 4 is 3 x 3 and the order of B is 3 x 2. Therefore the order of 4B is 3 x 2.
A and B are conformable for the product AB. Call C = 4B. Then,

¢, = (first row of A) (first column of B)
1

= ¢,=[1 -1 2]|-1|=1+1+2=4, since ¢, 1s an element.
1

Similarly ¢, =0,¢,, =0,c,, =13,¢;, =7,¢;, =5.

XI - Mathematics 12
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4 0
Therefore, AB=C=[c,]=[0 13
7 5

The product B4 does not exist, because the number of columns in B is not equal to the
number of rows in A4.

Example 7.11
A fruit shop keeper prepares 3 different varieties of gift packages. Pack-I contains 6 apples,
3 oranges and 3 pomegranates. Pack-II contains 5 apples, 4 oranges and 4 pomegranates and
Pack —III contains 6 apples, 6 oranges and 6 pomegranates. The cost of an apple, an orange and a
pomegranate respectively are X 30,3 15 and ¥ 45. What is the cost of preparing each package of
fruits?
Solution P-I P-II P-III

6 5 6 Apples
Cost matrix 4 =[30 15 45], Fruit matrix B=|3 4 6| Oranges

3 4 6 | Pomegranates

Cost of packages are obtained by computing 4B. That is, by multiplying cost of each item in 4
(cost matrix 4) with number of items in B (Fruit matrix B).
6 5 6 360
AB=[30 15 45] (3 4 6| =|390
3 46 540

Pack-I cost T 360, Pack-II cost ¥ 390, Pack-III costs I 540.

7.2.4 Properties of Matrix Addition, Scalar Multiplication and
Product of Matrices

Let 4, B, and C be three matrices of same order which are conformable for addition and a, b be
two scalars. Then we have the following:

(1) A4+ Byields a matrix of the same order

2y A+B=B+4 (Matrix addition is commutative)
B) A+B)+C=4+B+0) (Matrix addition is associative)
4) A+O0=0+4=4 (O is additive identity)

5) A+(—A)=0=(—A)+4 (— A4 is the additive inverse of A)

(6) (a+b)A=aA+ bA and a(4+ B)=aA + aB

(7) a(bA)=(ab)A, 14 =Aand 04 = O.
Properties of matrix multiplication

Using the algebraic properties of matrices we have,

e IfA, B, and C are three matrices of orders m x n, n x p and p x g respectively, then A(BC)
and (4B)C are matrices of same order m x g and

A(BC) = (AB)C (Matrix multiplication is associative).

13 Matrices and Determinants
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e IfA, B, and C are three matrices of orders m x n, n x p, and n x p respectively, then A(B + C)
and AB + AC are matrices of the same order m x p and

A(B + C)=AB + AC. (Matrix multiplication is left distributive over addition)

e IfA, B, and C are three matrices of orders m x n, m x n, and n x p respectively, then (4 + B)C
and AC + BC are matrices of the same order m x p and

(4+ B)C=AC + BC. (Matrix multiplication is right distributive over addition).

o If 4, B are two matrices of orders m x n and n x p respectively and a is scalar, then
a(AB) = A(aB) = (xA)B is a matrix of order m x p.

e If/is the unit matrix, then A/ = [4 = 4 ({ is called multiplicative identity).

7.2.5 Operation of Transpose of a Matrix and its Properties

(Definition 7.16 h
The transpose of a matrix is obtained by interchanging rows and columns of A and is denoted
by A”.
More precisely, if 4=[a,]

then 4" =[b,],,,, where b, =a, so that the (i, )" entry of

N A" isa,. )
For instance,
1 -8
A:[ 18 *OE 042} implies 4" =[2 0
' 4 02

We state a few basic results on transpose whose proofs are straight forward.
For any two matrices 4 and B of suitable orders, we have

(i) (4)'=4
(iii) (4+B)' =4"+B"

(ii) (kA)" = kA" (where k is any scalar)
(iv) (AB)" = B" A" (reversal law on transpose)

Example 7.12

If A=

S O B

6
1
3

verify (i) (4B)" = B'A" (i) (A4+B) =A" +B" (iii) (4=B) = A" —B" (iv) 34)" =34"

Solution

(4 6 2 0 1 -1 16 2 22
(i) AB=10 1 5 3 -1 4(={-2 9 9
_O 3 2((-1 2 1 7 1 14
(16 2 7
(AB)TZ 2 9 1 .. (1)

_22 9 14

XI - Mathematics 14
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0 3
BT=|(1 -1
-1 4
0 3
B'A"=11 -1
-1 4
From (1) and (2),
(4 6
(i1) A+B=10
[0 3
A+B)7"=|7
(4 0
A"+B" =16 1
2 8
® From (3) and (4),
(4 6
(iii) A-B=10 1
[0 3
(4 -3
(A-B) =[5 2
L 1
(4 0
A"-B" =16 1
(2 5
From (5) and (6) (4—-B)
12 18 6
(iv) 34=(0 3 15
0 9 6
12 0 0
34" =|18 3 9
6 15 6

‘ ‘ Unit7.indd 15

®
i 40 0
2|, 4"=|6 1 3
1 2 52
~11[4 0 0] [16 -2
26 1 3|=|2 9
12 5 2] [22 9
(AB) =B" A"

S5+ 3 -1 4|=|13 0
21 |1-1 2 1 -1 5
ll
5

0 0 3 -1 4 3
3141 -1 2|=|7 O
2 -1 4 1 1 9

(A+B) =4"+B".

)
|
(%)
|
ri
N
Il
I
(o8}
— N W

T_ 4T _pT

40 0
=36 1 3|=3(4").
25 2

15

_— e D

- (2)

(3

(@)

.. (5

.. (6)

Matrices and Determinants
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7.2.6 Symmetric and Skew-symmetric Matrices

Definition 7.17

A square matrix 4 is said to be symmetric if 4" = A.

That is, 4=[%]. is a symmetric matrix, then a, = a, forall i and ;.

3 -6 9
For instance, 4=|—-6 8 5| is a symmetric matrix since 47 = A.

9 5 2

T
Observe that transpose of A is the matrix 4 itself. That is (AT) = A.
Definition 7.18

A square matrix A is said to be skew-symmetric if 4" =—A4.
If 4=[a;],,, is a skew-symmetric matrix, then a, =—a, forall i and.

Now, if we put i =/, then 2a, =0 or a, =0 for all i. This means that all the diagonal elements of
a skew-symmetric matrix are zero.

0 2 3
Forinstance, A=|-2 0 4| isa skew-symmetric matrix since 4" =—4 .
-3 4 0

It is interesting to note that any square matrix can be written as the sum of symmetric and
skew-symmetric matrices.
Theorem 7.1

For any square matrix 4 with real number entries, 4+ A" is a symmetric matrix and 4A— 4" is a
skew-symmetric matrix.
Proof

LetB=A+A"

B = (A+A")Y = A"+(A") =4"+4=4+4" =B.
This implies 4+ A" is a symmetric matrix.
Next, we let C=A4—A". Then we see that
C'=(A+A") =4"+(-4") =A"-(4") =4"-4=-(4-4")=-C
This implies 4— A" is a skew-symmetric matrix.
Theorem 7.2 m

Any square matrix can be expressed as the sum of a symmetric matrix and a skew-symmetric
matrix.
Proof

Let 4 be a square matrix. Then, we can write
A —l(A+AT)+l(A—AT)
2 2 '
From Theorem 7.1, it follows that (4+A") and (4—A") are symmetric and skew-symmetric
matrices respectively. Since (k4)" =kA", it follows that %(A+AT ) and %(A—AT) are symmetric
and skew-symmetric matrices, respectively. Now, the desired result follows. (]

XI - Mathematics 16
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Note 7.4

A matrix which is both symmetric and skew-symmetric is a zero matrix.

Example 7.13
1 35

Express the matrix 4=|—-6 8§
-4 6

Whn W

Solution

Let P:%(A+AT) =

Now P’ =
Thus, P =

@ Let QO =

Then Q' =

Thus QO =

A:

as the sum of a symmetric and a skew-symmetric matrices.
1 35 1 -6 4
-6 8 3|= A4'=|3 8
-4 6 5 5 3
(2 -3 1]
1 -3 16 9
2
[ 19 10]
[2 -3 1]
1 -3 16 9 |=P
2
|19 10]

%(A +A4") is a symmetric matrix.

l(A_AT) @
2

[0 9 9]

1 -9 0 3

2

-9 3 0

1"0 -9 9]

—9 0 3 |=-

5 Q

._9 _3 -

%(A — A") is a skew-symmetric matrix.
2 -3 1 0 9 9

P+Q:% -3 16 9 +% -9 0 -3
1 9 10 -9 3 0

Thus 4 is expressed as the sum of symmetric and skew-symmetric matrices.

EXERCISE 7.1

(1) Construct an m x n matrix 4=[a;], where a; is given by

_(-2))

(1) a; 5 with m =2,

‘ ‘ Unit7.indd 17

withm=3,n=4

n=3 (i) a; :%
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(2) Find the values of p, ¢, , and s if

p’-1 0 =31-¢° o -
7 r+l 9 |=|7 % 9
-2 8 s—1 o8 g

2x+y 4x:|_|:7 7y—13:|

_y x+6

(3) Determine the value of x + y if
Sx—=7 4x

(4) Determine the matrices 4 and B if they satisfy

6 -6 0 3 2 8
2A-B+ =0and 4-2B=
-4 2 1 -2 1 -7

1
5 If 4= [O Cll:| , then compute A*.

o -—-sina
(6) Consider the matrix 4, = [COS sin ]

sind coso

(i)  Showthat 4, A, =4,

1l Find all possible real values of a satisfying the condition A + A" =1.
(i1) p g ot A,

(4 2
(7 If A= ) :| and such that (4—-27)(A—-31) =0, find the value of x.
-1 x
(1 0 0
8)If4=|0 1 0 |,show that A% is a unit matrix.
la b -1
I 0 2
DIfA=0 2 1|and4’—64>+7TA+klI =0, find the value of .
2 0 3

(10) Give y6ur own examples of matrices satisfying the following conditions in each case:

(1) A and B such that 4B # BA.

(i1)) A4 and B such that AB=0=BA, A#O and B#O.
(iii) 4 and B such that AB =0 and BA # O.
cosx —sinx 0
(11) Show that f(x)f(v)= f(x+y), where f(x)=|sinx cosx 0
0 0 1
(12) If 4 is a square matrix such that 4> = A4, find the value of 74 — (I + 4)°.
(13) Verify the property A(B + C) = AB + AC, when the matrices 4, B, and C are given by

3 1 4 7
2 0 -3
A= ,B=|-1 Of,andC=|2 1
1 4 5
4 2 1 -1
XI - Mathematics 18
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) _ . . . . 1 2 3 -7 -8 -9
(14) Find the matrix 4 which satisfies the matrix relation 4 4 = .

5 6 2 4 6
4 5
2 -1 1
(15)If A" =[-1 0 andB=|:7 5 2:|, verify the following
2 3

(i) (A4+B) =A"+B"=B"+4" (ii) (4-B)" =4"-B" (i) (B")" =B.

(16) If 4 is a 3 x 4 matrix and B is a matrix such that both 4" B and BA" are defined, what is the
order of the matrix B?

(17) Express the following matrices as the sum of a symmetric matrix and a skew-symmetric matrix:

3 3 -1
W |+ Zand |2 2 1
i and (i) |-2 -
3 -5
-4 -5 2
2 -1 -1 -8 -10
(18) Find the matrix 4 suchthat [ 1 0 [4"=[1 2 -5
-3 4 9 22 15
1 2 2
(19)If A=[2 1 -2/ is a matrix such that 44" =91 , find the values of x and y.
x 2 vy
® 0 1 =2 ®
(20) (i) For what value of x, the matrix A=|-1 0 x’ | is skew-symmetric.
2 3 0
0O p 3
(i) If |2 ¢° -1/ is skew-symmetric, find the values of p, ¢, and r.
r 1 0

(21) Construct the matrix A=[a,l,,;, where a,=i—j. State whether 4 is symmetric or
skew-symmetric.

(22) Let A and B be two symmetric matrices. Prove that AB = BA if and only if 4B is a symmetric
matrix.

(23) If 4 and B are symmetric matrices of same order, prove that
(i) AB + BA is a symmetric matrix.
(1)) AB — BA is a skew-symmetric matrix.
(24) A shopkeeper in a Nuts and Spices shop makes gift packs of cashew nuts, raisins and almonds.
Pack I contains 100 gm of cashew nuts, 100 gm of raisins and 50 gm of almonds.
Pack-II contains 200 gm of cashew nuts, 100 gm of raisins and 100 gm of almonds.
Pack-III contains 250 gm of cashew nuts, 250 gm of raisins and 150 gm of almonds.

The cost of 50 gm of cashew nuts is I 50, 50 gm of raisins is ¥10, and 50 gm of almonds is
% 60. What is the cost of each gift pack?

19 Matrices and Determinants
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7.3 Determinants
To every square matrix 4 = [a,] of order n, we can associate a number called determinant of the

matrix 4.
dy Gy a, a, 4, -oq,
a, a, - a a.. a. - a
21 22 2 : : : 21 22 2
IfA4=| : oo ~" |, then determinant of 4 is written as |4| =| "
anl an2 o ann anl anZ ann
Note 7.5

(1) Determinants can be defined only for square matrices.
(i) For a square matrix A4, |4| is read as determinant of A.

(iii) Matrix is only a representation whereas determinant is a value of a matrix.

7.3.1 Determinants of Matrices of different order
Determinant of a matrix of order 1

Let A = [a] be the matrix of order 1, then the determinant of 4 is defined as ‘a’.

Determinant of a matrix of order 2

a a
LetA = |: " 12:| be a matrix of order 2. Then the determinant of 4 is defined as

ay dp
@ | 4| = all.a\'\'?alz =dy Gy =0y Gy, ®
ay; “dy
Example 7.14
Elt"24 | cos@ siné@
valuate = (1 -1 2 (i1) —sinf cos@ |
Solution
. 2 4
(1) 1% =2x2)—(—1x4)=4+4=8.
.. cos@ sind . ) 5 ,
(11) , = (cos@cos)—(—sinfsin@) =cos” f+sin" 6 =1.
—sin@ cos@

Determinant of a Matrix of order 3

We consider the determinant of a 3 x 3 matrix with entries as real numbers or real valued
functions defined on R and study its properties and discuss various methods of evaluation of certain
determinants.

Definition 7.19

Let A=[a,],, be a given square matrix of order 3. The minor of an arbitrary element a; is the
determinant obtained by deleting the i row and j" column in which the element @, stands. The

minor of a; is usually denoted by M.

XI - Mathematics 20
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Definition 7.20

The cofactor is a signed minor. The cofactor of @ is usually denoted by 4, and is defined as
A, =DM, .

For instance, consider the 3 x 3 matrix defined by 4A=|a,, a, a,,
4 4y Ay

Then the minors and cofactors of the elements «a,,,a,,,a,, are given as follows :

. . . ay Ay
(1) Minorof g, isM,, = =a,,05; — Uy,0,,
Ay 4y
a, a
. _ 1+1 I %) 23| _
Cofactorof a,, 1s4,, =(-1)"M, = = 0,,0; — Uy,0,,
3 i
. . . a4y Ay
(1) Minorof aq, isM,, = =a,,ay; — 05,05,
a3 ds
a, a
. _ 142 [“21 3| _ _
Cofactor a,, is 4,, =(-1) =—(a,a;; —ay,a,;)
a3 Ay
. . 4y A4y
(1) Minorof a; isM,; = =a,,a;, —ay,a,,
@ a3 Ay ®
a, a
. _ 143 _ %2 2|
Cofactorof a, is4, =(-1)"M,= 4|7 B = sy
31 32

Result 7.1 (Laplace Expansion)

For a given matrix 4=[a,],;, the sum of the product of elements of the first row with their

corresponding cofactors is the determinant of 4.
Thatis, | A|=a, 4, +a,4, +a;A5;.

This can also be written using minors. That is, | 4 |=a,M,, —a,,M,, +a,;M ;.

The determinant can be computed by expanding along any row or column and it is important to
note that the value in all cases remains the same. For example,

expansion along R is |A4| =a, A4, +a,A,+a;A4;.
along R, is |A| =a, A, +a,A, +a,4,,.

along C,is | 4| =a, A, +a, A, +a,4,.

Example 7.15
1 3 =2
Compute all minors, cofactors of 4 and hence compute |[4]if A=[ 4 -5 6 |.Alsocheck
-3 5 2
that | 4 | remains unaltered by expanding along any row or any column.

21 Matrices and Determinants
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Solution

Minors :

Cofactors :

Expanding along R, yields

XI - Mathematics
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A

11

-5 6
—_10-30=—40
5 2
4 6
—8+18=26
b
4 -5
‘:20—15:5
3 5
_‘=6+10=16
7
1 -2
= D=
-
1 3
—5+9=14
5
3 2
—18-10=8
-5 6
1 _
—6+8=14
4 6
1 3
——5-12=—-17
4 -5

(—1)"(—40) = —40

A4,= (-D)"(+26)=-26
A,= (-DT(5)=5

A, = (-1 (16)=-16

4] =

4] = 1(—40) + (3)(-26) + (-2)(5) =—128 .
Expanding along C, yields

4] =

A, = (1) (—4)=—4
A, = (1) (14)=-14
A, = (1" (8)=8

A, = (1) (14)=-14
4, = C)PP 1T =-17

a4, +a,d, +as4; .

allAll +a21A21 +a31A31 :

22

®

. 0)
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= 1(-40)+4(-16)+-3(8) =—128
From (3) and (4), we have
|A| obtained by expanding along R, is equal to expanding along C, .

Evaluation of determinant of order 3 by using Sarrus Rule (named after the French Mathematician

Pierre Frédéic Sarrus)

a, 4, dy

Let A=[a,] = |ay ay, ay

ay Az Ay

Write the entries of Matrix 4 as follows :

al]\a12\<al3\<all A E AN v
a YaYaNa a B9F35H

21 Ay oy Gy Ay

. . \ \

dy dy “ay ay dy
Then | 4 | is computed as follows :

|A| = [anazzaas ta,a,ay + a13a21a32]_[a33a21a12 tayaya, + a3]a22a13]

Example 7.16

0 sin¢  coso
Find |4| if 4=|sina 0 sin 3
cose —sinff 0
Solution
0 sina  cos
sino 0 sinf |=0M,, —sinaM,, +cosaM ,
cose —-sinff 0
= 0—sina(0—cosasin f)+cosa(—sinasin f—0) =0.

Example 7.17
3 4 1
Compute |4| using Sarrus rule if 4=|0 -1 2
5 26
Solution
304,13 4
N
0 1 ’.‘2\,‘0\1
5 2% 5 22
4] = [3(=D(6) +4(2)(5) +1(0)(-2)] —[5(=D(D)+(-2)(2)3+6(0)(4)]
= [-18+40+0]-[-5-12+0] =22+17 = 39.
Note 7.6

For easier calculations, we expand the determinant along a row or column which contains

maximum number of zeros.

23 Matrices and Determinants

10-08-2018 18:23:10‘ ‘



o EEEEE ® - EEEm

Determinant of square matrix of order n, n >4
The concept of determinant can be extended to the case of square matrix of order n,n>4. Let

A=la;],,.n24.

If we delete the i" row and /" column from the matrix of 4=[q,],,,, , We obtain a determinant of

nxm 2

order (n—1), which is called the minor of the element o . We denote this minor by M,. The cofactor
of the element a, is defined as 4, = -D"'M,.

Result 7.2
For a given square matrix 4=[a,],,, of order n, the sum of the products of elements of the first
row with their corresponding cofactors is the determinant of 4. That is,

n
| A= a4, +a,A4,+..+a,A4,= 2“1/‘41/ which, by the definition of cofactors and minors, is
j=1
same as

n

| A= Z(_l)Hjalelj ,

J=1

where Alj denotes the cofactor of a, and Mlj denotes the minor of a, j=12,.., n ]
Note 7.7

() If A=[a;],., then determinant of 4 can also be denoted as det(4) or det 4 or A.
(i1) It can be computed by using any row or column.

nxn

® 7.3.2 Properties of Determinants ®

We can use one or more of the following properties of the determinants to simplify the evaluation
of determinants.

Property 1
The determinant of a matrix remains unaltered if its rows are changed into columns and columns
into rows. Thatis, | 4|=]4"|.

Since the row-wise expansion is same as the column-wise expansion, the result holds good.

Property 2
If any two rows / columns of a determinant are interchanged, then the determinant changes in
sign but its absolute value remains unaltered.

Verification
a b ¢
Let|d|=|a, b, c,
a; b ¢
= a,(b,c; —byc,) —b(a,¢; —ayc,) + ¢ (a,by —ash,)
a b ¢
Let|d|=|a, by, c; | (sinceR, <> R,)
a, b, ¢
= a,(byc, —b,c;)—b,(asc, —a,c;) + ¢ (a;b, —a,b;)
XI - Mathematics 24
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= —a,(b,c; —byc,) + b (a,¢; —ayc,) — ¢ (a,b; —azh,)

—{a,(b,c;, —b,c,)—b,(a,c, —asc,) +c,(a,b, —asb, )]
—|4]
— | A | . Thus the property is verified. =

Therefore, | 4
Property 3

|
1

If there are n interchanges of rows (columns) of a matrix 4 then the determinant of the resulting
matrix is (— 1)" | 4 |.

Property 4
If two rows (columns) of a matrix are identical, then its determinant is zero.
Verification
a b ¢
Let|d]=| a, b, ¢, |, with2™and 3" rows are identical.
a, b ¢
a b ¢
Interchanging second and third rows, we get —| 4| =|a, b, ¢, |=|4]|.
a, b ¢
=2|4|=0 = |4|=0. m
Property 5

If a row (column) of a matrix A4 is a scalar multiple of another row (or column) of 4, then its
determinant is zero.

Note 7.8
(1) If all entries of a row or a column are zero, then the determinant is zero.
(i1) The determinant of a triangular matrix is obtained by the product of the principal diagonal
elements.
Property 6

If each element in a row (or column) of a matrix is multiplied by a scalar £, then the determinant
is multiplied by the same scalar .

Verification
a b ¢
Let|d|=|a, b, c,
a; by ¢
= a,(b,c; —byc,) — b (a0, —ase,) + ¢ (aby — ash,)
ka, kb, kc,
Let |[A=| a, b, ¢

a, b, ¢
= ka,(b,c, —b,c,)—kb,(a,c, —a,c,) +kc,(a,b, —ab,) =kl 4|
= kla,(b,c, —b,c,)—b,(a,c, —a,c,) +c,(a,b, —ab,)] =kl A |
=4 |=kA]. -

25 Matrices and Determinants
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Note 7.9
If 4 is a square matrix of order n, then
(i) |4B[=[A4]| B
(i) IfAB=Otheneither |4|=0or|B|=0.
(i) [4" [=(4])"
Property 7

If each element of a row (or column) of a determinant is expressed as sum of two or more terms
then the whole determinant is expressed as sum of two or more determinants.

a+m, b ¢ a b ¢ m, b ¢
Thatis, | a,+m, b, ¢, |=|a, b, ¢, |+|m, b c,
a,+m, b, ¢ a, b ¢ m, b, ¢

Verification
By taking first column expansion it can be verified easily.

LHS = (a, + m,)(b,c; —byc,) —(a, + m, )(bc; —bye,) + (a; + my)(bic, —b,c))
= a,(b,c; —byc,) —a,(bc; —bye)) + as(bic, —byc,) + my(byc; — byc,) —my (bie; —bycy)

+my(bc, —b,c))

a b ¢ m b ¢
=|la, b, ¢, |+|m, b, c, | =RHS.
a, by, ¢ my, by ¢ m

Property 8
If, to each element of any row (column) of a determinant the equi-multiples of the corresponding
entries of one or more rows (columns) are added or subtracted, then the value of the determinant

remains unchanged.

Verification
al bl Cl
Let |A|=|a, b, c,
a, by ¢
a,+pa, +qa, b+ pb,+gb; ¢ +pc,+qc;
and |4,]= a, b, c,
a, b, G
a b ¢ pa, pb, pc, qa, qb, c )
using
=la, b, ¢,|+t| a b, ¢ |T|a b ¢
Property 7
a, b ¢ a, b ¢ a, b ¢
a, b, c a; by ¢
|A1|:‘A|+p a, b, ¢, |+q|a, b
a, b ¢ a, b, ¢
XI - Mathematics 26
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|4, [=14]+p0)+q0)=[A4]| (using Property 4)

Therefore |4, [=]A4]|

This property is independent of any fixed row or column. m

Example 7.18
(ax +a—x)2 (ax _a—X)Z 1
If a, b, ¢ and x are positive real numbers, then show that | (6" +b7)° (6" =b™)’ 1| is zero.
(c+c™)Y (c"=c) 1

Solution
4 (a"—a™) 1
Applying C, > C,—C,,we get |4 (b*—b")" 1|=0, since C, and C, are proportional.
4 (cx _ c—x )2 1

Example 7.19
Without expanding the determinants, show that | B |=2| 4 |.

b+c c+a a+b a b c
Where B= |c+a a+b b+c| andAd=|b ¢ a
a+b b+c c+a c a b
Solution
2(a+b+c) 2a+b+c) 2a+b+c)
We have |B|= cta a+b b+c |(R >R +R,+R))

a+b b+c cta

a+b+c a+b+c a+b+c
=2| c+a a+b b+c
a+b b+c cta

atb+c a+b+c a+b+c

=21 b — —a (R, >R,—R andR, > R, —R))
—c —a —b
a b ¢
=2l-b —¢ —a|(R - R +R,+R,)
—c —a b
a b c
= 2(-1*|b ¢ a
c a b
=2|4].
27 Matrices and Determinants
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Example 7.20

2014 2017 O
Evaluate | 2020 2023 1

2023 2026 O
Solution

2014 2017 O 2014 2017-2014 O 2014 3 0 2014 1 O
2020 2023 1|={2020 2023-2020 1|{=1]2020 3 1|=3{2020 1 1
2023 2026 O 2023 2026-2023 0 2023 3 0 2023 1 0

=—-3(2014 -2023)=-3(-9)=27.
Example 7.21

x-1 x x-2
Find the value of xif | 0 x—-2 x-3|=0,
0 0 x-3
Solution

Since all the entries below the principal diagonal are zero, the value of the determinant is
(x=1)(x—=2) (x—3)=0 which givesx =1, 2, 3.

Example 7.22
I 1 1
Provethat | x y z|=@x-y)(y—2)(z—x).
x2 y2 ZZ
Solution

Applying C, - C,-C,,C, = C,—-C,, we get

1 0 0 1 0 0
LHS= |x y—-x z=x |=(—x)(z—x)| x 1 1
x’ yz—x2 z —x x° y+x z+x

= (=0E-9)(z+x)=(y+x)] .
= (=0)(z-x)(z-y) .
= (x=»)(y=2)(z-x) =RHS.

EXERCISE 7.2

s a* b +c

(1) Without expanding the determinant, prove that | s b»° ¢’ +a’ | =0.

2

s ¢ a+b’
b+c bc b’c’
(2) Show that | c+a ca c’a’ | =0.

a+b ab a*b’

XI - Mathematics 28
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a’ bc ac+c’
(3) Prove that | a’ +ab b’ ac = 4a’b*c* .
ab b* +be ¢’

l+a 1 1 L
(4) Prove that| 1 1+b 1 :abc[l+—+—+—) .
a b c
1 1 I+c
sec’@ tan’6 1
(5) Prove that | tan* @ sec’@ —1|=0.
38 36 2
x+2a y+2b z+2c
(6) Show that X % z =0.

a b c
(7) Write the general form of a 3 x 3 skew-symmetric matrix and prove that its determinant is 0.
a b ao+b

(8) If b c bo+c |=0,
ao+b bo+c 0

prove that a, b, ¢ are in G.P. or v is a root of ax* + 2bx + ¢ = 0.

1 a a*—bc
(9) Prove that |1 b b*—ca|=0 .

1 ¢ c¢*—ab

a b c
(10) If @, b, c are p™, g™ and 7" terms of an A.P, find the valueof | p ¢ 1 |.
I 1 1
a’+x° ab ac
(11) Show that | ab b +x° bc | is divisible by x*.
ac bc c+x’
loga p 1
(12) If @, b, c are all positive, and are p*, g™ and " terms of a G.P., show that | logh ¢ 1 |=0.
loge r 1
1 log .y log z
(13) Find the value of |log, x 1 log, z| if x,y,z#1.
log.x log. y 1
29 Matrices and Determinants
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o

(14) If 4 = , prove that )" det(4") =§(1—i).

k=1 4"

2
(15) Without expanding, evaluate the following determinants :

1
2
0

2 3 4 xX+y y+z z+x
@|> 6 8 ()| z x y
6x 9x 12x 1 1 1

(16) If 4 is a square matrix and | 4 | = 2, find the value of | 44" |.
(17) If A and B are square matrices of order 3 such that | 4 | =—1 and |B| = 3, find the value of |345].

0 24 1
(18) If A = — 2, determine the value of A2 0 31°+1
-1 64-1 0
1 4 20
(19) Determine the roots of the equation |1 -2 5 |=0.
1 2x 5x°

4 3 2 1
(20) Verify that det(4B) = (det A) (det B) for A=[1 0 7 |andB=|-2 4 0].
2 3 -5 9 75
8
1
3

53
(21) Using cofactors of elements of second row, evaluate | 4 |, where 4=(2 0
1 2

7.3.3 Application of Factor Theorem to Determinants.

Theorem 7.3 (Factor Theorem)

If each element of a matrix 4 is a polynomial in x and if | 4 | vanishes for x = a, then (x —a) is a
factor of | 4 |.

Note 7.10

(1) This theorem is very much useful when we have to obtain the value of the determinant in
‘factors’ form.

(i1)) If we substitute b for a in the determinant | 4 |, any two of its rows or columns become
identical, then | 4 | = 0, and hence by factor theorem (a — b) is a factor of | 4 |.

(ii1) If » rows (columns) are identical in a determinant of order n (n > r), when we put x = a,
then (x — a)"~'is a factor of | 4 |.

(iv) A square matrix (or its determinant) is said to be in cyclic symmetric form if each row is
obtained from the first row by changing the variables cyclically.

(v) Ifthe determinant is in cyclic symmetric form and if m is the difference between the degree
of the product of the factors (obtained by substitution) and the degree of the product of the
leading diagonal elements and if

(1) m is zero, then the required factor is a constant k&
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(2) mis 1, then the required factor is k(a + b + ¢) and

(3) m is 2, then the required factor is k(a*> + b> + ¢*) + [ (ab + bc + ca).

Example 7.23
x+1 3 5
Using Factor Theorem, prove that | 2 x+2 5 |=(x-1*(x+9).
2 3 x+4
Solution
x+1 3 5
Let|4|=| 2 =x+2 5
2 3 x+4
2 3 5
Putting x=1,we get |4|=|2 3 5|=0
2 3 5

Since all the three rows are identical, (x — 1)* is a factor of |4]

=0
-5 0 3

Puttingx =—91n | A |’We get| A | =2 =7 5
2 3

Therefore (x+9) is a factor of |4| [since C, = C, +C, + C,].

The product (x — 1)? (x + 9) is a factor of | 4 |. Now the determinant is a cubic polynomial in x.

Therefore the remaining factor must be a constant ‘k’.

x+1 3 5
Therefore | 2 x+2 5 |[=k(x=1)*(x+9).
2 3 x+4

Equating x* term on both sides, we get k= 1. Thus |4 | = (x — 1)* (x + 9).

-8 3 5 0 3 5
-7 5
=5

=0

Example 7.24
1 X X
Prove that |1 > y° |=(x—») (y—2) (z—x) (xy+ yz+2zx).
1 22 2
Solution
1 X X
Let 41= |1 v Y
1 22 72
Ly
Putting x = y gives |4]=|1 y* ' |=0 (sinceR =R,)).
1 22 7
Therefore (x — y) is a factor.
31 Matrices and Determinants
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The given determinant is in cyclic symmetric form in x, y and z. Therefore (y — z) and
(z — x) are also factors.

The degree of the product of the factors (x— y)(y—2z)(z—x) is 3 and the degree of the

product of the leading diagonal elements 1x y* Xz’ is 5.

Therefore the other factor is k(x” + y* +z%)+((xy+ yz + zx) .

1 x x
Thus 1 y2 y3 = [k(x2 +y2 +zz)+£(xy+yz+zx)]><(x—y)(y—z)(z—x) .
1 22 2
Puttingx =0, y=1 and z =2, we get
1 0 0
1 1 1|= [k(0+1+4)+£(0+2+O)](—1)(l—2)(2—0)
1 4 8
= B —=4) =[5k +20)](-D(-1)(2)

4=10k+40=5k+20=2. - (1)

Putting x=0,y=—1and z=1, We get

100
L1 =1 = [k2)+(=D]DE2)D)
11 1

= [(2k-0)(-2)] =2
2k—0 =—1. .. (2)
Solving (1) and (2), we get k=0, /=1.

2 3

I x x
Therefore |1 y* 3’ |=(x—y)y—2)(z—x)(xy + yz + 2x).
1 22 2
Example 7.25
(g+r)"  p° p’
Prove that |4] = q’ (r+p)’ g |=2pgr (p+q+r).
r rr (pta)
Solution :
(g+7r)) 0 0
Taking p=0,we get |4 |= q g’ |=0.
7"2 7"2 qZ

Therefore, (p — 0) is a factor. That is, p is a factor.
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Since | 4 | is in cyclic symmetric form in p, g,  and hence g and 7 also factors.
Puttingp+q+r=0 => qg+tr=—p;r+p=—q ; andp+qg=—r.
2
p

pp
|4|=|¢q¢° ¢ ¢q° |=0since 3 columns are identical.
2 2
A

2
r

Therefore, (p + g + r)* is a factor of | 4 | .
The degree of the obtained factor pgr (p + g + r)* is 5. The degree of | 4 | is 6.

Therefore, required factoris k (p + g + r).

(g+r) p’ P’
¢ (r+p’ 4 = k(p+q+r) (p+q+r)’ X pgr
r ¥ (p+q)

Taking p=1, ¢g=1, c=1, we get

4 1
1 4 1|=k@+1+1)° 1) Q) (1).
11

B = =

® 4016 — 1) — 1(4 — 1)+ 1(1 — 4)=27k ®
60 —3—-3=27k = k=2.

| A |=2pgr (p+q +r).

Example 7.26

1 1 1
In a triangle ABC, if 1+sin A4 l1+sin B l1+sinC =0,
sin A(14+sin A) sin B(1+sinB) sinC(1+sinC)
prove that AABC is an isosceles triangle.
Solution :
By putting sin 4 =sin B, we get
1 1 1
1+sin 4 1+sin 4 l1+sinC
sin A(1+sin 4) sin A(1+sin 4) sinC(1+sinC)

0

That is, by putting sin 4 = sin B we see that, the given equation is satisfied.
Similarly by putting sin B = sin C and sin C = sin A4, the given equation is satisfied.
Thus, we have A=BorB=Cor C=A.

In all cases atleast two angles are equal. Thus the triangle is isosceles.

33 Matrices and Determinants
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EXERCISE 7.3

Solve the following problems by using Factor Theorem :

X a a
a x a|=(x—a)(x+2a) .

(1) Show that

a a x
b+c a-c a-b
(2) Show that | b—c
c—b c—a a+b

c+a b—a|=8abc.

x+a b c
(3) Solve | a x+b ¢ |=0.
a b xX+c

b+c a a
(4) Showthat | c+a b b’ |=(a+b+c)(a—b) (b—c) (c—a).

a+b ¢ ¢

4—x 4+x 4+x
(5) Solve |[4+x 4—x 4+x|=0.
4+x 4+x 4-x

11 1
(6) Showthat [x y z|=(x-yY)(y—2)(z—Xx).

2 .2 2
Xy oz

T
BANY 7S

7.3.4 Product of Determinants

While multiplying two matrices “row-by-column” rule alone can be followed. The process of
interchanging the rows and columns will not affect the value of the determinant (by Property 1).
Therefore we can also adopt the following procedures for multiplication of two determinants.

(1) Row by column multiplication rule
(i1) Row by row multiplication rule
(i11)) Column by column multiplication rule
(iv) Column by row multiplication rule

Note 7.11
(i) If A and B are square matrices of the same order n, then | AB|=| A4 || B | holds.

(i1) In matrices, although AB # BA in general, we do have | AB | = | BA | always.

Example 7.27
, , [cos® —siné cos@ sind
Verify that | AB |=|A| |B|if A=| . and B=| . .
| sin€  cos® —sin@ cos@
Solution
cos@ —sin@|[ cos@® sind
AB=| ) .
sinf cos@ |[—sinf@ cos®
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cos’ @+sin’ 0 cos @sin @ —sin @ cos 9]

| sin @ cos @ —cosPsin O cos’ @+sin’ 0

[1 0
= = |4B|=1.
0 1

|A| = cos’ @+sin* @ =1.

|B| = cos’ @+sin’ @ =1.

4] |B|=1.

From (1) and (2), |AB|=|4| | B|.

Example 7.28
0 ¢ b
Show that | ¢ 0 a
b a 0
Solution
LHS =
Example 7.29
2bc —a?
Show that c*
b2
Solution
RHS =

: b*+c* ab ac
=| ab ct+a’ bc
ab bc a’+b*
0 ¢ b |0 ¢ b 0 ¢
¢c 0 a|l =|lc 0 a|Xx|c a
b a O b a 0 b a O
0+c*+b* 04+0+ab O+ac+0
0+0+ab c*+0+a> bc+0+0
O+ac+0 bc+0+0 b +a*+0
¢t +b’ ab ac
ab ct+a’ bc = RHS.
ac bc b’ +a’
c* b? a b c2
2ca—b* a’ =|b ¢ a
a’ 2ab—c? c a b
a b c2 a b c a b ¢
b ¢ al =|b ¢ a|X|b ¢ a].
c a b c a b c a b
a b ¢ a b ¢
b ¢ a|x(D|c a
c a b b ¢ a

35

(D)

- (2)

b | [In the 2™ determinant R, <> R, ]
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a b c

-a -b —c

=|b ¢ al|X|lc a b

¢c a b b ¢ a
Taking row by column method, we get
—a*+bc+ch —-ab+ab+c* —ac+b* +ac
= |—ab+c*+ab —-b*+ac+ac —-bc+bc+a’
—ac+ac+b> —bc+a*+bc —c*+ab+ab
2bc —a? c* b?
= ¢’ 2ca—b’ a’ = RHS.
b’ a’ 2ab—c?
Example 7.30
1 x x| 1-2x2 —x* —x*
Provethat | x 1 x| =| —x* -1 x*-2x
x x 1 —x’ x*=2x -1
Solution
1 x x[ 1 x x 1 x x
IHS= (x 1 x| =|x 1 x|x|x 1 x
@ x x 1 x x 1 x 1
1 x x 1 X X
= 1 X)) —x -1 —x
x 1 -x —x -1
1 x 1 X X
=|x 1 X |—x -1 —x
x 1 —-x —x -1
1-x*=x* x—x—-x* x—-x*-x
= | x—x—x* x*-1-x* xX*-x-x
x=x*—-x x*—x—-x x*-x*-1
1-2x* =X’ —x’
=| —x =1 x*=2x|.
-x* X =2x =1
= R.H.S.

7.3.5 Relation between a Determinant and its Cofactor Determinant

al bl Cl
Let [Al=|a, b, c,|.
a; by ¢
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Let4,, B, C, .... be the cofactors of a, b, ¢, ...in | 4 |.

AI B 1 Cl
Hence, the cofactor determinantis (4, B, C,
| Al=a,4, +bB, +¢C, 4, By G

Similarly, | 4|=a,4, +b,B, +¢,C, and | 4|=a,4, +b,B, +¢,C,

Note that the sum of the product of elements of any row (or column) with their corresponding
cofactors is the value of the determinant.
b ¢

b, ¢

a, ¢

Now a,4,+bB,+c,C, = —a, +b, —-¢

a; G a, b,

= —a,(bc; —bye)) +b(a,c; —ae) — ¢ (ab; —ash)
= abc, +ab,c,+abc, —abc —abyc, +abc =0
Similarly we get
a4, +bB;+cC, =0 ; a,4 +b,B +c,C, =0 ;
a,A,+b,B,+c,C; =0 ; a;4 +b,B +c,C,=0 and a,4, +b,B, +c,C, =0.

Note 7.12
If elements of a row (or column) are multiplied with corresponding cofactors of any other row

(or column) then their sum is zero.

Example 7.31
If 4,B.,C, are the cofactors of a,,b,,c,, respectively, i=1to 3 in
al bl Cl Al Bl Cl
lA| =la, b, c,|, showthat |4, B, GC,|=|Af .
a, b ¢ 4, B, C,
Solution

al bl cl Al Bl Cl
Consider the product |a, b, c¢,| |4, B, C,

a; by | |4, By G
a4, +bB +cC,  aA+bB,+cC, aA+bB,+cC,
= |a,4, +b,B, +c,C, a,A,+b,B,+c,C, a,A,+b,B;+c,C,
a4 +bB +c,C, a,A,+bB,+c,C, a,A4,+b,B,+c,C,

Al 0 0
=10 |4] O|=|4f
0 0 |A
Al Bl Cl
Thatis, |4| x |4, B, C,|=|A[.
A3 B3 C3
Al B1 Cl
= |4, B, C|=|4.
A3 B3 C3
37 Matrices and Determinants
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7.3.6 Area of a Triangle

We know that the area of a triangle whose vertices are (x,,y,),(x,,»,) and (x,,y;) is equal to
the absolute value of

1
E(x1y2 —XNN X)X, T X, _x1y3)-

This expression can be written in the form of a determinant as the absolute value of

| xooy o1
—|x 1
5| W2
oy 1
Example 7.32

If the area of the triangle with vertices (— 3, 0), (3, 0) and (0, k) is 9 square units, find the
values of & .

Solution
x » 1
Area of the triangle = absolute value of 5% 7 1].
X3 W3
. -3 0 1 .
9=1|=|3 0 1||==(k)(3-3
5 ‘2( X )‘
0 k1

= 9 = 3| k| and hence, k=+3.

Note 7.13

The area of the triangle formed by three points is zero if and only if the three points are collinear.
Also, we remind the reader that the determinant could be negative whereas area is always non-
negative.

Example 7.33
Find the area of the triangle whose vertices are (— 2, — 3), (3, 2), and (— 1, — 8).

Solution

lxl A
Area of the triangle = 5 x, ¥y, 1|
x oy 1
=2 =3 |
1 3 2 1 :‘l(—20+12—22)‘:|—15|:15
-1 -8 1 2

and therefore required area is 15 sq.units.

Example 7.34
Show that the points (a, b + ¢), (b, ¢ + a), and (c, a + b) are collinear.
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Solution
a b+c 1
To prove the given points are collinear, it suffices to prove |4 |=|b c+a 1|=0.
c a+b 1
Applying C,— C, +C,, we deduce that
a+b+c b+c 1 1 b+c 1
|A|=|a+b+c c+a 1l|=(a+b+c)|l c+a 1|=(a+b+c)x0=0
a+b+c a+b 1 1 a+b 1
which shows that the given points are collinear.
7.2.11 Singular and non-singular Matrices

Definition 7.21

A square matrix A is said to be singular if | A | = 0. A square matrix A is said to be
non-singular if | A | # 0.

3 81
For instance, the matrix A=|—4 1 1| is a singular matrix, since
-4 1 1
® | A[=3(1—1)—8(~4+4) +1(—4+4) = 0. ®
2 6 1
If B=|-3 0 5| then|B|=2(0-20)—(-3)(-42-4)+530-0)=-28+#0.
5 4 -7

Thus B is a non-singular matrix.

Note 7.14

If A and B are non-singular matrices of the same order then 4B and BA are also non-singular
matrices because |AB |=|A| |B|=|BA4|.

EXERCISE 7.4
(1) Find the area of the triangle whose vertices are (0, 0), (1, 2) and (4, 3).

(2) If(k, 2),(2,4)and (3, 2) are vertices of the triangle of area 4 square units then determine the
value of k.

(3) Identify the singular and non-singular matrices:

1 2 3 2 -3 5 0 a-b k
@4 5 6 Gy|6 0 4| (i)|b-a 0 5
7 8 9 1 5 -7 —k =5
39 Matrices and Determinants
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(4) Determine the values of @ and b so that the following matrices are singular:

g b-1 2 3
(i)Az[_z a] ) B=| 3 1 2
1 -2 4

0 cos@ sinf |

(5) If cos26 =0, determine [cos€ sind 0
sin@ 0 cos@

log, 64 log,3 log,3 log,3

(6) Find the value of the product ;

log,8 log,9 log,4 log,4

EXERCISE 7.5

Choose the correct or the most suitable answer from the given four alternatives.

(1) If a; =%(3l—2]) and A4 =[aij]2><2 is

> 2 1t 2 2 1
1 2)({2 2 3 4 2 2
@ M2 @) @1 1] @ @
-— 1 2 1 ) ) 1 2
2
. . I 2 3 8
(2) What must be the matrix X, if 2.X + = ?
3 4 7 2
W 1 3 ) 1 -3 3) 2 6 @ [2 -6
2 -1 2 -1 4 =2 (4 -2
1 0 0]
(3) Which one of the following is not true about the matrix [0 0 0] ?
0 0 5]
(1) a scalar matrix (2) a diagonal matrix
(3) an upper triangular matrix (4) a lower triangular matrix

(4) If 4 and B are two matrices such that 4 + B and 4B are both defined, then
(1) A and B are two matrices not necessarily of same order
(2) A and B are square matrices of same order
(3) Number of columns of 4 is equal to the number of rows of B

(4) A=B.
A 1 )
(5) If4= Lol then for what value of 4,4" =0?
(Ho (2) +1 3)-1 @1
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1 -1 1
(6) If 4= |:2 ], B= |:Z 1:| and (A+ B)’ = A> + B*, then the values of @ and b are

-1
(1) a=4,b=1 2)a=1,b=4 (3)a=0,b=4 (4)a=2,b=4
1 2 2
(7) If A=|2 1 =2| is a matrix satisfying the equation 44" =91, where 7 is 3 x 3 identity
a 2 b
matrix, then the ordered pair (a, b) is equal to
1, -1 2) =21 32,1 @ E=2,-1)

(8) If A4 is a square matrix, then which of the following is not symmetric?
(1) A+ 4" (2) 44" (3) 474 4) A-4"

(9) If 4 and B are symmetric matrices of order n, where (A4 # B), then
(1) A+ B is skew-symmetric (2) A+ Bis symmetric

(3) A+ Bis adiagonal matrix (4) A+ Bis a zero matrix
(10) If A= [a x] and if xy =1, then det (4 A7) is equal to
Yy a

(1) (a-1y (2) (a*+1)° (3)a’ -1 4) (a* =1

x=2 T+x

2+x 2x+3
e e

(11) The value of x, for which the matrix 4= |:e :| is singular is
(19 2)8 (3)7 4)6

(12) If the points (x,-2), (5,2), (8,8) are collinear, then x is equal to

1

(-3 (2) 3 3)1 43

2a x;, Y, 5
(13) If 12b x, vy, :%7&0, then the area of the triangle whose vertices are

2¢c x;

AN RN A

a’allb b [|c ¢
1 1 1 1

1) — 2) —ab 3) = 4) —ab

()4 ()4ac ()8 ()86!0

o
(14) If the square of the matrix |: p :| is the unit matrix of order 2, then ¢,/ and ¥ should
satisfy the relation. Vo

() 1+ +By=0 ) 1-a’-By=0
(3)1-a’+By=0 (4) 1+’ = By=0
41 Matrices and Determinants
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a b ¢ ka kb kc
(15) If A=|x y z|, then |kx ky kz|is
P qr kp kq  kr
(H)A (2) kA (3) 3kA @) KA

(16) Aroot of the equation | =6 3—x 3 |=0 ig

(1o (2)3 3)0 4 -6
0 a -b
(17) The value of the determinantof A=|—-a 0 ¢ |is
b — 0
(1) — 2abc (2) abc 3)0 @) a’ +b* +¢*

(18) If x,, x,,x; as well as y,, y,, y; are in geometric progression with the same common ratio,
then the points (x,, y,), (x,,5,), (X;,),) are
(1) vertices of an equilateral triangle
(2) vertices of a right angled triangle
(3) vertices of a right angled isosceles triangle

(4) collinear

(19) If LJ denotes the greatest integer less than or equal to the real number under consideration and

e+t ] (=]

-1<x<0, 0<y<1, 1<z<2,thenthevalue ofthe determinant LxJ LyJ +1 LZJ is

x| ] =]+t

(D) LzJ (2) |_yJ 3) LxJ 4) LxJ +1
a 2b 2c
(20) If a#b,b,c satisfy|3 b ¢ |=0, then abc =
4 a b
(1) a+b+c 2)0 (3) b’ (4) ab+bc
-1 2 4 -2 4 2
Q1) IfA4=|3 1 OlandB=| 6 2 0|, then Bis given by
-2 4 2 -2 4 8
(1) B=44 (2) B=-44 (3) B=-4 (4) B=64
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(22) If 4 is skew-symmetric of order n and C is a column matrix of order n x 1, then C" AC is
(1) an identity matrix of order n (2) an identity matrix of order 1

(3) azero matrix of order 1 (4) an identity matrix of order 2

1 3 1 1
(23) The matrix A4 satisfying the equation |:O 1:| A= [O 1] 1s

1 4 1 —4 1 4 1 -4
(1) [_1 0] (2) [1 0} (3) [0 _1} 4) [1 1}

1 },then (A+1)(A-1T) is equal to

NE o[ 4 NERE N
()8 9 ()_89 ()89 ()_8_9

(25) Let A and B be two symmetric matrices of same order. Then which one of the following
statement is not true?

3
4) If A+I:L

(1) A+ Bis a symmetric matrix (2) AB is a symmetric matrix

(3) AB=(BA) (4) A"B=AB"

® SUMMARY ®

In this chapter we have acquired the knowledge of

e A matrix is a rectangular array of real numbers or real functions on R or complex
numbers.

e A matrix having m rows and n columns, then the order of the matrix is m x n.

e Amatrix 4=[q,],,, is said to be a
square matrix if m = n
row matrix if m = 1
column matrix if n =1
zero matrix if a=0vi and j
diagonal matrix if m = n and a,=0Vi=j
scalar matrix if m = n and a,= O0Vi= jand a,= )\ foralli
unit matrix or identity matrix if m =nand a, = O foralli#janda, =1V i
upper triangular matrix if m = n and a,=0V i>j

lower triangular matrix if m = n and a;=0V i<j.

e Matrices 4=[qg;],,, and B=[b,],,,, are said to be equal if a, =b, v iandj

mxXn mxn 2

o If A=[q,],,, and B=[),] then 4+ B =[c;] where ¢; =a; +,

mxn

e If A=[a,],,, and A is a scalar, then A4 =[Aq,],.,

43 Matrices and Determinants
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—A=(-14

A+B=B+A4

A-B=A4+(-1)B

(A+B)+C=A4+ (B+ (C) where 4, B and C have the same order.

A(BC) = (AB)C (ii) A(B+C)= AB+AC (iii) (4+B)C = AC+BC

The transpose of 4, denoted by A is obtained by interchanging rows and columns of A.
i) AH' =4, (i) (k) =kA", (i) (A+B) =A4"+B", (iv) (4B) =B' A"

A square matrix 4 is called

(i) symmetric if 4"=4 and (ii) skew-symmetric if A" = — 4

Any square matrix can be expressed as sum of a symmetric and skew-symmetric matrices.
The diagonal entries of a skew-symmetric must be zero.

For any square matrix 4 with real entries, 4 + A" is symmetric and 4 — A4 is skew-

symmetric and further 4 = % (A+ A7)+ % (A4-4").

Determinant is defined only for square matrices.

A= 4] .

| AB|=| A| | B| where 4 and B are square matrices of same order.

If A=[a;],.,, then |kd|=k"|A|, where k is a scalar.
A determinant of a square matrix 4 is the sum of products of elements of any row (or

column) with its corresponding cofactors; for instance, | 4 |= a,,4,, + a,,4,, + a;;4,; .
If the elements of a row or column is multiplied by the cofactors of another row or

column, then their sum is zero; for example, a,,4;; +a,,4,; +a;;4;; =0.

The determinant value remains unchanged if all its rows are interchanged by its columns.
If all the elements of a row or a column are zero, then the determinant is zero.

If any two rows or columns are interchanged, then the determinant changes its sign.

If any two rows or columns are identical or proportional, then the determinant is zero.

If each element of a row or a column is multiplied by constant &, then determinant gets
multiplied by £.

If each element in any row (column) is the sum of r terms, then the determinant can be
expressed as the sum of 7 determinants.

A determinant remains unaltered under a row (R) operation of the form

R +aR; + BR.(j,k#1i) oraColumn (C) operation of the form C, +aC; + BC, (j,k #1)
where a, 3 are scalars.
Factor theorem : If each element of |4| is a polynomial in x and if |4| vanishes for
x=a,then x — a is a factor of |4].
Area of the triangle with vertices (x,, y)), (x,, ¥,) and (x,, y,) is given by the absolute value
1 x o »n 1
of 2 x, y, 1.
x oyl
If the area is zero, then the three points are collinear.

A square matrix 4 is said to be singular if |4| = 0 and non-singular if |4] # 0.
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Expected Outcome

Step 1

Step 2

answers.

Bo-—--

Stepl

Browse in the link:

Matrices and Determinants: https://ggbm.at/cpknpvvh

Matrices and Determinants

Open the Browser type the URL Link given below (or) Scan the QR Code.

GeoGebra Workbook called “Matrices and Determinants” will appear. In
that there are several worksheets related to your lesson.

Select the work sheet “Matrices-Algebraic operations”work out the
operations given and Select the check boxes to verify corresponding

Click on “New Problem” to get new question.

ICT CORNER 7(a)

e
= .

Click on the New Problem to change the question = New Problem

—14 19 3 -2 3 2
A= 15 -3 -11 B=| —4 -9 -8
2 -7 -11 -5 4 0

Click on the respec1ive boxes to see the solution
(kA [JA+B [JA-B [JAB

Step2

45
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ICT CORNER 7(b)
Matrices and Determinants

DETERMINANTS

Click on the New Problem to change the question - New Problem

-1 13 -17 -1 13 =17 |
A= 17 =1 =T A =| 17 -1 =T

20 18 -1

Expected Outcome

] Step—1 [#1Step=2 WFStep—3 [ Result
-1 18 =17 | - i
=1 =T | 17 =7 17 -1
|Al=] 17 -1 -7 =—I| & — =B ‘+—17 ‘
20 18 =1 : At 18
= —1X(127) — 13X (123) 4 —17(326)
= (—127) — (1500) + (—5542)

= =T268

Step 1
Open the Browser type the URL Link given below (or) Scan the QR Code.

GeoGebra Workbook called “Matrices and Determinants” will appear. In
that there are several worksheets related to your lesson.

Step 2

Select the work sheet “Determinants” Evaluate the determinant for the
matrix given and Select the check boxes to verify steps.

Click on “New Problem” to get new question.

Y Evaluating a Determinant
AR =+ -1 18 -17 | =1 18 —17 |
A=]| 17 -1 -7 lAl=| 17 -1 -7
20 18 -1 |20 18 -1
- Click on the respective boxes to see the steps
= i | Step—1 [ |Step—2 [ |Step—3 Result
Do - N I T PYET
Stepl Step2
Browse in the link:
Matrices and Determinants: https://ggbm.at/cpknpvvh
XI - Mathematics 46

10-08-2018 18:23:32‘ ‘



T | [ o § & EEEN

Chapter Vector Algebra - |

“On earth there is nothing great but man;
In man there is nothing great but mind”

- Hamilton
" |

- o -
BR7OAF

8.1 Introduction

A pilot constructing a flight plan has to be concerned about the plane’s
course, heading, air speed, and ground speed. In order for the plane to proceed
directly toward its destination, it must head into the wind at an angle such that
= the wind is exactly counteracted. If available, a navigation computer will do
the calculation quickly and accurately. If, however, a navigation computer
.| is not accessible, the pilot may have to depend on pencil-and-paper work
Bl supplemented by a calculator with a knowledge of vectors. An understanding
hHid § of vectors and their operations is therefore vitally
® important.

At a certain point during a jump, there are two principal forces acting
on a skydiver. One force (g) gravity exerting straight down and another air
resistance (7) exerting up as well as to some direction. What is the net force
acting on the skydiver? The answer is g +7. (how?)

Let v be the velocity vector of an aircraft. Suppose that the wind
velocity is given by the vector w, what is the effective velocity of aircraft?

The answer is v +w. In what direction should the aircraft head in order to fly
due west?

=)

z 5'&"‘;",{";'-"

A global positioning system (GPS) is a system designed to help to navigate on the earth, in the air
and on water. Vectors are also used in GPS.

47 Vector Algebra -1
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The development of the concept of vectors was influenced by the works of the German
mathematician H.G. Grassmann (1809 - 1877) and the Irish mathematician W.R. Hamilton
(1805 — 1865). While Hamilton occupied high positions, Grassman was a secondary school teacher.

The best features of Quaternion Calculus and Cartesian Geometry
were united, largely through the efforts of the American Mathematician
J.B. Gibbs (1839 - 1903) and Q.Heaviside (1850 - 1925) of England
and new subject called Vector Algebra was created. The development of
¥ the algebra of vectors and of vector analysis as we know it today was first
i revealed in sets of remarkable notes made by Gibbs for his students at Yale
University. Clifford (1845 — 1879), in his Elements of Dynamics (1878),
broke down the product of two quaternions into two very different vector

Hamilton

1805 - 1865 :
( ) products, which he called the scalar product and the vector product. The term

vectors was due to Hamilton and it was derived from the Latin word ‘to carry’.
The theory of vector was also based on Grassman’s theory of extension.

Velocity

.-
.-

Earth

g
,
@ P Force
B
,
,

.
.

.

.’

Sun

It was soon realised that vectors would be the ideal tools for the fruitful study of many ideas in
geometry and physics. Vectors are now the modern language of a great deal of physics and applied
mathematics and they continue to hold their own intrinsic mathematical interest.

@ Learning Objectives

On completion of this chapter, the students are expected to

. realise vectors as a tool to study the various geometric and physics problems.

« distinguish the scalars from vectors.

. understand different types of vectors and algebra of vectors.

- understand the geometrical interpretations and resolutions of 2D and 3D vectors.

. appreciate the usage of matrix theory in vector algebra.

. visualise scalar product and vector product yielding scalars and vectors respectively as a
unique feature.

XI - Mathematics 48
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8.2 Scalars and Vectors

Definition 8.1
A scalar is a quantity that is determined by its magnitude.

For instance, distance, length, speed, temperature, voltage, mass, pressure, and work are scalars.

Definition 8.2
A vector is a quantity that is determined by both its magnitude and its direction and hence it is
a directed line segment.

For instance, force, displacement, and velocity (which gives the speed and direction of the
motion) are vectors.
We denote vectors by lower case letters with arrow. A two dimensional vector is a directed line
. 2 . . . . . . 3
segment in R? and a three dimensional vector is a directed line segment in R".

8.3 Representation of a vector and types of vectors / B

A vector has a tail and a tip. Consider the diagram as in Fig. 8.1. 4

Fig 8.1

Definition 8.3
The tail point A is called the initial point and the tip point B is called the terminal point of the

vector @ . The initial point of a vector is also taken as origin of the vector. ®

The initial point 4 of the vector @ is the original position of a point and the terminal point B is
its position after the translation.

The length or magnitude of the vector @ is the length of the line segment AB and is denoted
by |d | .

The undirected line AB is called the support of the vectora .
To distinguish between an ordinary line segment without a direction and a line segment representing

a vector, we make an arrow mark for the vector as 4B and @ . So AB denotes the line segment.

Definition 8.4

If we have a liberty to choose the origin of the vector at any point then it is said to be free
vector, whereas if it is restricted to a certain specified point then the vector is said to be localized
vector.

Upto vector product we will be dealing with free vectors only. Localised vectors are involved in
finding equations of straight lines.

Definition 8.5
Co-initial vectors are having the same initial point. On the other hand, the co-terminous
vectors are having the same terminal point.

49 Vector Algebra - 1
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Definition 8.6 h
Two or more vectors are said to be collinear or parallel if they have same line of action or have
the lines of action parallel to one another.
Two or more vectors are said to be coplanar if they lie on the same plane or parallel to the same

plane. J
Definition 8.7
Two vectors are said to be equal if they have same direction and same magnitude. )

Let us note that it is not necessary to have the same initial point and same
terminal point for two equal vectors. For instance, in Fig. 8.2, the vectors b
and ¢ are equal since they have same direction and same length, whereas
@ and p are not equal because of opposite direction even though they are
having same length. The vectors ¢ and d are not equal even though they are
having same direction but not having same length. Fig. 8.2

Definition 8.8
Zero vector is a vector which has zero magnitude and an arbitrary direction and it is

denoted by 0.

That is, a vector whose initial and terminal points are coincident is called a zero vector.
We observe that the initial and terminal points of a zero vector are the same. The zero vector is
also called null vector or void vector. ®

A vector of magnitude 1 is called a unit vector. The unit vector in the direction of @ is denoted
by a (read as ‘a cap’ or ‘a hat’). Clearly |a|=1.

We observe that there are infinitely many directions and hence there are infinitely many unit
vectors. In fact, for each direction there is one unit vector in that direction.

Any non-zero vector @ can be written as the scalar multiple of a unit vector in the direction of

d . This scalar is nothing but the magnitude of the vector.

Thus for any vector @ — |Zi| a, where a is the unit vector along the direction of @ .
a

Clearly a = | for any non-zero vector.

Definition 8.9
Two vectors are said to be like vectors if they have the same direction. Two vectors are said to
be unlike vectors if they have opposite directions.

—
c —
N v
a e
Neither like Vectors
Like Vectors Unlike Vectors nor unlike Vectors
Fig. 8.3
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We observe that if two vectors are like vectors or unlike vectors, then the undirected lines (support)
of the vectors are parallel to each other. There are pair of vectors which are neither like nor unlike
vectors.

8.4 Algebra of Vectors

We have studied basic algebraic operations on real numbers and on matrices. Similarly we studied
some operations on vectors. Now let us see how to add two vectors, subtract a vector from another
vector and multiply a vector by a scalar.

8.4.1 Addition of Vectors

Let us define the sum of two vectors in two ways and see that they are the same. Let us assume
that an object of unit mass is placed at the origin (0,0) in R?. We assume that the size of the object is

just a point. Let us assume that two forces @ and b of unit magnitude act on the object in the positive
directions of x-axis and y-axis respectively (Fig.8.4). It is easy to guess that the object will move in

the direction 45° to the x-axis as indicated in Fig.8.5. The forces @ and b are equal to the vectors @

and b as indicated in Fig. 8.6. We may think that the forces push the object in Fig. 8.4 and pull the
object in Fig.8.6.

AY Ay / Ay / Ay
/
— —
i by N
> X > > X '/ >—>X —_— X
a a a a
@ \7 /\? @

Fig. 8.4 Fig. 8.5 Fig. 8.6 Fig. 8.7
The next question before us is ‘How long will it go?’. Let us assume that the forces act one after
the other. The force @ will move the object one unit along the x-axis. So the object will move from
(0, 0) to (1, 0). Now the force b will move the object vertically from (1, 0) to (1, 1). So finally the

object will be at (1, 1) (Fig. 8.7). Thus the sum of the two vectors may be defined as the line segment
joining (0, 0) and (1, 1) in the direction (0, 0) to (1, 1)’.

Now, as in the same situation discussed above, let us assume that the force @ has magnitude 2
instead of 1 (Fig. 8.8). It will not be difficult to guess that the object will move in a direction much
closure to the x-axis as indicated in Fig. 8.9. Also we may guess that the object will go to the point
(2,1). Thus the sum of the two vectors may be defined as the line segment joining (0,0) and (2,1) in
the direction “(0,0) to (2,1)”.

Y y

P 4
— — P4 -
b b P4
\ - N\
— 7 » X — > > X
a a
Fig. 8.8 Fig. 8.9

In the two situations discussed above the directions of the forces are perpendicular to each other.
This need not be the case in general. Even then we can add the forces by considering one after the

other. For example let @ and b be two forces in a plane as shown in Fig. 8.10.
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— —
b b
-
b
\ / -
a — ‘ a4

Fig. 8.10 Fig. 8.11 Fig. 8.12

Bringing the initial point of b to the terminal point of @ (Fig. 8.11), we can get the resultant of
these two forces (see Fig. 8.12). This motivates us to define the sum of two vectors.

Triangle law of addition

Let @ and b be two vectors. Let 4, and B, be the initial B,
points of @ and b , and 4, and B, be the terminal points of 5

Gand b respectively. b 4,(4y)
B,
Draw A,B, parallel to B B, so that 4,8, = BB,. Then “
R A
the vector 4B, is defined as the sum of the vectors a and Fig. 8.13

b, and it is denoted as @ +b . This can be restated as,

Definition 8.10 (Triangle law of addition)
If two vectors are represented in magnitude and direction by the two sides of a triangle taken in
order, then their sum is represented by the third side taken in the reverse order.

Result 8.1 <
® If ,b and ¢ are the sides of a triangle taken in order then a + b+¢=0 ®
Proof
Let ZEZﬁ,ﬁC—,;:l;, and CA=¢.
Now  G+b+¢= AB+BC+CA=AC+CA=AA=0.
Thus the result is proved. A a B
Fig. 8.14 m

Parallelogram law of vector addition

Let @ and b be two vectors. Assuming that the initial points of the two vectors are the same,
let us find the sum according to Definition 8.7. Let A and B be the terminal points of @ and b
respectively (Fig. 8.15). To find @ + b , we draw AC parallel to OB so that OB = AC and declare that
OC is the sum (Fig. 8.16). We observe that OA4 and BC are parallel (Fig. 8.17).

c c
B B R B -

b b

A
? E) A ? A
a a a
0 0] 10)
Fig. 8.15 Fig. 8.16 Fig. 8.17

So to find the sum of two vectors with the same initial point, draw the parallelogram with the
given vectors as adjacent sides and declare the diagonal as the sum. Even the vectors do not have the
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same initial point, we can move one of the vectors suitably and make them to have same initial point.
This leads us to the following Definition 8.11.

Let @ and b be two vectors with the same initial point O. Let 4 and B be the terminal points of
dand b respectively.

Complete the parallelogram OACB. Then the vector OC is defined as the sum of the vectors @
and b . Thus

Definition 8.11 (Parallelogram law of addition) L
In a parallelogram OABC if OA and OB represents two adjacent sides, then the diagonal OC
represents their sum (see Fig. 8.17).

Though we have two definitions for addition of vectors, they are one and the same. Definition
8.10 is defined using the triangle law for addition of vectors and Definition 8.11 is defined using the
parallelogram law for addition of vectors:

In a triangle ABC if AB and BC represent two sides, then the third side AC represents their
sum.

8.4.2 Difference between two Vectors
Now let us see how to subtract one vector from another vector.

Definition 8.12

Let @ be a vector. Then the reverse of d, denoted by —a, is defined as the vector having the
® magnitude of @ and the direction opposite to the direction of a. ®

Notice that if 4B = d, then BA=-a.

Geometrical interpretation of difference between two vectors

Let @ be a vector with initial point P and terminal point Q. Let b be the vector with initial point
0 and terminal point P. The magnitude of both of the vectors is the length of the line segment joining

P and Q. So they have the same magnitude. But clearly they have opposite directions. So b is equal
to —d .

If @ and b aretwo vectors, then the vector @ — b is defined as the sum of the vectors @ and — b.
Thatis @ +(-b).

We can view the vector @ —b geometrically. Let OA and OB represent the vectors @ and b

respectively (Fig. 8.18) . Draw AC parallel to OB with AC = OB. Then AC is equal to b . Extend the

line CA to D so that CA = AD. Then AD is equal to —b . Thus @ + (—3) =O0D .Hence @ —b =0D
(Fig. 8.19).

Let us complete the parallelogram OACB. We observe that B4 and OD are parallel and they
have equal length. Thus the two vectors BA and OD are equal. So we may consider BA as @b .
This shows that if the sides O4 and OB of the parallelogram OACB represent the vectors @ and b
respectively, then the diagonal BA will represent the vector @ — b. (Fig. 8.20). We note that we have
already seen that the diagonal OC represents the vector @ + b.

53 Vector Algebra - 1
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=
)

Fig. 8.18 Fig. 8.20

Thus, if G and b represent two adjacent sides of a parallelogram then the diagonals

represent ¢ +b and @ —b.

8.4.3 Scalar multiplication of a vector
Now let us see how to multiply a vector by a scalar.

Let @ be a vector and m be a scalar. Then the vectorma is called the scalar multiple of a vector
d by the scalar m.

Let us note that when m is zero, the magnitude of m @ becomes 0 and hence m @ becomes the zero
vector. If m is positive, then both @ and m @ have the same direction and when m is negative, then @
and m d have opposite directions. Thus @ and m @ are like vectors if m is positive and unlike vectors
if m is negative. The magnitude of md is |ma|=|m||a].

Definition 8.13

Two vectors @ and b are said to be parallel if @ = Ab , where 1 is a scalar. If >0, they are in

the same direction. If 4 <0 then they are in the opposite direction to each other.

8.4.4 Some properties and results

For any two vectors @ and b and scalars m and n, we have
(1) m(na) =mn(a)=n(ma)
(i) (m+n)a =md+na
(i) m(a@+b) =ma+mb
Result 8.2
Vector addition is associative.

For any three vectors a ,I; and ¢,
(G+b)+C =a+(b +7).
Result 8.3

For any vector @, a+0=0+d =a .
Result 8.4

For any vector @, d +(—d)=(-d)+d = 0.

This result states that the additive inverse exists for every vector.
Result 8.5

Vector addition is commutative.
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Proof
Let @ and b be two vectors. Let @ = @, bh=0B.

Complete the parallelogram OACB with a anci as adjacent sides. The vectors OB and AC

have same direction and equal magnitude; so OB = AC . Thus
c

G+b = 0A+AC=0C.
As, 04 =BC, / 5
F+a =0B+BC=0C. if
Thus G+b =b+ad. 0 ’ m
Fig. 8.21

Polygon law of addition

Let @,E,R‘, CT), and DE be any five vectors as

shown in the Fig. 8.22.
We observe from the figure that each vector is drawn g

from the terminal point of its previous one. By the triangle

law,
OA+AB=0B ; OB+BC=0C

OC+CD=0D ; OD+ DE=OE
Fig. 8.22
Thus the line joining the initial point of first vector to the terminal point at the last vector is the

sum of all the vectors. This is called the polygon law of addition of vectors.

Example 8.1
Represent graphically the displacement of

(1) 30 km 60° west of north
(i) 60 km 50° south of east.

Solution

N

N A

A
P
60°
30 km W< e
W< >» E 50
60 km
\ 0
S

Fig. 8.23 Fig. 8.24
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Example 8.2

If@ and b are vectors represented by two adjacent sides of a regular hexagon, then find

the vectors represented by other sides.

Solution

Let 4,B,C,D,E F be the vertices of a regular hexagon.

Let G = AB and b = BC
We use the following facts about regular hexagon.

(1)  The lines 4B, CF and ED are parallel and the lines BC, AD

and EF are parallel.

(i) The length of CF is twice the length of AB and the length

of AD is twice the length of BC.

Since the lines 4B and DE are parallel, equal in length and

opposite in direction we have

Since the lines AB and CF aﬁ:li)arallgl .and opposite in direction we have
CF = -2d.

Similarly EF = —b and AD=2b.

Since AB+BC = AC we have
AC =3d+5b.

Since AC+CD = AD we have

® d+b+CD=2b.

Thus CD=2b-(G+b)=b -

As FA= —CT), we have
FA=d-b.

|

A 7 B
Fig. 8.25

Hence, for given sides AB =d and BC = b, we have obtained all other sides of the hexagon

as EBZE—ﬁ,BEZ—ﬁ,EﬁZ—E, and FA=ad—b.

8.5 Position vectors

Definition 8.14

Let O be the origin and P be any point (in the plane or space). Then the vector OP is called the
position vector of the point P with respect to the origin O (point of reference).

The relation between the vectors and position vectors are given in the following result.

Result 8.6

Let O be the origin, 4 and B be two points. Then AB = OB-0A where, OA and OB are

position vectors of 4 and B respectively.

Proof

We know that, OA+ AB = OB. Thus AB = OB — OA.
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Theorem 8.1 (Section Formula - Internal Division)
Let O be the origin. Let 4 and B be two points. Let P be the point which divides the line segment

AB internally in the ratio m : n. If @ and b are the position vectors of 4 and B, then the position
vector OP of P is given by
OP — na +mb .
n+m
Proof
Since O is the origin, @ and b are the position vectors of 4 and B, we have

OA =7 and OB=h .

Let OP = 7. m
Since P divides the line segment 4B internally in the ratio m : n, P
we have, D B
a

. b

4P| _m 0

|PB| n Fig. 8.26
and hence n|ZI3|=m|F§|.
But the vectors AP and PB have the same direction. Thus

nAP = mPB. (8.1)

But AP = OP-OA=7 -G and PB=0OB-OP=b —F
Substituting this in (8.1), we get

n(@—a) = mb -7)

and hence
(n+m)¥ = nd + mb .
Thus OP = M.
n+m =

Theorem 8.2 Section Formula - External Division (Without proof)

Let O be the origin. Let 4 and B be two points. Let P be the point which divides the line segment
AB externally in the ratio m : n. If @ and b are the position vectors of 4 and B, then the position

vector OP of P is given by
op = @ —mb .
n—m
Note 8.1
By taking m = n =1 in Theorem 8.1, we see that the position vector of the midpoint of the line

L . . d+
joining the points 4 and B is
respectively.

From the above theorem we can get a condition for three points to be collinear.

, where @ and b are the position vectors of the points 4 and B
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Result 8.7

Three distinct points 4, B and C with position vectors a , b and ¢ are collinear if and only if
there exist real numbers x,y,z, none of them is zero, such that

x+y+z=0 and x5+yg+zZ’=6.
Example 8.3
Let A and B be two points with position vectors 2a + 4b and 2 —8b. Find the position
vectors of the points which divide the line segment joining 4 and B in the ratio 1:3 internally and
externally.
Solution
Let O be the origin. It is given that
OA = 24 +4b and OB =2 —8b.
Let C and D be the points which divide the segment AB in the ratio 1 : 3 internally and
externally respectively. Then

——_304+0B _3(2a +4b)+(2d -8b)

C —2G+b.
3+1 4
T 30,;1—103 _3(a +4b)2—(2a =80) _ o= 10F

Let us recall the definition that the line joining a vertex of a triangle with the midpoint of its
opposite side is called a median. The centroid divides the median from vertex to the midpoint of the
opposite side internally in the ratio 2:1.

@ Theorem 8.3 ®
The medians of a triangle are concurrent.
Proof

Let ABC be a triangle and let D, E, F be the mid points of its sides BC, CA and AB respectively.
We have to prove that the medians 4D, BE, CF are concurrent.

Let O be the origin and a,b,¢ be the position vectors of 4, B, and C respectively.
A(a)

The position vectors of D, E, and F are respectively

b+ ¢+d a+b

+
2727 2
Let G, be the point on AD dividing it internally in the ratio 2 : 1 B(b) D C(?)
Fig. 8.27
Therefore, position vector of G, — 194+20D
1+2
15+2(b ;c ] .
Yol at+b+c
oG, = = 1
: 3 3 (1)

Let G, be the point on BE dividing it internally in the ratio 2 : 1

10B +20E
1+2
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OGZ = 3 = (2)
Similarly if G, divides CF in the ratio 2 : 1 then
0G, = ‘H'bT"'C (3)

From (1), (2), and (3) we find that the position vectors of the three points G, G,, G, are one and
the same. Hence they are not different points. Let the common point be G.
Therefore the three medians are concurrent and the point of concurrence is G.

Theorem 8.4 a
A quadrilateral is a parallelogram if and only if its diagonals bisect each other.

Proof
Let 4, B, C, D be the vertices of a quadrilateral with diagonals AC and D ¢

BD. Let d, l_;, ¢ andd be the position vectors of 4, B, C, and D respectively
with respect to O.

Let the quadrilateral ABCD be a parallelogram. Then A B

AB=DC=0B-04=0C-0D=b-d=¢—-d =b+d=d+7¢ Fig. 8.28

b+d G+7¢
and hence =
2 2
This shows that the position vectors of the midpoint of the line segments AC and BD are the
same. In other words, the diagonals bisect each other.
Conversely let us assume that the diagonal bisects each other. Thus the position vectors of the midpoint

of the line segments AC and BD are the same. Thus

5+€_5+3
2 2

=d+c¢=b+d =¢-d=b-4d.

This implies that OC—0OD =0B—04 and hence DC = AB. This shows that the lines AB and
DC are parallel. From @ +¢ = b +d weseethat @—d =b —¢ which shows that the lines 4D and

BC are parallel. Hence ABCD is a parallelogram.
]

EXERCISE 8.1
(1) Represent graphically the displacement of

(1) 45¢m 30° north of east. (i1) 80km, 60° south of west

(2) Prove that the relation R defined on the set V of all vectors by ‘@ R b ifd =b isan
equivalence relation on V.

(3) Let @ and b be the position vectors of the points 4 and B. Prove that the position vectors

: o : a+2b b+2d
of the points which trisects the line segment 4B are a 3 b and b 3 4.
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(4) If D and E are the midpoints of the sides AB and AC of a triangle 4BC, prove that

§E+56:EBC.

(5) Prove that the line segment joining the midpoints of two sides of a triangle is parallel to the
third side whose length is half of the length of the third side.

(6) Prove that the line segments joining the midpoints of the adjacent sides of a quadrilateral
form a parallelogram.

(7) If @ and b represent a side and a diagonal of a parallelogram, find the other sides and the
other diagonal.

(8) If PO+ @ = 50 +OR, prove that the points P, O, R are collinear.
(9) If D is the midpoint of the side BC of a triangle ABC, prove that AB+AC =24D.

(10) If G is the centroid of a triangle ABC, prove that GA+GB+GC=0.
(11) LetA4, B, and C be the vertices of a triangle. Let D,E, and F be the midpoints of the sides BC,

CA, and AB respectively. Show that AD+ BE +CF = 0.
(12) If ABCD is a quadrilateral and £ and F' are the midpoints of 4AC and BD respectively, then

prove that AB+ AD+CB+CD = 4AEF.

8.6 Resolution of Vectors

Resolution of a vector can be done for any finite dimension. But we will discuss only in two and
® three dimensions. Let us start with two dimension. @

8.6.1 Resolution of a vector in two dimension
Theorem 8.5

Let 7 and; be the unit vectors along the positive x-axis and the y-axis having initial point at

the origin O. Now OP is the position vector of any point P in the plane. Then OP can be uniquely
written as

OP = xi +y ] for some real numbers x and y. Further |OP | = /x> +1°.
Proof 7

Let (x, y) be the coordinates of the point P. Let L and M be the
foots of the perpendiculars drawn from P to the x and y axes. Then P(ry)
A V| B ey Xy
OP=0OL+LP=0OL+0OM. A r

Since ¢ andj are unit vectors, we have OL = xi and OM = yJ. > > X

— A n 0 A L
Thus OP =xi+yj i
Fig. 8.29

If OP=F then F7=xi+yj.
To prove the uniqueness, let xlf + ylj and xzf + yzj be two representations of the same point P. Then
Xll?+ ylj - x2f+yzj-
This implies that  (x, —x,)i —(y,—y,)] = 0= x,—x, =0,y, —y, =0.

In other words x, = x, and y, = y, and hence the uniqueness follows.
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In the triangle OLP, OP* = OI* + LP?; hence | OP |=+/x* + )*.

Thatis, |7 |=r=+x"+1" .
]
Observe that if i and j are the unit vectors in the postive directions of x and y axes, then the

position vector of the point (6,4) can be written as 6i +4 and this is the only way of writing it.
Result 8.8

If @ and b are two non-collinear vectors in a plane, then any vector in the plane can be written
as the linear combination of @ and b in a unique way. That is, any vector in the plane is of the form
1G +mb for some scalars [ and m.
Proof

Let OA= da, OB=bh ,and 7 be any vector coplanar with
d and b.

Draw PL parallel to OB. Clearly LP=mb and OL=1la for
some / and m.

Now OP=OL +LP.

That is, 7 =G +mb.

Therefore if 7#,a,b are coplanar then 7 is a linear combination O

of @ and b. Fig. 8.30 =
Note 8.2

Further if three non collinear vectors are coplanar then any one of the vector can be written as a
linear combination of other two. Note that the converse is also true.
Result 8.9

If @,b and ¢ are three non-coplanar vectors in the space, then any vector in the space can be
written as [d +mb +nc in a unique way for some scalars 7, m and n.

Definition 8.15

Let i and ; be the unit vectors in the positive directions of x and y axes respectively. Let 7 be

any vector in the plane. Then 7 =xi+y j for some real numbers x and y. Here xi andy ] are
called the rectangular components of 7 along the x and y axes respectively in two dimension.

What we discussed so far can be discussed in the three dimensional space also.

8.6.2 Resolution of a vector in three dimension
Theorem 8.6

Leti, j and k be the unit vectors in the direction of postive x, y and z axes respectively having
initial point at the origin O. Let OP be the position vector of any point P in the space. Then OP canbe

uniquely written as OP = xi + y j + zk for some real numbers x, y and z. Further | OP |= /x> + y* + 2°.
Proof

Let (x, y, z) be the coordinates of the point P. Let O be the foot of the perpendicular drawn from
P to the xy-plane. Let R and S be the foots of the perpendiculars drawn from Q to the x and y axes

respectively. Let OP=F.
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Then, OR=x, OS=y, and QP=z.
Thus, OR = xi, @=5§=y]‘, and@ﬁ=zl€ Q&

OP=7F=00+0P=0R+RO+0OP=xi+y]+zk . i
Thatis OP = F=xf+yj’+zl€ g

N

N

This OP vector is called the position vector of P with Ok y

respect to the origin O in three dimension. RO
In the triangle ORQ, ! IR

00* = OR*+RQ* (how?) R 0
and in the triangle OQP, /

OP* = 0Q* +0P’.
Thus OP® = OQ*+QP*=OR*+RQ* +QP* =x"+y" +2*

Fig. 8.31

and hence |OTD| = X’ +y +27  thatis |[F|=r=yx"+)"+2° 5]

Components of vector joining two points
Let us find the components of the vector joining the point (x,,y,) to (x,,y,).

Let A and B be the points (x,, y,) and (x,, y,). Let P be the point (x, —x,,», —»,). Then AB = OP.
The components of OP are (x, —xl)f and (y, — yl)}. Hence the components of AB in the directions

of x and y axes are (x, —x, )i and (¥, = )J.

Similarly if 4 and B are the points (x,,),,z,) and (x,, y,,z,), then the components of AB in the

directions of x, y and z axes are (x, —x,)i, (y,—)/,and (z, —zl)lg .

8.6.3 Matrix representation of a vector
A vector with three components can be visualised as either a row or column matrix as

X
[x, y, z] or | y | respectively.
z
i
Thus any vector A= ai+a,j+ a3l€ can be obtained from [¢, a, a,]| ] |=ai +a,j+ a3l€ =4 .

A

k

Hence addition of vectors and multiplication of a vector by a scalar can be defined as follows.

a, b, a, +b,
If A=ai+a,j+akand B=bi+b,j+bk then A+B=|a, |+|b, |=|a,+b, | resulting in
) a, b, a, +b,
A+B=(a,+b)i+(a,+b,)j+(a,+b)k .

a, ka,
Also kA=k |a, |=|ka, | yielding
a, ka,
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kA = kai +ka, ] + ka,k
For ke R,k >1 yields magnification, 0 < k <1 yields contraction of a vector and k£ = 0 yields a
zero vector OA =07 + 0]+ 0k =0.

Result 8.10
Using the commutative, associative properties of vector addition and the distributive property of
the scalar multiplication we can prove the following.

If d = alf+a2}'+a3l€, b :blf+b2j+b31€ and if m is a scalar, then
() @+b =(a,+b)i+(a,+b,)j+(a,+b)k
(i1) Zi_z; =(q, _b1);+(a2 _bz)j"'(az. _b3)k’\

(iil)  ma@ = ma,i +ma,j+mak and

(iv) @ = b ifandonlyif @, =b,, a, =b,, and a, = b,.

Example 8.4
Find a unit vector along the direction of the vector 5/ — 3 + 4f.

Solution

—

. o - . . a :
We know that a unit vector along the direction of the vector a is given by ﬁ So a unit
a

vector along the direction of 5/ —3 ] + 4k is given by

50-3j+4k  5i-3j+4k 50-3j+4k

|5f—3j+41€| - V5P 432 +4° INE)

Note 8.3

Now we have another unit vector parallel to 5i —3}+4l€ in the opposite direction. That is,

5i-3j+4k

J50
8.7 Direction Cosines and Direction Ratios

Let P be a point in the space with coordinates (x, y, z) and of distance » from the origin. Let R, S
and 7 be the foots of the perpendiculars drawn from P to the x, y and z axes respectively. Then
ZPRO = Z£PSO=/ZPTO =90°.
OR =x, OS=y, OT=zand OP=r.
(It may be difficult to visualize that ZPRO = ZPSO = ZPTO =90° in the figure; as they are foot
of the perpendiculars to the axes from P; in a three dimensional model we can easily visualize the
fact.)

Let a, S, y be the angles made by the vector OP with the positive x, y and z axes respectively.
That is,

ZPOR = o, ZPOS=pf, and ZPOT =y.
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N

«Jﬂ)

il

Fig. 8.32 Fig. 8.33

In AOPR,ZPRO =90°, ZPOR = ot,OR = x, and OP =r. Therefore

OR «x
coso = —=—,
OP

In a similar way we can find that cos = 2 and cos Y= z.
r r

Here the angles «, 3, ¥ are called direction angles of the vector OP =7 and cosa,cos B, cos y are

called direction cosines of the vector OP = xi + yj + zk. Thus (f,l,i} where r=+x"+y>+2°,
r r r

are the direction cosines of the vector 7 = xi + yj + zk .

Any three numbers which are proportional to the direction cosines of vector are called the
direction ratios of the vector. Hence the direction ratios of a vector is not unique. For a given vector,
we have, infinitely many set of direction ratios.

Observations
(1) For a given non-zero vector, one can find the direction ratios as well as the direction cosines.
(i) For a given set of direction ratios, one cannot find the corresponding vector.
(i) For a given set of direction cosines, one cannot find the corresponding vector.
(iv) For a given vector, the triplet of direction cosines is also a triplet of direction ratios.
(v) To find the vector, the magnitude as well as either the set of direction cosines or a set of
direction ratios are essential.

Note 8.4

Here we consider a vector OP whose initial point is at the origin. If the vector whose initial point
is not the origin, then, in order to find its direction cosines, we draw a vector with initial point at the
origin and parallel to the given vector of same magnitude by translation. By the principle of two equal
vectors having the same set of direction cosines, we can find direction cosines of any vector.

Result 8.11

Let 7F=xi+yj+ zk be the position vector of any point and let e, 5, ¥ be the direction angles of
7. Then
(1) the sum of the squares of the direction cosines of 7 is 1.
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(i) sin’a+sin® f+sin® y=2.

.. . . . — X z
(ii1) the direction cosines of 7 are 4

b b M
\/x2 +y* +2° \/xz +y +z° \/xz +y° +27
(iv) 1, m, n are the direction cosines of a vector if and only if I +m” +n’ =1,

(v) any unit vector can be written as cos i +cos 3] +cos vk

Proof
2 2 2 2 2 2 2
. X zZ X +y 4z r
(i) cos’ @ +cos® f+cos’ 7/:—2+y—2+—2:y—2 =—=1
N r r
The proofs of (ii), (iii), (iv), and (v) are left as exercise. m

Example 8.5
Find a direction ratio and direction cosines of the following vectors.

() 3i +4) -6k, (i) 37 — 4k .
Solution

(i) The direction ratios of 3i +4 ] —6k are 3, 4, — 6.

.. : X z
The direction cosines are —,X,— , Where r = \/xz + y2 +z% .

r r r

Therefore, the direction cosines are

3 4 -6
(ii) The direction ratios of 3i —4k are 3, 0, — 4.

.. : —4
The direction cosines are %, 0,?.

Example 8.6
(i) Find the direction cosines of a vector whose direction ratios are 2, 3, — 6.

(i1)) Can a vector have direction angles 30°,45°,60° ?
(ii1)) Find the direction cosines of AB, where A is (2,3,1)and Bis (3, -1, 2).
(iv) Find the direction cosines of the line joining (2, 3, 1) and (3, — 1, 2).

(v) The direction ratios of a vector are 2, 3, 6 and it’s magnitude is 5. Find the vector.
Solution

X y z

(1) The direction cosines are

\/xz +y +2° ’\/x2 +y +2z° ’\/x2 e
(ii) The condition is cos’ &+ cos” B+cos” y=1
Here a=30°, f =45°,y=60°

3 1 1
cos’a+cos’ B+cos’ y="+—+—#1.
P 4 4 2 4

Therefore they are not direction angles of any vector.
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(i) AB=OB-OA=i-4)+k

1 —4 1
Direction cosines are —,——,—— -
V18 /18 /18
4 1

(iv) LetA and B be the points (2, 3, 1) and (3,—1, 2). The direction cosines of AB are

But any point can be taken as first point. Hence we have another set of direction cosines
4 -1

\/_J_\/E

with opposite direction. Thus, we have another set of direction ratios

(v) The direction cosines are

\)ll\)
\1|O\

A

; . 2x .
The unit vector is 71 +7 J+

é
7’
bz
7

The required vector is %(2? +37+ 6l€) .

Example 8.7

Show that the points whose position vectors are 2i +3 ] — 5/9, S = 2k and , 61 —5]+ 7k
are collinear.

Solution
Let O be the origin and let OA, OB, and OC be the vectors 2i + 3] —5k, 3i + j- 2k and
6i —5] + 7k respectively. Then
AB — i -2j+3k and AC = 4i —8j+12k.

Thus AC =4A4B and hence AB and AC are parallel. They have a common point namely
A. Thus, the three points are collinear.

Alternative method
Let O be the point of reference.

Let OA =2i+3j-5k,0B=3i+j—2k and OC = 6i —5]+ 7k

AB =i-2j+3k ; BC=3i-6j+9% ; CA=—4i +8]—12k

V126 =314 ; =414.

48] =14
Thus, AC =AB + BC.

Hence A4, B, C are lying on the same line. That is, they are collinear.

Example 8.8
Find a point whose position vector has magnitude 5 and parallel to the vector 4i —3 j +10k.

Solution :

Let @ be the vector 4i —3j+10k .
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. . o ad 4i-37+10k
The unit vector a along the direction of @ is %whlch is equal to s

ld| 55

. The vector

s |5

. R . 2 at I 4A. . .
whose magnitude is 5 and parallel to 4i =3 +10k , is 5[4l 3/ +10k )z i3 j+2\/§ k.

: U
So a required point is ( 3 ,245 )

5

Example 8:9

Prove that the points whose position vectors 2 +4 j + 3k, 47 + j+ 9k and 107 —J+ 6k form
a right angled triangle.

Solution
Let 4, B, C be the given points and O be the point of reference or origin.

Then OA = 2i+4j+3k, OB=4i+ j+9k and OC =10i — ] + 6k
AB = OB—OA=(4i + j+9%)—(2i +4] +3k)=2i —3] +6k.
AB = |4B| = 2 +(-3)+6’ = J4+9+36 =7
BC = OC-OB=(10i — j +6k)— (4 + ] +9%) = 6i —2] —3k.

® BC = |BC|= /6 +(=2) +(=3) = \36+4+9 =7 ®

CA = OA-0C =(2i +4]+3k)—(10i - j +6k) =—8i +5] —3k.
CA = |CA| = [(-8) +5° +(=3)* = 64 +25+9 =+/98
BC? = 49, CA*> =98, AB*=49.

Clearly CA* = BC*+ AB>.
Therefore, the given points form a right angled triangle.

Example 8.10
Show that the vectors 5 +6 ] + 719, 7i-8j+ 913, 34207+ 5k are coplanar.

Solution

Let 5i+6]+7k = s(7i —8] +9k)+1(3 +20] +5k)

Equating the components, we have

Ts+3t =5
—8s+20t = 6
Os +5¢ =7

) ) 1 . ) ) )
Solving first two equations, we get, s =t = > which satisfies the third equation.

Thus one vector is a linear combination of other two vectors.
Hence the given vectors are coplanar.
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EXERCISE 8.2

(1)  Verify whether the following ratios are direction cosines of some vector or not.

1 34 1 11 4 3

) —,=,— i) —,—,— iii) —,0,—

W 553 NG W30
(2) Find the direction cosines of a vector whose direction ratios are

i 1,2,3 (i)3,-1,3 (1) 0,0,7
(3) Find the direction cosines and direction ratios for the following vectors.

() 37i—4j+8k Gi) 3i+j+k (i) J

(iv) 51 —3]—48k (v) 3i=3k+4] ~vi)i—k

(4) A triangle is formed by joining the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). Find the direction
cosines of the medians.

1 1 L .
(5) If —,—=,a are the direction cosines of some vector, then find a.

2’2
(6) If(a,a+b,a+ b+ c)isone set of direction ratios of the line joining (1, 0, 0) and
(0, 1, 0), then find a set of values of a, b, c.

(7)  Show that the vectors
20— ]+ /g, 3i—4)— 4l€, i-3j— S5k forma right angled triangle.

(8) Find the value of A for which the vectors @ =3/ +2/ + 9 and b =i + Aj+ 3k are parallel.
(9) Show that the following vectors are coplanar

® () 1-2j+3k, —2i+3]-4k, —j+2k @
(i) 57+ 6]+ 7k, 71 —8]+9k, 31 +20] +5k.
(10) Show that the points whose position vectors 4i +5}+l€, —]A'—lg, 3 +9}+4l€ and
—4i +4)+ 4k are coplanar.
(11) If G=2i+3j—4k b=31—4]—5k,and ¢= —3i+2j+3k, find the magnitude and
direction cosines of (i) @ + b+¢ (i) 3@ —2b +5¢.
(12) The position vectors of the vertices of a triangle are i+2;+ 3k; 3i — 47+ Sk

and —2{+3)— 7k . Find the perimeter of the triangle.
(13)  Find the unit vector parallel to

3G —2b +4C ifa=3—j—4k, b=-2i +4j -3k, and ¢ =i + 2] —k.

(14)  The position vectors @,b,¢ of three points satisfy the relation 2@ —7b +5¢ =0. Are these
points collinear?

(15)  The position vectors of the points P, O, R, S are i+ j+k, 2i + 5}', 3f+2j’-3]€, and
i— 6.}' —J respectively. Prove that the line PQ and RS are parallel.

(16)  Find the value or values of m for which m (i + j + /€) is a unit vector.

(17)  Show that the points 4 (1, 1, 1), B(1, 2, 3) and C(2, — 1, 1) are vertices of an isosceles
triangle.
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8.8 Product of Vectors

We have seen the notion of addition of two vectors, subtraction of one vector from another vector
and the multiplication of a vector by a scalar. Now we study the notion of product of two vectors.
There are two ways of multiplying two vectors.

(1)  scalar product (dot product) and

(11)  vector product (cross product).

To define such products we need the angle between two vectors.

8.8.1 Angle between two vectors

Leta and b be any two vectors represented by OA and OB respectively. Angle between @ and b
is the angle between their directions when these directions are either both converge as in Fig. 8.36 or
both diverge as in Fig. 8.34 from their point of intersection

>y
S

Sy
QY

.
> -
> .

: o
— *

a

Fig. 8.34 -~ Fig. 8.35 Fig. 8.36

Ql

Note that, if 6 is the angle between two vectors then 0< 6 < 77

When 6=0 or x,the vectors are parallel.
If two vectors neither converge nor diverge as in Fig. 8.35 then we can make them into either
converge or diverge by extending the length of the vectors to find the angle between the two vectors.

8.8.2 Scalar product

Definition 8.16

Let @ and b be any two non-zero vectors and 0 be the included angle of the vectors as in Fig. 8.34.
Their scalar product or dot product is denoted by a. b and is defined as a scalar |a | |b | cos 6.

Thus G-b=|d||b|cos8.

Since the resultant of a- bis a scalar, it is called scalar product. Further we use the symbol dot
(‘-’) and hence another name dot product.

Geometrical meaning of scalar product (projection of one vector on another vector)

Let OA=d, OB=b and 0 be the angle between a and b.
Draw BL perpendicular to OA4. From the right triangle OLB 5

cosf = —L
OB

OL =0BcosO = |b |cos6

But OL is the projection of bon a g ': - 4
a-b=lal|b|cos@ =|a|(OL) Fig. 8.37
69 Vector Algebra - 1

@ 10-08-2018 18:34:54‘ ‘



o EEEEE ® - EEEm

ab = a| (projectionofl; on a)

Sy

a-

Thus, projection of bonad=

al
b-a
|5 =

In the same manner, projection of @ on b =

8.8.3 Properties of Scalar Product
(1) Scalar product of two vectors is commutative.
With usual definition, @b =|a||b |cos@=|b ||d|cos@=b-a

That is, for any two vectors @ and Z;, Gib=b-a.
(i1)) Nature of scalar product
We know that 0< @< .

If =0 then @-b =ab [Two vectors are parallel in the same direction = 6=0].

If =7 then a-b =—ab[Two vectors are parallel in the opposite direction = 6 = 7.].
V4 Lo ) V4

If 6= By then a-b =0 [Two vectors are perpendicular = € = By ].

If0<é< % then cosf is positive and hence a bis positive.

/4 . . I .
If By < @ < wthen cosd is negative and hence a-b is negative.

>0for0<8<m/2
Thatis, G@-b is {0 for @=mx/2
<Oforzr/2<0<rxw

(i) @ bh=0= |d|=0or |b|=0or 9:%

(iv) For any two non-zero vectors a and b, ab=0 <ais perpendicular to b .
(v) Different ways of representations of a- a.
a-a=|dil’=(a) =a*=a’.
These representations are essential while solving problems.
(vi) i-i=j j=k-k=land i-j=j-k=k-i=0 (how?).
(vii) For any two scalars Aand i
Ad-ub=Au(a-b)= (Aua)-b=a-(Aub).
(viii) Scalar product is distributive over vector addition.
That is, for any three vectors a, b ,C
a-(b+¢)=a-b+a-¢ (Left distributivity)
(G+b)-¢ = a-¢+b-¢ (Right distributivity)
Subsequently,
G-(b—¢)=ad-b—a-¢ and (G—b)-¢ = a-¢—b-¢
These can be extended to any number of vectors.
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(ix) Vector identities
(G+b)Y =|al+|b}+2a-
(G-byY =|al+|b}-2a-

(@+b)-(a-by=1|al*-|b[

S oYy

Proof
By property (iii)
(G+b) =(G+b)-(G+b)=|af +|b} +a-b+b-a =|al+|b+2a-b
Similarly one can prove other results. o
(x) Working rule to find scalar product of two vectors

Letd =ai +a,j+ak and b=bi+b,]+bk
i-b = (ai+a,]+ak)-(bi+b,j+bik)
= ab (1) +ab,(-])+ab,G-k)
+a,b,(j-D)+ab,(j- ) +ab,(j-k)+apb (ki) +ab,(k- })+ab,(k-k)

= ab +a,b, +a,b;.
Therefore, the scalar product of two vectors is equal to the sum of the products of their
corresponding rectangular components. m

3 B
(xi) If @ is the angle between the vectors @ and b then € =cos™ [| #a’ 7 |].
a

@ (xi1) For any two vectors aaild b, 5+5‘S|Zz|+|l§|. ) ®
We know that if @ and b are the two sides of a triangle then the sum a +5 represents the
third side of the triangle. Therefore, by triangular property, | a + b |<|a|+]| b | =

(xiii) For any two vectors @ and b, |a-b| < |d||b]|.
If one of them is zero vector then the equality holds. So, let us assume that both are
non-zero vectors. We have

_ab
lallb]
That is, |a'bj=|cos€|£l
ans|
= |a-b| <lallb]. =

Example 8.11
Find G-b when
(i) d=i—j+5k and b =37 -2k

(1) a and b represent the points (2, 3, — 1) and (- 1, 2, 3).
Solution

()  a-b=(0-]+5k) G —2k)=1)3)+(=1)0)+(5)(=2)=3-10=—7
(ii) =2i+3j—k and b=—i+2]+3k
Q) (=D+B)2)+(-)B)=—2+6-3=1.

a
a-b
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Example 8.12

Find (d+3b)-(2a—b)if G =i+ +2k andb=3i+2j—k

Solution

(G+3b)-(2a-b)=2d-d+5G-b—3b-b=2(1+1+4)+5(3+2—-2)-3(9+4+1)=-15.

Example 8.13

fa=2+2) +3k, b =—f+2j’+l€ and ¢ =3i + j be such that a+Ab is perpendicular to ¢

then find A.
Solution

(G+Ab)-¢=0= G-c+Ab-¢=0
= (6+2)+A(-=3+2)=0
= A=8.

Example 8.14

If|a +b |=|a—b| prove that @ and b are perpendicular.

Solution

G+b|=|d—b)|
la+b)P=|d-b|
|G +|bP-2a-b
4d-b =0

Hence a and b are perpendicular.

Example 8.15

For any vector 7 prove that 7 = (¥-i)i +(7- j)j + (¥ I€)l€ .

Solution

Let F=xf+y}+zl€

N

N

v

A

J
-k

= (xf+y]‘+zl€)-f:x
= (xf+y]‘+zl€)-]':y

= (xf+y]‘+zl€)-l€:z

F-)i+G - Dj+G -kk=xi+yj+zk=F
Thus 7 =(F-1)i +(F- j)j+(F-k)k .

Example 8.16

Find the angle between the vectors 5i +3 + 4k and 6i — 8] — k.

Solution

Let G=5i+3]+4k, and b=6i -8 —k.
Let 6 be the angle between them.
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30-24-4_ 2

cosf = a-b =0 =cos” i
l@||b| /50 V101 54101 5101 |

Example 8.17
Find the projection of ABon CD where 4, B, C, D are the points (4, — 3, 0), (7, -5, - 1),
(_ 27 17 3)’ (0: 2: 5)
Solution
Let O be the origin.
Therefore, OA =4;-3j ; OB :7f—5}'—l€ ; %=—25+j+31€ ; 07j:2}'+5]€

AB=0B-0A=3i-2j—k ; CD=0D-0C =2i + j+2k

Projection of AB on CD = AB'_CD _Soa2
o

2
—

Example 8.18

If @, b, and ¢ are three unit vectors satisfying a —35+¢=0 then find the angle between

d and c.
Solution
Let 8 be the angle between a and c.
i-\3b+¢ =0
= [(@+¢)| = |N35|
= |@|” +|¢* +2|ad||c|cos@ =3|l§|2
= 1+1+@2)(1)()cos b =3(1)
= c030=l — 9:2.
2 3

Example 8.19
Show that the points (4, — 3, 1), (2, — 4, 5) and (1, — 1, 0) form a right angled triangle.

Solution

Trivially they form a triangle. It is enough to prove one angle is 7 So find the sides of the
triangle. 2

Let O be the point of reference and 4,B,C be (4,—3, 1), (2,—4,5) and (1, — 1, 0) respectively.
OA=4i —3j+k, OB=2i—4j+5k, OC=i—]

Now, AB = OB-0A=-2i - j+4k
Similarly, BC = —i+3j-5k ; CA =3i-2j+k
Clearly, AB-CA =0

Thus one angle is % . Hence they form a right angled triangle.

73 Vector Algebra - 1
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Note 8.5
Suppose three sides are given in vector form, prove

(i) either sum of the vectorsis 0 or sum of any two vectors is equal to the third vector, to form
a triangle.

.. . .
(i) dot product between any two vectors is 0 to ensure one angle is 7

EXERCISE 8.3
(1) Find a.b when

() da=i-2j+k and b=3i —4j-2k (i) G=2/+2j—k and b = 6i =3 +2k.
(2) Find the value A for which the vectors a and b are perpendicular, where
() da=2i+Aj+kandb=i-2j+3k (i) da=2i+4j—kandb=3i-2]+Ak.
(3) If aand b are two vectors such that |a |=10,|I; |=15 and G-b=75/2 , find the angle
between d and b .
(4) Find the angle between the vectors
(i) 27 +3]—6k and 6i =3 +2k (i) i — j and j — .
(5) If d,b,¢ are three vectors such that G+2b+¢=0 and |d|=3,|b|=4,|¢|=7, find the
® angle between a and b. ®
(6) Show that the vectors G =27 +3j+6k, b=6i +2j—3k, and ¢ =3i —6)+2k are
mutually orthogonal.
(7) Show that the vectors — —2j — 6k,2i — J+ k, and —i + 37+ 5k forma right angled triangle.
(8) If|dl=5,|b|=6, |¢|=7 and G+b+¢ =0, find G-b+b-c+¢-a.
(9) Show that the points (2, — 1, 3), (4, 3, 1) and (3, 1, 2) are collinear.
(10) If d,b are unit vectors and 6 is the angle between them, show that

. .6 1 . - .. 0 1 . - . 0 |a-b|
Z=_\a-b —=—la+b tan—= =
(1) s1n‘2 2|01 | (i) cos2 2|a | (iii) 2 ath)

(11) Let @,b,¢ be three vectors such that |a|=3, |Z; |=4, |¢|=5 and each one of them being
perpendicular to the sum of the other two, find |G +b +¢ | .

(12) Find the projection of the vector i +3 ] + 7k on the vector 27 + 6]+ 3k .

(13) Find A, when the projection of @ = Ai +j+4l€ on b=2+6+ 3k is 4 units.

(14) Three vectors d,b and ¢ are such that |al=2, |5 |=3,/c =4, and d+b+¢=0. Find
4G-b+3b-¢+3¢-a.
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8.8.4 Vector Product

To define vector product between two vectors, we need the concept of right handed and left
handed system.

If we align the fingers of our right hand along the vector a¢ and bend our
fingers around in the direction of rotation from a towards b (through an angle
less than 180°), our thumb will point in the direction of a xb . Now, following
the right-hand rule, bxa will point in the direction opposite to a xb (See Fig.
8.38).

We may also say that if @ is rotated into the direction of b through the

angle 6(< ), then a xb advances in the same direction as a right-handed
screw would if turned in the same way. a
A Cartesian coordinate system is called right-handed if the corresponding

S

unit vectors i ,JA',IQ in the positive direction of the axes form a right-handed bxa

triple as in Fig. 8.39. The system is called left handed if the sense of k is Fig. 8.38
reversed as in Fig 8.40.

p?,
S5 =
7 :
Right handed Left handed Right handed screw Left handed screw
Fig. 8.39 Fig. 8.40 Fi. 8.41 Fig. 8.42

N

Ql
X
S

(Deﬁnition 8.17
Vector product of any two non-zero vectors a and b is

written as axXb and is defined as
axb=|dl|b|siné n,

where @ is the angle between d and »,0< < 7.

Here d,b,# form a right handed system.
\ Fig. 8.43

The resultant is a vector with magnitude | g || b |sin @ and has the direction .

Further axb is a vector perpendicular to both a and b . Thatis, axb is normal to the plane
containing a and b.
Note 8.6

(i) Note that the order of the vectors is very important to decide the direction of 7 .

(i) Since the resultant is a vector, this product is named as vector product. Again, we use the

symbol cross ‘%’ to define such a product and hence it has another name cross product.
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Geometrical interpretation of vector product N
n

Construct a parallelogram OACB with OA=d and OB=b B c

as adjacent sides.

Let [40B=06 ’ x5
From the diagram,

o m
0 L = )
sin@ = % a
BL = (OB)sin 0= |b |sin@ Fig. 8.44

Now |axb| = |d||b|sin@=|a|(BL)
(base) (height) = area of the parallelogram OACB.

Thus, @xb is a vector whose magnitude is the area of the parallelogram, having a and b as

its adjacent sides and whose direction 7 is perpendicular to the plane containing @ and b such that
a,b,n forma right handed system.

Thus, | G@xb | = area of the parallelogram whose adjacent sides are @ and b .
From the area of the parallelogram, we can deduct the area of the triangle OAC as half of the area
of OACB. m

Deduction

The area of any triangle whose two sides are a and b= |a xb .

8.8.5 Properties

(1) Vector product is non-commutative

1
2

By definition he b

bxd = |b||d|sinf(—n)

[since b,d,—7 forma right handed system] -
= —|ad||b|sin6 A
= —(axb)

Thus vector product is non-commutative. Fig. 8.45

Qi

_hw
(i) If two vectors are collinear or parallel then @xb =0 (how?)
But axb=0= i=0 or b=0 or dandb are parallel.
(iii)) For any two non-zero vectors a and b,dixb=0<dandb are parallel.
Deduction
axdi=0

(iv) With usual meaning of i, j and k (they form a right handed system), the k
following results are obtained.

It is clear that,

ixj=k; jxk=i;kxi=] ;
Jxi=—k ;kxj=—i ;ixk==] (how?) Fig. 8.46
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V)
(vi)

For any scalars m and n,
mn(axb) = (mna)xb =ax(mnb)=naxmb .

maxnb =
(vil) Vector product is distributive over addition.
That is, ax(b+¢) = (axb)+(axc)
(G+b)xé = (ax&)+(bxa).

This property can be extended to subtraction and to any number of vectors.
That is, ax(b—¢) = (axb)—(ax?)

ax(b+c¢+d) = (axb)+(axc)+(axd).
Working rule to find the cross product

= ai+a,j+ak , b =bi+bj+bk .

(viii)

Let a
axb = (ai+a,]+ak) x (bi+b,]+bk)

= ab(ixD)+ab, (% ])+ab,(@ xk)+a,b(jxi)

+a,b, (X )+ a,b,(Jxk)+ ab, (kxi)+ab, (kx })+a,b, (kxk)

= (a,b,—a;b,)i —(a,b, —asb,) ] +(ab, —a,b )k

i] ok

® axb = |a a, a ®
b, b, b m
|c7><5|

(ix) If @ is the angle between a and b then 6 =sin™

(The proof of this result is left as an exercise)

Note 8.7

In this case € is always acute. Thus, if we try to find the angle using vector product, we get
only the acute angle. Hence in problems of finding the angle, the use of dot product is preferable since

it specifies the position of the angle 6.
(x) The unit vectors perpendicular to both @ and b are + A=+ |(€ XZ)| (how?)
ax
4 lax b)
|axb |

Vectors of magnitude 4, perpendicular to both a and b are +1n =

Example 8.20
Find |Gxb |, where G=3i+4j and b =i+ ] +k.

Solution
= {(4-0)— j3-0)+k(3—4) = 4i -3] —k..

b| = |4i =37 —k |=\16+9+1=+/26.

77
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Example 8.21
IfG=-3i+4j—7k and b = 6i +2] -3k,
verify (1) aanda xb are perpendicular to each other.

(11) b and axb are perpendicular to each other.

Solution :
i j ok
axb=|-3 4 —7|=i(-12+14)— j(9+42)+k(—6-24) = 2i —=51j-30k
6 2 -3
(i) G-(axb) = (=3i +4j-7k)-(2i =51]—=30k) = -6—204+210=0 .
Therefore, G and axb are perpendicular.
(ii) b-(axb) = (6i +2]—3k)-(2f =51j—30k) = 12—102+90 = 0.

Therefore b and axb are perpendicular.

Example 8.22
Find the vectors of magnitude 6 which are perpendicular to both vectors

G=4i—j+3k and b =—2i + j—2k .

Solution
i ]k
axb =4 -1 3|=iQ2-3)-j(-8+6)+k(4-2) = —i+2j+2k
-2 1 =2
Unit vectors perpendicular to both G and b are + |(il X [bi)| =+ — 23j 2k
ax

Vectors of magnitude 6 perpendicular to both G and b are £2(—i+ 2 j+ 2]@) .

Example 8.23

Find the cosine and sine angle between the vectors @ =2i + j + 3k and b=4i — 27+ 2k .

Solution
Let 6 be the angle between a and b
a-b =(2i+j+3k)-(4i —2j+2k) = 8-2+6=12
la| =|2i+j+3k|=\14 ; |b|=|4i-2j+2k|=~24
ab 12 3

cos@ = — = =
@b 1424 N7

i 7k
axb =|2 1 3|=i2+6)—j(4-12)+k(-4—4) =8 +8j—8k
4 -2 2

|axb| =|8+8]—8k| = 83
Sme:wxzﬂ _ &3 a3 2
la||b| 1424 712 7

78
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Example 8.24
Find the area of the parallelogram whose adjacent sides are @ =3i + ] + 4k and b =i — J +k.
Solution
i ]k
axb =3 1 4|=i(1+4)-jB-4)+k(-3-1) =5+ ]—4k .
1 -1 1

|axb| =5+ ]—4k|=~42
Area of the parallelogram is /42 sq.units.

Example 8.25

For any two vectors @ and b, prove that |axb [ + (a-b)> =af* |b|
Solution

We have, |axb|=|adl||b|sin6 and a-b =|d||b|cosé

|axb [P +a-b)* = |al |bPsin’0+|al |b cos>6

=|al |bP (sin®>@+cos’ @)= |al’ |b[ .

Example 8.26
Find the area of a triangle having the points 4(1,0,0), B(0,1,0), and C(0,0,1) as its vertices.
Solution :
® Let us find two sides of the triangle. ®
AB =—i+j ; AC=—i+k
i j ok
ABXAC =|-1 1 0|=i+j+k
-1 0 1
| ABXxAC| =3

V3
2

The area of the triangle ABC is % | ABX AC |=

Note 8.8

Instead of 4B and AC, one can take any two sides.

EXERCISE 8.4
(1) Find the magnitude of Gxb if @=2i+ j+3k and b=3{+5] -2k .
(2) Show that ax(b+¢)+bXx(¢+a)+cx(a+b)=0 .
(3) Find the vectors of magnitude 10+/3 that are perpendicular to the plane which contains

i+2j+k and i +3]+4k.
(4) Find the unit vectors perpendicular to each of the vectors

d+bandd—b, whereézf+]’+l€ andl;:f+2j'+313.
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(5) Find the area of the parallelogram whose two adjacent sides are determined by the vectors

f+2}'+31€ and 3?—2}'+l€.
(6) Find the area of the triangle whose vertices are
AB3,-1,2),B(1,—-1,-3)and C(4, -3, 1).

(7) If a,b,¢ are position vectors of the vertices 4, B, C of a triangle ABC, show that the area of

the triangle ABC is % |axb+bxé+¢xa|. Also deduce the condition for collinearity of the

points 4, B, and C.

(8) For any vector @ prove that |axi | +|ax [ +|axk[=2|a[* .
- . Lo —~ .. T
(9) Let a,b,¢ be unit vectors such that a-b =a-¢ =0 and the angle between b and ¢ is 3

Prove that a = i%(Z;XE).

(10) Find the angle between the vectors 27 + —kandi+ 2] +k using vector product.

EXERCISE 8.5
Choose the correct or the most suitable answer from the given four alternatives
(1) The value of AB+BC+DA+CD is
(1) 4D (2) CA (3) 0 (4) —AD

2) If a+ 2b and 37 +mb are parallel, then the value of m is

(13 () % (3)6 (4) %

(3) The unit vector parallel to the resultant of the vectors i + ; —kandi-— 2] +k is

(1) f_}+]€ Q) 2+ 3) 25—}+l€ 4) 2]

V5 Vs V5 V5

(4) A vector OP makes 60° and 45° with the positive direction of the x and y axes respectively.

Then the angle between OP and the z-axis is

(1) 45° (2) 60° (3)90° (4) 30°
(5 If BA=3i+ 2] +k and the position vector of Bisi +3) — k, then the position vector A4 is
(1) 4i+2]+k (2) 4i+5] (3) 4i (4) 41

(6) A vector makes equal angle with the positive direction of the coordinate axes. Then each
angle is equal to

(1 (2 AL A2
(1) cos (3) (2) cos (3) (3) cos (\/g] (4) cos (\/g]
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(7

(8)

)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

The vectors Zz’—l?, b -¢C, C—d are

(1) parallel to each other (2) unit vectors

(3) mutually perpendicular vectors (4) coplanar vectors.

If ABCD is a parallelogram, then AB+AD+CB+CD is equal to

(1) 2(AB+ AD) (2) 44C (3) 4BD 4) 0
One of the diagonals of parallelogram ABCD with

@ and b as adjacent sides is @ +b. The other diagonal BD is
a+b
R 2
If @,b are the position vectors A and B, then which one of the following points whose
position vector lies on 4B, is
- 23 -b 2d+b i-b

(1) a+b 2 — ) —3 &) —

If @, E,E’ are the position vectors of three collinear points, then which of the following is
true?

()a-b 2)b-ad (3)a+b (4)

(1)@=b+¢C (2) 2@ =b+7¢ (3)b=7c+a (4) 4G+b +¢ =0
L 9G+7b . . o :

Ifr = , then the point P whose position vector 7 divides the line joining the points

with position vectors @ and b in the ratio

(1) 7 : 9 internally (2) 9 : 7 internally

(3) 9 : 7 externally (4) 7 : 9 externally

If Ai +2A)+2k is a unit vector, then the value of A is
1 1 1 1
1) = 2) — 3) — 4) —
6] 3 2 1 3) 5 4 5
Two vertices of a triangle have position vectors 3i + 4 ] — 4k and 27 + 37+ 4k. 1f the position

vector of the centroid is i + 2/ + 3]3, then the position vector of the third vertex is

(1) =27 — j+9% (2) 2i—j—6k  (3)2i—j+6k (4) =21 + j+6k
If |G+b |=60,|d—b |=40 and |b |=46, then |d|is
(1) 42 2) 12 (3) 22 (4) 32

If G and b having same magnitude and angle between them is 60° and their scalar product
is 1 then |a| is
2
(1)2 ()3 (3)7 @1
The value of e (0,%) for which the vectors @ = (sin8)i +(cos@); and b=i —\/§j+ 2k

are perpendicular, is equal to

T T T T
(1) 3 () o 3) 7 4) 7
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(18) If |G |=13,|b|=5and a-b = 60° then |axb | is

(1) 15 (2) 35 (3) 45 (4) 25

(19) Vectors @ and b are inclined atan angle 6 =120°. If | G |=1,| b |= 2, then [(G@ +3b)x (3d —b)]?
is equal to
(1) 225 (2) 275 (3) 325 (4) 300

(20) If a and b are two vectors of magnitude 2 and inclined at an angle 60°, then the angle
between d and G+b is
(1) 30° (2) 60° (3) 45° (4) 90°

(21) If the projection of 5i —}'—3l€ on the vector i +3j+/11€ is same as the projection of

i +3j+ Ak on 5i — j—3k, then A is equal to
(1) + 4 2)+3 (3)£5 (4) £1

(22) If (1, 2, 4) and (2, — 3A — 3) are the initial and terminal points of the vector i +5 ] — 7k , then
the value of 4 is equal to

7 7 5 5
(1 3 () 3 () =3 Q)] 3
(23) If the points whose position vectors 10 +3/, 12/ =5/ and ai +11; are collinear then « is
equal to
()6 )3 3)5 48
(24) If G=i+j+k, b=2i+xj+k, ¢=i—j+4k andG-(bx&) =70, then x is equal to
(15 2)7 (3) 26 (4) 10 @

(25) If a=i +2}'+2/€,| b |=5 and the angle between a and b is %, then the area of the triangle
formed by these two vectors as two sides, is

7 15 3 17
M @7 ) @

SUMMARY

In this chapter we have acquired the knowledge of the following :

* Ascalar is a quantity that is determined by its magnitude.
* A vector is a quantity that is determined by both its magnitude and its direction

» Ifwe have a liberty to choose the origins of the vector at any point then it is said to be a
free vector, whereas if it is restricted to a certain specified point then the vector is said
to be a localized vector.

» Two or more vectors are said to be coplanar if they lie on the same plane or parallel to
the same plane.

» Two vectors are said to be equal if they have equal length and the same direction.
* A vector of magnitude O is called the zero vector.

* A vector of magnitude 1 is called a unit vector.

XI - Mathematics 82
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« Let @ be avector and m be a scalar. Then the vectorma is called the scalar multiple

of a vector d by the scalar m.

« Two vectors @ and b are said to be parallel if a = Ab , where A is a scalar.

-

« If a,b and ¢ are the sides of a triangle taken in order then a +b+¢=0

e Vector addition is associative.
e Foranyvectord, a+0=0+d =a .

- Forany vector @, @+(-a@)=(-d)+d = 0.
e Vector addition is commutative.

*  “Iftwo vectors are represented in magnitude and direction by the two sides of a triangle
taken in the same order, then their sum is represented by the third side taken in the
reverse order”. This is known as the triangle law of addition.

* In a parallelogram OABC, if OA and OB represents two adjacent sides, then the

diagonal oC represents their sum. This is parallelogram law of addition.

» If o, B,y are the direction angles then cosa,cos ,cos ¥ are the direction cosines.
« The direction ratios of the vector 7 = xi + yj + zk are x, V,Z.

o If Zz’,l_; and ¢ are three non-coplanar vectors in the space, then any vector in the space
@ can be written as /@ +mb + nc in a unique way. @
Let 7=xi+y/+ zk be the position vector of any point and let ¢, 3, ¥ be the direction
angles of 7 . Then
(1)  the sum of the squares of the direction cosines of 7 is 1.
(i) sin’ or+sin® B+sin’ y=2.
y VA

(i11) the direction cosines of 7 are , A .
2 2 2 2 2 2 2 2 2
\/x +y +z \/x +y +z \/x +y +z

(iv) I, m, n are the direction cosines of a vector if and only if /> +m” +n” =1.
(v) any unit vector can be written as cos i +cos 3] +cos }/l€ .

* The scalar product of the vectors @ and bis a-b= |a | |l; |cos@.

* Vector product of any two non-zero vectors a and b is written as axb and is defined

as axb =|a||b |sin@ i, where 6 is the angle between d and b,0< @<z . Here a,b,A
form a right handed system.
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Expected Outcome

Step 1

Step 2

various positions

Vector Algebra - 1

ICT CORNER 8(a)

o x=5 gy
ot s RS r—
Y L =5 ;,P,mm

OA =F=xi+yj +zk=—5i +—8j + =5k

Il= |04| = V& +y + 27 = V=5 + 5+ 5 = VT8

)

Direction Cosines = (Cosa,Cosd, Cosy) = [I o

e L

(Cos125.26°,C0s125.26" Cos 125267 — (2. —° 5

T :fﬁ] \ e e e

Open the Browser type the URL Link given below (or) Scan the QR Code.

GeoGebra Workbook called “XI Standard Vector Algebra” will appear. In
that there are several worksheets related to your lesson.

Select the work sheet “Direction Cosines”. 3-D representation is found on
Right side. You can rotate 3-D picture by right clicking on the mouse to see

You can move the sliders or entering x, y and z values to change the vector.

ol : P m”{,
[ % standord Vector Alg 4 4 moving the —
= - S e
sas i =6 ype in box
T i . . UA =7 = xi+yj + =k =5 + 47 + ok
E—— Fl=|0Al= V@ F T+ 2= VB + 47 + 62 = V7T
Bires e Direction Cosines = (Cosa, Cosd, Coay) = [: i ?" f_]
: 5 4 6 =
(Cosh5.26°,Cosh2.B8",Cos46.86") —(—— ., — , — - —
!v’;'?' VT \.f".'F}I &
Step2
Stepl p

Browse in the link:

XI Standard Vector Algebra: https://ggbm.at/cem3sdq5
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Step 1

Open the Browser type the URL Link given below (or) Scan the QR Code.
GeoGebra Workbook called “XI Standard Vector Algebra” will appear. In that

there are several worksheets related to your lesson.

Step 2

Select the work sheet “Product of Vectors”. 3-D representation is found on Right
side. You can rotate 3-D picture by right clicking on the mouse to see various

positions

You can move the sliders or entering x, y and z values to change the vector.(for
clear understanding do not change a ,a,, and a, values. For ABXAC, components

are given vertically)

- ferae axb
s e ‘@ ¢ [ )
; . =
=0 o7 |
e AB. AT =1 ‘I i
b b bk = — 48 4 35 4 3k e i J i, "
”' o more— .I
m A ]
ABXAC = (?g)
Bo-—
Browse in the link:
XI Standard Vector Algebra: https://ggbm.at/cem3sdq5
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Differential Calculus -
Chapter Limits and Continuity

“Men pass away, but their deeds abide”
- Augustin-Louis Cauchy

o -
BB99H1

9.1 Introduction

Calculus is about rates of change. Rates of change occur in all the sciences. A mathematician
is interested in measuring the rate of change of the deviations of a straight line at a point on a curve,
while a physicist is interested in the rate of change of displacement, and the velocity of a moving
object. A chemist wants to know the rate of a chemical reaction that would result in the formation of
one or more substances (called products) from one or more starting materials (called reactants).

A biologist would like to analyse the changes that take
place in the number of individuals in an animal population or
plant population at any time; he would also want to know the oo
rate at which blood flows through a blood vessel, such as a euronary

vein or artery and the part of the vessel / artery in which this | e
flow is lowest or highest.

Normal Heart

_ Pulmonary Veins
from Lungs

v Cava = Mitral Valve

@ An economists also studies marginal demand, marginal
revenue, and marginal profit, which are drawn from rates
of change (that is, derivatives) of this demand, revenue and | v
profit functions. i

Vena Cava =

Aortic Valve

A geologist is interested in knowing the rate at which f
an intruded body of molten rock cools by conduction of heat
into surrounding rocks. An engineer wants to know the rate
at which water flows into or out of a reservoir. An urban geographer is interested in the rate of
change of population density in a city with the expansion of the city. A meteorologist is concerned
with the rate of change of atmospheric pressure with respect to height.

W Oxygen-rich Blood
B Oxygen-poor Blood

In psychology, those interested in learning theory, study the so called learning curve, which
graphs the performance of someone learning a skill as a function of the training time. Of particular
interest is the rate at which performance improves as time passes.

i) ’ y &2 When we enter a
' %&J M darkened room, our eyes
A . adjust to the reduced level of
2 light by increasing the size of
our pupils, allowing more light
to enter the eyes and making
objects around us easier to see.
By contrast, when we enter a
brightly lit room, our pupils
contract, reducing the amount
of light entering the eyes, as too much light would overload our visual
system. Researchers study such mechanisms based on limits.
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Velocity, density, current, power and temperature gradient in physics; rate of reaction and
compressibility in chemistry, rate of growth and blood velocity in biology; marginal cost and marginal
profit in economics; rate of heat flow in geology; rate of improvement of performance in psychology
— these are all cases of a single mathematical concept, the derivative.

This is an illustration of the fact that part of the power of mathematics lies in its abstractness. A
single abstract mathematical concept (such as derivatives) can have different interpretations in each
of the sciences. When we develop the properties of the mathematical concept, we can then apply
these results to all of the sciences. This is much more efficient than developing properties of special
concepts in each separate science.

One of the greatest creations of the ancient past was Euclidean geometry. This monumental work
was not matched in importance until the discovery of calculus almost two thousand years later.

Calculus was created independently in England by Sir Isaac Newton (1642 — 1727) and in
Germany by Gottfried Wilhelm Leibnitz (1646 — 1716) in the last quarter of the seventeenth century.

Newton’s interest in mathematics began with his study of two of the great books on mathematics
at that time: Euclid’s Elements and Descartio LLa Geometric. He also became aware of the work of
the great scientists who preceded him, including Galileo and Fermat.

By the end of 1664, Newton seemed to have mastered all the mathematical knowledge of the
time and had begun adding substantially to it. In 1665, he began his study of the rates of change or
flexions, of quantities, such as distances or temperatures that varied continuously. The result of this
study was what we today call differential calculus. All who study mathematics today stand on Isaac
Newton’s shoulders.

Many of Leibnitz’s mathematical papers appeared in the journal ‘Acta

Eruditorum’ which he cofounded in 1682. This journal contained his work

on calculus and led to the bitter controversy with Newton over who first

discovered calculus. Leibnitz was the first to publish the important results

@ on calculus and was the first to use the notation that has now become
standard.

Augustin-Louis Cauchy (1789 — 1857), born in Paris in 1789 is
considered to be the most outstanding mathematical analyst of the first half
of the nineteenth century. Cauchy made many contributions to calculus.
In his 1829 text book ‘Lecons le calcul differential’, he gave the first
reasonably clear definition of a limit and was the first to define the derivative
as the limit of the difference quotient,

Ay _ St A) -~ f ()
Ax Ax .

Augustin — Louis Cauchy
(1789 — 1857)

Karl Weierstrass (1815-1897), a German mathematician gave the precise definition
(€ — 0 definition) of the concepts of limit, continuity and differentiability.

What is Calculus?

Calculus is the mathematics of ratio of change of quantities. It is also the mathematics of tangent
lines, slopes, areas, volumes, arc lengths, centroids, curvatures and a variety of other concepts that
have enabled scientists, engineers and economists to model real-life situations.

Although pre calculus mathematics deals with velocities, accelerations, tangent lines, slopes and

so on, there is a fundamental difference between pre calculus mathematics and calculus. Pre calculus
mathematics is more static, whereas calculus is more dynamic. Here are some examples:

* An object travelling at a constant velocity can be analyzed with pre calculus mathematics.
To analyse the velocity of an accelerating object, you need calculus.

* The slope of a line can be analysed with pre calculus mathematics. To analyse the slope of a
curve, you need calculus.

87 Limits and Continuity
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* A tangent line to a circle can be analysed with pre calculus mathematics. To analyse a line
tangential to a general graph, you need calculus.

* The area of a rectangle can be analysed with pre calculus mathematics. To analyze the area
under a general curve, you need calculus.

Each of these situations involves the same general strategy, the reformulation of pre calculus
mathematics through the use of a limit process. So, one way to answer the question ‘What is calculus?’
is to say that calculus is a ‘limit machine’ that involves three stages. The first stage is pre calculus
mathematics such as the slope of a line or the area of a rectangle. The second stage is the limit process
and the third stage is a new calculus formulation, such as a derivative or integral.

Pre calculus Limit

Mathematics | — Process — Calculus

It is cautioned that those who try to learn calculus as if it were simply a collection of new formulae
rather than as a process, will miss a great deal of understanding, self-confidence and satisfaction.

@ Learning Objectives

On completion of this chapter, the students are expected to

¢ visualize the concept of limit / continuity through geometric process.

e relate the concept of limit / continuity with every day life activities.

¢ assimilate limit / continuity as the heart and spirit of calculus.

@ e understand limit / continuity as an operation (operator) to measure / quantify / mathmatize @
changes in physical world.

e concretize the concept of limit / continuity via illustrations real life related situations.

9.2 Limits

9.2.1 The calculation of limits

The notion of a limit, which we will discuss extensively in this chapter, plays a central role in
calculus and in much of modern mathematics. However, although mathematics dates back over three
thousand years, limits were not really understood until the monumental work of the great French
mathematician Augustin — Louis Cauchy and Karl Weierstrass in the nineteenth century, the age of
rigour in mathematics.

In this section we define limit and show how limits can be calculated.

Illustration 9.1

We begin by looking at the function y= f(x)=x"+3. Note that f is a function from
R—-R.

Let us investigate the behaviour of this function near x = 2. We can use two sets of x values : one
set that approaches 2 from the left (values less than 2) and one set that approaches 2 from the right
(values greater than 2) as shown in the table.

x approaches 2 from the left { x approaches 2 from the right |
X 1.7 1.9 1.95 1.99 1.999 1.9999 2 2.0001 2.001 2.01 2.05 21 2.3
f(x) 589 | 6.61 | 6.8025 | 6.9601 | 6.99601 | 6.99960001 7 | 7.0040001 | 7.004001 | 7.0401 | 7.2025 | 7.41 | 8.29
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It appears from the table that as x gets close to
x=2,f{x)=x>+3 gets close to 7. This is not surprising
since if we now calculate f{x) at x = 2, we obtain -
f2)=22+3=17.

In order to guess at this limit, we didn’t have to
evaluate x> + 3 atx = 2.

That is, as x approaches 2 from either the left -
(values lower than 2) or right (values higher than
2) the functional values f(x) are approaching 7 from =~
cither side; that is, when x is near 2, f(x) isnear 7. =~~~ = \{
The above situation is described in a condensed =~~~ = |7
form:

The value 7 is the left limit of f(x) as x approaches ——— . e SH S S
2 from the left as well as 7 is the right limit of T T
f(x) as x approaches 2 from the right and write :
f(x)>7asx—>2 andf(x)—>7 as x > 2"

or

11n3 fix)="7and linl fix)="1.

Note also that lim f{x) =7 = lim f{x). The common value is written as lirr21 fx)="17.
x—=2" x—2* x—=

We also observe that the limit is a definite real number. Here, definiteness means that

lim f{x) and lim f{x) are the same and
x—=2"

x—2"

ling fix)=lim fix)= lim f(x) is a unique real number.
x— x—2" x—2"

The figure in Fig. 9.1 explains the geometrical significance of the above discussion of the

behaviour of flx) =x*>+ 3 as x —> 2.

Illustration 9.2

2
Next, let us look at the rational function f{x) = 16=x

d+x
The domain of this function is R \ {—4}. Although f{—4) is not defined, nonetheless, f(x) can be

. [16—x2
calculated for any value of x near — 4 because the symbol lim 4( ) says that we consider values

4+x

of x that are close to — 4 but not equal to — 4. The table below gives the values of f{x) for values of x
that approach — 4.

x<—4) x>—4)
—4.1 8.1 -39 7.9
—4.01 8.01 —3.99 7.99
—4.001 8.001 —3.999 7.999
89 Limits and Continuity
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Forx # —4, f(x) can be simplified by
cancellation :
16—x2
4+x

fx) =

_@+0@-y
(4+x)
As seen in Fig.9.2, the graph of f(x) is essentially

the graph of y = 4 — x with the exception that the
graph of f has a hole (puncture) at the point that *
corresponds to x = — 4. As x gets closer and closer
to — 4, represented by the two arrow heads on the Fig. 9.2

x-axis, the two arrow heads on the y-axis simultaneously get closer and closer to the number 8.

\i

Here, note that

2
lim f{x)=8= lim f(x)and hence lim f(x)= lim 16=x" _ 8.
x——4" x——4* x——4 x4 4+ x
In Ilustration 9.2, note that the function is not defined at x =—4 and yet f{x) appears to be
approaching a limit as x approaches — 4. This often happens, and it is important to realise that the
existence or non-existence of f{x) at x =—4 has no bearing on the existence of the limit of f{x)

as x approaches —4.

IMlustration 9.3
Now let us consider a function different from Illustrations 9.1 and 9.2.

x| Ay

Let fix)= —
X
x = 0 does not belong to the domain of £ =1
this function, R \ {0}. Look at the graph of 1 -
this function. From the graph one can see that
for positive values of x,
X
Il _x_ + 1 and -
X X
for negative x values, Ixl_ = =-1. J(x)=-1 |x|
x x -1 S(x)= ~
This means that no matter how close x
gets to 0 (in a small neighbourhood of 0), there

will be both positive and negative x values that Fig. 9.3
yield fix) =1 and fix) = — 1.

Thatis, lim f{x)=—1 and lim flx)=+1.
x—0" x—=0*
This means that the limit does not exist. Of course, for any other value of x, there is a limit.

. X . |x
For example lim Ix] =1 and lim Ixl_ 1.
x—=2" X =2t x
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| x| —X

Similarly, lim — = lim —=—1
x—=>-37 X x—>-3" X
. X . -X
lim u =lim —=-1.
-3 x x—=-3" x
.| x . x|
In fact, for any real number x; #0,  lim |—| =—]= lim u if x, <0 and
x—=xy X =yt x
. x . x] .
lim u:1: lim u if x, > 0.
X=Xy X )c%)c(;r X

We call the attention of the reader to observe the differences reflected in Illustrations 9.1 to 9.3. In
Illustration 9.1, the function f{x) = x*> + 3 is defined at x = 2. i.e., 2 belongs to the domain of f namely
R = (—oo, o). In Ilustration 9.2, the function is not defined at x = — 4. In the former case we say

the limit, lin% fx) exists as x gets closer and closer to 2 to mean that lim f{x) and lim f{x) stand for
x— x—2" x—=2"

a unique real number. In the later case, although it is not defined at x = — 4, lim4 fx) exist as x gets

. . x . . ..
closer and closer to — 4. In Illustration 9.3, lim u does not exist to mean that the one sided limits

x=0  x
. X . |x ) . . .
lim Ix] and lim Lx] are different as x gets sufficiently close to 0. In the light of these observations
x—=0" X x—0"  x

we have the intuitive notion of limit as in

Definition 9.1
Let / be an open interval containing x, € R. Let f:/ — R. Then we say that the limit of

flx) is L, as x approaches X, [symbollically written as lim f(x)= L], if, whenever x becomes

sufficiently close to x, from either side with x # x;, f(x) gets sufficiently close to L.

The following (Fig 9.4 and 9.5) graphs depict the above narrations.
y A y A

~

(

bl
IS

=y
=y

R

lim f(x) exists lim f(x) exists
Fig. 9.4 Fig. 9.5
9.2.2 One sided limits

Definition 9.2
We say that the left-hand limit of f(x) as x approaches x, (or the limit of f{(x) as x approaches
from the left) is equal to [, if we can make the values of f{(x) arbitrarily close to / by taking x to be

sufficiently close to x and less than x. It is symbolically written as f(x;) = lim f(x)=/,.

Similarly, we define the right hand limit.

91 Limits and Continuity
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Definition 9.3
We say that the right-hand limit of f(x) as x approaches x (or the limit of f(x) as x approaches
from the right) is equal to [, if we can make the values of f(x) arbitrarily close to [, by taking x to

be sufficiently close to x, and greater than x,. It is symbolically written as f ()= lim f(x)=1,.

Thus the symbols “x — x;” and “x — x;” mean that we consider only x < x, and x > x

respectively.

0

These definitions are illustrated in the following Fig. 9.6 to 9.9.

N ]

flx) 4

l I I f(x)
Voo

X —» X

lim £ =1, = /i) N ——x
Fig. 9.6 lim f(x)=1,=f(x,")

Fig. 9.7
YA

h

X . > X
0 X, 0) X
lim f(x) does not exist lim f(x) does not exist
Fig. 9.8 Fig. 9.9
(Different values are obtained as (Function not defined to the left of x)
x, is approached from the
left and from the right)
From the above discussions we conclude that lim f(x)= L exists if the following hold :
(1) lim f(x) exists,
(it) lim f(x) exists and
iif) lim £(x)=lim f(x)=L. O] [ o

(i) lim /(x)= lim /(x) b2

From the definitions of one sided limits and that of the limit of f{x) as we have the following :

lim f(x)=L iff lim f(x) =L = lim f(x).

X=X
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Thus, when we say lim f(x) exists, it is understood that L is a unique real number. If any one of
X*)XO

the above conditions fails then we say the limit of f{x) as x approaches x, does not exist.

We remark that the existence of one sided limits is weaker than the existence of limits.

Sometimes it is very useful to use the following in computing left and right limits. For 4 >0,

) =1lim £ (x, — k) and £ (x,") =1im £(x, + ).

Note that f(x,” ) and f(x,") stand for the left and right limiting values. But S (xy) is the value

of the function at x =x .

Example 9.1

Calculate lim | x |.
x—0

Solution y==x

Recall from the earlier chapter 1
—x if x<0

that |x|=40 if x=0
x if x>0

If x > 0, then |x| = x, which tends to 0 as

x — 0 from the right of 0. Thatis, lim |x|=0
x—0"

Fig. 9.10

If x <0, then |x| = — x which again tends to 0 as x — 0 from the left of 0. That is, lim |x |=0.
x—0"

Thus, }1_)1}]1 ]x\:Oz)}i_)I})} [ x].
Hence Llir(} |x|=0.
Example 9.2
Consider the function f{x) = Jx , x>0.
Does £1£r3 f(x) exist?

Solution

No. fix)= Jx is not even defined for x < 0.

Therefore as x > 07, lim \/; does not exist.

x—0"

However, lim \/; = 0. Therefore lin(}\/; does not exist.
—

x—0" X
Does lim logx exist?
x—=0"

Look at the graph of log x for the answer.

93
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S =x

Fig. 9.11
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Example 9.3

Evaluate lim I_xJand lim I_xJ .

x—2" x—2*t

Solution

The greatest integer function f(x)= LxJ is defined as the greatest integer lesser than or
equal to x.

From the graph (Fig. 1.25) of this function it is clear that limLxJ =1 and lim LxJ =2 .

x—2" x—2*

Moreover, for any integer n, lim LxJ =n—-1 and lim LxJ =n.

X—n X—n

Does f{x) = lim fx] exist? Look at the graph of |—x-| (Fig.1.26) for the answer.

Example 9.4

x+1, x>0

Let f{x) = {

x—1, x<0

Verify the existence of limitas x —> 0.

t - X
Solution 3 -2 - gl 203
N
The function is graphed in Fig.9.12. . 7 -2
> 3

Clearly lim f(x)=-1 and lim f(x)=1. Since
x—0" x—=0"

these limits are different, ling f(x) does not exist.
x>

Example 9.5
|x+5]
, i #-=5
Check if lim5 f(x) exists or not, where f(x) = {4 x+5 o
0, for x=-5
Solution
@ f(=5).
Forx< —5, x+5|=—(x+5)
Thus f(=57) = lim i C ) B
-5 (x+5)

(i) f(=57).

Forx> -5, [x+5|= (x+5)

et T (x+5):
Thus f(-5 )—x1_1>r_1}+—(x+5) 1

Note that f(=57) # f(-=5"). Hence the limit does not exist.
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Example 9.6

Test the existence of the limit, lim

Solution

Forx>1,

Forx<1, |x —1|=—(x —1),and f(17) = lim

x—1

x —1|=x —1and f(1")=li

4 x-1]+x-1

| x—1]

x—1"

2

x—=1

Thus f(17) # f(1") and hence the limit does not exist.

EXERCISE 9.1

In problems 1-6, complete the table using calculator and use the result to estimate the limit.

(1)

2)

3)

m4(x—l)+x—l ~ lim 5(x-1) _s

v—1 =1t (x—1)
_4(_x—1)+(.x_1) _ 11m3(x—_1)=3
_(x_l) x—1" (x—l) '

1.9

1.99

1.999

2.001 2.01

2.1

1.9

1.99

1.999

2.001 2.01

2.1

—0.01

—0.001

0.001

0.01

0.1

(4)

—3.01

—3.00

—2.999

—2.99

—-29

)

—0.1

—0.01

—0.001

0.001

0.01

0.1

(6)

cosx—1

x—0 X

—0.1

—0.01

—0.001

0.0001

0.01

0.1

J)

95
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In exercise problems 7 — 15, use the graph to find the limits (if it exists). If the limit does not
exist, explain why?

(1) lim(4-x). (8) lim(x" +2).

) o /

<
- (
>
=

X x
2 -1 1 2 3 5 4 3 2 A i T
Fig. 9.13 Fig. 9.14
@) lim f(x) (10) lim f(x)
4—x, x#2 42, x#1
where f(x) = BT where f(x) = rre YT
0, x=2 I, x=1

,j,_y,j,

‘,x‘
T 32 1 | 1 2 3 4 3
1
Fig. 9.16
1 . |x=5]
11) lim 12) im——
( ) x—3 x_3 ( )x—>5 x—=5
Aby : ‘hy
2 E 1 —_
i x
| — 1 2 3 4 5 x' 2 1 1 2 4 5 6 7 v
®) Ex=3 ¢
Fig. 9.17 Fig. 9.18
XI - Mathematics 96
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(13) lin} sin zzx

(14) ling secx

ik - -nf-*z :u“2 x
Fig. 9.19 Fig. 9.20
(15) limtanx . ) . .
x—>5 . . .
. . .
-T2 /2 71 3m/2 4
° ° ° @
Fig. 9.21
Sketch the graph of £, then identify the values of x, for which lim f(x) exists.
2 s x<2
(16) fix)=48-2x, 2<x<4.
4, x=>4
[sin x, x<0
(17) fix)=<31-cosx, 0<x<rx
| cosx, X>7r

(18)  Sketch the graph of a function f'that satisfies the given values :
(i) f-2)=0

(1) A0) is undefined
liilg f(x)=4
f2)=6

lim £ (x) =3

A2)=0
lir£12 f(x)=0
lin21 f(x) does not exist.

97 Limits and Continuity
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(19) Write a brief description of the meaning of the notation lin; f(x)=25.
(20) Iff(2) =4, can you conclude anything about the limit of f{x) as x apprdaches 2?
(21) If the limit of f{x) as x approaches 2 is 4, can you conclude anything about f{2)? Explain

reasoning.
2
(22) Evaluate : lirr31 al 39 if it exists by finding f(37) and f(3").
X—> X —
| x—1] forx#1
(23)  Verify the existence of lin} f(x), where ix)=1{ x—1" .
' 0, forx=1

9.2.3 Theorems on limits

The intention of the informal discussion in the earlier section was to have an intuitive grasp of
existence or non existence of limit. However, it is neither desirable nor practical in every instance,
to reach a conclusion about the existence of a limit based on a graph or table of functional values. We
must be able to evaluate a limit, or discern its non existence, in a somewhat mechanical fashion. The
theorems that we shall consider in this section establish such a means. The proofs of these theorems
are more of technical and are beyond the scope of this textbook.

In Mlustration 9.1, we concluded that lirrzl(x2 +3)=2"+3=7. That s, the limit of f{x) =x*>+ 3 as

x tends to 2 is equal to f(x) evaluated at x = 2. [That is, f{2)]. However, this process of evaluation, as
noted earlier, will not always work because f{x) may not even be defined at x . Nevertheless, it is true

® that if fis a polynomial, then it is always possible to calculate the limit by evaluation. @
Theorem 9.1
Let P(x)=a,+ax+ax*+ - +a x"beapolynomial, where a, a , ---, a_are real numbers and n

is a fixed positive integer. Then

lim P(x) = a, +a,x, + a,x; +--+a,x; = P(x,).

Example 9.7

Calculate £i£}(x3 —2x+6).
Solution

P(x)=x’-2x+6 is a polynomial.

Hence, lin31 P(x)=P(3)=3"-2x3+6 =27.

Example 9.8

Calculate lim(5) for any real number x,.

Solution
flx) =5 is a polynomial (of degree 0).

Hence lim(5)= f(x,)=5.
X=X
The limit of a constant function is that constant.

XI - Mathematics 98
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Theorem 9.2
Let / be an open interval containing X, € R.

Let f,g: 1 >R

Suppose that ¢ is a constant and the limits lim f(x) and

X=X

lim (¢/(0). im[ /(1) + g(0)], lim [/() — g(). lim [/(x)g()] and lim 252

Moreover,
(1) lim ¢f (x) = ¢ lim f(x),
(it) lim[/(x)£g(x)] = lim /(x) lim g(x),
(iii) im[f(x).g(x)] = lim f(x). lim g(x) and

S Jim /()

(iv) lim :
= g(x) lim g(x)

, provided lim g(x)#0.

These results can be extended to any finite number of functions.

Example 9.9

Compute (1) : lxiirg(Sx) (i1) }1_{1_12 (—%x].
Solution

(1) lxigg(Sx) =5 lxigg(x) =5%x8=40.

(i) lim (—%x): —%}Lr{l(x) :(—%)(—2) =3.

Example 9.10

2
Compute lim|:x L +3:|.

x—0 X
Solution
2 X X2 aF 8
1im|: +4x° + 3:| = lim[ J + lim(4x’ +3)
x—0 X x—0 X x—0

= lim(x+1)+lim(4x" +3)

O+1)+(0+3)
= 4.

99

ACY
g(x

lim g(x) exist. Then

) g(x)# 0, all exist.
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Example 9.11

Calculate lim(x* —3)".

x—-1
Solution
liml(x2 -3)=1-3=-2.

Therefore, liml(x2 —3)1 = liml(x2 —3) (x* =3)...(x* =3) (10 times)

lim (x* =3) lim (x =3)... lim (x*=3) (10 times)

10
I:liml(xz—3):| = (=2)0=210=1024.
10

Note that xli_>n:11(x 2o = I:liml()c2 —3)]

Theorem 9.3
If lim f(x) exists then lim[ f(x)]" exists and lim[ f(x)]" = [lim f (x):| .
Example 9.12

Calculate lir{lz(x3 -3x+6) (—x*+15).
Solution

lir{lz(xs—3x+6) =(=2P —3(-2)+6=—8+6+6=4
1in_12(—x2+15) = (—2P+15=—-4+15=11

1im2(x3 —3x+6) (—x* +15) = limz(x3 —3x+6) limz(—xz +15) =4 x 11 =44,

Example 9.13
2 —
Calculate lim(x36—x+5).
=3 x” —8x+7
Solution
lin}(xz —6x+5) =32 —6x3+5=—-4
1irr31(x3—8x+7) =33 —-8x3+7=10#0.
2 lim(x*> -6x+5) _
Therefore, lim (x3 6x+5) _ — = —4:—%.
=3 x" —8x+7 llrr%(x -8x+7) 10 5
Caution

Do not use the limit theorem for the quotient if lim g(x)=0.
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Example 9.14

Compute lim Jx-l .

x—1 D
Solution

Here linll(x —1)=0. In such cases, rationalise the numerator.

T (Jx —1) 1 lim1)
lim = lim = lim = = =—
=l x—1 = -)Ex+) o Jr+1 1m4¢§+g 2

x—1

Example 9.15

NE+9-3

2

Find lim

t—0 t

Solution

We can’t apply the quotient theorem immediately. Use the algebra technique of rationalising
the numerator.

r B tz( t2+9+3) _tz(x/t2+9+3)
VE+9-3 t? 1 1 1
t2

=lim ————=1lim

0271043 024943 943 6

lim

t—0

Theorem 9.4

n n
. x"—a _
lim =na""
X—a x p— a
Proof
n—3 2

We know that x" —a" = (x—a)(x"" +x"a+x""a’ +--+xa"> +a"™")

lim x"—a" i (x—a)(X"" +x"Ca+x"a’ ++xa" " +a")
X—a x-a xX—a (x—a)
— 13 -1 -2 -3 2 -2 -1
= lim(x"" +x""a+x""a" +---+xa""+a"")
xX—a
=a""'+a"" +-+a"" (n times)
n n
. x"—a _
lim = na"" .
xX—a x—a .

It is also true for any rational number 7.

Example 9.16
x -
Compute lim
x>l x — 1
Solution
3 313
i = = [ P a3
x>l x — 1 x>l x _1
101 Limits and Continuity
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Example 9.17
Calculate lim Vi1 .
-1 f— 1
Solution L
_ 2_12 I
lim\/; 1= 2 -1 =l(1)21=l.
| =l f—] 2 2
Example 9.18
5 5
Find lim &9 =2
x—0 X
Solution
Put2 +x=ysothatas y—>2asx—0,
5 5 5 5
Therefore, lim > =2 _jim 2 =2 _ 524)=80 .
x—0 X y—o2 y —
Example 9.19
Find the positive integer n so that lin} i _i =27 .
Solution T
lim X" =3 =27
x—3 X — 3
® Thatis n.3" "' =3x3*=3x3"=>n=3 .
Example 9.20

Find the relation between a and b if lin} f(x) exists where f(x) = {

Solution

lim f(x)=9a —4b+ 1
x—3"

ax+b if x>3

lim f(x)=3a+b. Now the existence of limit forces us to have
x—3"

lim £(x)= lim £(x).
x—3" x—3"

= 9g —4b+1=3a+b
= 6a —5b+1=0.

Evaluate the following limits :

x* =16
1) Iim
( ) x—2 x_2

3) lim x 81
Jx—3 \/;_3

XI - Mathematics
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EXERCISE 9.2

m

x" =

(2) lim : , m and n are integers.

x—l1 xn —

\/x+h—\/; .
h b

(4) lim >0 (5 lim

h—0

102

3ax—4b+1 if x<3
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1 1
_ 2 [ 2
6) Tim X 2 7 lim\/; a 8 thl_l
(6) lim (7 1 1—x (8) >
x=2 x =2 VX 0N xP+16 -4
9 hm\/1+x—1 10 lim%/7+x3—\/3+x2 N 2—x+2
( ) x—0 X ( ) sl x—l ( ) x—2 %/5_34_x
) 1+x* -1 . Al=x-1 . oAx—=1-2
(12) Jim X —° (13) 1m—f (14) lim ———
X0 X =0y =5 x=5

(15) tim 5N s

9.2.4 Infinite limits and limits at infinity
Infinite Limits

Let f:R\{0} > R be deﬁnedbyf(x):L

7
X

o

. | 1t
Let us consider the problem of calculating £1£r(} ek BES1KE

The following table gives the values of Lz near 0.

X
x—0" x—0
® | | ®
X x? il X x? -
x’ x?
1 1 1 -1 1 1
0.5 0.25 4 —05 0.25 4
0.1 0.01 100 —0.1 0.01 100
0.01 0.0001 10,000 —.01 0.0001 10,000
0.001 0.000001 10,00,000 —0.001 0.000001 10,00,000
0.0001 0.00000001 10,00,00,000 —0.001 0.00000001 10,00,00,000

‘ ‘ Unit9.indd 103

The table values tell us that as x gets closer and closer to 0, f(x) = Lz gets larger and larger. In
X

1 . . . C
fact, — grows without bound as x approaches 0 from either side. In this situation we say that f{x)
X

PR o1 - 1
tends to infinity as x approaches zero and write — — o0 asx -0 and — - asx - 0"

1
and hence — > asx—0.

X

X

Limits and Continuity
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Geometrically, x = 0 namely the y-axis is
a vertical asymptote to the curve representing

fo) =~
X

The graph of the function f{x) = Lz is shown fx)= 1 <0
in Fig. 9.22. * x

Remember that the limit is infinite and so

o1 ) )
hn(} — does not exist. Students are cautioned
X—> x
) ) ) 1 )
that oo is a symbol for this behaviour of f(x) = —- and is
X
not a new number.

Similarly, if we look at f{x) = l,
X

. 1 -
it is easy to see that, — —> —ccasx —0
X

1
and — —> 4o as x >0
X

1
=—, 0
which is geometrically clear from the graph of S =5 x<

fx) = L (Fig. 9.23)

X
In general we have the following intuitive
definitions.

Fig. 9.23

(Definition 9.4 h
For a given M > 0, open intervals of the form (M, o) is called neighbourhood of .

L Similarly, for given K < 0, open intervals of the form (—oo, K) is called neighbourhood of — . J

(Deﬁnition 9.5 )
Wesay, f(x)—> ooasxapproaches x, iffor given positive number M there is a neighbourhood

of x, such that whenever x is in the neighbourhood of %y, f(x) > M. i.e., f(x) € (M,).
Similarly, f(x)—> —ooas x approaches x, if for a given K < 0 there is a neighbourhood of x,

\such that whenever x is in the neighbourhood of x,, f(x) < K. i.e., f(x) € (-, K). J

To describe this situation symbolically, we write

f(x) >0 as x> x,
f(x) > -0 as x > x,
f(x) >0 as x = x,”
f(x) > =0 as x > x,"
and f(x) >0 as x > x,"

f(x) > = as x > x,

are called infinite limits. If any one of the foregoing conditions hold, then the line
x = x, is a vertical asymptote for the graph of f(x).

XI - Mathematics 104
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Example 9.21

Calculate lim

x—0 (xz

+x3)'

Solution

One can tabulate values of x near 0 (from either side) and conclude f(x)=

without bound and hence f(x) > as x —>0 .

1
grows
x*+x°

To calculate this limit without making a table, we first divide the numerator and denominator
by x2. This division can be done, since in the calculation of the limit x # 0 and hence x* # 0. We

can have

lim ———
=00 557 SR 3¢

Now %—)oo as x >0 and 1ir13(1+x)=1 .

X

. 1
)

lim(1+x)

x—0

Thus the numerator grows without bound while the denominator approaches 1, implying

1 o
that ﬁ does tend to infinity.
X +x

This example illustrates how a difficult calculation can be greatly simplified by a few algebraic

manipulations.
® Example 9.22
Evaluate lim ——— .
=2 (x =2)
Solution
From the graph of f(x) = !
grap -2’
clearly, ——— — —o0 as x —» 2" and
1 "
T as x —>2".

(x=2)

Hence the limit does not exist.

In general

(1) Ifmis an even positive integer then
1

(x—a)’
1
(x—a)’
1
(x—a)’

—>0 as X —>da

— o as x —>a

—Soo as x > a’

Fig. 9.24

(i1) If n is an odd positive integer, then
1
(x—a)"
1

—>—00 as X —>a

— oo as x > a.

(x—a)’

The line x =a becomes a vertical asymptote.

‘ ‘ Unit9.indd 105
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9.2.5 Limits at infinity

In the previous section we investigated infinite limits and vertical asymptotes. There, we let x
approach a number and the result was that the values of y became arbitrarily large (very large positive
or very large negative). In this section, we let x become arbitrarily large (positive or negative) and see

what happens to y.
Let’s begin by investigating the behaviour of f :R — R defined by
2
fix) = xz -1 as x becomes large.
x"+1
We tabulate the values of this function as in
X J&x)
0 —1
+1 0
+2 0.6000000
+3 0.800000
+4 0.882353
+5 0.923077
+10 0.980198
+50 0.999200
+100 0.999800
+1000 0.999998

As x grows larger and larger (large positive or large negative)
you can see that the values of f{x) gets closer and closer to 1. In
fact, it seems that we can make the values of f(x) as close as to 1 by

taking x sufficiently large. This situation is expressed symbolically z=2°°c e 2
by writing \1 R %,
2 \/ »
.ox" =1 f@)=
lim — =1.
xotee x4
If we look at the graph :

Geometrically, (see Fig. 9.25) this situation also leads us to have

Fig. 9.25

Definition 9.6
The line y = Iis called a horizontal asymptote of the curve y = f(x) if either

lim f(x)=/ or lim f(x)=.

Illustration 9.4 Ay

If f:R—

— % ,gl is defined by f(x)=tan"'x, y=tan"x

find lim f(x) and lim f(x).

Solution
If we look at the graph of y = tan'x, (l,, /2
lim tan™ x = ——
Yoo 2 ’ ‘ —/ ” .
. 1 s —37/2
lim tan™ x = —.
e 2 Fig. 9.26
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Illustration 9.5

Calculate lim 5

X X
Solution

If we could try to use limit theorems to calculate this limit, we end up in the following situations.

2x*=2x+3

(2x* =2x+3) >0 as x —> oo

(x> +4x+3) >0 as x > oo

. [2x*=2x+3
hm > A
x| xT+4x+3

which is called an indeterminate form.

But actual calculation and tabulation gives the following :

2x*=2x+3
X 2x%=2x+3 x> +4x+4 T2 a4
x +4x+4
1 3 9 0.3333
10 183 144 1.27083
100 19803 10404 1.90340
1000 1998003 1004004 1.99003
10000 199980003 100040004 1.99900

Table values show that as x becomes sufficiently large, f(x) becomes closer and closer to 2. Then,
2
lim| 25 =203 o
el xT +4x+4
Fortunately, we may simplify the problem by dividing the numerator and denominator by x*>. We
have

2—2+3
. 2xT-2x+3 x X
hglo 24 4x+4 - 4 4
x> +4x+ Ayt
x X

_ 2040 (since l—>0asx—>oo, %—)0 as x — o)

1+0+0 X X
=2.

Note that the degree of both numerator and denominator expressions are the same.

In general, the limits as x — too ofrational expressions can be found by first dividing the numerator
and denominator by the highest power of x that appears in the denominator, and then calculating the
limit as x - o (or x — —0) of both numerator and denominator.

Example 9.23

3
Calculate limw
xoe (5x7 +1)

107 Limits and Continuity
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Solution

Dividing by x?

lrnx3+2x+3 S x X
x> (5x7 +1) x50 1

3
That is, w—wo as x — oo,
5x"+1)

In other words, the limit does not exist.

Note that the degree of numerator is higher than that of the denominator.

Example 9.24

3

Calculate lim
¥ 3x+2

Solution
Dividing by x, we get

1 3 — X

3 2_ ) —>—00 as X —> 0.
x+ 342
X

Therefore the limit does not exist.

9.2.6 Limits of rational functions

IfR (x)= p(x) and the degree of the polynomial p(x) is greater than the degree of g(x), then

q(x)
@—>+oo Or —oo as X — oo,
q(x)
If the degree of g(x) is greater than the degree of p(x), then
lim 2 — ¢,
== q(x)

Finally, if the degree of p(x) is equal to the degree of g(x), then

lim p(x) _ coeffiecent of highest power of x in p(x)
x>=g(x)  coefficient of highest power of x in g(x)

Remark
We reemphasize that statements such as f(x) —>e as x —>a, f(x) > — as x - a,and

f(x) >0 as x > oo, f(x) > —co as x — comean that the limits do not exist. The symbol co does
not represent a number and should not be treated as a number.
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9.2.7 Applications of limits

Example 9.25
Alcohol is removed from the body by the lungs, the kidneys, and by chemical processes in

liver. At moderate concentration levels, the majority work of removing the alcohol is done by
the liver; less than 5% of the alcohol is eliminated by the lungs and kidneys. The rate » at which
the liver processes alcohol from the bloodstream is related to the blood alcohol concentration
ox

x by a rational function of the form r(x) = for some positive constants « and 3. Find the

X+
maximum possible rate of removal.

Solution
As the alcohol concentration x increases the rate of removal increases.

Therefore, the maximum possible rate of removal =lim r(x)

x—>c0

Example 9.26
According to Einstein’s theory of relativity, the mass m of a body moving with velocity v

ism= . = where m is the initial mass and c is the speed of light. What happens to m as

%
11—
CZ
v —c¢ . Why is a left hand limit necessary?

Solution

lim (m)= lim —2— = .
Ve Ve 2 2
,/I—L lim|1— 2
Cz v—co 02

For h>0, c—h<v<c. Thisimplies, (c—h)* <V’ <c’.

2 2 2 2
Thatis, = < ¥ <1 Thatis, 1= <iim¥ <liml.
c c =0 ¢ h—0 o2 h—0
2 2
Thatis, 1< %mgv—z <1. Thatis, 1< lim v_2 < 1. By Sandwich theorem, lim =1.
=0 c v—c C v—c~

Therefore, lim(m) — oc.

That is, the mass becomes very very large (infinite) as v —c¢ . .

The left hand limit is necessary. Otherwise as v — ¢" makes 1-— <0 and consequently
c

we cannot find the mass.

Example 9.27

32 122
The velocity in ft/sec of a falling object is modeled by »(¢) = —,|— ——= , where k is
k 1+ e—ZtM

a constant that depends upon the size and shape of the object and the density of the air. Find the
limiting velocity of the object, that is, find lim »(¢) .

t—>c0

109 Limits and Continuity
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Solution
_ 2132k
limir(s) = Hme oo e
f—>o0 f—>o00 k 1+€_2tm
32 1-e P
== 71221"'6_2[@
== /2 1-0__ 32 ft/sec.
k (1+0) k
Example 9.28
: : S 160x"* +
Suppose that the diameter of an animal’s pupils is given by f(x)= %120 , where
X T+
x is the intensity of light and f{x) is in mm. Find the diameter of the pupils with (a) minimum
light (b) maximum light.
Solution

(a) For minimum light it is enough to find the limit of the function when x — 0.

160x™"* +90 160+90x"*
Iim f(x) = llm———=lim———
x—0" /) 0" 4x7 415 w0t 4415x™
_ 160 =40mm .
4

(b) For maximum light, it is enough to find the limit of the function when x — o

160x4+90 90 _
4415 15

That is, the pupils have a limiting size of 6mm, as the intensity of light is very large.

lim f(x)=lim 6mm

EXERCISE 9.3

x’—4

> atx =—2.
(x"+4x+4)(x+3)

(1) (a) Find the left and right limits of f(x) =

(b)  f(x)=tanx at x:% .

Evaluate the following limits

x* =9 3 2x+l11 X +x
2) lim 3 lim - 4 lim————
@ =3 x*(x* —=6x+9) @ e x =2 X +x—6 @ s xt —3x7 +1
xt—5x 1+x-3x> x’ x’
5) lim———— 6 lim ———— 7 lim -
®) xoe x? —3x +1 © roe ]+ x7 +3x° @ xoe| 2x7 =1 2x+1
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(8) Show that

0 i F 243+ 4n 1 (i) P+2°+..+43n)° 9

5 m =—
n>e 3p°+Tn+2 6 e+ 2+..+5n)2n+3) 25

(iii)limL+L+L+...+ ! =1
12 23 34 n(n+1)

(9) An important problem in fishery science is to estimate the number of fish presently spawning
in streams and use this information to predict the number of mature fish or “recruits” that will
return to the rivers during the reproductive period. If S is the number of spawners and R the

number of recruits, “Beverton-Holt spawner recruit function” is R(S) = where o and

(oS + )
[ are positive constants. Show that this function predicts approximately constant recruitment
when the number of spawners is sufficiently large.

(10) A tank contains 5000 litres of pure water. Brine (very salty water) that contains 30 grams of
salt per litre of water is pumped into the tank at a rate of 25 litres per minute. The concentration

30¢

200+¢

of salt water after  minutes (in grams per litre) is C(¢) =

What happens to the concentration as ¢ —> o0 ?

9.2.8 Sandwich Theorem

Sandwich theorem is also known as squeeze theorem. As
shown in the figure 9.27, if f(x) is ‘squeezed’ or ‘sandwiched’
® between g(x) and A(x) for all x close to x,, and if we know that the
functions g and /4 have a common limit / as x — X, it stands to
reason that f'also approaches / as x — Xx,,.

Theorem 9.5 (Sandwich Theorem)

If f,g,h:1cR—R such that g(x) < f(x) < h(x) for all x Fig. 9.27
in a deleted neighbourhood of x, contained in 7, and if

lim g(x)=1lim A(x) =/, then lim f(x)=/.

Example 9.29
.o, (1
Evaluate lim x~ sin| — | .
x—0 X

Solution

1 1
We know that —1<sin—<1= —x* < x*sin— < x*
x x

Take g(x) = —x2, fix) = x° sinl;h(x) =x’
x
Then lir% g(x) = ling(—xz) =0 and
lim A(x) = lim(x*) =0.

111 Limits and Continuity
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By Sandwich theorem,

lim x? sin (l) =0.
x—0 X

We could have wrongly concluded had we resorted to applying the limit theorems, namely

lim x* [sin l) = lim(x”) lim (sin l)
x—=0 X x—=0 x—=0 X

| .
Now, lim sin— does not exist,

x—0 X x—0 x—0

X
Note that If a < f(x)<a, then lim f(x)=a.
Example 9.30

Prove that lin(} sinx=0.
X
Solution
Since —x <sinx<x forall x>0

ling(—x) =0 and

ling(x) =0.
By Sandwich theorem

@ £1Egsmx =0.
Example 9.31
Show that hmxnlJJrngerJ{l_s ]=120.
x—0" X X X |
Solution
1 1
——1 <= [£—+1
X [ x| x
g—1 < EJSE+1
X [ x| x
E—l < EJSEH
Summing, we get, * L X .
120 15 < lHE ; +FJS@+15
X | x X X X

lim (120—15x) < 1113)5[

x—0*

XI - Mathematics 112
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lim x> = 0 and hence lim x° sin (l) leading us into trouble.

3J+--~+[1—5H£120+15x
X X

J{EJJF...J{EHS lim (120 +15x)
X X
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120 < lim leJ + FJ +
x—0" X X
lim leJ+[EJ +- +{EH =120.
x—0" X X X

9.2.9 Two special Trigonometrical limits

Result 9.1
. sin@
@ fim=y ! ® lim =70
Proof - o

We use a circular sector to prove the result.
Consider the circle with centre (0, 0) and radius 1. Any point on this circle is

P(cosb, sinf).

(cos 0, sin 0)

YA )
tan 0 :Sm 0
/ A AN
0 N A 0 ) sin @
K 2

X Area of sector £ A . 1
/(1’0) Area of triangle ta;@ ea of sector 5 rea of triangle

Fig. 9.28 Fig. 9.29 Fig. 9.30 Fig. 9.31
an @ 9 sin @
By area propert =2—2 .
y property > > 5
Multiplying each expression by —— produces >——21 and taking reciprocals
sin @ cos@ sinf
cos@ < sing <I.

sin(—¢) sin@

one can conclude that this inequality is valid for

Because cos (— #) = cosf and

all non-zero @ in the open interval (—%,%)
We know that %irré cos@=1; leing(l) =1 and applying Sandwich theorem we get lging SII;H =1, 0
. l—cosé@
(b) lim=—===0.

1 — cosf = 2sin®

2 0
2
1- cosH ( )

@

(2’

N———
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sin @
Therefore, Tim+—2% — lim(sing).lim 2
60 2} 60 2 Jeso| @
2
=0x1=0. o

9.2.10 Some important other limits

Result 9.2
im& o1,
=0  x =
Result 9.3
lim——=loga, a>0
x—=0 X
Proof
We know that a*,log, x are inverses of each other.
Since log f(x) is the inverse of exp(f(x)), exp(log f(x))= f(x).
Therefore, a* = exp(log, x)
— exloga
x xloga
Therefore, a-l_ e 1><10ga
X xloga ®
Nowas x—>0,y = xloga—0
. a'—1 . e - . [e -1
Therefore, lim a — lim& xloga =logalim ¢ =loga
x—0 X y—0 y y—0 y =
e —1
(since ling =1).
Result 9.4 g
hmw =1.
x—0 X
Proof
Take log(l+x) =y
Then y — 0 asx — 0 and
I+x = €
x = e -1
. log(1+
Therefore, llmM = lim—2
x—0 X =0 ey _1
= lim—— =1 =1,
y—=0 ey -1 1
=
XI - Mathematics 114
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Some important limits without proof
Results 9.5 to 9.9

|

5)  lim22 Lo
x—0 X
-1

6) lim2 Xy
x—0 X

(7) lim(l + l) exists and this limit is e.

X—>o0 X

(®) lim(1+x)" =e

9) 1im[1+5)x =é".

X—>o0 X

This number e is also known as transcendental number in the sense that e never satisfies a

polynomial (algebraic) equation of the form
ax"+ax"" ++a,_x+a,=0.
Example 9.32

2 cosec x

Evaluate : lim(1+sin x)
. x—0
Solution

. 1
Let sinx= —
y

As x>0, y—> o and

2y 2
lim(1 +sin x)* < = lim(1+l} =llim(l+lj] =e?.
x—0 Yoo y y—eo y

Example 9.33
Evaluate : fim| X2 | .
el x—2
Solution

C (x+2 Y 3 =P (x=2)+2
lim =l 2 e
X0 x—2 X—>o0 x_2 X—>00 x_2

Let y=x—2, asx >0, y — oo and (Let y=x—2, Then as x — o0, y — )

) +2 X +2 2
lim| X i 102 | b e || | e
X—>o0 x—2 y—oo y Yoo y Yoo y

= et l=¢".

Example 9.34

. 5
Evaluate : lim 4ﬁ (c0§x *sin x) .
H% 1—sin2x

115
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Solution S

42 = (cos x +sin x)° _

5

22— [(cos x +sinx)’ ]5

1—sin2x 1—sin2x

5 5
22 —(1+sin2x)?
~ 2—(I+sin2x)
5 5
22 —(1+sin2x)?
2 (I+sin2x)

5 5
22 —[(cos x +sin x)* "

Therefore, lim =

4
x—=
4

2 —[1+sin2x] 2 —(1+sin2x)

3
x—=
4

Take y

Example 9.35

Q) sin | x | i sin x i) xLxJ
| x| sin | x |
Solution
S i jex<0
(i) f@) =3 "
if 0<x<l1
X
Therefore, lim f(x) = —1 and
x—0"
lim f(x) = +1.
x—0"

Hence the limit does not exist. Note that /(07) # £(07).

sin(x) .
. L if —1<x<0
.. sin x —
(1) =4 7
sin x .
| x| if 0<x<l1
X
Therefore, lim f(x) = —1
x—0"
lim f(x) =1
x—0"
Hence the limit does not exist.
XI - Mathematics 116
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Do the limits of following functions exist as x — 07 State reasons for your answer.

(iv)

5 5
22 —[1+sin2x)]2

=1 + sin2x. As x%%, y—o2

sin(x —LxJ)
x=[x]
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(i e
sin| x| )_C'O if0<x<l1
L S1INn X
X if—1<x<0
= 39SIn x
|0 if 0<x<l1

Therefore, lim f(x) = +1
x—0"
lim f(x) = 0.
x—0*
Hence the limit does not exist.
M if —1<x<0
i) sin (x| x]) x=(=1)
iv —— = = )
x—|x] SN0 i gex<l
x—0
M if —1<x<0
fe) = | &t
S x if 0<x<l1
X
. sinl .
lim f(x) = —=sinl
x—0" 1
lim f(x) = 1.
x—0"

Hence the limit does not exist.

Example 9.36

Evaluate : lim

31
=0 l4x -1
3 -1 G =) JTrx+l_ @ -peira+n G -D(I+x+1)
J+x-1  l+x-11+x+1 (I+x)-1 x

3* -1 3*—1
Therefore lim——— = lim Jdim+1+x+1 =(og 3)(2) =2 log 3 =1log 9.
=0 fl4x—1 0 x xo0 (log 3)(2) & &

EXERCISE 9.4

Evaluate the following limits :

7 x
(1) 1im(1+l) () 1irr3(1+x)”3x
X0 X x—>
3) lim{1+5 ) @) lim 22431
=l x w=| 2x% +5
117 Limits and Continuity
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3 x+2
(5) lim[1+—)
X—o0 X

sin orx

(7) lim

¥=0 gin fx

©) Tim 0@
a0 (sin a)"

\sz +Cl2 —a

A s s
(13) Lizgl—;)sx
(15) gggzxjx
(17) lim 17008 %

=0 xsin2x

(19) lirg{x[log(x +a)—log(x)]}

(21) lim(1+sin x)>"

® i~

. \/1+sinx —\/l—sinx
m

23) 1
23) ¥=0 tan x
25) lim&—¢

x=0 SN x

. sinx(1—cosx)
(27) LIE%T

9.3 Continuity

(6)

®)

(10)

(12)

(14)

(16)

(18)

(20)

(22)

24)

(26)

(28)

) X
sin’| =
) 2
lim

x—0 X3

tan2x

lim

x=0 sin 5x

sin(a + x) —sin(a — x)

lim

x—0 X

. 2arcsinx
lim——

x—0 3x

tan2x

lim

x—0 X

lim > 1

=0 Jx+1-1

1 1 1
limx[3" +1—cos(—)—ex]
X —>o0 X

. sin3x
lim —
-7 8in2x

- \/5—\/1+cosx

li

x—0 sin® x

[ xP-2x+1)

lim - .~

x| X7 —=4x+2
ax_ebx

lim
x—0 X

tan x —sin x
3

lim

x—0 X

One of the chief features in the behaviour of functions is the property known as continuity. It
reflects mathematically the general trait of many phenomena observed by us in nature. For instance,
we speak of the continuous expansion of a rod on heating, of the continuous growth of an organism,
of a continuous flow, or a continuous variation of atmospheric temperature etc.

The idea of continuity of a function stems from the geometric notion of “no breaks in a graph”.
In fact, the name itself derives from the Latin continuere, “to hang together”. Nevertheless, to identify
continuity with “no breaks in a graph” or “a hanging together” has serious drawbacks, at least from
the point of view of applying the concept to the analysis of functions. Accordingly, a premature use
of the graph to gain insight into the meaning of continuity is advised against as gravely misleading.
However, we will realise later that for functions with interval domains, continuity means essentially
that the graph may be traced without lifting the point of the pencil.

The proper and effective way of attitude which allows us to put the concept to work is to
correlate continuity with limit. Loosely speaking, to possess the property of continuity will mean “to

XI - Mathematics
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have a favourable limit”. In order to formulate the concept of continuity in terms of limit we must
focus our attention at a point. Both continuity and limit are primarily concepts defined at a point, but

continuity acquires a global character in a pointwise way.

For motivation, consider i 75 F 250 F

the following physical situation.
A thermometer 7 measures
temperatures along a given hot
wire L.

Thermometer
T reading

To each point x on the hot
wire L is assigned a temperature
readings #(x) on thermometer, o
T. Suppose, to fix ideas, the Xy X L
temperature  recordings  are
observed to be the same, 250°F, Fig. 9.32
as one moves along the wire L until
a point x, is reached on L.

hot wire

Then suppose that at x, the temperature drops suddenly to near room temperature, say 75°F, as
if an insulation were at x,. But, beyond x, suppose readings of 250°F are again observed. In function
notation we are assuming that

{250°F if x#x,
1(x) =

75°F if x=x,
Thus the point x, stands out as singular point (“singular” means “special” or “unusual”).
@ Analyzing the range of temperature readings, we should say that the approach of x to x, had no @

bearing on the approach of the corresponding #(x) values to #(x ). Briefly, a jump occurs at x,. Thus
we would be led to say that the temperature function “lacks continuity at x,”. For, we would have
expected #(x,) to be 250°F since the x values neighbouring x, showed #(x) = 250°F. We now abstract
the notion of continuity, and demand that images be “close” when pre-images are “close”. In our
example the points on the hot wire were the pre-images, while the temperature readings there were
the corresponding images.

The students should reflect on the intuitive idea of continuity by considering instead the
contrasting idea of lack of continuity, or more simply “discontinuity” as manifested in every day
experiences of abrupt changes which could be headed “then suddenly!”. A few that come readily to
mind are listed below along with functions which correspond as mathematical models:

(1) Switching on a light : light intensity as a function of time.
(2) Collision of a vehicle : Velocity as a function of time.

(3) Switching off a radio : Sound intensity as a function of time.
(4) Busting of a balloon: Radius as a function of air input.

(5) Breaking of a string : Tension as a function of length.

(6) Cost of postage : Postage as a function of weight.

(7) Income tax : Tax-rate as a function of taxable income.

(8) Age count in years : Age in whole years as a function of time.
(9) Cost of insurance premium : Premium as a function of age.

Actually, examples (1) — (5) are not quite accurate. For example, light intensity has a transparent
but continuous passage from zero luminosity to positive luminosity. Indeed, nature appears to abhor
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discontinuity. On the other hand, (6) — (9) are in fact discontinuous and really show jumps at certain
points.

Students are advised to relate the mathematical definition of continuity corresponds closely
with the meaning of the word continuity in everyday language. A continuous process is one that takes
place gradually, without interruption or abrupt change. That is, there are no holes, jumps or gaps.
Following figure identifies three values of x at which the graph of a function fis not continuous. At all
other points in the interval (a, b), the graph of f'is uninterrupted and continuous.

y y y
A A A
G\e/ .f(XO)
A R A N A N
€ )y ¢ )y )\ )=
a X0 b a 0 b a Y0 b
both f(x,”) and f(x,") lim £(x)# f(x,)
: 0
/(%) is not defined exist, but not equal o
Fig. 9.33 Fig. 9.34 Fig. 9.35

Looking at the above graphs (9.33 to 9.35), three conditions exist for which the graph of fis not
continuous at x = x,.

It appears that continuity at x = x, can be destroyed by any one of the following three conditions:
® (1) The function is not defined at x = x,,. ®
(2) The limit of f{x) does not exist at x = x,;.
(3) The limit of f{x) exists at x = x,, but, it is not equal to f{x,).
Now let us look at the illustrative examples

Illustration 9.6
. .. 16 —x?
(1) fix) = x*+3 (i) flx) =
4+x

(1) As x — 2, the one sided limits are

lirglf(x) =17
lirgl+ f(x) =17

and hence lin} f(x)=7 and moreover f{2) is defined and f(2) =7 = ling f(x) . In this case f{x)

is continuous at x = 2.

(i1)) The one sided limits are : lim f(x) =8

x——4"
lim f(x) =8
x——4*
and therefore linlt f(x) =8 but f{—4) does not exist.
X—>
XI - Mathematics 120
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Note that although lim4 f(x) exists, the function value at — 4, namely f{— 4) is not defined.
Thus the existence of lim4 f(x) has no bearing on the existence of f{ — 4).

Now we formally define continuity as in

Definition 9.7
Let I be an open interval in R containing x,. Letf :/ — R.Then f7is said to be continuous

at x, if it is defined in a neighbourhood of this point and if the limit of this function, as the
independent variable x tends to x,, exists and is equal to the value of the function at x = x.

Thus three requirements have to be satisfied for the continuity of a function y = f{x) at x = x, :

(i) Ax) must be defined in a neighbourhood of x,, (i.e., f(x,) exists);
(i) lim f(x) exists;
(iii) flx,) = lim f(x) .

The condition (iii) can be reformulated as gmo [f(x,+Ax)— f(x,)]=0 and the continuity of f

at x, can be restated as follows :

Definition 9.8
A function y = f(x) is said to be continuous at a point x, (or at x = x ) if it is defined in some

® neighbourhood of x and if lim [f (g +Ax)—f (x)]=0. @

The condition (iii) can also be put in the form lim f(x)= f ( lim x) . Thus, if the symbol of the

limit and the symbol of the function can be interchanged, the function is continuous at the limiting
value of the argument.

9.3.1 Examples of functions Continuous at a point

(1) Constant function is continuous at each point of R .

Let f(x)=k,ke R is constant. If x, € R, then f(x,)=*k.

lim f(x)=lim(k)=k.
(2) Power functions with positive integer exponents are continuous at every point of R

If f{lx) =x", domain of fis R = (— o, ) and lim x" =x/,x, € R by the limit theorem.

XX,
. . -1
(3) Polynomial functions, p(x) = ayx" +ax"" +---+a, x+a,, a,#0

are continuous at every point of R . By limit theorem,

lim p(x) = a,x, + alngl +ota, x,+a, = plx).

X—)XO
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(4) Quotients of polynomials namely rational functions of the form

R(x) = p(x) , are continuous at every point where ¢(x) # 0, and

q(x)
lim R(x) = lim P
X=X, X=X, q(x)
_ }E?op(x) _ p(xo) ~R()

limg(x)  q(x,)

(5) The circular functions sin x and cos x are continuous at every point of their domain

R = (—o00,00) since lim sinx=sinx, limcosx=cosx,.

X‘)XU X‘)XO

As a consequence, tan x, cot x, cosec x, sec x are continuous on their proper domains in view of
the reciprocal and quotient rules in the algebra of limits.

1 1 1
(6) The nth root functions, f(x)=x" are continuous in their proper domain since lim {x” J= Xy

X=Xy

(7) The reciprocal function f(x)=— is not defined at 0 and hence it is not continuous at 0. It is
X

continuous at each point of R —{0}.
®) A x+1, x<0
x =
X’ +1, x>0

The domain of 4 is all of real numbers and

lim h(x)= lim (x+1)=1=h(0)

x—0"

lim A(x)= lim(x2+1)=1= h(0).
x—0*

x—0"

Thus A(x) is continuous at x = 0.

Indeed, A(x) is continuous at each point of (— o, 0) and each point of (0, ) and hence # is
continuous in the whole of (— oo, ).

(9) The greatest integer function f(x) = LxJ 1s not continuous at x = 0.

For, lim LxJ = —1and

x—0"

lim|x|=0

x—=0*

It is discontinuous at each integer point. In fact,

lim LxJ =n—1and

x—n

lim+ LxJ = n.

X—n
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(10) The modulus function

—x ifx<0
fx)=|x]=40 ifx=0
x ifx>0

is continuous at all points of the real line R .

In particular,

lim | x| = lim(=x) =0,
x—0" x—0"

lim | x| = lim (x)=0, and
x—0*" x—0*"

lim f(x) = 0= lim f(x)= 0=£0).
x—0" x—=0"
(11) The exponential function f{x) = e* is continuous on R .

(12) The logarithmic function f{x) = logx (x > 0) in continuous in (0, o)

9.3.2 Algebra of continuous functions
If fand g are continuous at x, then
(1) f+ gis continuous atx = x,,
(2) f—gis continuous at x = x,,

(3) f.gis continuous at x = x, and

f

(4) E is continuous at x = x, (g(x) # 0).

(5) Composite function theorem on continuity.

If fis continuous at g(x,) and g is continuous at x, then fog is continuous at x,.

Continuity in a closed interval

(Deﬁnition 9.9 A

A function f:[a,b]—> R is said to be continuous on the closed interval [a, b] if it is
continuous on the open interval (a, b) and

lim 7(x)= f(a) and lim f(x) = f(b).

. J
That is, the function fis continuous from the right at a and continuous from the left at b,
and is continuous at each point x, € (a,b).
Hlustration 9.7
Discuss the continuity of f{x) = v1—x" .
The domain of definition of fis the closed interval [ —1,1].
(fis defined if 1 — x> >0)
For any point ¢ € (—1,1)
123 Limits and Continuity
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1

lmyﬂﬂZImhh—x2=[ﬁmﬂ—x5T
1

= (1—02)2 =f(o). Fx) =1-x

llm f(x): hl’l’l)r(l—)(,'z)E :0:f(1).
PENET x —-1
1

1@}ﬂm:[hga—xﬁy=o=ﬂ—n. g i

Thus f'is continuous on [—1, 1]. One can also solve
this problem using composite function theorem. Fig. 9.36

> X

Example 9.37
Describe the interval(s) on which each function is continuous.

(1) fix)=tanx
(i) g() = <sin;, x#0
10, x=0

(i) h(x) = x

Solution
® (i) The tangent function f{x) = tanx is undefined at x = (2n+ l)g, nez. ®

At all other points it is continuous, so f{x) = tan x is continuous on each of the open
intervals

(1)) The function y =— is continuous at all points of R except at x = 0 where it is
undefined. *

. 1. : . .
The function g(x) =sin— is continuous at all points except x = 0, where hn(} g(x)
x x—>

does not exist. So, g is continuous on the intervals (— oo, 0) and (0, )
(iii) The function A(x) is defined at all points of the real line R = (— o0, ) ; for any

x,#0,
. . 1
lim A(x) = (hm X sin —)
X=X X=X X
—_— A 1 [r—
= smx— = h(x,)
0
For x, =0
1
h(x) = x.sin—
X
.1
—x < xsin—<x
X
XI - Mathematics 124
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glx) = —x, f(x)= xsinl,h(x) =x
X
lirrgg(x) =0, lirr(}h(x) =0

) 1
and have lim x sin—=0.
x—0 X

By Sandwich theorem

x—0

lim| x sinl =0=h(0).
X

Therefore /(x) is continuous in the entire real line.

Example 9.38

A tomato wholesaler finds that the price of a newly harvested tomatoes is X0.16
per kg if he purchases fewer than 100 kgs each day. However, if he purchases at least 100 kgs
daily, the price drops to X0.14 per kg. Find the total cost function and discuss the cost when the
purchase is 100 kgs.

Solution 4 Y

221
204
184
16 _ A\

........ . Y (1
12+
10+

B o> & €9
.

100 > X

N

Fig.9.37
Let x denote the number of kilograms bought per day and C denote the cost. Then,

0.16x, if 0<x<100

Cx) = .
0.14x, if x>100

The sketch of this function is shown in Fig. 9.37.

It is discontinuous at x = 100 since lim C(x)=16 and lim C(x)=14 .
x—100" x—100*

Note that C(100) = 14. Thus, lim C(x)=16#14= lim C(x)=C(100) .
x—100"

x—100"

Note also that the function jumps from one finite value 14 to another finite value 16.

125 Limits and Continuity
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9.3.3 Removable and Jump Discontinuities
Let us look at the following functions :

sin x

) f(x)= .
(1) g(x)=C(x), where C(x) is as defined in Example 9.37.
The function f(x) is defined at all points of the real line except x = 0. That is, f{0) is undefined, but

ling SIMY _ 1 exists. If we redefine the function fx) as
x— X
sin x
—,x%0
h(x)=1 x
1, x=0

h is defined at all points of the real line including x = 0. Moreover, 4 1s continuous at
x =0 since

sin x

lirrg h(x) = lirrg =1=h(0).

Note that /(x) = f(x) for all x # 0. Even though the original function f(x) fails to be continuous at
x = 0, the redefined function became continuous at 0. That is, we could remove the discontinuity by
redefining the function. Such discontinuous points are called removable discontinuities. This example

leads us to have the following.

(Definition 9.10 )

A function f defined on an interval / — R is said to have removable discontinuity at X, €/ if

there is a function /:7 — R such that 4(x) = lim f(x), if x=x,
> )

{ f(x), if x # x,
xX—x, J

Note that for removable discontinuity, lim f(x) must exist.
x~>x0

-

Now if we examine the function g(x) = C(x) (see Example 9.38) , eventhough itis defined atall points

of [0, «), lirllolo g(x) does not exist and it has a jump of height lim g(x)— lim g(x)=16-14=2,
x> x—100* x—100”

which is finite. Since lirllgo g(x) does not exist, it is not continuous at x = 100. Such discontinuities are
x—>

called jump discontinuities. Thus we have the following :

ﬁ)eﬁnition 9.11 h
Let f'be a function defined on an interval / — R. Then f'is said to have jump discontinuity at a
point x, €/ if fis defined at x,,

lim f(x)and lim f(x) exist but
lim f(x)# lim f(x).
\ X=X, X=X, J
XI - Mathematics 126
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Example 9.39
1
*sin—, ifx#0
Determine if f'defined by f{x) = S X 0 is continuous in R .
0, ifx=0
Solution

By Sandwitch theorem lir% x” sin 1 =0 and f{0) = 0 by the definition of f{x). Hence it is
x> X

continuous at x = 0. For other values it is clearly continuous and hence continuous in R .

EXERCISE 9.5

(1) Prove that f(x) = 2x*> + 3x — 5 is continuous at all points in R .

(2) Examine the continuity of the following :

(i) x+sinx (i) x’cosx (iil) e' tanx
(iv) e +x? v) x.Inx (ﬁ)sﬁf
2
(viy 10 (i) e+ 24— 1] (ix) 22
x+4 | x+1]|
(x) cotx+tanx
(3) Find the points of discontinuity of the function f, where
0 S 4x+5, if x<3 (i) 00) x+2,if x22
i x) = i) fix)=
4x-5, if x>3 x*,  ifx<2
: T
iy o= [TR IS ST S
iii x) = iv) flx) =
x241, if x>2 T T

cosx, —<x<—
4 2

(4) At the given point x, discover whether the given function is continuous or discontinuous
citing the reasons for your answer :

Y-l i TN
O x,=1, x)=9 x-1" (i) x, =3, fix)=14 x-3°~
2, x=1 5, if x=3
X -1 .
. —, ifx#1 . .
(5) Show that the function { x—1 1s continuous on (— o, o)
3, if x=1
xt -1 .
C . —, ifx#1 .
(6) For what value of «vis this function flx) =14 x—1 continuous at x = 1?
o, if x=1
127 Limits and Continuity
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0, ifx<0
(7) Letfix)={x”, if 0<x<2 .Graph the function. Show that f{x) continuous on (— oo, o).
4, if x=>2

(8) If fand g are continuous functions with f{3) = 5 and ling [2 f(x)— g(x)] =4, find g(3).

(9) Find the points at which fis discontinuous. At which of these points fis continuous from the
right, from the left, or neither? Sketch the graph of f.
2x+1, if x<-1

) flx)y=43x if —1<x<l1 (ii)f(x)Z{
2x—1, if x=>1

(x=1)°, if x<0
(x+1y°, if x>0

(10) A function fis defined as follows :

0 for x<O0;

for 0<x<];
—x*+4x-2 for 1<x<3;
4—x for x=>3

Jx) =

Is the function continuous?

Which of the following functions fhas a removable discontinuity atx = x ? If the discontinuity @
is removable, find a function g that agrees with ffor x # x and is continuous on R .

@ (11

2
() fix)= M, X, =—2.
x+2
3
() foy=2T0 4
x+4

(iii) f(x)=39_‘/;, X, =9 .
—X

(12) Find the constant b that makes g continuous on (—eo, o).

) x> =b* if x<4
X)=
& bx+20 if x>4

(13) Consider the function f(x)= xsinZ-. What value must we give f(0) in order to make the
X

function continuous everywhere?

x =1

3

(14) The function f(x)=

is not defined at x = 1. What value must we give f{1) inorder to

make f(x) continuous at x =17?

XI - Mathematics 128
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(15) State how continuity is destroyed at x = x, for each of the following graphs.

y

A

(a) \\ (b)

O Xo =7
Fig. 9.38
(©) 1 )
:x=x0
Fig. 9.40

(1) lim 22X

X—>o0 x

(D1

2x—71

2) lim
( ) x—>7/2 COSX

(H2
V1—cos2x
X

(3) lim

x—0

(1o

(4) lim sin/g

-0 \/sin @
(H1

EXERCISE 9.6

Choose the correct or the most suitable answer from the given four alternatives.

20 (3) e

)1 (3) =2

)1 (3) 2

2)-1 (3)0

x2+5x+3JX.
is

lim| ———
) Hw( x+x+3

1) ¢

2) e 3) e

129

y
A
> X
0 X,
Fig. 9.39
y
A
X
o) Xo
Fig. 9.41

(4) —eo

4)0

(4) does not exist

(4)2

(4)1

Limits and Continuity
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x =1
6) lim =
© xoe Dy 4]

(1)1 2)0 3)-1 @

(7) lim& =2~
X

X—o0

(1) log ab ) log [ﬁj (3) log (ﬁ) ) &
b a b
8 4" =2 41" _

2
X

(1)2log2 (2) 2(log2)’ (3)log2 (4)3log?2

® i

O If f(x)= x(—l)L‘J , x <0, then the value of liir(} f(x) is equal to
(-1 20 (3)2 4) 4

(10) lim| x| =

(H2 2)3 (3) does not exist 40
) 3x 0<x<l1
(11) Let the function f* be defined by f(x)= , then
—3x+5 1<x<2
(1) lirrl1f(x):l (2) lirrllf(x):?’
3) lirrll f(x)=2 (4) 1i1’I11 f(x) does not exist

(12) If f:R — R is defined by f(x):|_x—3J+|x—4| forx e R, then lim f(x) is equal to
x—3"

(H-2 2)-1 3)0 4)1
(13) lim 21 g

x—0 X

(D1 (2)2 (3)3 40
(14) If lim im é’x =4 , then the value of p is

=V tanox

(1) 6 (2)9 (3) 12 (4) 4
(15) lim sina—cosais

a—T7/4 a—z

4
1
(1) V2 @ 7 3)1 (4)2
1 2 3 n
16) lim| —+—+—+...+— |is
1

(1) 5 2)0 3)1 (4) e

XI - Mathematics 130
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(17) lim 1 =
x—0 X

(1)1 @) e 3) é 4)0

tan x X
(18) lim&——% =

=0 tanx—Xx

()1 @) e 3) % 4)0

sin x

\/x_2

(D1 -1 (3)0 (4) 00

is

(19) The value of ling

(20) The value of lim x—LxJ, where £ is an integer is

x—k~

(-1 21 3)0 4)2
2x—3
(21) At x=> the function /(x)= 23| i
2 2x-3
(1) continuous (2) discontinuous (3) differentiable (4) non-zero
X x 1s irrational )
(22) Let f:R — R be defined by f(x)= . . then f'is
l1—-x x isrational
. . 1 . 1
(1) discontinuous at x = 5 (2) continuous at x = 5
(3) continuous everywhere (4) discontinuous everywhere
E x#-1
(23) The function f(x)=19 x> +1 is not defined for x =—1. The value of f(—1) so that the
P x=-1
function extended by this value is continuous is
2 2
&) 3 ) -3 31 40

(24) Let f'be a continuous function on [2, 5]. If ftakes only rational values for all x and f(3)=12 ,
then f(4.5) is equal to

SOHIAS) 3175 @ L4910

o 7.5 L.5

(25) Let a function f'be defined by f(x)= x=1x forx#0 and /(0)=2. Then fis
X

(1) continuous nowhere (2) continuous everywhere
(3) continuous for all x except x = 1 (4) continuous for all x except x =0
131 Limits and Continuity
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SUMMARY

In this chapter we have acquired the knowledge of

Limit of a function y = f(x) as x approaches x, from the lower values of x,.
Limit of y = f(x) as x approaches x, from the higher values of x,.
Limit of a function as x approaches x,, in the deleted neighbourhood of x, exists if and

only if lim f(x)=L= lim f(x)=lim f(x)= L.

lim f(x) =L also means that f{x) converges to L as x approaches x, from either side of

X=X

X, exceptat x =Xx,.
If lim f(x) and lim g(x) exist then

i) lm[f(x)*g(x)]=1lim f(x)+lim g(x),

i) lim[/(x)g(x)] = lim /(). lim /()

Gt || :}g}% e if g(x)#0 and lim g(x) #0
S PO S

Limit of f(x) as x approaches x, does not exist if either f(x) — Zoo as x = x,~

or f(x) >tee as x > x," or lim f(x)=/ 2/, = lim f(x)

X=X,

(M ,o0) is the neighborhood of +eo, M >0
(—eo, K) is the neighborhood of —eo, K < 0.

If f(x) = 2o as x = x, then x =X, is a vertical asymptote.
The line y =/ (or /,) is a horizontal asymptote of the curve y = f(x) if either
f(x) =1 as x =00 or f(x) >, as x > —oo.

f(x) is continuous at x, if and only if
W) LREs) = s
(i) liml (e, +A) - £ (x)] =0

(i) lim £ ()= £ lim x) .

Jump and removable discontinuities.
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ICT CORNER 9(a) £0 5

Q@
D
all £

Limit of a function at a point

Function [(x) =241 ; —4<x <4

Left Hand Limit of f(z) = lim (z*+1) =2

Expected Outcome

Right Hand Limit of f(z) = lim (z° +1) =2
P

Ash —0

| LHL = RHL, - Limit exist at = =1

Step 1
Open the Browser type the URL Link given below (or) Scan the QR Code.
GeoGebra Workbook called “XI Standard Limits” will appear. In that there

are several worksheets related to your lesson.
Step 2

Select the work sheet “Limits basic”. A continuous function is given. You
can select the limit at a desired point by moving the slider “a”. Then move
the lines x=h(nearest to a point ) both left and right side to check f(h) by

moving the slider “h”

Compare this with the definition given in book.

A
: -
f'.f Function flz)=a"+1 1 45254
" ata =2
. . — Left Hand Limit of fz) = lim (P +1) =M
; P L e Right Humd Limil of J(x) = lim (= +1) = 2.00
Ash—10
LHL = RHL, » Limil exisf al 2 =1
'« [
Stepl Step2
Browse in the link:
Matrices and Determinants: https://ggbm.at/cpknpvvh
(=] i
B162_11_MAT_EM
133 Limits and Continuity
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ICT CORNER 9(b)
Limits and continuity

Paax

el

oTans

Q = J
all %

@+l —-2<zg=
F L o )= -
unctionf{z) Il +21<z<4d
ata =1

Expected Outcome Left Hand Limit of f(x) = ‘_121: [z H

Right Hand Limit of f(z) = Einln_il.ri

Ash—0D

Step 1
Open the Browser type the URL Link given below (or) Scan the QR Code.

GeoGebra Workbook called “XI Standard Limits” will appear. In that there
are several worksheets related to your lesson.

Step 2
Select the work sheet “Piece-wise limit”. Piece-wise function is given. Move
® the lines x=h(nearest to x = 1 ) both left and right side to check f{/) by moving ®
the slider “A”

Compare this with the definition given in book.

Piece wise continuity

EES B P e

—
Functionf{w) e

1 Slandads Limila

nta=]

Left Hand Limit of f{z}= lim (+* + 1) = 123
P
Rigiht Hond Limit of f(x]= lim (|| + 2) = 3.62

Ash =0

LHL#ZRHL, = Limil does not exist af o =1

[ [

Stepl Step2

Browse in the link:

Matrices and Determinants: https://ggbm.at/cpknpvvh
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Differential Calculus-
Chapter Differentiability and Methods of Differentiation

“Take what you need,
do what you should, you will get what you want”

- Leibnitz
-

BCASHL

10.1 Introduction

In this chapter we discuss the concept of derivative and related concepts and develop tools
necessary for solving real life problems. In this connection, let us look at the following problem of
finding average velocity.

Almost everyone has an intuitive notion of speed or velocity as a rate at which a distance is
covered in a certain length of time. When, say, a bus travels 60 km in one hour, the average velocity
of the bus must have been 60 km/h. Of course, it is difficult to maintain this rate of 60 km/h for the
entire trip because the bus slows down for towns and speeds up when it passes cars. In other words,
the velocity changes with time. If a bus company’s schedule demands that the bus travel 60 km from
one town to another in one hour, the driver knows instinctively that he must compensate for velocities
@ or speeds greater than this at other points in the journey. Knowing that the average velocity is 60 km/h @
does not, however, answer the question: What is the velocity of the bus at a particular instant?

In general, this average
velocity or average speed of a
moving object is the time rate
of change of position defined
by

_ distance travelled

ave

time of travel

Consider a runner who
finishes a 10 km race in an
elapsed time of 1 h 15 min
(1.25 h). The runner’s average
velocity or average speed for
this race is

10 2

Usain Bolt’s average speed

y == Ay 100m
ave —_— == 104
125 Ax  9.58s
But suppose we now wish How fast is Usain Bolt right now? — Calculus

to determine the runner’s exact

velocity v at the instant the runner is one-half into the race. If the distance run in the time interval

from 0 h to 0.5 h is measured to be 5 km, then v, = S 10.

0.5

135 Differentiability and Methods of Differentiation
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Again this number is not a measure or necessarily such a good indicator, of the instantaneous
rate v at which the runner is moving 0.5 h into the race. If we determine that rate at 0.6 h the runner

is 5.7 km from the starting line, then the average velocity from 0 hto 0.6 4 is

S it Ry P
0.6-0.5

The latter number is amore realistic measure of the rate v. By “shrinking”

the time interval between 0.5 / and the time that corresponds to a measured
position close to 5 km, we expect to obtain even better approximations to the
runner’s velocity at time 0.5 4.

Gottfried Wilhelm Leibnitz
This problem of finding velocities leads us to deal with the general (1646 - 1716)

problem of finding the derivative of a general mathematical model represented by the analytic
equation, y = f(x) Consequently, we will move towards in achieving the following objectives and

subsequently deal with the analysis of derivatives.

4 . o
@ Learning Objectives

On completion of this chapter, the students are expected to
e acquire the concept of a derivative as limit of quotients.
® ¢ visualise the concept of derivative geometrically. @
¢ understand derivative as a process of measuring changes.

e realise derivative as a tool to measure slopes of tangents to curves / rates of changes.
e understand different methods of differentiation.

e apply calculus as a tool to solve everyday real life problems.

10.2 The concept of derivative

Calculus grew out of four major problems that mathematicians were working on during the
seventeenth century.

(1) The tangent line problem

(2) The velocity and acceleration problem
(3) The minimum and maximum problem
(4) The area problem

We take up the above problems 1 and 2 for discussion in this chapter while the last two problems
are dealt with in the later chapters.

10.2.1 The tangent line problem

What does it mean to say that a line is tangent to a curve at a point? For a circle, the tangent line
at a point P is the line that is perpendicular to the radial line at a point P, as shown in fig. 10.1.

XI - Mathematics 136
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For a general curve, however, the problem is more difficult,
for example, how would you define the tangent lines shown in the
following figures 10.2 to 10.4.

- <

You might say that a line is tangent to a curve at a point P if
it touches, but does not cross, the curve at point P. This definition
would work for the first curve (Fig. 10.2), but not for the second
(Fig. 10.3). Or you might say that a line is tangent to a curve if
the line touches or intersects the curve exactly at one point. This
definition would work for a circle but not for more general curves,
as the third curve shows (Fig. 10.4).

<
y

Fig. 10.1

y y
y A A
A
= _
2,
y=r(x) N
P\ %
Fig. 10.2 Fig. 10.3 Fig. 10.4

Essentially, the problem of finding the tangent line at a point P boils down to the problem of
finding the slope of the tangent line at point P. You can approximate this slope using a secant line

through the point of tangency and a second point on the curve as in the following Fig. 10.5.
Let P(x,, fix,)) be the point of tangency and Q(x, + Ax, f{x, + Ax)) be the second point.

The slope of the secant line through the two points is given by substitution into the slope

formula
Y ~f®
_VaTh A v=J
X, =X x\\‘\e

{0, + A / (x, + A)
_ SO+ A) - f(x) _
e (x, +Ax) —x,

_ SO +Ax) - f(x))
sec Ax
secant line.

changeiny Ay

LAY = £ (3 + A0~ £(x,)

changeinx Ax’ Py, 6 )) 2t

—_—

That is, m , which is the slope of the >

Fig. 10.5

The right hand side of this equation is a difference quotient. The denominator Ax is the change

in x (increment in x), and the numerator Ay = f{x, + Ax) — f(x ) is the change in y.

The beauty of this procedure is that you can obtain more and more accurate approximations of

the slope of the tangent line by choosing points closer and closer to the point of tangency.

137

@ 10-08-2018 18:25:53‘ ‘



Tangent line approximation

(x5 S (X))

Ay
: (x5 S (%))

(x5 S (x5))

(x5 S (x5))

(x5 S (X))

Ax — 0 Ax =0

Fig. 10.6 t0 10.13
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Ilustration 10.1 y
Let us make an attempt to find the slope of A
the tangent line to the graph of f(x) = x’at (1, 1). y=x
As a start, let us take Ax = 0.1 and find the slope
of the secant line through (1,1) and (1.1,(1.1)*). 5
man =
(i) AL = L1)*=121 ‘
(i) Ay = fALI)-A1)
> X
= 1.21-1=0.21
A 0.21
(i) 2 = 2= =21 Fig. 10.14
0.1
Tabulate the successive values to the right and left of 1 as follows :
Ax 1+ Ax A1) Al + Ax) Ay Ay / Ax
0.1 1.1 1 1.21 0.21 2.1
0.01 1.01 1 1.0201 1.0201 2.01
0.001 1.001 1 1.002001 0.002001 2.001
-0.1 0.9 1 0.81 -0.19 1.9
—-0.01 0.99 1 0.9801 —-0.0199 1.99
® —-0.001 0.999 1 0.998001 —0.001999 1.999 ®
Clearly, lim & =2; lim o A 2.
Ax—0" A—0" Ax

This shows that lim L =2.
Ax—0
Thus the slope of the tangent line to the graph of y =x*at (1, 1) is m__= 2.
On the basis of the Fig.10.6 to 10.13, Illustration 10.1, and our intuition, we are prompted to say
that if a graph of a function y = f{x) has a tangent line L at a point P, then L must be the line that is the

limit of the secants PQ through P and Q as Q — P (Ax — 0). Moreover, the slope m __ of L should

be the limiting value of the values m__as Ax — 0. This is summarised as follows:

Definition 10.1 (Tangent line with slope m)
Let f'be defined on an open interval containing x,, and if the limit
llm£= llm f(xo +Ax)_f(x0) — mtan
A—0 Ax  Ax—0 Ax
slope m is the tangent line to the graph of f at the point (x, f(x,)).

exists, then the line passing through (x, f(x,)) with

The slope of the tangent line at (x, f{x,)) is also called the slope of the curve at that point.

The definition implies that if a graph admits tangent line at a point (x,, f{x,)) then it is unique
since a point and a slope determine a single line.

139
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The conditions of the definition can be formulated in 4 steps :
(i)  Evaluate fat x, and x, + Ax : f{x,) and f{x, + Ax)
(i) Compute Ay : Ay = fix, + Ax) — fix,)

(ifi) Divide Ay by Ax (#0) : % _ SO+ A~ f(x)

Ax
. o _ i Y
(iv) Compute the limitas Ax > 0(=0): m_ = A}g}); .
The computation of the slope of the graph in the Illustration 10.1 can be facilitated using the
definitions.
6)) f(1)=12>=1.Forany Ax#0
A1+ Ax) = (1 +Ax)*=1+2Ax + (Ax)?
(i1) Ay = f(1 + Ax) — (1) =2Ax + (Ax)* = Ax (2 + Ax)
(iif) Ay Ax(2+Ax)
Ax Ax
=2+ Ax.
. Ay
(iv) m_ = Br_}no Ay

lIim(2+Ax)=2+0=2.
Ax—0

Example 10.1
Find the slope of the tangent line to the graph of f{x) = 7x + 5 at any point (x,, f{x,)).
Solution
Step (1) Ax,)=T7x,+5.

Forany Ax#0,
fx, + Ax) =T(x, + Ax) + 5
=Tx,+TAx+5
Step (i) Ay =flx, + Ax) - fix,)
=(Tx, +7Ax+5)—(7x,+5)
=T7Ax
Ay
Step (it — =
p (i) ~

Thus, at any point on the graph of f{x) = 7x + 5, we have

Step (iv) m, = Llcr_r)% %
-l
=17.

Ay

Note that for a linear graph, — is a constant, depends neither on x, nor on the
increment Ax. Ax
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Example 10.2
Find the slope of tangent line to the graph of f(x) = — 5x> + 7x at (5, f(5)).
Solution

Step D) A5 =-505P+7x5=-125+35=-90.
For any Ax#0,
S5+ Ax) = —5(5+ Ax)*+7(5 + Ax) =— 90 — 43Ax — 5(Ax)*.

Step (i1) Ay = (5 + Ax) — f(5)
= — 90 — 43Ax — 5(Ax)* + 90 = — 43Ax — 5(Ax)?
= Ax[— 43 - 5Ax].
Ay
Ste 111 — = —43 - 5Ax
p (ii1) ~
. LAy
Step (iv) m, = gr_lgo i 43.

10.2.2 Velocity of Rectilinear motion

Suppose an object moves along a straight line according to an equation of motion s = f{¢), where
s is the displacement (directed distance) of the object from the origin at time . The function f that
describes the motion is called the position function of the object. In the time interval from ¢ = ¢ to
t = t,+ At, the change in position is f{z, + Ar) — f(z,). The average velocity over this time interval is

_ displacement _ (4, +A) = /(%) _ Changeins _ As which is same as the slope of the

v
“e time At Changeint At
secant line PQ in fig. 10.16. s O+ 80 £t + AP
+At, +
A ’ b
Position at Position at
t=t, t=t,+At
. ! o Pty U
0 |<—f(to+At)_f(to)'>|

| - f(1,) —>|

> T
| - f((, +A) —— o) t 1y + At
Slope of PQ = m,,, = AG +A£_f(10)
Fig. 10.15 Fig. 10.16
S
In this time interval Az (from 7, to ¢, + Ar) the motion may be of
entirely different types for the same distance covered (traversed). c 0
This is illustrated graphically by the fact that we can draw entirely ﬁ
‘|

different curves C,, C,, C, ... between the points P and Q in the P
plane. These curves are the graphs of quite different motions in '

the given time intervals, all the motions having the same average

velocity Zﬁ Fig. 10.17
!
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Now suppose we compute the average velocities over shorter and shorter time intervals
[, t. + Af]. In other words, we let Af approach 0. Then we define the velocity (or instantaneous

0> 70
velocity) v(¢,) at time ¢ = £, as the limit of these average velocities.
S+ A)— () L As
= 1 = —
v(t,) Ao At Bg}) At

This means that the velocity at time ¢ = 7, is equal to the slope of the tangent line at P.
Illustration 10.2

The distance s travelled by a body falling freely in a vacuum and the time ¢ of descent are
variables. They depend on each other. This dependence is expressed by the law of the free fall :

s = 5 gt’ (absence of initial velocity), g is the gravitational constant.

Step (i) At +Ar) = % g(t, +At)Y = % g(tg +2t,At + (At)Z)

Step (i) As = fit, + At) - fit)
— 1 2 2 1 2
_ Eg[(to +21,At + (Af) ]—Egto o
[ 1] [m] a2k
=gt to+5At BC.JNQ9
At|t,+— At
® Step (i) Ol Pl N P ®
P At Al 1075
Step  (iv) Wi) = lim 25 = gty .

At—0 At

It is clear from this that the velocity is completely defined by the instant . It is proportional to
the time of motion (of the fall).

10.2.3 The derivative of a Function

We have now arrived at a crucial point in the study of calculus. The limit used to define the slope
of a tangent line or the instantaneous velocity of a freely falling body is also used to define one of the
two fundamental operations of calculus — differentiation.

Definition 10.2 )
Let f be defined on an open interval /<R containing the point x,, and suppose that

llm f(xO +AX)—f(x0)
Ax—0 Ax
denoted by f’(x,), is given by

exists. Then fis said to be differentiable at x  and the derivative of fat x ,

P  tim 2 L5480 S x)

Ax A0 Ax J

-
For all x for which this limit exists,

f'(x) = lim b lim Jlxt &) = (%) is a function of x.
A—0 Ax  Ax—0 Ax
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Be sure you see that the derivative of a function of x is also a function of x. This “new” function
gives the slope of the tangent line to the graph of f at the point (x, f{x)), provided the graph has a
tangent line at this point.

The process of finding the derivative of a function is called differentiation. A function is
differentiable at x if its derivative exists at x and is differentiable on an open interval (a, b) if it is
differentiable at every point in (a, b).

In addition to f’(x), which is read as ‘' prime of x” or ‘/ dash of x’, other notations are used to
denote the derivative of y = f{x). The most common notations are

f '(x),d—y, y’,i[ f(x)],D.[y] or Dy ory,.Here a4 or D is the differential operator.
dx dx dx
The notation fl—y is read as “derivative of y with respect to x” or simply “dy — dx”, or we should
X

. .. : d
rather read it as “Dee y Dee x” or “Dee Dee x of y”. But it is cautioned that we should not regard d_y
X

as the quotient dy + dx and should not refer it as “dy by dx”. The symbol % is known as Leibnitz
X
symbol.

10.2.4 One sided derivatives (left hand and right hand derivatives)
For a function y = f{x) defined in an open interval (a, b) containing the point x, the left hand and

right hand derivatives of fat x = x are respectively denoted by f ‘(x;) and f’(x;),are defined as

PN — 1 .f(x() +Ax)_.f(x0)
S(x) AI\.IE(}— Ax

and /'(x,") = lim J O+ A0~ f(x)

, provided the limits exist.
Ax—0* Ax

That is, the function is differentiable from the left and right. As in the case of the existence

S (6 +A%) =~ (%)

exists if and only
Ax

of limits of a function at x, it follows that f '(xo):gmO
5

if both f'(x,)= lim f (x°+AA’2 S and )= lim f (x°+AA’2 —/0)  yist and
Fx)= f1(x").

Therefore f*(x,) = lim Lo+ AA’C; —S ) i and only if £(x, )= £(x,).

Ax—0

If any one of the condition fails then fis not differentiable at x,.
In terms of 7 =Ax> 0,

S +h) = f(x) and
h

£() = lim

S =h) = f(x)
P .

£(q7) = lim
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ﬁ)eﬁnition 10.3 )
A function fis said to be differentiable in the closed interval [a,b] if it is differentiable on
the open interval (a,b) and at the end points a and b,

fla+A)=f(@) _ . flath=f@ ,
- ,

fla) = lim lim ,

vy _ o JOFA)=f(B) . f(b=h)=[f(b)
L S (D) A{grol_ . lim . , h>0. J

o . , : x)— f(x,
If f'is differentiable at x = x_, then f'(x,)= hmM
0 0 X‘)XO x —_— x()
equivalent to x — x,. This alternative form is some times more convenient to be used in computations.

ACE I RNAC)

, where x = x, + Ax and Ax — 0is

As a matter of convenience, if we let 2= Ax, then f’(x)=1l

, provided the

h—0 h
limit exists.
10.3 Differentiability and Continuity
Illustration 10.3
Test the differentiability of the function fix) = |x — 2| at x = 2. ‘y
Solution 3
We know that this function is continuous at x = 2. 2
B ) = lim LSO |
x—2 x—2 R i 2 3 > X
. |x=2]-0
= llm _— Graph of y=|x-2|
=2 x—=2
Fig. 10.18
= lim [x—2] = lim —(x=2) =-1 and

x=2" x—=2 x—2" (x—2)
rimiy — 1 J ()= f(2)
S(27) )}gg—x_z

_ 1imw: 1imM=1

=2t x=2 x—2" (x — 2)
Since the one sided derivatives f'(27) and f’(2*) are not equal, f’(2) does not exist. That is, f
is not differentiable at x = 2. At all other points, the function is differentiable.
If x, = 2 is any other point then
/(%) = lim
XXy X — xo

1 if x>2
-1 ifx<2

|x—x0|_ 1 if X > X,
I | if x<x,

Thus f'(2) = {

The fact that f”(2) does not exist is reflected geometrically in the fact that the curve y = |x — 2|
does not have a tangent line at (2, 0). Note that the curve has a sharp edge at (2, 0).
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Illustration 10.4
1

Examine the differentiability of f(x)= x? atx=0.

Solution
1 y

Let f(x)= X3 Clearly, there is no hole (or break) in the ‘

graph of this function and hence it is continuous at all points of
its domain.

Let us check whether f7(0) exists.

1 -3
Now  f(0) = limIZSO) iy X0
X

x—0 x—0 X

2 1
= 1 3 =14 _—
limx* = lim— — 0 Fig. 10.19
x3
Therefore, the function is not differentiable at x = 0. From the Fig. 10.19, further we conclude that the
tangent line is vertical at x = 0. So f'is not differentiable at x =0.

If a function is continuous at a point, then it is not necessary that the function is
differentiable at that point.

Example 10.3

@ Show that the greatest integer function f(x)= LxJ is not differentiable at any integer? ®
Solution

The greatest integer function f(x)= |_xJ 1s not continuous at every integer point n, since

lim|x|=n-1and lim|x|=n.Thus f’(n) does not exist.

X—n

What can you say about the differentiability of this function at other points?
Illustration 10.5

Let ) X x<0
et fix) =
I+x x>0
Compute f7(0)if it exists. Y
Solution A
Look at the graph drawn.
c
f’(o—) = lim f(O+AX')—f(O)
Ax—0" Ax (6]
/() o
= lim _)%s0
a-00 Ax S {l+x,x>0
ronen 1. Ax
S0 = Jim 2=
)t . 1+Ax
07 = lim " Fig. 10.20
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) 1
— lim (1 + —j —>
Ax—0" Ax

Therefore f”(0) does not exist.

Here we observe that the graph of f'has a jump at x = 0. That is x = 0 is a jump discontinuity.
The above illustrations and examples can be summarised to have the following conclusions.

A function fis not differentiable at a point x, belonging to the domain of /" if one of the following
situations holds:

(i) f has a vertical tangent at x.
(i1) The graph of f comes to a point at x,, (either a sharp edge v or a sharp peak A)
(iii) /" is discontinuous at x,.

A function fails to be differentiable under the following situations :

") ")

Y\
S - o M > x 0 w
X0 Vertical tangent
) Discontinuity
Vertical tangent
Fig. 10.21 Fig. 10.22 Fig. 10.23

1
We have seen in illustration 10.3 and 10.4, the function f(x)=|x—2|andf(x)=x> are

respectively continuous at x = 2 and x = 0 but not differentiable there, whereas in Example 10.3 and

x x<0
[lustration 10.5, the functions f(x)= LxJ and f(x) = {1 0 are respectively not continuous
+x x>

at any integer x = n and x = 0 respectively and not differentiable too. The above argument can be

condensed and encapsuled to state: Discontinuity implies non-differentiability.

Theorem 10.1 (Differentiability implies continuity)
If fis differentiable at a point x = x, then f'is continuous at x,.

Proof
Let fix) be a differentiable function on an interval (a, b) containing the point x, Then

Y 1 f(x0+Ax)_f(xo)
S (xp) = lim o

exists, in the sense that f”(x,) is a unique real number.

f(xo"'Ax)_f(xo)XAx
Ax

Now Bg})[f(xo+Ax)—f(xo)] = i)lg’})
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— hm |:f(xo +Ax)_f(x0):|x llm(Ax)
Ax—0 Ax Ax—0
= f(x,)x0=0.
This implies, fis continuous at x = x,. =

Derivatives from first principle

The process of finding the derivative of a function using the conditions stated in the definition of
derivatives is known as derivatives from first principle.

(1)

2)

3)

4

©)

(6)
(7)

EXERCISE 10.1

Find the derivatives of the following functions using first principle.

() f(x)=6 (i) flx) = — 4x + 7 (iii) flx) = — x> + 2

Find the derivatives from the left and from the right at x = 1 (if they exist) of the following
functions. Are the functions differentiable at x = 1?

. . x, x<I
(D) fx) =[x = 1] (i) f(x)=V1-x’ (iif) flx) = { )

x°, x>1

Determine whether the following function is differentiable at the indicated values.
(1) fix)y=x|x|atx=0 (i) fix) = |x* 1| at x =1
(1) fix)=|x| +|x—1]atx=0,1 (1v) f(x)=sin|x| atx=0
Show that the following functions are not differentiable at the indicated value of x.
0 —x+2, x<2 5 (i) A1) 3x, x<0 | 0

) filx)= ; X = i) fix) = xX=

2x—4, x>2 —4x, x20

The graph of fis shown below. State with reasons that x values (the numbers), at which fis not

differentiable.
YA

X

4

N\
()

Fig. 10.24

If f{x) = |x + 100| + x2, test whether f’(=100) exists.
Examine the differentiability of functions in R by drawing the diagrams.
(1) |sinx| (i1) |cosx]| .
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10.4 Differentiation Rules

If f'is a real valued function of a real variable defined on an open interval 7 and if y = f{x) is a

fx +? mACI general finding such direct

differentiable function of x, then @ = f’(x) = lim

dx Ax—0
derivatives using first principle is extremely laborious and difficult operation in the majority of cases.
But if we know, once and for all, the derivatives of all the basic elementary functions, together with
rules of differentiating the algebra of functions and functions of a function, we can find the derivative
of any element — any function without carrying out limit process each time. Hence the operation of
differentiation can be made automatic for the class of functions that concern us.

Now we divert our attention to the rules for differentiation of a sum, product and quotient.

Theorem 10.2
The derivative of the sum of two (or more) differentiable functions is equal to the sum of their

d

d d
derivatives. That is, if # and v are two differentiable functions then |— (v +Vv)=—u+—v
Proof dx dx dx

roo

Let u and v be two real valued functions defined and differentiable on an open interval / c R.
Let y =u + v, then y = f(x) is a function defined on /, and by hypothesis

W (x) = ﬂ: im u(x+Ax)—u(x)
dx Ax—0
® Vi(x) = % = lim x+ Asz V) st ®

Now, f(x+Ax) = u(x+Ax)+v(x+ Ax)
f(x+Ax)— f(x) = u(x+Ax)—u(x)+v(x+Ax)—v(x).

Sx+A) - f(x) _ u(x+Ax)—u(x)+v(x+Ax)—v(x)
Ax Ax Ax '

Sx+A) - f(x) _ lim u(x+Ax)—u(x)+hm(x+Ax)—v(x) .

This implies, lim
Ax—0 Ax—0 Ar—0

lim f(x+Ax)—f(x)
Ax—0 Ax

Thatis, f'(x) = u'(x)+V(x).

That is, =u'(x)+V(x).

or (u+v), (x) = u'(x)+V(x).

d d d
Thatis, |—(u+v)=—u+—y|.
dx(l ) dxl dx =

This can be extended to finite number of differentiable functions u,,u,,...,u, and

n

, ’ ’ ’
(u, tu, +...4+u,) =u +u, +..+u, .
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Theorem 10.3

Let u and v be two differentiable functions. Then di (uv)=u v + v@
e

Proof dhx dx

Let u and v be the given two differentiable functions so that

lim u(x+Ax)—u(x) _ du and lim v(x+Ax)-w(x) _ dv .
Ax—0 Ax dx Ax—0 Ax dx
Let y=fx)=uv
Then flx + Ax) = u(x + Ax) v(x + Ax), and

Sx + Ax) — fix) = u(x + Ax) v(x + Ax) — u(x).v(x)

=v(x + Ax) [u(x+Ax) —u(x)]+u(x)[v(x+Ax) —v(x)] .

far b)) o POray—ve] TG A9 —u]

This implies,
Ax Ax Ax
lim LA ZSC) )y iy YEFAD VD) | et Ay Tim X HAD —4()
Ax—0 Ax Ax—0 Ax Ax—0 Ax—0 Ax
= u(x)V'(x)+v(x)u'(x) (since v is continuous, iim0 v(x+Ax) =v(x).
That i (x) = i(uv)—u@+v@ m
atis, fi(x) = dx de  dx|

or |(uv)=w+w'

Similarly (uww) =uvw’ +uv'w+u'vw .

This can be extended to a finite number of differentiable functions u, u,, ... u , using induction :

4 ’ 4 7
(U Uyt = Uy, U, F U U e U, U

n

Theorem 10.4 (Quotient Rule)
du  dv
d(u) Vg Y
Let u and v be two differentiable functions with v(x) # 0. Then d—(—] = %
x\ v v
Proof

Let y=f(x)= Z’ u and v are differentiable functions of x and where v(x)=0.
v

u(x+Ax)

Now f(x+Ax) = Tt D)

u(x+Ax)  u(x)

This implies, f(x+Ax)— f(x) = W+ AY) v(x)

_ v(¥u(x +Ax) —u(x)v(x + Ax)
v(x+Ax)v(x) '

149
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v(x)[u(x+Ax)—u(x)] u(x)[v(x+Ax—v(x)]
J(x+Ax)— f(x) _ Ax - Ax
Ax v(x+ Ax)v(x)

This implies,

u(x+Ax)—u(x) u(x) lim v(x+ Ax) —v(x)
Ax Ax—0 Ax

fartAn- £ O Im

This implies, lim -
Ax—0 v(x) i)lcrn0 v(x+ Ax)

_ (0w’ (x) —u(x)V'(x)
v(x)v(x)

( BgnO v(x+Ax) = v(x))

This implies, f(x) = V(U (x) ~u()v(x) .

EQ
d v’ —uv
Thatis, — =
dx(f) v
yau_ dv
or 1[3)2 dx " dx| -
dx\ v v

Theorem 10.5 (Chain Rule / Composite Function Rule or Function of a Function Rule)

Lety=f{u) beafunctionofuandinturnletu=g(x) beafunctionofxsothat y = /' (g(x)) = (fog)(x).
Then <L (f(g(1) = /' (2()g' @),

Proof

In the above function u = g(x) is known as the inner function and fis known as the outer function.
Note that, ultimately, y is a function of x.

Now Au = g(x+Ax)—g(x)

Therefore, Q:&XEZ f(u+Au)—f(u)Xg(x+Ax)—g(x) .
Ax Au Ax Au Ax

Note that Au = 0 as Ax =0

Therefore, limg = lim(

Ax—0 Ax Ax—0

&y Ay
Au Ax

— lim (ﬁ} 1im(ﬂ]
Au—0| Ay ) -0 Ax

= lim f(u+Au)_f(u)Xllm g(x+Ax)—g(x)

Au—0 Au Ax—0
= f(u)xu'(x)
= f'(g(x)g'(x) or ;i(f(g(x))Zf'(g(X))g’(X). =
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Thus, to differentiate a function of a function y = f ( g(x)) , we have to take the derivative of the
outer function fregarding the argument g(x) = u, and multiply the derivative of the inner function g(x)
with respect to the independent variable x. The variable u is known as intermediate argument.

Theorem 10.6 J J
Let f(x) be a differentiable function and let y =k f(x),k # 0. Then = (kf(x)=k o Sf(x).
e A
Proof

S8 _ iy

Since f'is differentiable, gmo
Let y = h(x) = kfix)

h(x + Ax) = kfix + Ax)
h(x + Ax) — h(x) = kf(x + Ax) — kf(x)

k[f(x+A0)—f(x)] .

h(x+Ax)—h(x) _ k[f(x+Ax)—f(x)]
Ax Ax '

This implies, lim hx+AY) —h(x) - _ lim k& [/ G+ AY) — £ ()]

Ax—0 Ax Ax—0 Ax
g G+ A) /()]
Ax—0 Ax

k() = kdiﬂx)
X

d

dx

. d d
That is, E(kf(x)):kaf(x) .

(h) = k= /),
X

10.4.1 Derivatives of basic elementary functions

We shall now find the derivatives of all the basic elementary functions; we start with the constant
function.

(1) The derivative of a constant function is zero.
Lety = fix) =k, k is a constant.
Then f(x +Ax) = k and
fix+Ax)—fix) = k—k=0.

SGHA)- /() _

This implies,
Ax
This implies, limZ 3 FAD=/() _
Ax—0 Ax
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Thatis, f’(x) = 0.

d
—(k)=0|.
or dx( )

(2) The power function y =x", n > 0 is an integer.
Let flx) = x".
Then, f(x+ Ax) = (x + Ax)" and
Sfx + Ax) — fix) = (x + Ax)" — x".

SO+A) - f(x) _ (x+A)"—x"
Ax (x+Ax)—x

This implies,

Sx+A) - f(x) _ lim (x+Ax)" —x"

This implies, lim
Ax—0 Ax—0 (x+Ax)_x

n n

lim
y—)x y — x

d
That is, % f(x) = nx"" or E(x =nx

Corollary 10.1

d P p
When n=£,(p,q):1, — x? =£x" .
q dx q

Corollary 10.2
For any real number o, di(x“) =ox*" .
X

For instance,

M =0
(2) %(ﬁ) = 3x%,
() i(xiJ _3 3
dx 2 7
@ L) = e
(5) %(X§J = %xi_lzgx;l,(x;tO),

(6) di(100x9) = IOOdi(x") =100x9x’" =900x* by theorem 10.6.
x x
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(3) Derivative of the logarithmic function

The natural logarithm of x is denoted by log, x or logx or In x
Let y = f(x)=logx
Now f(x+Ax) = log (x + Ax) and
fix + Ax) — fix) = log (x + Ax) — log x

X+ Ax )
= log .
X
= log 1+£
X
Ax
log| 1+—
S(x+A) - f(x) _ X
Ax Ax
We know that 1im108LTR) _ 4 i, loel+ ko) _
a—0 o a—0 ko
log| 1+ Ax
Therefore, fim LEFAN=/ _ J—Jx L
@ Ax—0 Ax Ax—0 Ax b @
. |d 1
That is, |— (logx)=—|.
e (log x) . -
Corollary 10.3
, 1
If y= f(x)=log,x then f'(x)= .
(log a)x
We have f(x)= log, x=log, e X log, x=(log, e)logx
Therefore i(f( )) = i(10 e xlogx)
s X I g, g
d .
= (log, e)d— (logx) (by constant multiple rule)
X
= log, e.l (or) ! .
X (log a)x m

(4) Derivative of the exponential function

Let y =a*
Then f(x+Ax) — f(x)=a™"* -a"

= a“(a™ -1) and
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S+ A) - f(x) ax[aM—l}

Ax Ax
a™ —
We know that lim = loga.
Ax—0 Ax
— Ax —
Therefore, lim S+ A= f(x) = a" lim [a ! ]
Ax—0 Ax Ax—0 Ax
= a"xloga

d !
—(a ) =a"logal.
or dx( ) g

=
M d X X
In particular, —(e") = e" loge
dx
4 (e')=¢€"|
dx m
(5) The derivatives of the Trigonometric functions
(i) The sine function, sinx.
Let y = f(x)=sinx . ®
Then f(x+Ax) = sin(x+Ax) and
. . . Ax by
f(x+Ax)— f(x) = sin(x+Ax)—sinx = 2sm7cos x+5 .
. [ Ax
A - f(x) (2) Ax
Now Jflx = cos| x+— |.
Ax Ax 2
2
. [ Ax
+AY) - £(x) Sm! B l Ax
This implies, lim flx = lim .lim cos (x + —)
Ax—0 Ax a0 Ax Ax—0 2
= 1 xcosx (Since cos xis continuous,})icn% cos(x+Ax) =cosx) .
= COsX
. |d .
That is |— (sin x) = cos x|.
dx =

XI - Mathematics 154
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(ii) The cosine function, cos x

Let y

Then, d_y
d

X

Let u=

du
dx
dy

Therefore, — =
dx

. T
COSx = sm(x+5).

d . I
—sin| x+—
dx 2
T
x+=
2
1+0=1

d d du
—(sinu) = —(sinu)— by Chain rule
dx (sinu) dx (sinu) dx Y

That is, 4 (cosx) =—sin x|.
dx

(iii) The tangent function, tan x

Lety =

Therefore, 4 (tan x)=
dx

f(x)=tanx .

sin x

COS X
d ( sinx
dx\ cosx

d . . d
cosx——(sinx)—sinx——(cosx
7 (i) 7y (005 %)

cos’ x

cos x(cos x) —sin x(—sin x)

2
COS X

cos® x+sin’ x

That is, 4 (tan x) = sec” x|,
dx

(iv) The secant function, sec x

Let y=

cos’ x
1
cos” x
secx = =(cosx)™" .
COS X
155

T )
cosuxl= cosu = cos(x+5) = —sInx .

(by quotient rule)
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That is,

Then % (=1)(cosx)*(=sinx) (by chain rule)
x

sin x 1 sinx
= = =secx.tan x .

cos’x COSX COSX

d
— (secx) =secxtan x|
dx

(v) The cosecant function, cosec x

That is,

Let y = cosecx = =(sinx)™" .

Sin x

b _ (=1)(sinx)*(cosx)  (by chain rule)

dx
COS X 1 cosx
= = ——/—— = —Cosec xcotx.
sin” x sinx sinx

d
— (cosecx) = —cosecx cot x|.
dx

(vi) The cotangent function, cotx

COS X
Let y= cotx=——.
sin x

@: i COSX
dx dx\ sinx

) d d .
sinx—(cosx)—cosx— (sin x
dx( ) dx( )

sin® x

sin x(—sin x) —cos x(cos x)

sin® x
—sin” x —cos” x 1 5
= — = ————=—cosec’x
sin® x sin® x

That is, a (cotx) = —cosec’x|.
dx

(6) The derivatives of the inverse trigonometric functions

(i) The derivative of arcsin x or sin™' x

XI - Mathematics

Lety = f(x)=sin"x.

Then y+Ay = f(x+Ax)=sin"'(x+ Ax)

This implies, x = siny and

156
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x + Ax

Therefore, A—
Ax

As Ax > 0, Ay — 0 also, so that

dy
dx

That is, i (sin”'x) = !
dx 1-x

(ii) The derivative of arccos x or cos ' x

We know the identity :

sin”'x + cos”'x =
. d . d
This implies, d—(sm_1 x+cos” x) (E):O
X

This implies, 4 (sin™ x)+ 4 (cos™ x)
dx dx

Therefore, !

1—x?

d -
or |[—(cos™ x)=-—
o )

d -
+—(cos
o (cos %)

sin (y + Ay).
1
Ay _sin(y+Ay)—siny
sin(y+Ay)—sin y - Ay

lim &
Ax—0 Ax
1
lim sin(y+Ay)—sin y
Ay—0 Ay
1
Cos y
1 1

- \/l—sinzy - \/l—x2

Il
e}

Il
(e

(iii) The derivative of arctan x or tan™' x

Let y = f(x)=tan'x .

This implies, y + Ay = fix + Ax) = tan™' (x + Ax)

x =tany and

x+Ax =tan (y + Ay)

157
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This implies, Ax =tan (y +Ay)—tany

Ay
tan(y+Ay)—tan y
1
_ tan(y+Ay)—tany
Av

Therefore, o
Ax

As Ax > 0, Ay — 0 also, so that

1
};g}) tan(y +Ay)—tan y . 1

Ax—0 Ax Ay
1
sec’ y

1 1
l+tan”y l+x

d
—(tan
& (tan y)

2

1

5|

That is, i(tan"l X)=
dx 1

(iv) The derivative of arccot x or cot™' x

We know the identity

a ) T
tan x + cot Xx =5.

This implies, di (tan”' x+cot™ x) = —(— ) =0
x

|
)

This implies, a4 (tan™' x)+ 4 (cot™ x)
dx dx

1
1+x?

d d
Thatis, —(cot™' x) = ———(tan™' x) = —
dx( ) dx( )

1
1+x2|

That is, i(cot’1 X)=-—
dx

1

xxlxz—l.

d _
(v) The derivative of arcsec x or d_ (sec™ x) =
x

-1

xWxt=1 ' =

d B
(vi) The derivative of arccosec x or d—(cosec 'x) =
X

The proofs of (v) and (vi) are left as exercises.
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Example 10.7
Differentiate the following with respect to x :

(i) y=x+5x"+3x+7 (i) y=e +sinx+2
2
(iii)) y=4cosec x—logx—2e" (iv) y= (x —l) (v) y=uxe"logx
X
. COS X . log x
o) y==5 (vii) y==2
(viii) Find f'(3)andf'(5) if f(x)=|x—4].
Solution
(1) Q=3x2+10x+3. (i1) ﬂzex+cosx.
dx dx
(ii1) & =—4 cosec x.cot x — L 2e".
dx X
(iv) y=x’ +%—2 =x"+x7 -2
Q =2x—2x"" = 2x—%.
dx X
(v) L4 =xe" [l )+ e logx(l)+xlogx(e")
dx X
®
=e" +e' logx+xe'logx=e"(1+logx+ xlogx).
: cos X
V) y=—7
dy _ x’(=sinx)—cosx(3x’) _ —x’(xsinx+3cosx) _ (xsinx+3cosx)
dx x° x® x* '
(vii) y= logx Y e logx
e
1
@ _ e’ (— )+ log x(e™)(=1)
dx X
=e" [l—logx] .
X
—(x—-4) ; x<4
i) fo)dx—ap] T
(x=4) ; x=4
) = -1 1if x<4
P x> 4
Therefore, f'(3)=-1
f¢)=1.

159
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EXERCISE 10.2

Find the derivatives of the following functions with respect to corresponding independent variables:

(1) fix)=x—-3 sinx (2) y=sinx +cosx
(3) fix)=xsinx (4) y=cosx—2tanx
(5) g(t)y=~Fcost (6) g(f)=4sect+tant
(7) y = e sinx (8) y=anx
(9) y=— (10) y=—T"—

I+cosx sin x +cos x
(11) y:tanx—l (12) y:smzx

secx X

(13) y=tan O(sin O + cos 0) (14) y=cosecx.cotx
(15) y=xsinxcosx (16) y=e™ logx
(17) y=("+5)log(l+x)e™ (18) y=sinx°
(19) y=log,, x (20) Draw the function f'(x) if f(x)=2x"—5x+3

10.4.2 Examples on Chain Rule

Example 10.8

Find F’'(x) if F(x)=+vx" +1.

Solution

g(x)=x>+1and f(u) =u
s F(x) = (fog)(x) = f(g(x))

Take u

Since f'(u) = —u 2=

g’(x) = 2x, we get

F'(x) = f(g(x))g'(x)
SUN S P
24x% +1 x> +1
Example 10.9
Differentiate : (i) y = sin(x?) (i) y = sin’*x
Solution
(1) The outer function is the sine function and the inner function is the squaring function.
Let u = x?
Thatis, y = sin u.
Therefore, Q = Qxﬂ
dx du dx
XI - Mathematics 160
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(i)

Example 10.10

Differentiate
Solution

Example 10.11

@
= cos u x (2x)
= cos(x?).2x
= 2x cos(x?).

u=sinx
Then, y=u’
and Y QX@
dx du dx
= 2u X COS X
=2sinx.cosx
= sin 2x.
cy=(x"-1'".
Take u = x’—1 so that
y — ulOO
and d_y = Qx@
dc du dx

1

Find f,(X) if f(X) :%/T—H 5
X X

Solution

Example 10.12

Solution

First we write : f{x) =

Then, f'(x)

g =

100u' """ x (3x* = 0)
100(x” —1)” x3x?
300x° (x* =1)”.

=il
(P +x+1)3

_]_

1 2 -1 d 2
— (@ +x+1)3 — (" +x+1
Al ): )

1 =
_E(x2+x+l)3 X (2x+1)

=
3

—%(2x+1)(x2 +x+1)3 .

2t+1

o 12 d[1=2
2t+1 ) dt\ 2t+1

161
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[ d d
2 +1) " (1=2)=(=2) " (2+1)

(2t +1)

[(2t+1)x1—(1—2)x2

|

(2t +1)

_ o 12 [ 26 +1-2t+4
2t+1 (2t +1)
_ 45 =2)°
Qt+1)"°
Example 10.13
Differentiate (2x + 1)° (x* —x + 1)~
Solution
Let y=2x+1)y (¥ -x+1)*
Take u=2x+1;v=x>-—x+1 sothat
y=u .V
dy s d oy s d s
o 'E(V )+v E(” ) by Product Rule
@ 5 4 4o dv 45 51 du @
= u.4v a"‘v S by Chain Rule

Example 10.14
Differentiate : y = e5"*
Solution
Take u = sinx so that

4’ v’ X (3x" =)+ 5v*utx2
42x+1) (2 =x+1’3x* =) +10(x* —x +1)*2x +1)*
Q2x+1)"(* —x+1)’ [4Q2x+DGBx* =) +10(x* = x+1) ]

2Q2x+ 1) (x’ —x+1)’(17x° + 6x> —9x+3).

y=e
d_y = _d(e ) d_u = ¢ X COS X = COS X e~
dx du dx

Example 10.15
Differentiate 2~
Solution
Lety = 2" =¢"

XI - Mathematics 1
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Take u = (log 2)x so that
y=e
b _bd_ ¢ xlog2=log2e"**?
dx du dx
= (log2)2~

By using the differentiation formula for a*, one can find the derivative directly.

Example 10.16

If y = tan™! i-’_—x) , find .

—-X
Solution
y = tan™! !
1
Let 1+_x =t
1—x

Then, y = tan't

dy
dx

EXERCISE 10.3

Differentiate the following :

d
= —(tan ¢).
PR )

ﬁ
dx

1 A=-x).1-(1+x)(=1)

- 1+¢

2

1

(1-x)’

(l—x)+(l+x)= 1

2" 2 2
1- 1+
1+(1+x) (1-x) X

=

X

(1) y=(x*+4x+6) (2) y=tan3x
4) y=31+x° (5) y=e"

(7) F(x)=(x"+4x) (8)

(10) y=cos(a’+x") (11)
(13) y=(Q2x-5)"(8x*-5)" (14)

3

r+1

16) s(O=4-— (a7
sin’ x
(19) y= cosx (20)

‘ ‘ Unit10.indd 163

h(z) =(

3
1

——
t)z

y=e™

y=(x"+Dx*+2

f(x)=

-1

y=5*

163

®

X

N7 -3x

(3) y = cos (tanx)

(6) y=sin(e")

©) f(@©)=1+tant
(12) y=4sec 5x
(15) y=xe*
(18) y=tan(cosx)

(21) y=+I1+2tanx
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(22) y=sin’ x+cos’x (23) y =sin’(cos kx) (24) y=(1+cos’ x)’
(25) V= lj_ex (26) y= m (27) y= £+ eosx
@8 y=yrerads (29) y=sin(tan(Vsinx))  (30) y=sin_l(:izj

10.4.3 Implicit Differentiation
A function in which the dependent variable is expressed solely in terms of the independent variable

x, namely, y = f{x), is said to be an explicit function. For instance, y = 5x3 —1 is an explicit function,

whereas an equivalent equation 2y —x’+2=0 is said to define the function implicitly or y is an
implicit function of x.

Now, as we know, the equation
x*+ y2 =4 (1)

describes a a circle of radius 2 centered at the origin. Equation (1) is not a function since for any
choice of x in the interval — 2 <x < 2 there correspond two values of y, namely

f(x) = V4-x*,-2<x<2 (2)
g(x) = —J4—x7,2<x<2 3)
® (2) represents the top half of the circle (1) and (3) represents the bottom half of the circle (1). ®
By considering either the top half or bottom half, of the circle, we obtain a function. We say that (1)
defines at least two  implicit functions of x on the interval -2 <x < 2.
y
A y
X+ y2 =4, y>0 A
S [ X Hyi=h =0
Fig. 10.25 Fig. 10.26

Note that both equations

x’ +[f(x)]2 =4 and x* + [g(x)]2 =4 are identities on the interval -2<x<2.

In general, if an equation F(x,y)=0 defines a function f implicitly on some interval, then
F(x, f(x))=0 is an identity on the interval. The graph of f'is a portion (or all) of the graph of the
equation F(x,y)=0 .

A more complicated equation such as x*+x’y’ —3° =2x+1 may determine several implicit
functions on a suitably restricted interval of the x-axis and yet it may not be possible to solve for

. . . .. dy
y in terms of x. However, in some cases we can determine the derivative I by a process known
X
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as implicit differentiation. This process consists of differentiating both sides of an equation with

respect to x, using the rules of differentiation and then solving for % Since we think of y as being
X

determined by the given equation as a differentiable function, the chain rule, in the form of the power
rule for functions, gives the result.

i(y") =ny" Q, where 7 is an integer.
dy dx

Example 10.17
Find & if x> +y*=1.
dx

Solution
We differentiate both sides of the equation,

d . d , _d
0N =)

2x+2yd—y =

dx
Solving for the derivative yields

S

y

@ b

Example 10.18

< | =
®

Find the slopes of the tangent lines to the graph of x* + > =4 at the points corresponding
tox=1.

Solution

Substituting x = 1 into the given equation yields y* =3 or y = +3.

Hence, there are tangent lines at (1,x/§ ) and (1,—\/§ ) . Although (1, \/5 ) and ﬁl,— 3) are
points on the graphs of two different implicit functions, we got the correct slope of each point.
We have

%at(l,x/g) :_% and % at (1,—«/§)=_—1=

Example 10.19
Find Y if x*+x’y° -y’ =2x+1.
dx
Solution
Differentiating implicitly, we have

= hH+— — = () = —(Qx+1
dx(x) dx(xy) dx(y) dx(x )

165
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This implies, 4x° +x*| 3y’ G2 +(2x)y* -5y dy _ 240
dx dx

This implies, 4x’ +3x°y° 7 +2xy° =5y* dy _ 2
dx dx

This implies, (3x*y*-5y*) Z—y =2—4x’ 2%’
i

dy _ 2-4x’ —2xy°
dx 3x*y* =5yt

Example 10.20

Find P if sin y = ycos2x .
dx

Solution

We have sin y = ycos2x.

Differentiating, isin y = 4 (ycos2x)
dx dx

That is, cos y @Y y(—2sin2x)+cos 2xﬂ
dx dx

This implies, 2 (cosy—cos2x) ? = —2ysin2x
X

or dy _  2ysin2x
dx  cosy—cos2x

10.4.4 Logarithmic Differentiation

By using the rules for differentiation and the table of derivatives of the basic elementary
functions, we can now find automatically the derivatives of any elementary function, except for one
type, the simplest representative of which is the function y = x*. Such functions are described as
power-exponential and include, in general, any function written as a power whose base and index
both depend on the independent variable.

In order to find by the general rules the derivative of the power-exponential function y = x*, we
take logarithms on both sides to get

logy=xlogx,x>0

Since this is an identity, the derivative of the left-hand side must be equal to the derivative of the
right, we obtain by differentiating with respect to x (keeping in mind the fact that the left hand side is
a function of function) :

ldy _ log x+1

v dx
dy :
Hence & = y(logx+1)=x"(logx+1)
X

XI - Mathematics 166

@ 10-08-2018 18:26:41 ‘ ‘



o EEEEE ® - EEEm

The operation consists of first taking the logarithm of the function f{x) (to base e) then differentiating
is called logarithmic differentiation and its result

o)
/()

d
p (log f(x)) =

is called the logarithmic derivative of f{x).

The advantage in this method is that the calculation of derivatives of complicated functions
involving products, quotients or powers can often be simplified by taking logarithms.

Example 10.21

Find the derivative of y =+/x” +4 .sin’ x .2"

Solution

Taking logarithm on both sides and using the law of logarithm,

we have, logy = %log(x2 +4)+2log(sin x) + x log(2).

2x COS X
+2.

1
2 x*+4 sin x

This implies, RAp +log?2
y

- x 4+2c0tx+10g2

x*+
® ®
Therefore, y* = ﬂzy( zx +2cotx+log2) .

dx x +4

Example 10.22
3
4x? +1
Differentiate : y = % .
(B3x+2)
Solution

Taking logarithm on both sides of the equation and using the rules of logarithm we have,

logy= %logx +%10g(x2 +1)—5log(3x+2).
Differentiating implicitly

3.1 2x  5x3

4x 2(7+1) 3x+2

Y
y

3 X 15
=_+ -
4x  (x*+1) 3x+2

3
Theref dy , x4\/x2+1|:3+ x 15 :I
refore, — = y'=———|— — :
D 0 Gx+2) |4x £ 41 3x+2

167
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Steps in Logarithmic Differentiation

(1) Take natural logarithm on both sides of an equation y = f(x) and use the law of logarithms to
simplify.

(2) Differentiate implicitly with respect to x.

(3) Solve the resulting equation for y'.

In general there are four cases for exponents and bases.

(1) di(ab) =0 (a and b are constants). BETJRI-I B
X

() d—[f(x)] =b[f (0] f(x)
d . o .

3) o —[a*"]=a*" (loga)g'(x)

@ L = [ )]g“)[g(’]?{ g )+logf(x)-g'(x)]

Example 10.23

Differentiate y = X

Solution
Take logarithm :

log y = \/;logx
Differentiating implicitly,

1
\/_ JJog x
x2\/— g

logx+2

2%

Therefore, di(xﬁ) B ( logx+2 ) .
X

2x

Y
y

10.4.5 Substitution method

Itis very much useful in some processes of differentiation, in particular the differentiation involving
inverse trigonometrical functions.

1+x°
Consider f{x) = tan™' -2 )

For this function f’(x) can be found out by using function of a function rule. But it is laborious.
Instead we can use the substitution method.
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Take x = tan 0.

1+x>  1+tan’6

Then > = >—=tan26 and
1—x 1—tan” @
f(x) = tan”'(tan26) =26
= 2tan'x
, 2
x) = )
S 1+x*

Example 10.24

Ify = tan™' 1+_x) , find y

1—x
Solution
Letx=tan O

Then L = 1+tang=tan E+t9 .
1—x 1—tan @ 4

tan™! (_i+x) = tan™’ [tan(%+0):|=%+0=g+tan_1x
—x

T -1
= —+tan x
YTy
,_ 1
v 1+ x*

Example 10.25
Find f'(x)if f(x)=cos'(4x’ —3x) .

Solution
Let x = cos 0.

Then 4x°—3x = 4cos’@—3cosb =cos38 and

fix) = cos '(cos38)=30=3cos ' x

-1 =3
Therefore, f'(x) = 3 = :
[ \/ 1—x* ] \/ 1—x*

10.4.6 Derivatives of variables defined by parametric equations
Consider the equations x = f{¢), y = g(1).

These equations give a functional relationship between the variables x and y. Given the value of ¢
in some domain [a, b], we can find x and y.

Iftwo variables x and y are defined separately as a function of an intermediating (auxiliary) variable
t, then the specification of a functional relationship between x and y is described as parametric and
the auxiliary variable is known as parameter.

169
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The operation of finding the direct connection between x and y without the presence of the
auxiliary variable ¢ is called elimination of the parameter. The question as to why should we deal
with parametric equations is that two or more variables are reduced to a single variable, ¢.

For example, the equation of a circle with centre (0, 0) and radius 7 is x* + »* = 7> This equation

describes the relationship between

x and y and the equations

X=rcost ; y=rsint areparametric equations.

Conversely, if we eliminate #, we get x* +y° =7’

dy
If y is regarded as a function of x then & =dt A ,(t) .
dx dx  g(¢)
dt
If we regard x as a function of y, then the derivative of x with respect to y is,
dx
& _dr g0
dy dy (1)
dt
In the case of the circle, then Z:—y is the slope of the tangent to the circle namely
X
dy
dr_di_reost o,
dx dx —rsint
® dt
Example 10.26
Find a’_y if x=at*; y=2at, t #0.
dx
Solution
We have x = at® ; y=2at
& _y©_24 1
dc X)) 2at t

Example 10.27

Find 4 ifx=a(t—-sint),y=a(l —cos ).

dx
Solution
We have x = a(t—sin ¢), y = a(l — cos ).
Now x a(l —cos ?); P =asin ¢

dt dt

)2
Therefore, ﬂ — dr__asmt __ st .

dcx  dx  a(l-cost) (1—cost)

dt
XI - Mathematics 170
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10.4.7 Differentiation of one function with respect to another function :

If y= f(x) is differentiable, then the derivative of y with respect to x is

d—yzlimf

dx h—0

If fand g are differentiable functions of x and if Z—g =g'(x) #0, then
X

df _ gy _ ')
dg dg g'(x)

Example 10.28

Find the derivative of x* with respect to x log
Solution
Take u=x",v=xlogx

logu = xlogx

Ldu
u dx X
d_u
dx
ﬂ
dx

d(x") _ du _ gy
d(xlogx) dv dv

d
Note that when g is the identity function g(x) = x then LA reduces to
g

Example 10.29

Find the derivative of tan~'(1+x”) with respect to x” + x+1.

Solution :
Let f(x) = tan"'(1+x7%)

g(x) = xX*+x+1

AL
dg  g'(%)
rw = =5
+x

af

dx

X.

= x.l+1.logx=1+logx

= u(l+logx)=x"(1+logx)
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g'(x) = 2x+1
2x
i: 1+x* _ 2x

dg  2x+1 Qx+D1+x%)

Example 10.30

Differentiate sin(ax” +bx +c) with respect to cos(lx* + mx + n)
Solution

Let u= sin(ax’+bx+c)
v=cos(lx’ +mx+n)
du  u'(x)
dv  v'(x)
u'(x) = cos(ax® +bx+c)(2ax+b)

v'(x) = —sin(lx” +mx +n)(2lx +m)

du  u'(x)  (2ax+b) cos(ax’ +bx+c)
dv  v'(x) —Qbx+m)sin(lx’ +mx+n)

10.4.8 Higher order Derivatives

If s = 5(?) is the position function (displacement) of an object that moves in a straight line, we
know that its first derivative has the simple physical interpretation as the velocity v(¢) of the object as
a function of time :

v(t)=s'(t) = lim LUFAD=TO) 5
At—0 At dt
The instantaneous rate of change of velocity with respect to time is called the acceleration a(?) of

the object. Then, the acceleration function is the derivative of the velocity function and is therefore
the second derivative of the position function:

a(h)=v(t) = hmw
At—0 At
_ 4
= (v(2))
- dt(dt) dt’ s

Thus, if /'is a differentiable function of x, then its first derivative f’(x)= lim

Ax—0

S +Ax) - f(x)
Ax

has a very simple geometrical interpretation as the slope of a tangent to the graph of y = f(x). Since

f’ is also a function of x, /" may have a derivative of its own, and if it exists, denoted by (") = f”
is,

ron oy S+ AY) - (%)
J'(x) = lim . :
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x
_&f_dy
dx? dx2

Other notations are D’ f(x)=D’y=y,=)"
We can interpret a second derivative as a rate of change of a rate of change. But its geometrical
interpretation is not so simple. However, there is a close connection exists between the second

derivative f”(x) and the radius of curvature of the graph of y = f(x) which you will learn in higher
classes.

Similarly, if f” exists, it might or might not be differentiable. If it is, then the derivative of f” is
called third derivative of f'and is denoted by

3

” Ay
f(x) = dx3=y =);.

We can interpret the third derivative physically in case when the function is the position function

f(t) of an object that moves along a straight line. Because s” = (s”)" = a’(¢) , the third derivative of the
position function is the derivative of the acceleration function and is called the jerk:

da_d’s
dt dt’

Thus, jerk is the rate of change of acceleration.

It is aptly named because a large jerk means a sudden change in acceleration, which causes an
® abrupt movement in a vehicle. @
Example 10.31
Find y,y”and y” if y = x’ —6x> —5x+3.
Solution

We have, y = x’—6x"—5x+3 and

y = 3x*-12x-5

Y =6x—12
y” = 6.
Example 10.32
Find y” ify = l
x
Solution
We have, y = -
X
1
= x Pt =——
y 2
_(=D2! 1) 2!
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Example 10.34
Find y” if x*+y)* =16 .
Solution
We have x*+y*=16.
Differentiating implicitly, — 4x’ +4y°y" =0

and )" = (~D(-2)(3)x = (‘333! :

Example 10.33
Find f” if f{x) = x cos x.
Solution
We have, f(x) = x cos x.

Now f’(x) = —xsinx + cos x, and

f7(x) = — (x cos x + sin x) — sin x

= —XxcoSx— 2 sin x.

Solving for y” gives

To find y” we differentiate this expression for y”using the quotient rule and remembering
that y is a function of x.

3 d 3 3 d 3
4 (_X3] Y a(x )—x a(y )]

dx| »’ ()’

[ 3x" - (3)))]

= [—— y6
3

3x2y3 _3x3y2[_3)

- _ "
3 3(x°y* +x%) _ —3x’[x* + ']
v v

~ =3x%(16) _ —48x°
Yy Y

Example 10.35
Find the second order derivative if x and y are given by

X = acost

y = asint.
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Solution
Differentiating the function implicitly with respect to x, we get

dy dt _ acost _ cost

dx dx  —gsint sint

dzy

d (—cost \dt 5 1
= —| — — = —[—cosect]X—
dt\ sint |dx X (1)

= cosec’tX——
—asint

cosec’t

a

Example 10.36

2

Find ‘;y if X2 +12=4 .

2
X

Solution

We have x°+)° =4

As before, Q S
dx y
Hence, by the quotient rule
dy _ _d(x
dx’ dx\ y
dy
d—x—
_ Y dx
y2
X
y—x|—=
_ Y
y2
_ x*+y° _ 4
¥’ ¥’
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EXERCISE 10.4

Find the derivatives of the following (1 — 18) :

(1) y=xo (2) y=x"#+ (log x)*

(3) oy = e @ =y

(5) (cos)"" © Sorges

(7) \x*+y* =tan”! (%) (8) tan (x+y)+tan (x—y)=x

(9) If cos (xy) = x, show that

—(1+ ysin —
dy _ ( y (x)) (10)  tan [1-cos x
dx xsin xy I+cosx

6x I—x
11) tan™ 12) cos | 2tan™" ,|—=
o (1_9)‘2) (12) [ 1+x)
(13) x=acosi ; y=asin't (14) x=a (cos t+tsint);y=a(sint 1 cos 1)
l_tz 2t . l—X2
15) x= V= 16) cos
(13) 1+t2J} 1+¢ (16) (1+x2]
® (17) sin”'(3x—4x’) (18) tan™ w)
COS X —Sin x

(19) Find the derivative of sin x* with respect to x”.

(20) Find the derivative of sinl( 2x

1+ x?

Jwith respect to tan”' x.

/ 2
(21) If u=tan™ yi+x -1 and v = tan™' x, find @
X dv
(22) Find the derivative with tan™ SIMY | with respect to tan ™’ co§x .
I+cosx I+sinx

(23) If y = sin"'x then find y”.

(24) If y=e™ *, show that (1+x?)y”"+(2x—1))"=0.

sin™!

J1I-x?

(25) If y =

(26) If x=a (0 +sin 0), y=a (1 — cos 0) then prove that at 6 =
(27) If sin y = xsin(a+ y), then prove that

2
(28) Ify = (cos ' x)*, prove that (1— xz)%
x

XI - Mathematics
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dy _ sin’(a+y)
dx sina

~ show that (1-x?)y, —3xy, — y = 0.

, 1
V==
a

o a

, a#nr.

—x%—2=0. Hence find y, when x =0
X
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EXERCISE 10.5

Choose the correct or the most suitable answer from the given four alternatives.

(1) i(zsin x°) is
dx\

V1 1 V4 2
1) —cosx® 2) —cosx°® 3) —cosx® 4) —cosx®
()180 ()90 ()90 ()ﬂ
2 [ dy :
2)If y=f(x"+2)andf'(3) =35, then o atx=11s
X
(Hs (2)25 (3)15 (4) 10
B3 Ify =lu4, u =2x3 +5, then @ is
4 3 dx
(1) L)62(2)63 +15)° (2) ix(2x3 +5)°
27 27
3) ix2 (2x* +15) 4 —i)c(2x3 +5)
27 27
(4) If f(x)=x"-23x, then the points at which f(x)= f'(x) are
(1) both positive integers (2) both negative integers
(3) both irrational (4) one rational and another irrational
S If y= , then @ is
a—z dy
(1) (a-z)’ (2) ~(z-a)’ 3) (z+a)’ " 4) ~(z+a)’
. dy T .
(6) If y=cos(sinx”), then — atx=,|— is
dx 2
(H-2 ()2 3) —Z\E 40
(7) If y=mx+c and f(0)= f'(0)=1, then f(2) is
(D1 ()2 33 4 -3

(8) If f(x)=xtan"x, then f'(1) is

/4 1 7 1 «
) 1+= 2) —+— 3) ——— 4)2
(1 2 () >t 3) > 2 4)
(9) %(e)ﬁSIOgX) iS
x _4 x x 5 5
(1) e x"(x+5) (2) e' x(x+5) 3) e +— 4) e ==
X X
(10) If the derivative of (ax—5)e’* at x=0 is — 13, then the value of a is
(18 (2)-2 3)5 42
177
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1-7 2t dy .
11) x= V= then — is
(1) 1427 14 dx
x x
(1 -2 @ = (3) -~ @) =
X X ¥y y
. d’y .
(12) If x=asin@ and y =bcos 8, then 1s
dx?
2
(1) %sec2 6 () —ésec2 6 3) —%8603 6 4) —b—zsec3 6
b a a a

(13) The differential coefficient of log,, x with respect to log 10 is
2

(D1 (2) —(log,, )" (3) (log,10)* " (4) ;CW

(14) If f(x)=x+2, thenf'(f(x)) atx=4 is
(18 (2)1 (3)4 4)5

_ 2
(15) 1f y=329" then Y i

xt dx
2 2 2 2 2 2 2 2
O =+s @-rs O W=
dp .
(16) If pv=281, then - atv=91s
v
(D1 2 -1 32 4) -2

x=35 if x<1
(17) If f(x)=44x*=9 if 1<x<2 ,then the right hand derivative of f{x) atx =2 is
3x+4 if x>2

(Do (2)2 )3 (4) 4

(18) Itis given that f'(a) exists, then lim—xf (@)-af (x) is
xX—a x — a

(D) f@=af'(a)  (2) fa) ) ~f'(a) (4) f(a)+af(a)

x+1, when x<2

(19) If f(x):{ ;o then f'(2) is

2x—1 when x>
(Ho 2)1 3)2 (4) does not exist

(20) If g(x)=(x*+2x+3) f(x) and £ (0) =5 and li{)lg J) =3 =4, then g'(0) is

X

(1) 20 2) 14 (3) 18 (4) 12
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x+2, —-1<x<3

2D If f(x)=15 x=3 , thenatx=3, f'(x)is
8—x x>3
(1 2)-1 3)0 (4) does not exist

(22) The derivative of f(x)=x]|x| atx=-3 1is
(16 2)-6 (3) does not exist 40
2a—x, for —a<x<a

(23) If f(x)= , then which one of the following is true?
3x—2a for x=a

(1) fix) is not differentiable at x = a (2) fix) is discontinuous at x = a
(3) fix) is continuous for all x in R (4) f(x) is differentiable for all x> a
ax>—b, —l<x<l
24) If f(x)=1 1 is differentiable at x = 1, then
—_, elsewhere
| x|
1 -3 -1 3 1 3 1 3
l)a=—, b=— 2Y)a=—,b== B3)a=——, b=—= A a=—, b==
6] 5 5 () 5 5 3) 5 5 4) 5 5

(25) The number of points in R in which the function f(x)=x—-1| + |x—3|+sinx is not
differentiable, is

(13 (2)2 )1 (4) 4
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SUMMARY

In this chapter we have acquired the knowledge of

e Derivative as a rate of change. If y = f(x) then the derivative of y with respect to x

at xo iS llm f(x0+Ax)_f(x0)
Ax—0 Ax

, provided the limit exists, where existence means

= tim L0 A;z ) _ i S AAx; =S G5 _ iy
is a unique real number.
£~ f i)

. . (d :
e Derivative of y = f(x) atx =x, is (_y] = f'(x,) = lim
x:xo X—)XO x —_— xO

e Geometrical meaning of the derivative of y= f(x) is the slope of the tangent to the

curve y = f(x) at (x, f(x)).

e Physical meaning of the derivative of s= f(¢) with respect to ¢ is the rate of change
of displacement, that is velocity. The second derivative is acceleration and the third
derivative is jerk.

e Discontinuity of y = f(x) at x = x, implies non-differentiability of f(x) atx=x,.

179
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fails to admit tangent at (x,, f(x,)).

derivative at x = x, does not exist.
e Derivative should be understood as a process not as a set of rules.
e Differentiability implies continuity, but the converse is not true.

() W)= ()20
@) L0z =0 E gL

(i) %((fog)(x))=f’(g(x))g'(x)

i [f(x))z {EIVAC P ACIT-AEI PPN 2(x) %0,

dx| g(x) g% (x)

e Non-existence of the derivative of y = f(x) at x = x, implies that the graph of y = f(x)

e  Geometrically, if the graph of y = f(x) admits cups (v ) or caps (A) at x=x, then

e The sum, difference, product and composite of differentiable function is differentiable,
and the quotient of two differentiable function is differentiable wherever it is defined.

Differential Calculus

Expected Outcome

; fix) =x* - 2x
== (e)=42°-2
Step 1 | £ g
Open the Browser type the URL Link given below (or) Scan the QR Code.

GeoGebra Workbook called “Derivatives” will appear. In that there are several worksheets related
to your lesson.

Step 2
Select the work sheet “Tracing the derivative of a function”. You can enter any function in f{x) box.

You can see the function in blue colour and derivative in orange colour. Click play trace button to
get animation of the locus of derivative(x, slope at x)

Observe the trace and find that derivative is the path of slope at each point on f{x).

_.¢.a 5 >
ICT CORNER 10(a) A3

y |
Ir‘\l“lﬂllllll»lllal!nﬂ:ﬂ
= \Y‘\/ =]
T f{x) =x*- 2%
4 G o == If(z) =42’ —2
o T E—Ty | = |
Stepl Step2
Browse in the link:
Derivatives: https://ggbm.at/fk3wS5g8y
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ICT CORNER 10(b)

Differential Calculus

Expected Outcome

LA
1

i |'.'|r'|||||.'n"||l|\||"|| q'|,|,|H| Il ’I'

M ,1|1

ﬁ:]l

1| I

|'l| ;ll rlr-
YL”JIIH“I “ll ||||HH

i\ HJU

(—=G=)

ALCLLLEFFFFEY '.”J |

L0

|II
i

Step 1

Open the Browser type the URL Link given below (or) Scan the QR Code.
GeoGebra Workbook called “Derivatives” will appear. In that there are several

worksheets related to your lesson.
Step 2

Select the work sheet “Derivatives in graph”. Some basic functions and their

derivatives are given one under another

(P2

You can change “a
each function and its derivatives.

value by moving the slider and observe the changes in

—_ 1||||'I' 'I|||'"||,"'||" IrI I"||II

ll||||||||IIIIJF||I| £\

ml’l‘_fll 'u' || IR I\ Ihll Iy il I||I

'Lfnw'e.d“.,'a.iﬂ..

I.|,| IR

TR

1 IJ \-JII J’ 1\j I.l ‘II' II i \I'- ? \.‘/'JI \j

fl f

=l
||| il \

I et e =)
J‘I‘;‘llllrllHl J“J\ .

Stepl

Browse in the link:

Derivatives: https://ggbm.at/fk3w5g8y

ol LI |
B162_11_MAT_EM
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Integral
Chapter Calculus

It is worth noting that the notation facilitates discovery.
This, in most wonderful way, reduces the minds labour.
- Gottfried Wilhelm Leibnitz

BOCBYY

11.1 Introduction

Gottfried Wilhelm Leibnitz (1646-1716) and

Sir Isaac Newton (1643-1727) independently

discovered calculus in the mid-17th century. Leibnitz,

a German philosopher, mathematician, and political

adviser, importantly both as a metaphysician and as

a logician, was a distinguished independent inventor

of the Differential and Integral Calculus. Sir Isaac

. Newton had created an expression for the area under a

Newton curve by considering a momentary increase at a point.

In effect, the fundamental theorem of calculus was built

into his calculations. His work and discoveries were not limited to mathematics; he also developed
theories in optics and gravitation.

Leibnitz

One cannot imagine a world without differentiation and integration. In this century, we witnessed
remarkable scientific advancement owing to the ingenious application of these two basic components
of Mathematics. Calculus serve as unavoidable tool for finding solutions to the variety of problems
that arise in physics, astronomy, engineering, chemistry, geology, biology, and social sciences.

Calculus deals principally with two geometric problems.

(1) The problem of finding SLOPE of the tangent line to the curve, is studied by the limiting
process known as differentiation and

(i1) Problem of finding the AREA of a region under a curve is studied by another limiting process
called Integration.

In chapters 9 and 10, we have studied the differential calculus. In this chapter let us study some
fundamentals of integration.

Consider some simple situations illustrated below.
Situation 1

The shortest distance between two points 4 and B in a plane is the line segment joining the straight
line 4 and B. Suppose it is required to find the line connecting two points 4 and B that do not lie
on a vertical line such that a moving particle slides down on this line from A4 to B in the shortest
time (minimum time). Most of us believe that the shortest distance path in Fig. 11.1(a) will take the
shortest time.
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@ 10-08-2018 18:40:30‘ ‘



‘ ‘ Unit11.indd 183

B B

The shortest distance The shortest time
path between 4 and B route between 4 and B

Fig. 11.1 (a) Fig. 11.1 (b)

Certainly this route is not the shortest time route joining the points 4 and B, because the velocity
of the motion in the straight line (Fig. 11.1(a)) will be comparatively slow; whereas it take a curve
that is steeper near 4 (Fig. 11.1(b)), even though the path becomes longer, a considerable portion of
the distance will be covered at a greater speed. The solution to this problem is solved by Integral
calculus. This is called Brachistochrone problem which initiates the study of calculus of variation
using integral tool.

Situation 2

In elementary geometry we have learnt to evaluate the measure of the following regular shape of
the figures given below by using known formulae.

b h
/
[ b
Perimeter Area Surface Area Volume
2(1+b) (1/2)bh zrl @/3)nr
Fig. 11.2 (a)

How can the measure of the following figures given by functions be calculated?

J

Length of

the curve Area Surface Area Volume

Fig. 11.2 (b)

Though the problems look so difficult, integral calculus solves it without any difficulties.
Situation 3

At a particular moment, a student needs to stop his speedy bike

to avoid a collision with the barrier ahead at a distance 40 metres

away from him. Immediately he slows (acceleration) down the bike

applying brake at a rate of 8 meter/second’. If the bike is moving
at a speed of 24m/s, when the brakes are applied, will it stop before
collision?

Also look at the following problems that occur naturally in our :
life. Fig. 11.3

183 Integral Calculus
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¢ What speed has to be applied to fire a satellite upward so that it never returns to the earth?

¢ What is the radius of the smallest circular disk that can cover every isosceles triangle of given
perimeter P?

¢ What volume of material is removed from a solid sphere of radius 27 if a hole of radius  is
drilled through the centre?

¢ [f a strain of bacteria grows at a rate proportional to the amount present and if the population
doubles in one hour, how much will it increase at the end of two hours?

Integration will answer for all the above problems.

@ Learning Objectives

On completion of this chapter, the students are expected to

e understand the definition of an indefinite integral as a result of reversing the process of
differentiation

¢ find the indefinite integrals of sums, differences and constant multiples of certain elementary]
functions.

e use the appropriate techniques to find the indefinite integrals of composite functions.

e apply integration to find the function, when the rate of change of function is given.

11.2 Newton-Leibnitz Integral

Integral calculus is mainly divided into indefinite integrals and definite integrals. In this chapter,
we study indefinite integration, the process of obtaining a function from its derivative.

We are already familiar with inverse operations. (+,-), (x, <), (( )", v ) are some pairs of inverse

operations. Similarly differentiation and integrations (d, _[) are also inverse operations. In this section
we develop the inverse operation of differentiation called ‘antidifferentiation’.

Differentiation

/() 7(x)

Integration
Fig. 11.4

Definition 11.1

A function F(x)is called an antiderivative (Newton-Leibnitz integral or primitive) of a
function f(x)on an interval I if
F’(x) = f(x), for every value of x in /
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Ilustration 11.1
If F(x)=x"+5 then
F'(x)=2x.
Thus if f(x)is defined by
f(x)=2x, then
we say that f(x)is the derivative of F(x) and that F(x) is

an antiderivative of f(x)

Fig. 11.5
Consider the following table
F(x) F'(x)= f(x) Antiderivative of f(x)=2x
P(x)=x>+0 P(x)=2x
O(x)=x"+2 O'(x)=2x  f(x)=2x F(x)=x>+?
H(x)=x*-1 H'(x)=2x

We can see that the derivative of F(x),P(x),0O(x)and H(x)is f(x), but in reverse the
antiderivatives of f(x)=2x is not unique. That is the antiderivatives of f(x)is a family of infinitely
many functions.

® Theorem 11.1 @
If F(x) is a particular antiderivative of a function f(x)on an interval I, then every
antiderivative of f(x)on [ is given by

[ fGode=F(x)+c
where c is called an arbitrary constant, and all antiderivatives of f(x)on I can be obtained

by assigning particular value to c.

The function f{x) is called Integrand.

The variable x in dx is called variable of integration or integrator.

The process of finding the integral is called integration or antidifferentiation (Newton-Leibnitz
integral).

The peculiar integral sign j originates in an elongated S (like X ) which stands for sum.

Oftenin applications involving differentiation it is desired to find a particular integral antiderivative
that satisfies certain conditions called initial condition or boundary conditions.

For instance, if an equation involving d_y is given as well as the initial condition that
X

y =1y, when x =x,then after the set of all antiderivatives is found, if x and y are replaced by

x, and y,, a particular value of the arbitrary constant is determined. With this value of ¢ a particular
antiderivative is obtained.

Illustration 11.2
Suppose we wish to find the particular antiderivative satisfying the equation

Q=2x
dx

185 Integral Calculus
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and the initial condition that y =10 when x = 2.
From the given equation

dy

—=2x

dx
y=J.2xdx
y=x"+c

We substitute y =10 when x = 2, in the above equation
10=2+¢c = c=6

When this value ¢ =6 is substituted we obtain
y=x"+6

which gives the particular antiderivative desired.

11.3 Basic Rules of Integration

Standard results:

Since integration is the reverse process of differentiation, the basic integration formulae given

below can be derived directly from their corresponding derivative formulae from earlier chapter.

Derivatives

Antiderivatives

d :
@ 5(0) =0, where ¢ is a constant

J.de =c, where c¢ is a constant

d
d—(kx) =k, where k is a constant
X

_[kdx = kx+c where c is a constant

d xn+1 ;
- =X
dx| n+1

n+l

] +c, n#-—1 (Power rule)

Jx"dx= al

n+

d 1
E(log X)= (;)

J.l dx =log|x|+¢
X

d .
—(—cosx)=sinx
dx

fsinx dx=—cosx+c

d , .
E(smx) =Ccosx

jcosxdxzsinx+c

i(tan x)=sec’x
dx

jsecz xdx=tanx+c
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, jcoseczx dx=—cotx+c
— (—cot x) = cosec’x
dx

—(secx)=secxtanx jsecxtanxdx:secx+c

dx

o (—cosecx) = cosecx cot x _[cosecx cot x dx = —cosecx +c¢
di(e")=ex Jexdxzex+c

x

df_a =a" J.axdxz 2 e

dx| loga loga

—(sin‘lx): 1 j L dr=sin"x+c

dx l—x2 1-x

E(tan x)—1+x2 I1+x2dx—tan x+c

Example 11.1

Integrate the following with respect to x.

. 1 . 1
i x" (i) =5 (111) Jx (iv) —
x 95
Solution
n+l
1 ¢ know that X dx = Fe, meE=I,
(i) Weknow that [x"d 1 1
n+
Putting n =10, we get
10+1 11
leodx =2 4= 4o
10+1 11
.. 1 —~10 .x_10+1 1
i —dx=|x dx= Fe==—rdr@
@) '[x10 '[ -10+1 9x°
1 x%“ x% 3
(1i1) J‘\/;dxz‘[xzdle +c=7+c:—x2+c
— 4Ll -
2 2
1 1 —%+1
= X
(iv) |—=dx=|x %dx= =2Jx+c
R L
2
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Example 11.2
Integrate the following with respect to x.

. 1 ... cotx sin x .
() — (if) < (i) (iv) ——
CcoS” X sin x cos® x 1—x
Solution

. 1
(i) Jcosz xdx: Jsec2 xdx=tanx+c

(i1) J J cosec x cot x dx = —cosecx + ¢

sin x

) J sin x dx '[smx 1

dx = '[tanxsecxdx =secx+c

COS X COSX COSX

dx = sin”" x+c

[ o
=37

Example 11.3
Integrate the following with respect to x:
2

el X v 1
i) — i) —
( ) x3 ( )x3
Solution
1 x’ 1
1) |— dx =|e'dx=¢e"+c i) | —dx=|—dx=log|x|+c
() [ dx = (i) [~ dv = [ —dv=log|]
e 1 _3 x 1 . 1 5
1) | —dx=|x"dx= +c=——+c Y dx=tan x+c
( )Jx3 J -3+1 2x° ( )-[1+x2

EXERCISE 11.1

Integrate the following with respect to x:

1 1
(1) () x" (i) = (i) /x* (iv) (x)®
... tanx .... COSX ) 1
@0 577 (ii) oo (i) 5 (iv) o
(3) () 12° (ii) x_;‘ (iii) e*
X
@) () A+x*)" (i) (1-x7) 2

11.4 Integrals of the Form |/ (ax+b)dx

We know that
PN 10
%[(x lg) :| (x— a) ﬁj(x a) dx _(x lg) +c

i[sin()c +k)]=cos(x+k)= J.cos(x +k)dx =sin(x+k)+c
X
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It is clear that whenever a constant is added or subtracted with the independent variable x, the
fundamental formulae remain the same.

But

i|:1 (elx+m)j| _ elx+m :>I€lx+mdx=1€(lx+m) +c
dx |1 [

i{l sin(ax + b)]} = cos(ax+b) = J.cos(ax +b)dx = ! sin(ax+b)+c
dx| a a

Here, if any constant is multiplied with the independent variable x, then the same fundamental
formula can be used after dividing it by the coefficient of x

That is, | if j f(x)dx=g(x)+c, then | Flax+b)dy = g(ax+b)+c
a

The above formula can also be derived by using substitution method, which will be studied later.

Example 11.4
Evaluate the following with respect to x:

(i) j(4x+5)6 dx (ii) jﬂ/(15—2x) dx (iii) j dx

(3x+ 7)
Solution

0 J(4x+5)6 . (4x+5)6+l _ (4x+5)7

L - +e
4 6+1 28

1 \(15-2x o 15— 2x)2
® (i1) J‘«/ (15-2x)dx= IIS 2x dx (_—2)( (1/2)_'_)1 =—( : )+c ®

3 + 7 —4+1
(iii) J J(3x+7) dx =l( x+7) =— ! ~+c
3x+7) 3 4+l 9(3x+7)
Example 11.5
Integrate the following with respect to x:
(i) sin(2x + 4) (i) sec’(3+4x) (iii) cosec(ax +b)cot(ax+b)

Solution
@) j sin(2x + 4)dx = G)(—cos(zx +4))+c= —%cos(Zx +4)+c
(i) [sec’(3+4x)dx = %tan(3 +4x)+c
(iii) J.cosec(ax +b)cot(ax+b) dx = (l )(—cosec(ax +b)}+c= L cosec(ax+b)+c
a a

Example 11.6
Integrate the following with respect to x:

1
i) e i) & 111 v
S(l)t. (ii) (ii )(3x % ( )(5_4x)
olution
5—4x
(i) je3xdx—3e +e (i) [e* av=- +c
189 Integral Calculus
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1 1 1 1
il dx =—log|(3x—-2)|+c v dx =——log|(5—4x)|+c
I ( )J(3x_2) Jlog|3x-2) (iv) J(5_4x) 7 log|(5-4x)
Example 11.7
Integrate the following with respect to x:
1 : 1 1
(1) (il) —— (ill)) ——
1+(2x)’ 1-(9x)" V1-25x°
Solution

(i) J‘;dx:%tan_l (2x)+c

L.
=—sin (9x)+c
1+(2x)’ g (9%)

1
(i) [——adx
'[,/1—(9x)2

dx = %sin_1 (5x)+c

1 ~ I
(iii) IJ1—25x2 a’x—j\/l_(sx)2

EXERCISE 11.2

Integrate the following functions with respect to x:

(1) () (x+5)° (i1) ;4 (i) ~/3x+2
(2-3x)
(2) (i) sin 3x (i) cos(5-11x) (iii) cosec’(5x—7)
(3) (1) &° (i) &7 (iii) P _14x
® ax } ®
4) (i) sec’ 3 (i) cosec(5x + 3) cot(5x + 3) (iii) 30sec(2—15x)tan(2—15x)

1 1

. . 1
5 - -
R R N e W e

11.5 Properties of Integrals

(1) If k is any constant, then ka (x)dx = kJ. f(x)dx

@) JUL)E /(D = [ fi(x)det [ £, ()
Note 11.1

. o -
BOL 7HU

The above two properties can be combined and extended as
[ fi 2k £, (1) e fi(x) £ 2k, £, (x)
= I [ fidetk, [ f,(0dx £k, [ fi(x)det--k, [ f,(x)dx.

That is, the integration of the linear combination of a finite number of functions is equal to the
linear combination of their integrals

Example 11.8
Integrate the following with respect to x:
. 4 .o P 7 2 ees . 2 2
(1) 5x (1) Sx"—4+—+— (111) 2cos x—4sin x+5sec” x4+ cosecx

x x
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Solution
K ¥
(1) [ 5x*dx = 5[x*dx=5 =52=x"+c.
4+1 5

(ii) j(5x2 —4+%+%de SJ‘xzdx—4J.dx+7J%dx+2J%dx
X 2

L
2

2+1

X
52+1—4x+7log|x|+2

§x3 —4x+710g|x|+4\/;+c

(iii) J(2cosx—4sinx+5sec’ x +cosec’x)dx

2sinx+4cosx+5S5tanx—cotx+c

Example 11.9

Evaluate the following integrals:

. 12 6
(1) -+
(4x-5) 3x+2
Solution

(i)j 12 o+ 166" |ax
(4x-5) 3x+2

1 1
=12jmdx+6j3

x+2
4 2(4x-5)

4L 1 6e4x+3

(i)

15
VS5x—4

dx+1 6J e Pdx

4x+3

= ——————+2log3x+2[+4e" +c.
2(4x-5)
. 15
(i1) j( N —8cot(4x+2)cosec(4x+2) )dx

dx -8 j cot(4x + 2)cosec(4x +2) dx

_ 1
Bl
= 15(% ](2\/5x -4) —8[% )(—cosec(4x +2)+¢

= 6+/5x—4 +2cosec(4x+2)+c.

191
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}L 6(1)1og|3x+2|+16(l
3 4

2Jcosxdx—4]sinxdx+5]sec? xdx+]cosec’x dx

—8cot(4x+2)cosec(4x+2)

)e4x+3 +c
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EXERCISE 11.3

Integrate the following with respect to x:

5 24
1) (x+4) +————cosec’(3x—1 2) 4cos(5—2x)+9&° +
(1) (x+4) 2=52) ( ) (2) ( ) e
3) secz£+18cos2x+10sec(5x+3)tan(5x+3) 4) 8 + 27 __ 15 -
5 \/1_(4x)2 J1-9x? 1+25x
(5) 6 - 12 (6) lcos(£—4j+ T e
1+(3x+2)° \/1_(3_4x)2 3 3 7x+9

11.6 Simple applications

So far in this section we have been using x as the variable of integration. In the case of applications,
it is often convenient to use a different variable. For instance in the equation of motion the independent
variable is time and the variable of integration is ¢.

In this section we discuss how integration is used to find the position and velocity of an object,
given its acceleration and similar types of problems. Mathematically, this means that, starting with
the derivative of a function, we must find the original function. Many common word which indicate
derivative such as rate, growth, decay, marginal, change, varies, increase, decrease etc.

Example 11.10

If f'(x)=3x"—4x+5 and £ (1) =3, then find f(x).

Solution

Given that  f'(x)= di(f(x)) =3x"—4x+5
X

Integrating on both sides with respect to x, we get
jf’(x)dx = j(3x2 —4x+5)dx
f(x)=x"=2x*+5x+c
To determine the constant of integration ¢, we have to apply the given information (1) =3
fH=3= 3=(1) -2 +51)+c= c=-1
Thus f(x)=x-2x*+5x—1.

Example 11.11
A train started from Madurai Junction towards Coimbatore at 3pm (time £ = 0) with velocity

v(t) =20z + 50 kilometre per hour, where 7 is measured in hours. Find the distance covered by

the train at Spm.
Solution

In calculus terminology, velocity v = ? is rate of change of position with time, where s is
t

the distance.The velocity of the train is given by
v(t) =20t +50
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Therefore, % =20r+50

To find the distance function s one has to integrate the derivative function.
That is, s = [(20¢+50)d

s =10 +50t +c¢
The distance covered by the train is zero when time is zero. Let us use this initial condition

s =0 at =0 to determine the value c of the constant of integration.

=s5=10"+50t+c =c=0

Therefore, s =10¢" +50¢
The distance covered by the train in 2 hours (5pm-3pm) is given by substituting

t =2 in the above equation, we get
s =10(2)> +50(2) =140 km.
Example 11.12
The rate of change of weight of person w in kg with respect to their height / in centimetres is
given approximately byj—;lv =4.364x107 A" . Find weight as a function of height. Also find the
weight of a person whose height is 150 cm.

Solution
The rate of change of weight with respect to height is

D _ 4 364x10° 12
dh

w:j4.364><10-5h2 dh

3
w=4.364x10" (%]+c

One can obviously understand that the weight of a person is zero when height is zero.

Let us find the value ¢ of the constant of integration by substituting the initial condition w=0,
at 4 =0, in the above equation

3

w=4.364x107 (%}-c:n':O

The required relation between weight and height of a person is

3
w=4.364x10" (%)

When the height 2 =150cm,

3
w=4.364x10" {1530 )
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When the height 2 = 150cm, the weight is w = 49kg (approximately)
Therefore, the weight of the person whose height 150cm is 49 kg.

Example 11.13

. . . D . 18
A tree is growing so that, after t - years its height is increasing at a rate of — cm per year.

T

Assume that when ¢ = 0, the height is 5 cm.
(1) Find the height of the tree after 4 years.
(i1) After how many years will the height be 149 cm?
Solution

The rate of change of height 4 with respect to time ¢ is the derivative of 4 with respect to ¢.

18
Therefore, Gl —
dr Nt

So, to get a general expression for the height, integrating the above equation with
respect to ¢.

1
2

h = IlSt_;dt = 18(2t%)+c =361 +c
Given that when ¢ = 0, the height # = 5 cm.
5=0+c=>c=5
h=363i+5.
(1) To find the height of the tree after 4 years.
When ¢ = 4 years,
h=36i+5=>h=36\/4+5=77
The height of the tree after 4 years is 77 cm
(i1) When & = 149cm

h=363t +5=149 =36t +5

e =5 16
36

Thus after 16 years the height of the tree will be 149 cm.

Example 11.14
At a particular moment, a student needs to stop his speedy
bike to avoid a collision with the barrier ahead at a distance
40 metres away from him. Immediately he slows (retardation)

the bike under braking at a rate of 8 metre/second”. If the bike
is moving at a speed of 24m/s, when the brakes are applied,
would it stop before collision?

Solution
Let a be the acceleration, v be the velocity of the car, and s be the distance.
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Stated in calculus terminology, velocity, v = % is the rate of change of position with time,
t

. dv . : e
and acceleration, a = = is rate of change of velocity with time.
t

The acceleration to be negative because if you take the direction of movement to be positive,
then for a bike that is slowing down, its acceleration vector will be oriented in the opposite
direction of its motion (retardation).

Given that the retardation of the car is 8 meter/second’.
@
dt
Therefore, v = Ia dt = I—Sdt =8+

Therefore, a = — = —8 meter/second”.

y = =8t+c,.
When the brakes are applied,
t =0, and v =24m/s.
So, 24 = —8(0)+¢, =, =24
Therefore, v = —8t+24.
That is, @ = —8t+24.
dt
It is required to find the distance, not the velocity, so need more integration in order.

s = jvdt:j(—81+24)dt
s = 47 +24t+c,

To determine ¢, , the stopping distance s is measured from where, and when, the brakes are
applied so thatat 1 =0, s=0.
s = =42 +24t+c, = 0=—4(0)’ +24(0)+c, = ¢, =0
s = —4t +24¢

The stopping distance s could be evaluated if we knew the braking time. The time can be
determined from the speed statement.

The bike stops when v=0, = v=-8t+24 = 0=-8t+24 =1t=3.
When ¢t =3, we get
s = — 4 +24t = 5 =—4(3)" +24(3)
s = 36 metres
The bike stops at a distance 4 metres to the barrier.

EXERCISE 11.4

(1) If f/(x)=4x-5 and f(2)=1, find f(x).
@) If £/ (x)=9x" —6x and f(0)=—3, find f(x).
(3) If f7(x)=12x—6 and f(1)=30, /(1) =5 find f(x).
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(4) Aball is thrown vertically upward from the ground with an initial velocity of 39.2 m/sec. If
the only force considered is that attributed to the acceleration due to gravity, find

(1) how long will it take for the ball to strike the ground?
(i1) the speed with which will it strike the ground? and
(i) how high the ball will rise?

(5) A wound is healing in such a way that ¢ days since Sunday the area of the wound has been

decreasing at a rate of — cm’ per day. If on Monday the area of the wound was 2cm’

2)
(1) What was the area of the wound on Sunday?

(1)) What is the anticipated area of the wound on Thursday if it continues to heal at the same
rate?

11.7 Methods of Integration

Integration is not as easy as differentiation. This is first due to its nature. Finding a derivative of
a given function is facilitated by the fact that the differentiation itself has a constructive character. A
derivative is simply defined as

J(x+Ax)- f(x)
m
Ax—0 Ax

Suppose we are asked to find the derivative of log x, we know in all details how to proceed in order
® to obtain the result. ®

When we are asked to find the integral of log x, we have no constructive method to find integral or
even how to start.

In the case of differentiation we use the laws of differentiation of several functions in order to find
derivatives of their various combinations, like their sum, product, quotient, composition of functions
etc.

There are very few such rules available in the theory of integration and their application is rather
restricted. But the significance of these methods of integration is very great.

In every case one must learn to select the most appropriate method and use it in the most convenient
form. This skill can only be acquired after long practice.

Already we have seen two important properties of integration. The following are the four important
methods of integrations.

(1) Integration by decomposition into sum or difference.

(2) Integration by substitution.

(3) Integration by parts

BOY¥3YH

(4) Integration by successive reduction.

Here we discuss only the first three methods of integration and the other will be studied in higher
classes.
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11.7.1 Decomposition method

Sometimes it is very difficult to integrate the given function directly. But it can be integrated after
decomposing it into a sum or difference of number of functions whose integrals are already known.
2 2x
x —x+1

) N e -1 )
. , cosSxsin3x, cos x, —, do not have direct formulae
X e

to integrate. But these functions can be decomposed into a sum or difference of functions, whose
individual integrals are known. In most of the cases the given integrand will be any one of the
algebraic, trigonometric or exponential forms, and sometimes combinations of these functions.

For example (1 -x )2 ,

Example 11.15
Integrate the following with respect to x:

. 2 xi—x+1
() (1-x) (11)T
Solution
(i) [(1=2") dx = [(a-2x" +x)ax
= Idx—ij3dx+Ix6dx
47
= x—"—+"—+c.
2 7
. x*—x+1 X ox 1
(id) [ = [G-Sr e
@ 1 1 1 @
= J.;dx—_'.?dx+".7dx.
x—x+1 1 1
J.de = 10g|X|+;—?+C.

Example 11.16
Integrate the following with respect to x:

(i) cos5xsin3x (i) cos’ x.
Solution
. . 1 .
(1) Jcos Sxsin3xdx = EJ.2COS Sxsin3xdx
L¢, . .
= Ej(sm 8x —sin 2x)dx
1 2
Jcosstin3xdx _ L[ _cos8x +E82X .
2 8 2
.. 3 1
(i) Jcos xdx = —I(3cosx+cos3x)dx
4
1 . sin3x
= —|3sinx+ +c
4 3
197 Integral Calculus
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Example 11.17
Integrate the following with respect to x:

2x

(i) = (i) " (¢ -1).
Solution €
e2x_1 e2x 1
i dx = —— |d
() [ J[ex ex)x
= J(ex—e ")dx—ex+e “+c
.. . . 1 d B s 2 d eSx e3x
(11) Je(e—)x—f(e e)—5—3+c
Example 11.18
1
Evaluate : Imdx.
Solution
J~‘21 : dx_J‘smx+cosxdx
sin” xcos” x sin” xcos” x
= I dx+J-
coS™ x sin’ x

® = Isecz xdx + J-cosec xdx ®

= tanx—cotx+c.

Example 11.19

Evaluate : _[ dx.

1+sinx

sin x sinx | 1-sinx
JEm = (e i J
1+sinx I+sinx | 1-sinx

. -2 . - 2
sinx—sin” x sin x —sin” x sin x sin” x
| de=| dr=| dx—|

=2 2 2
l—sin” x cos’ x cos” X cos” X

Solution

dx

= Itan xsec xdx — Jtanz xdx

Itan xsec xdx — J(secz x —1)dx

= secx—tanx+x-+c.

Example 11.20
Evaluate : I\/1+cos 2x dx.

Solution

I\/1+cos2x dx = J\/2cos X dx= fjcosxdx 2smx+c
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Example 11.21
2
G2l g

Evaluate : j
X +x

Solution , )
(x-1) o x +1-2x
e =I5
x(x”+1)

X +Xx
_ J (x* +1) % 5
x(x*+1)  x(x*+1)

= I%dx—211+1x2 dx

log|x|—2tan" x+c.

Example 11.22

Evaluate : J(tan x+cot x) dx.

Solution

_[(tanx+cot x)>dx j[tanz x +2tan x cot x +cot’ x]dx

- J[(secz x—1)+2+(cosec’x —1)]dx

= J.(secz x +cosec’x)dx
® = tanx+(—cotx)+c ®

= tanx—cotx+c.

Example 11.23

1—
Evaluate : j Cosxdx.
1+cosx
Solution
I—cosx 2sin2§ ) X
J dx = I dxzjtan —dx
1+cosx 7cost X 2
2
. tan
= I(secz——l)ix: 2 _x+c
2 1
2
= 2tan£—x+c.
2

Example 11.24

Evaluate : J\/l +sin 2x dx.

Solution

J\/1+sin 2x dx

J-\/(cos2 x +sin® x)+(2sin x cos x) dx
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3

Evaluate : J.x
x —

Solution

(ii)

Example 11.27

+2

dx.

- J-x —1+3d J-(x -1,

® [T [ [ [

J (cos x+sinx)*dx = J(cos x +sin x)dx

sinx—cosx+c

)dx

_ J|:(x—1)(x2+x+l)

+ > dx
x—1 x—1

J(x2+x+l+i x

x—1
XX
?+7+x+3log|(x—l)|+c.

(i) [e™*e" dx

Ia"exdx

log?2
Jex ee*dx

Evaluate : f(x —3)x+2 dx.

Solution

XI - Mathematics
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Example 11.26
Evaluate : (1) Jaxexdx
Solution
® .
@)

J(x—3)x/x+2 dx

= J.(ae)x dx = (ae)’ A
log(ae)

= J‘el"gzxe"dx = '[2" e"dx

= [@eydv= Qe
log(2e)

[G+2-5Vx+2 ax
_ J.(x+2)\/x+2 dx—SIJx+2 dx

J‘(x+2)zdx—5.|‘(x+2);dx

5 3

_ (427 (x+2)?
R
2 2
2 210 2

g(x+2)2 —?(x+2)2 +c.
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Example 11.28

Evaluate :

1
="

1 ~ 1 Jrrl-x
e~ Tt

Solution

=

= | dx

[ )
- L e (TR

x+1—x

J.\/ﬁdx—-[\/;dx = J.(x+1);dx—J-x;dx

3

(x+1)?

3
x2
?'FC

2

3
2

3 3
§|:(x+1)2—x2:|+c.

11.7.2 Decomposition by Partial Fractions
One of the important methods to evaluate integration is partial fractions. If the
integrand is in the form of an algebraic fraction and the integral cannot be evaluated by simple
methods, then the fraction need to be expressed in partial fractions before integration takes
p((x;’ (g(x)#0)in which degree of
X

place. We will assume that we have a rational function

p (x) <degree of ¢ (x). If this is not the case, we can always perform long division.

Example 11.29

Evaluate : (i) jf"—” dx (ii) jx—f x
X —3x+2 (x+2)"(x+1)
Solution
@) J23x—+7 i = J 13 dx J' dx Resolving into
X —3x+2 r= partial fractions
= 1310g|x—2|—1010g|x—1|+c
(ii) J' x—j3 gk = J' _ J i dx Resolving into
(x+2)" (x+1) x+ 2 (x+ 2) 2l partial fractions
= —2_[ ! dx—j Sdx+2 de
x+2 (x+ 2) x+1

—210g|x+2|—_[(x+2)’2dx+2log|x+1|+c

—210g|x+2|+L+210g|x+1|+c.
x+2
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EXERCISE 11.5

Integrate the following functions with respect to x :

X +4x® =3x+2

(1) 2

X

(4) cot’x+tan’x

() (Jh%)z

cos2x—cos2a
(5)

COsSx—Ccos«x

(3) (2x—5)(36 +4x)

CcoS2x
6) ———
sin” xcos” x

d in’ sin4
(7 JrAcosx U n4x
sm- x 1+cosx sin x
(10) cos3x cos2x (11) sin®5x (12) 1+cos4x
cotx —tan x
xloga x 3 4 \/37 81+x+41—x
(13) e e (14) Bx+4)V3x+7 (15)—2x
Nx+3—-+x—-4 (x+2)(x+3) (X—l)(x+2)2
- 3
(19) xD 5 0 — %
(x=D(x+2)(x"+1) (x=1)(x-2)

11.7.3 Method of substitution or change of variable

The method of substitution in integration is similar to finding the derivative of function of
function in differentiation. By using a suitable substitution, the variable of integration is changed to
new variable of integration which will be integrated in an easy manner.

o . du
We know that, if u is a function of x then — =u". ®
x

Hence we can write _[ S(u)'dx = J‘ f(u)du
Thus, | /1g(¥)]g’(x)dx = [ /), where u = g(x)

The success of the above method depends on the selection of suitable substitution
either x = ¢(u) or u = g(x).

Note 11.2
The substitution for the variable of integration is in trigonometric function, use a rough
diagram to find the re -substitution value for it. Suppose the variable of integration x is substituted

as x =tan @ . After integration suppose the solution is sec @+ cosecd

For example, if x =tan@, then from

the figure 1
V1+x° ] i

cosech =
X

[\/1+sz 1
secO =

1

NIESS
Then sec + cosecO =1+ x* +( | J
XI - Mathematics 202
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Example 11.30
Evaluate the following integrals :

(1) I2x\/1 +x’dx

sin x

(i) [e™xax (i) |

1+cosx

(v) J.x(a—x)8 dx

Solution

(i) jzx\/1+ > dx

Putting 1+x”> =u, then 2x dx=du

IZx\/1+x2dx = J.\/;du

—I 2du— 2,3

o | w| E

(ii) J’ e xdx
Putting x* =u then 2x dx=du

Therefore, _[e_xz WA=

1 1 1 _p
—|le'du=—(—e")tc=——e“+c=——€" +c
@ — 2J 2( ) 2 2
(ii1) I

1+ cosx
Putting 1+cosx=u, then —sinxdx=du

sin x

Therefore, I = I_—du=—log]u|+c=—log|1+cosx +c.
u

1+cosx

Putting x =tanu, then dx=sec’ udu

1 sec’u
dx pr— —
J.1+x2 J.1+tam2u

duzjzzz Zd —Idu u+c

I ! ~dx = tan”' x +c.
1+x

(v) fx(a —x)8 dx

Ix(a—

Putting u =a—x, then du=—dx
x)8 dx = Jx(a—x)g dx
—j a— u du)

= J-(—a(u)8 +u9) du

203
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u u
=——a—+c
10 9
10 9
jx(a—x) dx _a=») _a@—x) +c
10 9
11.7.4 Important Results
M) jf()d = log| f(x) |+
n+l
X
@ Jrovra =0
Proof
(1) Let /= jM dx
S (x)
Putting f(x)=u then f'(x)dx=
d
Thus, I= j—u=10g|u|+c
u
/(%)
Therefore, dx =log| f(x)|+c.
J. J(x)
@) Let I= [ f(OL/ (0] dx
Putting f(x)=u then f'(x)dx=du
n+l
Thus, = Iu"du _ 4 +c
n+l
n+l
Therefore, [ f(x)Lf (x)]" dx = [f (X)]
Example 11.31
Integrate the following with respect to x.
(i) Jtan x dx (ii) Jcotx dx (iii) [cosec x dx (iv) [secxdx
Solution
(1) Let / =[tanxdx = J-smx
COS X
Putting cosx =u then, —sinx dx=du
Thus, [ = J—ldu =—log|u|+c=-log|cosx|+c=log|secx|+c.
u
(ii) Let 7 =cotxdr=[=>>d
sin x
Putting sinx=wu then, cosx dx=du
Thus, [ = Ildu =log|u|+c=1log|sinx|+c.
u
XI - Mathematics 204
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(111) Let /= [cosec xdx = Jeosec x(cosec x —cotx) dx

cosec x —cot x

dx

3 J- cosec’x —cosecx cot x
cosecx —cot x

Putting cosecx—cotx =u, then (cosec’x—cosecx cotx)dx = du

1
Thus, /= J.—du =log|u |+c =log|cosecx —cot x| +c.
u

: + x+
(iv) Let = Jsecxdy = J sec x(sec x + tan x) dy = J- sec” x+secxtan x
secx +tan x secx +tan x
Putting secx +tan x =u, then (sec’ x +secxtanx)dx = du
1
Thus, /= J—du = 10g|u| +c= log|secx + tan x| +c
u
Therefore, [secxdx =log |sec X +tan x| +c.
Thus the following are the important standard results.
@)) Jtan x dx = log|secx|+c
(2) Jcotx dx = 10g|sin x|+c
3) J.cosecx dx =log|cosec x —cot x| +c¢
(4) [secx dx = log|secx+tan x|+ ¢
Example 11.32
Integrate the following with respect to x.
2x+4 e’ 1
i) | ——dx il dx i) | ———dx
()J.x2+4x+6 @) J.e"—l (i) leogx
(iv) fs%nx+cosxd W J- . cos 2x _dx
sin X —Ccos X (sin x+cos x)
Solution
2x+4
i Let /= | ———dx
() I X' +4x+6

Putting x*+4x+6=u, then (2x+4)dx=du

Thus, I:I@:10g|u|+c:log‘x2+4x+6‘+c
u

2x+4

Therefore, J.m
X t+ax+

dx = log|x2 +4x+6|+c.

dx

205 Integral Calculus
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ii Let 1=
(11) e Ie _1
Putting e* —1=u, then e'dx=du
d
Thus, = J—u=log|u|+c=log|ex—1|+c
u
e’ .
Therefore, I dx = log(e® —1)+c.
e —1
Let]— .
(111) et -[xlogx X
Putting log x =u, then —dx:du
X
du
Thus, I:J—:log|u|+c:10g|logx|+c
u
Therefore, Tlogx = log|logx|+c.
(iv) Let 1= | sinxeosx ;.
sin x —cos x
Putting sin x—cosx =u, then (cosx-+sinx)dx=du
Thus, I = I——log|u|+c—10g|smx cosx|+c
sin x +cos x
Therefore, J—d = log|sinx—cosx|+c
sin x —cos x
2 2
W) LetIZJ' . cos2x __[ cos 2x
(sin x +cos x)° 1+sin 2x

Putting 1+sin2x =u, then 2cos2xdx =du

Thus, I = jj—u=%log|u|+c :%log|l+sin2x|+c.
u

EXERCISE 11.6

Integrate the following with respect to x

x’ et —e”" 10x” +10% log 10
(1) (2) —— (3) = (4) ————k
\ /1 +x2 1+ e + 10" +
sin/x cotx cosecx sin2x
&) NP 1(—) (7 0 ) o benix
X og(sin x log ( tan* ) a sin® x
-
(9) X (10) Jx ! (12) afx™'e "
1— x> 1+/x xlog xlog(log x)

(13) tan x+/secx

XI - Mathematics

(14) x(1-x)"

(15) sin’xcos’ x
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11.7.5 Integration by parts

Integration by parts method is generally used to find the integral when the integrand is a product
of two different types of functions or a single logarithmic function or a single inverse trigonometric
function or a function which is not integrable directly. From the formula for derivative of product of
two functions we obtain this useful method of integration.

If u and v are two differentiable functions then we have
d(uv) = vdu + udv
udv =d(uv)—vdu

Integrating
Judv = J‘d(uv) - Ivdu

Judv = uv—_[vdu

Iudv in terms of another integral Ivdu and does not give a final expression for the integral

Iudv. It only partially solves the problem of integrating the product # dv. Hence the term ‘Partial

Integration’ has been used in many European countries. The term “Integration by Parts” is used in
many other countries as well as in our own.
The success of this method depends on the proper choice of u
(1) If integrand contains any non integrable functions directly from the formula, like logx,
tan~" x etc., we have to take these non integrable functions as « and other as dv.

® (i) If the integrand contains both the integrable function, and one of these is x”* (where # is a ®

positive integer) then take u = x".

(ii1) For other cases the choice of u is ours.

Example 11.33
Evaluate the following integrals

(i) jxexclx (ii) [xcosxdx (iii) [logxdx  (iv) [sin” xdx
Solution
(i) Let [= [xedx.

Since x is an algebraic function and e* is an exponential function,

so take u = x then du = dx

dv=e'di=>v=e"
Applying Integration by parts, we get

Iudv = uv—_[vdu

= Jxexdx xe* — Ie"dx
That is, Jxe"dx = xe' —e" +c.
(ii) Let /= [xcosxdx

Since x is an algebraic function and cos x is a trigonometric function,

207 Integral Calculus
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so take u = x then du = dx

dv = cosxdx =v=sinx
Applying Integration by parts, we get

judv = uv—Jvdu
:>J.xcosxdx = xsinx—fsinxdx
:>J.xcosxdx = xsinx+cosx+c
(iii) Let /= [logxdx
Take u = log x then du:ldx

dv=dx=>v=x .
Applying Integration by parts, we get

Iudv = uv—J.vdu

xlogx—Jxldx

= Jlogxdx .

= Jlogxdx = xlogx—x+c

(iv) Let [= Jsin"1 x dx
@ u= sin”'(x),dv=dx ®
1
Then du = V=X
1-x°
jsin*1 xdx = xsin™ x—f Y
NI
J.sin_1 xdx = xsin™ x+l‘[£,where t=1-x?
20t

— xsin" x++/t+c

= xsin” x++1-x" +¢
Example 11.34

Evaluate : jtan‘1 (1 2 )dx

— 5
Solution
Let [ = jtan_1 2x2 dx
1-—x
Puttingx = tan@ = dx=S5ec’ 6d6
Therefore, I= jtan_1 ﬂ sec’ 6d6
l1—tan” @

XI - Mathematics 208
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j 20sec’ 0 dO
2[(0)(sec’ 0 d0)

Applying integration by parts

= 2[9tan9—jtan0d9]
2(6tan @ —log |sec ¢9|) +c

2

j tan "' (tan 20) sec> 6 d6

1+x

tand = x

secd =1+ x*

Itan‘l (1 2x

—X

s

11.7.6 Bernoulli’s formula for Integration by Parts

If u and vare functions of x, then the Bernoulli’s rule is

2xtan”' x—2log | V1+x* |+¢

Judv =uv—u'v,+u’v,— -
where u’,u”, u”,... are successive derivatives of u and

V,V,V,,V;, -+ are successive integrals of dv

Bernoulli’s formula is advantageously applied when u = x" ( n is a positive integer)

For the following problems we have to apply the integration by parts two or more times to find the
solution. In this case Bernoulli’s formula helps to find the solution easily.

Example 11.35
Integrate the following with respect to x.
(i) x’e™ (iii) x’e™*
Solution

(ii) x’ cosx

(1) szesxdx.
Applying Bernoulli’s formula
Judv =uv—u'v, +u'v, -

5x

Sx Sx

sze”dx=(x2)(es J—(zx)[‘;_z j+(2)(es3 J—(O)(es
_x265x_2xe5x 265x+c
5 25 125

(ii) Jx3 cos x dx.
Applying Bernoulli’s formula
Jua’v =uv—u'v, +u'v, —-
jx3 cos xdx = (x)(sinx) - (3x* ) (—cos x)
+(6x)(—sinx)—(6)(cosx)+c

= x’ sin x4+ 3x* cos x — 6xsin x —6.¢cos x +c.

209
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®

Sx

4

dv=edx
Sx
e
u=x V=
5
Sx
e
u'=2x v=—
5
Sx
e
”—2 Vz_ -
5
5
e ex
u'=0  vy=—
5
J+O+---+0+c

dv=cosxdx
3 .
u=x, v=sinx
2

u'=3x," v,=—cosx
n .
u =6x, v,=-sinx
u”=6, v,=cosx

Integral Calculus
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(iii) [x'edx.

Applying Bernoulli’s formula dv = e dx
Judvzuv—u'vl+u”v2—--- u=x, v=-e"
3 x ; . N u'=3x% v, =+e"
jx e dxz(x )(—e )—(3x )(e ) e e
+(6x)(—e_x)—(6)(e_x)+c u"=6, v,=e¢”

_ 2 = _ _
=—xe " =3x’e —6xe -6 " +c.

EXERCISE 11.7

Integrate the following with respect to x:

(1) (i) 9xe™ (i) xsin3x (iii) 25xe™ (iv)  xsecxtanx
2) (1) xlogx (i) 27 x’e™ (iii) x?cosx (iv)  x’sinx
xsin™' x . 8x 2x
3 . .. 5 x vee t -1 . PR
3) O ﬁ (i) x’e (i) tan ( T lor ) (iv)  sin (1 . )

11.7.8 Integrals of the form (i) jeﬂxsinbxdx (ii) je‘“cosbxdx

The following examples illustrate that there are some integrals whose integration continues

forever. Whenever we integrate function of the form e® cosbx or e sinbx, we have to apply the
Integration by Parts rule twice to get the similar integral on both sides to solve.
Result 11.1

ax

6)) _[e““" sinbxdx = pEE [asinbx—bcosbx]+c

ax

(i1) Je‘”‘ cosbxdx = ———[acosbx+bsinbx]+c
a +b
Proof : (i)

Let /= Je’”‘ sin bx dx

Take u = sinbx;du = b cosbx dx

dv=e";v= e—,
a
Applying Integration by parts, we get
=5 sinbx—je bcosbx dx
a a

ax

I:

sin bx — éje"x cos bx dx
a a

Take u = cosbx;du =—bsinbx dx,

Again applying integration by parts, we get

ax ax ax
ev . ble e
= sin bx —— cosbx+J

a al a a

bsinbx dx:|

XI - Mathematics 210
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ax ax 2
ev . be b .
[ = smbx———cosbx——zje”" sin bx dx
a a a a
ax 2
ev . b
[ = smbx——ze"x cosbx——2]
a a a

2 2
a a

(1_'_&)[ B ae™ sin bx —be™ cos bx

2

[a2 +b° ]I _ e"[asinbx—bcosbx]
a

Therefore, I = ze s[asinbx—bcosbx]+c
a +b

ax

Therefore, Je“" sinbxdx = 2e >[asinbx—bcosbx]+c
a +b
Similarly, Je‘”‘cosbxdx = 2e s[acosbx+bsinbx]+c
a +b
_[e“sinbxdx = 26' ~[asinbx—bcosbx]+c
a +b
je"" coshxdx =— 4 s[acosbx+bsinbx]+c
a +b o

Caution

In applying integration by parts to specific integrals, the pair of choice for # and dv once initially
assumed should be maintained for the successive integrals on the right hand side. (See the above two
examples). The pair of choice should not be interchanged.

Examples 11.36

Evaluate the following integrals

() [e™cos2xdr  (ii) [e ™ sin3x dx

(i) Je“ cos 2x dx

Using the formula

ax

2e 52 [acosbx+bsinbx]+c
a +

Ie“" cosbxdx =
For a=3and =2, we get

3x
Je“ cos2xdx = (;—22 ](3 cos2x+2sin2x)+c
+

3x
:(613 ](3cos2x+2sin2x)+c.

211 Integral Calculus
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(ii) j ¢ sin3x dx

Using the formula

ax

je“xsinbxdx = __[asinbx—bcosbx]+c
a +b

for a=-5,b=3, we get

—5x
Je‘sx sin3x dx = {(Se)ﬁ](—Ssin3x—3cos3x)+c
—5)" +

—Sx
J.e"sx sin 3x dx —(634 )(55in3x+3cos3x)+c.

EXERCISE 11.8

Integrate the following with respect to x

(1) (i) e coshx (i) e*sinx (iii) e cos2x
(2) (i) esin2x (ii) e* sin2x (ili) e cosx
Result 11.2

[e'Lf G+ £ (0ldx = e f(x)+c
Proof

Let I= j e Lf(x)+ f/(x)]dx

= Je"f(x)dx+ Jexf'(x)dx
Take u= f(x); du= f'(x)dx,in the first integral

Thatis, 1= ¢* f(x)— j e f/(x)dx + j e f(x)dx+c
Therefore, 1= ¢e"f(x)+c.

Examples 11.37
Evaluate the following integrals

: 11 5 : 1-x Y
1 e'| ——— |dx il e’ (sin x + cos x)dx 1il e dx
Ol (x ﬁ) (i) [e'( ) (iii) | L+f)
Solution
: 1 1
(1) Let I= |e (———Zde
X X

Take f{x) = l, then f”(x) _
x x

2

XI - Mathematics 212
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This is of the form j e[ f(x)+ f/(x)]dx

1
Je" (l—%]dx =e —+c.
X X x
(i1) Let /= '[ex (sin x + cos x)dx
Take f(x) = sinx, then f’(x) = cosx

This is of the form [ e*[f(x)+ f"(x)ldx

Je" (sinx+cosx)dx = e'sinx+c.

(111)_[ (1+x )dx

Let/= J.e ﬁdx

(1+x2—2x)
= Jex—zdx
(l+x2)
_J 2 dx
1+x (1+xz)2
, 2
Iff()C) = m, then f (X)=—(1+j:2)2

Using jex (f(x)+f(x))dx=e"f(x)+c

X 2x o 1
Jle (1+x ) b= @ (1+x7) (1+x2)2 e (1+x2)+c'

EXERCISE 11.9

Integrate the following with respect to x:

(1) e*(tanx+logsecx) (2) e"();_zl) (3) e secx(l+tanx)
X
2+sin2x 1+x+x° log x
4 X 5 tan~' x 6
) e (1+cos2x) ) e ( 1+ x7 J ©) (1+logx)’

11.7.9 Integration of Rational Algebraic Functions
In this section we are going to discuss how to integrate the rational algebraic functions whose
numerator and denominator contains some positive integral powers of x with constant coefficients.

213 Integral Calculus
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_[ dx
(x—a)(x+a)

N I
2a'| x—a x+a

214

Resolving into

partial fractions

Type I
Integrals of the formj zdx = J 2dx = f d , j d
a tx X —a a’+x’ x'—a’
. dx 1 a+x
1 = —1Ilo +c
@ Jaz—xz 2a ga—x
.. dx 1 xX—a
il = —1Ilo +c
) sz—az 2a gx+a
dx 1 i (x
111 =—tan | — |+c¢
(i) Iaz+x2 a (a)
(iv) jL — sin”! (£)+c
a’—x a
(V) J 2dx = = log‘x+\/x2—a2 +c
X —a
(vi) I% = log‘x+\/x2+a2 +c
X +a
Proof
. dx
@ (1) Let /= J.az_xz ®
_J' dx
(a—x)(a+x)
Resolving into
A e lving i
2a’|a+x a-—x partial fractions
1
= 2—[10g|a+x|—10g|a—x|:|+c
a
1 a+x
= —Ilog +c
2a a—x
dx 1 a+x
_[ ;7 = —log +c
a —x 2a a—x =
.. dx
(11) Let /= J‘xz—az'

10-08-2018 18:41:58‘ ‘
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= i[log|x—a|—log|x+a|]+c

1 xX—a
= —log +c
2a x+a
d _
Therefore J > al - = Llog i
X" —a 2a x+a -
dx
Let /= :
(111) e J.a2+x2
Putting x= atanf =0 = tan™' X
a
dx= asec’ 6@
asec’ @ asec’ 6 asec’ 6 1
[= [0 46= 46 = J0=L 140
J.a2 +a’tan” @ J‘az(l+tan2 0) J.a2 sec’ @ aJ.
= l6’+c:ltanl(£)+c
a a a
d
Therefore, I% = ltan‘1 (£)+c
a +x a a m
dx
v Let /= | —
(iv) J‘ /az_xz
Putting x = asin@ = @ =sin"' (i)
a
dx= acosé@
I:J' acos@ dé?:J. acos@ d@zjacosedH:J.dﬁ
\/a2 —a’sin’ @ \/az(l —sin’ 0) acos@

o x
= @+c=sin 1(—)+c
a

Therefore,

2
X —da

. L x
Putting x = asecd = @ =sec”'| —
a

dx= asec@tan 0d6

7o J asec@tan @ dt9=j asec@tan @ dH:JasecetanedQ:fsecedH
Va’sec’ §—a’ Ja’(sec’ 6-1) atan &
= log|secO+tanf |+c
215 Integral Calculus
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dx
Therefore, J‘W = log

(vi)

Letl:j

= log
a

= log

X
—+
= log|x+
x+
x+

VX' -a’
a
/xz _dl-

VXt —at |+

dx
Ja* +x°

Putting x = g tand = @ =tan"' (1)

a

dx = asec’ 0d0

dx
1=

Remark: Remember the following useful substitution of the given integral as a functions of
a’—x*,a’ +x* and x* —a’.

XI - Mathematics
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+c

loga+c

x* —a’|+c, where ¢, =c—loga

G

2 2
J- asec” 0 dH:J asec” 0
\/a2 tan’ @+a’ \/az(tan20+l)
2
jmdezjsecede
asecO

log |secO +tan0 | +c

log L

a
log

X+
log|x +
X+

log

2

X
— +lj+c

a

Vx*+a’|-loga+c

X
secld =—

X
tan @ =

—a

X

—a

deo

x*+a’|+c, where ¢, =c—loga

VXt +a’ |+

2

Given Substitution
a —x’ X =a sind
a’+x’ X =a tan®
5 X =a secH

216
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Examples 11.38

Evaluate the following integrals

1 x’ 1 1
(1) |————dx (i) | 57— dx (i) | ——=dx (V) |———=dx
j(x—2)2+1 Jx2+5 J.\/1+4x2 J.\/4x2—25
Solution
1
i Let /= —dx =|———dx
® J‘(x 2)* +1 J‘(x—2)2+12

Putting x — 2 =¢t = dx=dt

Thus, [ = f dt—tan '@ +c=tan"'(x=2)+c
.. X’
(i) Let = Jx2+5 dx
x 45— 5 5
— 1- d d d
s (1 s e e[
= x—SJ ! > dx
x2+(\/§)
1 s
= x—5—tan" | — [+¢
5 ﬁ)
M= = \/_tan
[ﬁ]
(iii) Let [ = J;dx: j 1 &
V1+4x? J1+(2x)°
Putting 2x = t = 2dx=dt = dx= %dt
Thus, / = lj L
NI +1°
1= %log‘t+\/z‘2+1‘+c=%log‘2x+\/(2x)2+1‘+c
= %log 2x+\/4x2+1‘+c
(iv) Let [ = j;dﬁj;dx
Vax* =25 J(2x)* =25

Putting 2x = t=2dx=dt = dx= %dt

217
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Thus, 7 = lj L &
2

= %log‘t+\/t2—52

+c

- %log 2x+/4x —25‘+c
Type 11
dx dx
Integrals of the form and
¢ Jax2+bx+c J\/ax2+bx+c

First we express ax’ +bx+c as sum or difference of two square terms that is, any one of the
forms to Type 1. The following rule is used to express the expression ax’+bx+c as a sum or
difference of two square terms.

(1) Make the coefficient of x” as unity.

(2) Completing the square by adding and subtracting the square of half of the coefficient of x.

) [ b c
Thatis, ax’ +bx+c =a|x*+—x+—
a a

—[ b T 4ac—b2:|
=allx+— | + >
2a 4a o

Examples 11.39
Evaluate the following integrals

1 1 1
() [———dx (i) [ dx (ifi) [ dx
Ix2—2x+5 I\/x2+12x+11 J\/12+4x—x2
Solution
1 1
- I S d
@ Jx2_2x+5dx_Ix2—2(l)x+(l)2+4 y

1

— [———

(x=-1)"+2

J.Z;dx = ltan_1 x_—l +c
x =2x+5 2 2
1 1
(ii) — i = |——dx

J\/x2 +12x+11 J.\/(x+6)2 -25

- I;dx
Jx+6)? =5
= log|x+6++/(x+6)> =5 |+c

XI - Mathematics 218
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Therefore, _[ dx = log|x+6++x*+12x+11|+c
Vxi+12x+11

(iii) j;dx = | ! dx
VI2+4x—x* J12—(x* —4x)

=J ! dx
\/12—{(x—2)2 —4}
I,
& = (x-2)

=sin™ [M )+ G
4

EXERCISE 11.10

Find the integrals of the following :

. 1 .. 1
(07 T ) o
@) () ——— (i) ————— I p——
6x—7—x" (x+1)> =25 it +4x+2
@ 3 1 ) 1 1 @
&0 J2+x) -1 i VX' —4x+5 (i V9 +8x—x
Type 111

Integrals of the form J& dx and j Pty

ax”+bx+c Vax® +bx+c

To evaluate the above integrals, first we write
px+q = Adi(ax2 +bx+c)+B
X

px+q = AQQax+b)+B
Calculate the values of 4 and B, by equating the coefficients of like powers of x on both sides
(1) The given first integral can be written as

_[ px+gq dr IA(2ax+b)+Bd
ax’ +bx+c ax” +bx+c
] AR | e —
ax” +bx+c ax” +bx+c
(The first integral is of the form J&dx)
= Alog|ax’ +bx+c|+BJ.—dx
ax”+bx+c

The second term on the right hand side can be evaluated using the previous types.

219 Integral Calculus
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(i) The given second integral can be written as

J- px+gq Iy = JA(2ax+b)+Bd

Nax’ +bx+c Nax’ +bx+c

_ AJ- 2ax+b

Nax? +bx+c

(The first integral is of the form I F(XOLf(x)]" dx)

dx+BJ

1
—dx
Nax? +bx+c

= A(2 ax’ +bx+c)+B_[

N S
Nax® +bx+c¢

The second term on the right hand side can be evaluated using the previous types.

Examples 11.40
Evaluate the following integrals

3x+5 2x+3 S5x—=17
) |
9 [t Ol @ e
Solution
. 3x+5
® Lot 1= J o e ™

3x+5=4 —(x2+4x+7)+B
dx

3x+5= A2x+4)+B
Comparing the coefficients of like terms, we get

24=3=4= %;4A+B:5:>B:—l

E(2x+4)—1
- [
X +4x+7
3 2x+4
I= = - d.
-[x2+4x+7 g Ix2+4x+7 gy
- zlog|x2+4x+7|—J‘ ! —dx
2 (x+2)°+(+3)
3 5 1 af x+2
= —log|x" +4x+7|———=tan +c
>t -7 (ﬁ)
. x+1
Let I= | —
@) © J.)c2—3>‘x+1 g

x+1= Ai(x2 —-3x+1)+B
dx
XI - Mathematics 220
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x+1= A2x-3)+B
Comparing the coefficients of like terms, we get

24=1= A:%;—3A+B:1:>B:§

l(2x—3)+é
- [2— 2 > 2 ix
x =3x+1
2x-3
= — =
-[ 3x+1 J 3x+1
= llog|xZ—3>x+1|+§J ! > dx
2 203y (5
I
]
1 5 1 Ty 9
= —log|x* =3x+1{+= lo A
~ log| |+ [\B] g 7
2] — B——=dp=—=
2 2 2
= llog|x2—3x+1|+£l g2x 37 f
2 2
(iif) Let - jﬂdx
VX' +x+1

2x+3 = Ai(x2+x+1)+B
dx

2x+3=A2x+1)+B
Comparing the coefficients of like terms, we get
24=2=>A4A=1, A+B=3 = B=2

I J(2x+l)+2

N+ x+1

2x+1 1

[= | —— —dx+ 2| ———dx

'[\/x2+x+l '[\/x2+x+1
= 2 x2+x+1+2J. ! - dx
2
0
2 2
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2 2|
= 2,ﬁ+x+l+2ng+%+d{x+%)+{%§J +c

Therefore, /= 2+/x>+x+1+2log x+%+\/x2 +x+1

. Sx—=7 d
L '[\/SJc—x2 -2 )

+c

5x—7 = Ai(sx—x2—2)+3
dx

5x — 7= A(B3-2x)+B
Comparing the coefficients of like terms, we get

—24 = 5:>A:—§;3A+B:—7:>B:l

I P

2 2
e dx
J \/3x—x2 +2

I— _E"-idx+l‘[;dx
27 \3x—x"+2 27 \3x—x"+2

_ (—%)2\/3x—x2+2 +%j !

3
x_i
= —5y3x—x*+2 +lsin"1 2 +c
2 J17
2

Thus, 7= -5 Z’*))c—x2+2+%sin_l(2x_3

EXERCISE 11.11

Integrate the following with respect to x :

2x-3 5x—-2 3x+1
: . ..
O S ) e (i) S 3
2x+1 . x+2 2x+3
2) ) — (i1) (i) ———
V9 +4dx— x> x* =1 X2 +4x+1
XI - Mathematics 222
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Type IV

Integrals of the form J\/az +x° abc,j\/x2 —a’dx

Result 11.3

(1) j\/a -X dx—gxla -X +a7s1n ( )+c

2
(2) I\/xz—azd =§\/x2—a2 —%log‘x+\/x2—a2 +c
3) I\/x +a’d ——\/x +a’ +710g

x+\/x +a’

+c

J\/a2 —x’dx

-2x
Va® —x* then du =——=—dx
2Va? = x?

dc=v=x

Applying Integration by parts, we get

Proof :
(1) Let /=
Take u=
dv=
Judv =
= /=

2=

Therefore, =

uv—Jva’u

[

i _Ja -x'—a’ ®

x\/az—xz—J a’ + (_aZ) dx
\/az—x2 \/(12—)c2

xm—J a’—x dx+j ,—

1
J [ 2 dx
xNa'=x* +a’sin™ (i)
a

2
X a .o X
E\/Clz —X2 +7$1H 1(—)4‘6’

2 2 2
xNa ' —x" —I+a

a

Similarly we can prove other two results.

Note 11.3

=
The above problems can also be solved by substituting x = asinf
Examples 11.41
Evaluate the following :
(i) [V4-x’dx (i) [V25x°=9dr (ii) [Vx' +x+ldx (i) [NG=3)GE-x)dx
223 Integral Calculus
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Solution

(1) Let /= ~4—x"dx
J\/22 —x*dx

2
= §\/22 -x’ +275in‘1 (§)+c

Therefore, /

X 4—x2+2sinl(£)+c
2 2
J.\/25x2—9dx

= J.«/(Sx)2—32dx

[ 2
; 57)6 (5x)* =3 —3?log‘5)c+«/(5x)2 —32 ]+c
Therefore, [ = % 57)6\/25)62 =9 —%log 5x++/25x° —9‘:|+c

(iii) Let I = [yx*+x+1dx

= J\/(x+%)2+(§]zdx
1 - [2) 2
- x—;2\/(x+%j2+(§ +2Tlog x+%+\/(x+%)2+(§J +c

herefore, /= 2x4+1 x2+x+l+§10g x+%+\/x2+x+l

(i) Let /

+c

(iv) Let I= [J(x=3)5-x) dx
J‘\/Sx—x2 —15 dx

j 1> —(x—4)dx

- x—4 1> —(x—4) +lsin_1 (x—_4)+c
2 2 1

Therefore, I= x;4 8x—x2—15+%sin_1(x—4)+c

XI - Mathematics 224
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EXERCISE 11.12

Integrate the following functions with respect to x :

() () Vx*+2x+10 () x'-2x-3  (iil) [(6—-x)(x—4)

) () J9-(2x+5) (i) JB1+Qx+1’ (i) f(x+1) -4

EXERCISE 11.13

Choose the correct or the most suitable answer from given four alternatives.

(1) If j F(x)dx = g(x)+c, then | f(x)g’(x)dx

(1) J(f(x)) dx Q) Jf(0gx)dx (3) [ f/(x)g(x)dx (4) J(g(x))dx
) If ji—zdx =k (3%)+c, then the value of k is
1 1
(1) log 3 (2) —log3 3) g3 4) log3
3) If j Fi(x)e  de=(x—1)e" +c, then f{x) is

2 3

2 3
(1) 2x3—%+x+c (2)%+3x2+4x+c (B) X +4x> +6x+¢ (&) ———x>+x+c

2
(4) The gradient (slope) of a curve at any point (x, ) is al > 4 . If the curve passes through the
point (2, 7), then the equation of the curve is *

(1) y=x+i+3 2) y:x+i+4 (3) y=x"+3x+4 (4) y=x"-3x+6
x x
e'(I+x
(5) J#

cos’(xe")
(1) cot(xe®)+c
\tan
© J

x .
- dx is
sin 2x

dx is

(2) sec(xe)+c  (3) tan(xe*)+c (4) cos(xe’)+c

(1) Vtanx +c¢ (2) 2Vtanx+c¢  (3) %\/tanx +c 4) %\/tanx +c
(7) jsirﬁ xdx is
(D) _—3cosx—COS3x+c (2) icosx+COS3x+c
4 12 4
cos3x

=3
3) —cosx+
3) 2

@) ?sinx—sm3x+c

6logx _Slogx

e .
(8) _[ 4logx 3logx dx 18
e —e

3
(1) x+c Q) +c 3) %+c 4) —+c
3 X X
225 Integral Calculus
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S€C X

©) J A cos2x

dx 1s

(1) tan"'(sinx)+c¢  (2) 2sin”'(tanx)+c (3) tan"'(cosx)+c (4) sin”'(tanx)+c

(10) jtam‘l ,/ﬂ dx is
1+cos2x

2 2
(1) X’ +c 2) 2% +c¢ 3) %+c () —%+c
(11) J23”5dx is
(1) 3(23x+5)+c (2) 23x+5 e (3) 3x+5 e (4) 23x+5 e
log2 2log(3x+5) 2log3 3log?2
sin® x —cos® x
12 dx 1is
(12) J‘1 2sin” xcos® x
1 . 1 . 1 1
(1) =sin2x+c (2) —=sin2x+c (3) —cos2x+c (4) ——cos2x+c
2 2 2 2
X 2 -1 -1
(13) J‘e (x” tan ic+tan x+1) dr i
x +1
-1 2
1) e tan' (x+1)+c (2) tan"'(e)+c (3 exM+ 4) e“tan”' x+c¢
2

+ .
(14) Jx cos” xcoseczxa’x is

(1) cotx+sin™' x+c¢

(3) —tanx+cot x+c¢
(15) sz cosx dx is

(1) x*sinx+2xcosx—2sinx+c

(3) —x*sinx+2xcosx+2sinx+c

I-x
16 ,/—dx is
( )J I+x
(1) VI=x* +sin”' x+c¢

3) log|x+\/1—x2 |—\/1—x2 +c

(1) log|e*|-log|e" —1|+c
(3) log|e —1|-log|e" | +c

XI - Mathematics

(2) —cotx+tan" x+c¢

(4) —cotx—tan"' x+c¢

(2) x*sinx—2xcosx—2sinx+c

(4) —x*sinx—2xcosx+2sinx+c

(2) sin” x=+1-x% +c
4) V1-x" +log|x+~+1-x [ +¢

(2) log|e" |+log|e" —1|+c
(4) logle* +1|—log|e" |+c

226
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(18) J‘em cos x dx is

e—4x

17

o

17
2

sec” x

(19) [—5——dx

tan® x—1

(1

[4cosx—sinx]+c

4x

)

[4cosx+sinx]+c

(1) 2log 1—tan x

+c

1+tan x

1

tan x+1
(3) ylog

+c

tan x —1

(20) J‘e*” sinS5x dx s

7x

e’ .
1 —7sinS5x—5cos5x]+c¢
(1) 4 [ ]
ef7x
3) ” [7sin5x—5cos5x]+c¢

(21) J‘xzeadx is

(1) x*e* —4xe? —8e? +¢

X X

(3) 2x%e? —8xe? +16e? +¢
x+2
(22)
J‘\/xz—l
(1) Vx* =1-2log | x+~/x* =1 |+c
(3) 2log|x++x*—1|—sin" x+c¢

1 .
(23) J’mdx is

(1) log | x+/x* =5 | +¢

(3) loglog x++/(logx)* =5 | +¢
(24) [sin</xdx is

(1) 2(—\/;c0s\/;+sin\/;)+c

3) 2(—x/;sin\/;—005\/;)+c
(25) [earis

(1) 2x(1-e")+c

(3) 27 (1=x)+c

dx 1s

e4x

17
o
17 [

2)

[-4cosx+sinx]+c

4x

—4cosx—sinx]+c

(4)

1+tan x

(2) log +c

1-tanx

tan x —1
+

1
4) —lo
“) 2 8 tanx +1

e7x

74
-
74

2)

[7sin5x+5cosS5x]+c

Tx

4

[-7sin5x+5cos5x]+c¢

(2) 2x%e? —8xe? —16e2 +¢

Y e e
gy 2O _xel e
@ 2 4 8

(2) sin” x—2log|x+~/x*—1|+c
(4) Vx* —1+2log| x+Vx* —1|+c

) log|logx++/logx—5|+c
(4) log| log x—+/(log x)* =5 | +c

(2) 2(—\/;cos\/;—sin\/;)+c
(4) 2(—x/;sin x+cos«/;)+c

2) 2Jx (" = +c
4) 27 (x=1)+c
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SUMMARY

Derivatives Antiderivatives

d
—(c)=0, where c is a constant .
dx( ) J.de =c, where ¢ is a constant

i(kx) =k, where k is a constant Ikdx =kx+c where c¢ is a constant
dx

d an . xn+1
- =X n _ _
del ne1 _[x dx—n+1+c, n#—-1 (Power rule)
d 1 1
—logx=| — — dx=log|x|+c
dx e (x) jx g||
d . .
d—(—cosx)zsmx J‘smxdxz—cosx+c
X
d , . .
d—(smx):cosx Jcosxdx=smx+c
X
i(tan x) =sec’x Jsecz xdx=tanx+c

@ dx @
d 2 2
d—(—cotx) =cosec’x J.cosec xdx=—cotx+c
X
d—(secx):secxtanx Jsecxtanxdx=secx+c
X
d
d—(—cosec Xx) = cosec x cot x Jcosecxcot xdx =—cosecx+c
X
di(ex)zex Iexdxzex+c
X
d * £
S (L R Ja"dxz ? _ic
dx| loga loga
i(sin_lx)z ! I L i
dx 1-x° 1-x°
d, 1 .
—(tan™" x| = dx=tan  x+c
dx( ) 1+ x* J.1+x2
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(1) If £ is any constant, then fkf(x)dx = kjf(x) dx
@ [(i@E L)) dx = [ fix)dxt [ f(x)dx

If [f(x)dc= g(x)+c, then jf(ax+b)abc=l g(ax+b)+c
a

(1) [tanx dx = log|secx|+c

(2) [cot x dx — 10g|sinx|+c

(3) jcosecx dx —log|cosecx—cotx|+c
(4) [secx dx = log|secx+tanx|+c

Bernoulli’s formula for integration by Parts:

If u and v are functions of x, then the Bernoulli’s rule is

judv =uv—u'v, +u'v, +...

where u’, u”, u”,...are successive derivatives of u and

V, V|, V,, V,,..., are successive integrals of dv

j ™ sin bxdx =

ax

———lasinbx—bcosbx]+c

2

a +b

J.e‘”‘ cosbxdx =

a

ax

2

[acosbx+bsinbx]+c
+b

J.L:sin"1 (fj +c
\/a2 —x* a

dx 1 . (x
.f 3 s=—tan | —|+c¢
a+x a a

dx [2 2
I—XZ_a2 — log‘x+ X —a

Fe

j—%:log‘x+\/x2 +a’

+c

2
I\/az —xzalx=%\/a2 -x’ +%sinl(x]+c

a

2
J\/xz —azc:’)c:gxlx2 —a —%log‘x+\/x2 —-a

+c

j\/x2 +a2dx=§\/x2 +a° +%log‘x+\/x2 +a’

2
+c
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ICT CORNER 11(a)
Integral Calculus

Expected Outcome

Step 1
Open the Browser type the URL Link given below (or) Scan the QR Code.
GeoGebra Workbook called “XI standard Integration” will appear. In that
there are several worksheets related to your lesson.

Step 2
Select the work sheet “Simple Integration”. You can enter any function in
the f(x)box. Graph of f{x) appear on left side and the Integrated function will

appear on right side. (Note: for x° enter **5) Move the slider “integration
constant” to change the constant value in integration.

V|
X1 standard Integration //’ ! | fix =1.'2x'+3?:+c : | ey
P 3 _ {EELH i
e T L
"""" i e
Stepl Step2
Browse in the link:
XI standard Integration: https://ggbm.at/c63hdegc
BlB2_11_HﬁT_EI"1. -
XI - Mathematics 230
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ICT CORNER 11(b)

Integral Calculus

/‘;

e

oTalts

Qm“ =
all B

Expected Outcome

€13 }
—_—

@ frimen s s1s

1

e T

Step 1

Open the Browser type the URL Link given below (or) Scan the QR Code.
GeoGebra Workbook called “XI standard Integration” will appear. In that

there are several worksheets related to your lesson.
Step 2

Select the work sheet “Algebraic type-17. The graph of the function given on

left side and the Integration of the function appear on right side. Click on both ®

to see the graph. You can move the slider “a” to change the value. Algebraic
types are grouped as 4 types open other three Algebraic types and observe.

usthor: Do s

'q',, r : - Algebraic formula type-1

aah
—

= 1 :
Mt = =13

1 T
| f](t)h=}rmdzf:=i'rln s

| = [ - N NN YO T PEEL o

Browse in the link:
XI standard Integration: https://ggbm.at/c63hdegc

Step2

231
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Introduction to
Chapter Probability Theory

The most important questions of life are, indeed, for the most part,
really only problems of probability
Pierre - Simon Laplace

~ANr
BEDV2

12.1 Introduction

A gambler’s dispute in 1654 led to the creation of a mathematical
theory of probability by two famous French mathematicians, Blaise
Pascal and Pierre de Fermat. The fundamental principles of probability
theory were formulated by Pascal and Fermat for the first time. After an
extensive research, Laplace published his monumental work in 1812,
and laid the foundation to Probability theory. In statistics, the Bayesian
interpretation of probability was developed mainly by Laplace.

The topic of probability is seen in many facets of the modern world.

From its origin as a method of studying games, probability has involved

in a powerful and widely applicable branch of mathematics. The uses of ®
probability range from the determination of life insurance premium, to the

prediction of election outcomes, the description of the behaviour of molecules in a gas. Its utility is

one good reason why the study of probability has found in the way into a school textbook.

The interpretation of the word ‘probability’ involves synonyms such as chance, possible, probably,

likely, odds, uncertainty, prevalence, risk, expectancy etc.

@ Laplace
1749-1827

Our entire world is filled with uncertainty. We make decisions affected by uncertainty virtually
every day. In order to measure uncertainty, we turn to a branch of mathematics called theory of
probability. Probability is a measure of the likeliness that an event will occur.

@ Learning Objectives

On completion of this chapter, the students are expected to

understand the classical theory of probability and axiomatic approach to probability.
¢ understand mutually exclusive, mutually inclusive and exhaustive events.

¢ understand the concepts of conditional probability and independent events.

e apply Bayes’ theorem.

e apply probability theory in day-to-day life.

12.2 Basic definitions

Before we study the theory of probability, let us recollect the definition of certain terms already
studied in earlier classes, which are frequently used.

XI - Mathematics 232
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EXPERIMENT

Deterministic Experiment Random Experiment

(Genetic determination) (Hitting the target)
Definition 12.1 h
N An experiment is defined as a process for which its result is well defined. D
(Definition 12.2 )

Deterministic experiment is an experiment whose outcomes can be predicted with certain,
\under ideal conditions. )
(Definition 12.3 h

A random experiment (or non-deterministic) is an experiment
(i) whose all possible outcomes are known in advance,
(i1)) whose each outcome is not possible to predict in advance, and
\_(ii1) can be repeated under identical conditions. J
A die is ‘rolled’, a fair coin is ‘tossed’ are examples for random experiments.
(Definition 12.4 h

A simple event (or elementary event or sample point) is the most basic possible outcome of
2 random experiment and it cannot be decomposed further. )
(Definition 12.5 h

A sample space is the set of all possible outcomes of a random experiment. Each point in
\sample space is an elementary event. )

Illustration 12.1
(1) (i) Ifadieis rolled, then the sample space S ={l, 2, 3, 4, 5, 6}

(i1)) A coin is tossed, then the sample space S = {H , T }
(2) (1) Suppose we toss a coin until a head is obtained. One cannot say in advance how many
tosses will be required, and so the sample space.
S={H,TH, TTH,TTTH,...} is an infinite set.
(i) The sample space associated with the number of passengers waiting to buy train tickets
in counters is $={0,1,2,...} .
(3) (1) If the experiment consists of choosing a number randomly between 0 and 1, then the
sample space is S = { x: 0<x <1}.

(i) The sample space for the life length (¢ in hours) of a tube light is
S={t0<1<1000}.
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From (2) and (3), one need to distinguish between two types of infinite sets, where one type is
significantly ‘larger’ than the other. In particular, S in (2) is called countably infinite, while the S in
(3) is called uncountably infinite. The fact that one can list the elements of a countably infinite set
means that the set can be put in one-to-one correspondence with natural numbers N . On the other
hand, you cannot list the elements in uncountable set.

From the above example, one can understand that the sample space may consist of countable or
uncountable number of elementary events.

Number of sample points
or elementary events in a sample space

Countable number of Uncountable number of sample points
sample points S={x:0<x<1}
Finite number of sample points Countably Infinite number of sample points
§={1,2,3,4,5,6} S={H,TH,TTH,TTTH,...}

12.3 Finite sample space

In this section we restrict our sample spaces that have at most a finite number of points.

Types of events

® Let us now define some of the important types of events, which are used frequently in this ®
chapter.
e Sure event or certain event e Impossible event
e Complementary event e Mutually exclusive events
e Mutually inclusive event e Exhaustive events
e Equally likely events ¢ Independent events (defined after learning the concepts of

probability)

(Definition 12.6 )

When the sample space is finite, any subset of the sample space is an event. That is, all

elements of the power set Z2(.S)of the sample space are defined as events. An event is a collection
of sample points or elementary events.

The sample space S is called sure event or certain event. The null set in S is called an

\_impossible event. )

(Definition 12.7 h
For every event A, there corresponds another event A is called the complementary event to

\_A. It is also called the event ‘not A’. )

Illustration 12.2
Suppose a sample space S is given by S = {1,2,3,4}.

Let the set of all possible subsets of S (the power set of S) be 2(S).
P(S) =12, {1}, {2}, 3}, (4}, {1,2}, {1, 3}, {1, 4}, (2,3}, {2, 4}, (3.4},
{1,2,3}, {1,2,4}, {1, 3,4}, {2,3,4}, {1, 2, 3, 4}}
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(i) All the elements of £2(S) are events.

(1)) Jis an impossible event.
(1i1) {1},{2},{3},{4} are the simple events or elementary events.
(iv) {1, 2,3, 4}is asure event or certain event.

(Definition 12.8 A

Two events cannot occur simultaneously are mutually exclusive events. A4, 4,, 4, ,..., 4, are
\ mutually exclusive or disjoint events means that, 4 N4, =0, for i # /. y
(Definition 12.9 A
Two events are mutually inclusive when they can both occur simultaneously.
A, A4,, 4;,..., 4, are mutually inclusive means that, 4 "4, #O, for i # j
N\ L J

[llustration 12.3
When we roll a die, the sample space S = {1,2,3,4,5,6}.
(1) Since{l,3}n{2,4,5,6}=3, the events {1,3}and{2, 4,5,6}are mutually exclusive events.
(i1)) The events {1,6,},{2,3,5} are mutually exclusive.
(iii) The events {2,3,5},{5,6} are mutually inclusive, since {2, 3, 5} N {5, 6}={5} =D

(Definition 12.10 A

\ A, 4,, A,,..., A, are called exhaustive events if, 4 U4, U4 U---U4 =S )

(Definition 12.11 )
A, A4,, 4;,..., 4, are called mutually exclusive and exhaustive events if,

9 DA NnA, =D, forizj (i) 4udVd U4 =S )

Illustration 12.4
When a die is rolled, sample space S = {1,2,3,4,5,6}.
Some of the events are {2,3},{1,3,5},{4,6},{6} and{1,5}.

(i) Since {2,3}U{l,3,5}U{4,6} ={1,2,3,4,5,6} =S (sample space), the events
{2,3},{1,3,5},{4,6} are exhaustive events.

(i) Similarly {2,3},{4,6}and{1,5} are also exhaustive events.
(111) {1,3,5},{4,6},{6} and{1,5} are not exhaustive events.

(Since {1, 3,5}u{4,6}U{6}U{l,5}#S)
(iv) {2,3},{4,6},and{1,5} are mutually exclusive and exhaustive events, since
{2,3}n{4,6} =, {2,3} n{,5} =F,{4,6} n{,5} =D and {2,3}uU {4,6}uU {1,5}=S

Types of events associated with sample space are easy to visualize in terms of Venn diagrams,
as illbystrated below.

S S S
A B A B
OO0 | @) |~ A
B B
A and B are A and B are A and B are A and B are
Mutually exclusive Mutually inclusive Mutually exclusive Mutually inclusive
and exhaustive and exhaustive
Definition 12.12
The events having the same chance of occurrences are called equally likely events.
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Example for equally likely events: Suppose a fair die is rolled.

Number on the face 1
Chance of occurrence 1

2
1

[,
w

Example for not equally likely events: A colour die is shown in figure is rolled.

Colour on the face

Chance of occurrence

1

1 I 2 1

Similarly, suppose if we toss a coin, the events of getting a head or a tail are equally likely.

Methods to find sample space

Illustration 12.5

Two coins are tossed, the sample space is

(1) S={H,T}x{H,T}={(H,H),(H,T),(T,H),(T,T)} or {HH,HT,TH,TT}
(i1) Ifa coin is tossed and a die is rolled simultaneously, then the sample space is

S={H,T}x{,2,3,4,5,6) = {HI,H2,H3,H4, H5 H6,T1,T2,T3,T4,T5,T6} or
S={(H,1,(H,2),(H,3),(H,4),(H,5),(H,6),(T,1),(T,2),(T,3),(T,4),(T,5),(T,6)}.

Also one can interchange the order of outcomes of coin and die. The following table gives the
sample spaces for some random experiments.

Tossing a fair coin

playing cards

2'=2 (H, T}

Tossing two coins 22 -4 (HH, HT, TH, TT}
Tossing three coins | 23 _g (HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
Rolling fair die 6 =6 {1, 2,3, 4, 5,6}

{(1,1),(1,2), (1,3), (1,4), (1,5), (1,6),
it (2,1),(2,.2),(2,3), (2,4), (2,5), (2,6),
Two dice 6 36 (3,1),3,2), (3,3), (3.4), (3,5), (3,6),

or =

4,1), (4,2), (4,3), (4,4), (4,5), (4,6
Y g s— (4.1), (4,2), (4.3), (4,4), (4.5), (4,6),

(5,1), (5,2), (5,3), (5:4), (5,5), (5,6),

(6,1), (6.2),(6,3), (6,4), (6,5), (6,6)}
Drawing a card Heart YA23456789101J QK Redincolour
from a pack of 52 571 =59 Diamond ¢ A2 3456 7 8 9 10 JQ K Red in colour

Spade 4 A23456789 10JQ K Black in colour

Club ® A234567 89 10JQ K Black in colour
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Notations

Let A and B be two events.

(1) Awu B stands for the occurrence of 4 or B or both. Priori : Knowledge which

precedes from theoretical
deduction or making
assumption. Not from
experience or observation

(1) AN B stands for the simultaneous occurrence of
A and B. AN B can also be written as 4B

(111) A or A or A° stands for non-occurrence of A

(iv) (AN B)stands for the occurrence of only A.

12.4 Probability
12.4.1 Classical definition (A priori) of probability

(Bernoulli’s principle of equally likely) / Posterior -
Earlier classes we have studied the frequency (A posteriori) 1 Knowledge which

definition of probability and the problems were solved. Now precedes from
let us learn the fundamentals of the axiomatic approach to experience or

o observation.
probability theory.

The basic assumption of underlying the classical theory is that the outcomes of a random
experiment are equally likely. If there are n exhaustive, mutually exclusive and equally likely
outcomes of an experiment and m of them are favorable to an event 4, then the mathematical

probability of 4 is defined as the ratio~ . In other words, P(4)= n

n n
(Definition 12.13 h
Let S be the sample space associated with a random experiment and A be an event. Let n(S)

and n(A) be the number of elements of S and A respectively. Then the probability of the event A
is defined as

n(A) _ Number of cases favourable to 4

P(4) = = : :
\ n(S)  Exhaustive number of cases in § J

Every probabilistic model involves an underlying process is shown in the following figure.

= 2| Py PO
e o o , £ PB)
e o E entA R 2
Random 'o o o V,. é’ IR .§
experiment (" 5 I £
) O o

e e o ~ Q @)

~ E § %

Sample space S Collection of subsets 2 A =

The classical definition of probability is limited in its application only to situations where there are
a finite number of possible outcomes. It mainly considered discrete events and its methods were mainly
combinatorial. This renders it inapplicable to some important random experiments, such as ‘tossing a coin
until a head appears’ which give rise to the possibility of infinite set of outcomes. Another limitation of the
classical definition was the condition that each possible outcome is ‘equally likely’.
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These types of limitations in the classical definition of probability led to the evolution of the
modern definition of probability which is based on the concept of sets. It is known an axiomatic
approach.

The foundations of the Modern Probability theory were laid by Andrey
Nikolayevich Kolmogorov, a Russian mathematician who combined the notion
of sample space introduced by Richard von Mises, and measure theory and
presented his axiomatic system for probability theory in 1933. We introduce the
axiomatic approach proposed by A.N. Kolmogorov. Based on this, it is possible to
construct a logically perfect structure of the modern theory of probability theory.
The classical theory of probability is a particular case of axiomatic probability.
The axioms are a set of rules, which can be used to prove theorems of probability. , . Kolmogorov

12.4.2 Axiomatic approach to Probability

Axioms of probability )
Let S be a finite sample space, let Z2(S) be the class of events, and let P be a real valued

function defined on Z2(§) Then P(A)is called probability function of the event 4, when the
following axioms are hold:

[P,] Foranyevent 4, P(A4)=0 (Non-negativity axiom)
[P,] For any two mutually exclusive events
P(Au B) = P(A) + P(B) (Additivity axiom)
\ [P,] For the certain event P(S) =1 (Normalization axiom) J
® Note 12.1 ®
(i) 0<P(A)<I1
(i) If 4,,4,,4,,..., A, are mutually exclusive events in a sample space S, then
P(A VA VAU UA)=P(A4)+P(4,)+P(4)+-+P(4)

Theorems on finite probability spaces (without proof)

When the outcomes are equally likely Theorem 12.1 is applicable, else Theorem 12.2 is applicable.
Theorem 12.1

Let Sbeasample space and, for any subset A of S, let P(A4) = Lj:)
of probability [P, ],[P,], and [P,]. n(S)
Theorem12.2

Let S be a finite sample space say S ={q,,a,,a;,...,a,}. A finite probability space is obtained

. Then P(A) satisfies axioms

by assigning to each point @, in S areal number p,, is called the probability of a,, satistying the
following properties:
(i) Each p,20. (ii) The sum of the p; is 1, that is, sz- =p +p,tp,+---+p =1.

If the probability P(A), of an event [P is defined as the sum of the probabilities of the points in 4,

then the function P(A) satisfies the axioms of probability [P,],[P,], and [P,].
Note: Sometimes the points in a finite sample space and their assigned probabilities are given
in the form of a table as follows:

Outcome |(a, a, a; ... a,

Probability |[f £ B - D,
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Here is an illustration of how to construct a probability law starting from some common sense

assumptions about a model.

Illustration 12.6
n(A)

(1) Let S= {1 2 3} Suppose @(S)is the power set of S, and P(A)= )
n

Then P({1})== P({z}) =—, and P({3})
satisfies axioms of probabihty [P1 1,[P,],and [P,]. Here all the outcomes are equally likely.

(2) Let S={1,2,3}.Suppose 2(S)is the power set of S,
If the probability P(A), of an event!”! of S is defined as the sum of the probabilities of the

pointsin 4,
then P({1}) ==, P({2})=1.P(13}) =5
satisfy the axioms of probablhty [P1 1.[P, ], and [P,].

(3) LetS= {1,2,3} and () is the power set of S. If the probability P(A), of an event P! of

S is defined as the sum of the probabilities of the points in 4,
1

then P({1})=0, P({2 and P ({3 -—,
([)=0. P({2}) =75 and P({3))=1- >
satisfy the above axioms [P,],[P,], and [P,].
In (2) and (3), the outcomes are not equally likely. ®

Note 12.2
Irrational numbers also can act as probabilities.

Classroom Activity: Each student to flip a coinl0 times,

Number times heads occur
10
Find the cumulative ratio of heads to tosses. As number of tosses increases p — >

Calculate: p=

Example 12.1
If an experiment has exactly the three possible mutually exclusive outcomes 4, B, and C,

check in each case whether the assignment of probability is permissible.

1
i) P(4)= 7 P(B)= = P(C)= 7
2 1 3
(i) P(A4)= 5 P(B)= < P(C) = =
(i) P(4)=03,  P(B)=09 P(C)=-02.

(iv) P(A):%, P(B):l—%, P(C)=0.

(v) P(4)=0.421, P(B)=0.527  P(C)=0.042.
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Solution
Since the experiment has exactly the three possible mutually exclusive outcomes 4, B
and C, they must be exhaustive events.

=5=4uBuC
Therefore, by axioms of probability

P(4)>0, P(B)>0, P(C)>0and 1

P(AUBUC)=P(4)+P(B)+P(C) = P(§)=1

S

(1) Given that P(A4)= ; >0, P(B)= % >0, and P(C)= % >0

Also P(S) =P(4) + P(B) + P(C) = g + % + % =1

Therefore the assignment of probability is permissible.

(ii) Given that P(4)= % >0, P(B)= % >0, and  P(C)= % >0

2

But P(S) =P(4) + P(B) + P(C) = 3 T3t % - %

I
5 5

Therefore the assignment is not permissible.
(111) Since P(C)=- 0.2 is negative, the assignment is not permissible.

(iv) The assignment is permissible because
>0, P(B)= 1——>0 and P(C)=02>0

f \f_

P( ) P(A)+ P(B)+ P(C) = +0=1.

i

(v) Even though P(4)=0.421>0, P(B)=0.527>0, and P(C)=0.042>0,
the sum of the probability

P(S) = P(A)+ P(B)+P(C)=0.421+0.527+0.042=0.990<1.

Therefore, the assignment is not permissible.

P(4)=

Example 12.2
An integer is chosen at random from the first ten positive integers. Find the probability
that it is (i) an even number (i1) multiple of three.

Solution
The sample space is

§={1,2,345,6,7,8,9,10} , n(S)=10
Let A4 be the event of choosing an even number and

B be the event of choosing an integer multiple of three.
A4=1{2,4,6,8,10}, n(4)=5,
B={3,6,9}, n(B)=3
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n(4d) 5 1
o ] = P A = =T ==
P (choosing an even integer) (4) n(S) 10 2

n(B) 3

o . g = P B = - 0
P (choosing an integer multiple of three) (B) n(S) 10

Example 12.3
Three coins are tossed simultaneously, what is the probability of getting (i) exactly one head

(i1) at least one head (iii) at most one head?
Solution:
Notice that three coins are tossed simultaneously = one coin is tossed three times.

The sample space S ={H,T}x{H,T}x{H,T}
S = {HHH,HHT,HTH,THH ,HTT ,THT ,TTH,TTT}, n(S)=28
Let A be the event of getting one head, B be the event of getting at least one head and C be
the event of getting at most one head.

A= {HTT,THT,TTH}; n(A)=3
B = {HTT,THT,TTH,HHT,HTH ,THH,HHH}; n(B)=17
C = {TTT,HTT,THT,TTH}; n(C)=4.

Therefore the required probabilities are

- _r4)_3
i) PUA)= (5)7%
.. _n(B) 7
(i)  P(B) n(5) "8
_n(C)_4_1
(1) PO)= n(s) ==
Note 12.3

When the number of elements in sample space is considerably
small we can solve by finger-counting the elements in the events. But
when the number of elements is too large to count then combinatorics
helps us to solve the problems.

For the following problem, combinatorics is used to find the
number of elements in the sample space and the events.

Example 12.4
Suppose ten coins are tossed. Find the probability to get (i) exactly two heads (ii) at most

two heads (iii) at least two heads
Solution
Ten coins are tossed simultaneously one time = one coin is tossed 10 times

Let S the sample space, 10 times
That is S={H,T}x{H,T}x{H,T}x---x{H,T}
241 Introduction to Probability Theory
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Let ADbe the event of getting exactly two heads,

B be the event of getting at most two heads, and
C be the event of getting at least two heads.

When ten coins are tossed, the number of elements in sample space is 2" =2'° =1024
n(S)=1024
n(A)="C, =45
n(B)="C,+"°C,+"°C,=1+10+45=56
n(C)="c,+°C,+°C,+---+°C,
=n(S)-("C,+"° C,)=1024-11=1013

The required probabilities are

- _n4)_ 45
(l) P(A)_n(S) 1024
.. _n(B) 56 7
@ PBI=5) 1024 128
_n() _1013
(i) P(C)_n(S) 1024
® ®

Example 12.5
Suppose a fair die is rolled. Find the probability of getting

(1) an even number  (ii) multiple of three.

Solution
Let S be the sample space,

A be the event of getting an even number,
B be the event of getting multiple of three.

Therefore,

S =11,2,3,4,56}. =n(S)=6

A =1{2,4,6} =n(A4)=3
B={3, 6} =n(B)=2
The required probabilities are
. . n(4) 3 1
1) P (getting an even number) = P(4) = =—=—
(i) P (getting ) ()n(S)62
(ii) P (getting multiple of three) = P(B)="B)-2_1
n(S) 3
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Example 12.6
When a pair of fair dice is rolled, what are the probabilities of getting the sum

(1) 7 (ii) 7 or 9 (iii) 7 or 12?
Solution
The sample space S={1,2,3,4,5,6}x{1,2,3,4,5, 6}
S = {(1,1), (1,2), (1,3), (1,4), (1,5), (1.6),
(2,1), (2,2), (2,3), (2.4), (2,5), (2,6),
(3.1), (3,2), (3,3), (3.4), (3,5), (3,6),
4,1), (4,2), (4.3), (4,4), (4,5), (4,6),
Gy 1525 0 B (690, (EH0)
(6,1), (6,2), (6,3), (6.4), (6,5), (6,6)}

Number of possible outcomes = 6° =36 = n(S)

Let A be the event of getting sum 7, B be the event of getting the sum 9 and C be the
event of getting sum 12. Then

A={(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)} = n(4)=6

B={(3,6),(4,5),(5,4),(6,3)} = n(B)=4 s
C={(6,0)} = n(C)=1
® (1) P (getting sum 7) = P(A4) ®
_ n(A4) 6 1
a3 6
(1) P (getting sum 7 or 9) = P(4A or B) = P(4A UB)
= P(A) + P(B)

(Since 4 and B are mutually exclusive thatis, 4AnB =)

a4 nB) _ 6 4 _ 5

n(S) n(S) 36 36 18
(1i1) P (gettingsum 7 or 12) = P(4Aor C) = P(4 u(C)

P(4) + P(C) (since 4 and C are mutually exclusive)

n4) n(€_6 1 _7
n(S) n(S) 36 36 36

Example 12.7
Three candidates X, ¥, and Z are going to play in a chess competition to win ﬂ
FIDE (World Chess Federation) cup this year. X is thrice as likely to win as Y
and Y'is twice as likely as to win Z. Find the respective probability of X, ¥ and 5_“?
Z to win the cup.

FIDE

Solution
Let 4, B, C be the event of winning FIDE cup respectively by X, ¥, and Z this year.
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Given that X is thrice as likely to win as Y.
A:B ::3:1. (1)
Y is twice as likely as to win Z
B:C::2:1 (2)
From (1) and (2)
A:B:C:: 6:2:1
A =6k, B =2k C =k, where k is proportional constant.

Probability to win the cup by X'is  P(4) =% :%
e . . 2k 2
Probability to win the cup by Yis P(B) =§ = = and
e . . ko1
Probability to win the cup by Z is P(C) =§ = o

Example 12.8 B
Three letters are written to three different persons and addresses on |

three envelopes are also written. Without looking at the addresses, what

is the probability that (i) exactly one letter goes to the right envelopes |

(i1) none of the letters go into the right envelopes? -

Solution

Let 4, B, and C' denote the envelopes and 1, 2, and 3 denote the
corresponding letters.

The different combination of letters put

} ) Outcomes
into the envelopes are shown in the table.

Letc, denote the outcomes of the events. G G G Cy Cs Co

Let X be the event of putting the letters into
the exactly only one right envelopes.

Let Y be the event of putting none of the

Envelope

letters into the right envelope.
C | 3 2 3 1 2 1

S={c, ¢, ¢ ¢, G5, G}, M(S)=06

X ={c,,c;,¢4}, n(X)=3

Y ={c,,c} n(Y)=2
3 1 2 1
P(X)_E_E P(Y)—g—g.

Example 12.9
Let the matrix M =|:x )1}] If x,y and zare chosen at random from the set {1, 2,3},
Z

and repetition is allowed (i.e.,x = y =z), what is the probability that the given matrix M is a
singular matrix?
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Solution

If the given matrix M is singular, then

Xy
z 1

=0.

That is, x— yz =0.
Hence the possible ways of selecting (x, y,z)are

{(1,1,1),(2,1,2),(2,2,1),(3,1,3),(3,3,1)} = A(say)

The number of favourable cases  n(4)=5

The total number of cases are n(S)=3=27

The probability of the given matrix is a singular matrix is
_n4)_ 5
n(S) 27

Example 12.10

For a sports meet, a winners’ stand comprising of three wooden

® blocks is in the form as shown in figure. There are six different colours ) @

available to choose from and three of the wooden blocks is to be painted 3

such that no two of them has the same colour. Find the probability that the

smallest block is to be painted in red, where red is one of the six colours.
Solution

Let S be the sample space and 4 be the event that the smallest block is to be painted in

red.
n(S)= 6P, =6x5x4=120 6 6 3
n(A)= 5x4=20 nS)| 6 5| 4
p(A)=M=ﬂ=l nd)f 5| 4
n(s) 120 6
12.4.3 ODDS

The word odds is frequently used in probability and statistics. Odds relate the chances in favour
of an event A4 to the chances against it. Suppose a represents the number of ways that an event can
occur and b represents the number of ways that the event can fail to occur.

The odds of an event 4 are a : b in favour of an event and

a
a+b’

P(4) =
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Further, it may be noted that the odds are a : b in favour of an event is the same as to say that the
odds are b : a against the event.

If the probability of an event is p , then the odds in favour of its occurrence are p to (1-p) and
the odds against its occurrence are (1-p)to p.

Illustration 12.7
(1) Suppose a die is rolled.

Let S be the sample space and 4 be the event of getting 5.

n(S)=6, n(A)=1andn(4)=5.

It can also be interpreted as

1
Odds in favour of 4is 1:5 or 3 odds against 4 is 5:1or %,

and  PAy=—"AD 1 1 _ nd
n(A)+n(4) 5+1 6 n(S)
(i) Suppose B is an event such that odds in favour of B is 3:5, then P(B) =§
. . 11
(ii1) Suppose C is an event such that odds against C is 4:11, then P(C) BTH

Example 12.11
A man has 2 ten rupee notes, 4 hundred rupee notes and 6 five hundred rupee notes in his
@ pocket. If 2 notes are taken at random, what are the odds in favour of both notes being of @
hundred rupee denomination and also its probability?
Solution
Let S be the sample space and 4 be the event of taking 2 hundred rupee note.

Therefore, n(S)=12c, =66, n(4)=4c,=6 and n(A4)=66-6=60
Therefore, odds in favour of 4 is 6: 60

1
That is, odds in favour of 4 is 1: 10, and P(A) :ﬁ'

EXERCISE 12.1

(1) An experiment has the four possible mutually exclusive and exhaustive outcomes 4, B,
C, and D. Check whether the following assignments of probability are permissible.

(i) P(4)=0.15, P(B) = 0.30, P(C) =0.43, P(D)=0.12

(i) P(4) =0.22, P(B) = 0.38, P(C) = 0. 16, P (D) =034
_2 3 _ 1 _1

(i) P(4) = = P(B) 5’ P(C) 5’ P(D) 5

(2) Iftwo coins are tossed simultaneously, then find the probability of getting
(1) one head and one tail (i1) at most two tails

(3) Five mangoes and 4 apples are in a box. If two fruits are chosen at random, find the
probability that (i) one is a mango and the other is an apple (ii) both are of the same
variety.
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(4) What is the chance that (i) non-leap year (ii) leap year should have fifty three
Sundays?

(5) Eight coins are tossed once, find the probability of getting
(1) exactly two tails (i1) at least two tails (iii) at most two tails

(6) An integer is chosen at random from the first 100 positive integers. What is the probability
that the integer chosen is a prime or multiple of 87

(7) A bag contains 7 red and 4 black balls, 3 balls are drawn at random.
Find the probability that (i) all are red (ii) one red and 2 black.
(8) A single card is drawn from a pack of 52 cards. What is the probability that
(1) the card is an ace or a king (ii) the card will be 6 or smaller
(ii1) the card is either a queen or 9?

(9) A cricket club has 16 members, of whom only 5 can bowl. What is the probability that in a
team of 11 members at least 3 bowlers are selected?

(10) (i) The odds that the event A occurs is 5 to 7, find P(A).

(11) Suppose P(B) = % . Express the odds that the event B occurs.

12.5 Some basic Theorems on Probability

The problems solved in the last sections are related to mutually exclusive events. So we
have used the formula P(4 or B) = P(A W B)=P(A) + P(B). But when the events are mutually
® inclusive, the additivity axioms counts (4N B) twice. We have a separate formula for the events ®
when they are mutually inclusive.

In the development of probability theory, all the results are derived directly or indirectly
using only the axioms of probability. Here we derive some of the basic important theorems on
probability.

Theorem 12.3
The probability of the impossible event is zero. That is,

P(D)=0

Proof
Impossible event contains no sample point.

Therefore, SUJ =S

P(SLD) = P(S)
P(S)+ P(D) = P(S) (since S and & are mutually exclusive) =
P() =0
Example 12.12
Find the probability of getting the number 7, when a usual die is rolled.
Solution
The event of getting 7 is an impossible event. Therefore, P( getting 7) =0
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Theorem 12.4

If 4 is the complementary event of 4, then

— S
_ A
P(A)=1-P(A)
Proof
Let S be a sample space, we have
AvAd =S
P(AU A) = P(S)
P(A) + P(A) = P(S) (since 4 and A4 are mutually exclusive)
=1
P(4) =1-P(4) or P(4)=1-P(4) =
Example 12.13
Nine coins are tossed once, find the probability to get at least two heads.
Solution
Let S be the sample space and 4 be the event of getting at least two heads.
Therefore, the event 4 denotes, getting at most one head.
@ n(S)=2"=512, n(A)=9C,+9C, =1+9=10 @
(A)=oe =2 i
512 256 It is easier to calculate Z 9C.
r=0
i 5 251 9
P(4)=1-P(4)=1-—=—"
() =1-P(4)=1- 35 =% than 2,9C,
Theorem 12.5
If 4 and B are any two events and B is the complementary events of B, then
P(ANB)=P(A)—P(ANB)
Proof
Clearly from the figure,
— S
(ANnB)u(AnB) =4
P[(AnB)U(ANB)] = P(4) ANB ANB
P(ANB)+P(ANB) = P(4) A B
(since (AN B) and (4N B) are mutually exclusive)
P(ANB) = P(4)— P(ANB) m
XI - Mathematics 248

‘ ‘ Unit12.indd 248 @ 10-08-2018 18:30:36‘ ‘



o EEEEE ® - EEEm

Theorem 12.6 (Addition theorem on probability)

If 4 and B are any two events, then

P(AU B) = P(4)+ P(B)— P(AN B)

S
Proof
From the diagram, B
AUB = (ANB)UB
P(AUB) = P[(AnB)UB] A
= P(ANB)+P(B) (since (4N B) and B are mutually exclusive)
= [P(A)— P(AN B)]+ P(B)
Therefore, P(Aw B) = P(A)+ P(B)—P(ANB) m

Note 12.4

The above theorem can be extended to any 3 events.
(1) P(AUBUC)={P(A)+P(B)+P(C)}
—{P(ANB)+P(BNC)+P(CNA)}+P(ANBNC)}
(i) P(AUBUC)=1-P(AUBUC)=1-P(ANBNC)

Example 12.14
® Given that P(4) = 0.52, P(B)=0.43, and P(AN B) =0.24, find
(i) P(ANB) (i) P(AUB)  (iii) P(ANB) (iv) P(AUB).
Solution
(i) P(ANB) = P(4)—P(ANB)
= 0.52-0.24=0.28
P(ANB) =0.28.
(ii) P(AUB) = P(A)+P(B)—P(ANB)
= 0.52+0.43-0.24
P(AUB) =0.71.
(iiiy P(ANB) = P(M) (By de Morgan's law)
= 1-P(AUB)
1-0.71=0.29.

(iv) P(AUB) = P(ANB) (By de Morgan's law)

= 1-P(AnB)=1-0.24
= 0.76.
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Example 12.15
The probability that a girl, preparing for competitive examination will get a State
Government service is 0.12, the probability that she will get a Central Government job is 0.25,
and the probability that she will get both is 0.07. Find the probability that (i) she will get
atleast one of the two jobs (i7) she will get only one of the two jobs.
Solution
Let I be the event of getting State Government service and C be the event of getting

Central Government job.
Given that P(/) =0.12, P(C)=0.25, and P(InC)=0.07

(/) P (atleast one of the two jobs) =P/ or C)=P(I U )
= P(I)+P(C)—P(INC)
=0.12 + 0.25 — 0.07=0.30 S
(if)  P(only one of the two jobs) = P[only / or only C]. 1 C
= P(INC)+P(I NC) .
={P([)-P(INC)}+{P(C)-P(INC)}
{0.12 —-0.07} + {0.25 — 0.07}
0.23.

\

EXERCISE 12.2

(1) If 4 and B are mutually exclusive events P(A) = % and P(B) = % , then ®
find (i) P(4) (i) P(AUB)  (iii) P(AN B) (iv) P(AU B)

(2) If 4 and B are two events associated with a random experiment for which
P(A4) = 0.35, P(Aor B) = 0.85, and P(A4 and B) = 0.15.

Find (i) P(only B) (ii)P(B)  (iii) P(only A)

(3) A die is thrown twice. Let 4 be the event, ‘First die shows 5’ and B be the event, ‘second
die shows 5°. Find P(4AU B).

(4) The probability of an event 4 occurring is 0.5 and B occurring is 0.3. [f 4 and B are
mutually exclusive events, then find the probability of

(i) P(AUB) (i) P(ANB) (i) P(4NB).
town has 2 fire engines operating independently. The probability that a fire engine is
5) A has 2 fi ' ing ind dently. Th bability th fi ine i
available when needed is 0.96.
(1) What is the probability that a fire engine is available when needed?
(11) What is the probability that neither is available when needed?

(6) The probability that a new railway bridge will get an award for its design is 0.48, the
probability that it will get an award for the efficient use of materials is 0.36, and that it will
get both awards is 0.2. What is the probability, that (i) it will get at least one of the two
awards (1ii) it will get only one of the awards.
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12.6 Conditional Probability

Illustration 12.8
Consider the following example to understand the concept of conditional probability.

Suppose a fair die is rolled once, then the sample space is S = {1, 2, 3, 4, 5, 6}. Now we ask
two questions

Q,: What is the probability of getting an odd number which is greater than 27
Q,: If the die shows an odd number, then what is the probability that it is greater than 2?
Case 1

The event of getting an odd number which is greater than 2 is {3, 5}. 12

Let P, be the probability of getting an odd number which is greater than 2 2
_ oSy 21
"on({l, 2, 3,4, 5 6) 3

Case 2

‘If the die shows an odd number’ means we restrict our sample space S to a subset containing

only odd number. 5
That is, § = {1, 3, 5}. Then our interest is to find the probability of the event getting ;
5

an odd number greater than 2. Let it be P, ;
S

_ n({35) _2
Con({1,3,5) 3
In the above two cases the favourable events are the same, but the number of exhaustive
outcomes are different. In case 2, we observe that we have first imposed a condition on sample
space, then asked to find the probability. This type of probability is called conditional probability.

This can be written by using sample space as

n(4{3,5})
_n(11,2,3,4,5,6}) _

2 n({1,3,5})
n({1,2,3,4,5,6})

o wlon o
|

Important note: Sample space is same for probability and conditional probability.

(Definition 12.14 )
The conditional probability of an event B, assuming that the event A has already
happened is denoted by P(B/A) and is defined as

P(B/ A)= M, provided P(A4)#0
P(4)
Similarly,
P(A/B)= w, provided P(B) # 0
L P(B) J

Example 12.16
If P(4)=0.6, P(B)=0.5, and P(ANB)=0.2

Find (i) P(A/B) (ii) P(4/B) (iii) P(4/B).
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Solution
Given that P(4) = P(4)=0.6, P(B)=0.5, and P(ANnB)=0.2
. P(ANnB) 02 2
(l) P(A/B):%:Ezg
' _ P(4nB)
(ii) P(A/B) = 760
 P(B)-P(ANB)
E P(B)
_05-02_03_3
05 05 5
_ P(Amﬁ)
(ii1) P(A/B) = P(E)
_ P(4)-P(4nB)
1-P(B)
_06-02_04_4
1-05 05 5
Note 12.5
® P(A/B)+P(4/B)=1 ®

Example 12.17

A die is rolled. If it shows an odd number, then find the probability of getting 5.
Solution

Sample space S= {1, 2, 3,4, 5, 6}.

Let 4 be the event of die shows an odd number.

Let B be the event of getting 5.

Then, 4={1, 3, 5}, B={5}, and AnB= {5}.

Therefore, P(A) =% and P(ANB) =

N =

P(getting 5/ die shows an odd number) = P(B/ A)

_ P(ANB)
P4

| W|oN | —

P(B/A)=§.
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Rewriting the definition of conditional probability, we get the ‘Multiplication theorem
on probability’.
Theorem 12.7
(Multiplication theorem on probability)

The probability of the simultaneous happening of two events 4 and B is given by

P(ANB)=P(A/ B)P(B)
or
P(ANB)=P(B/ A)P(A) m

12.6.1 Independent Events

Events are said to be independent if occurrence or non-occurrence ofany one of the event
does not affect the probability of occurrence or non-occurrence of the other events.

Definition 12.15
Two events 4 and B are said to be independent if and only if

P(ANB)=P(A)-P(B)

Note 12.6
(1) This definition is exactly equivalent to
P(A/B) = P(A) ifP(B)>0
® P(B/A) = P(B) if P(4)>0 ®

(2) The events 4,, 4,, 4,,...,4, are mutually independent if
P4 N4, nA,nN N A)=P(4) P(4,) - -P(4).

Theorem 12.8
If 4 and B are independent then

(i) A4and B are independent.
(i) A and B are independent.

(1i1) A and B are also independent.
Proof

(i) To prove 4 and B are independent:
Since 4 and B are independent

P(ANB) = P(4) - (PB)
To prove A and B are independent, we have to prove
P(4 N B) = P(4) - P(B).
By de Morgan’s law
P(4 NB) = P(4UB)
=1-P(4AUB)
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= 1-{P(A)+ P(B)- P(AN B)}
= 1-P(4)-P(B)+ P(A) -P(B)
= (1-P(4))(1-P(B))

= P(4) - P(B)

Thus A4 and B are independent .

Similarly one can prove (ii) and (iii).

Example 12.18
Two cards are drawn from a pack of 52 cards in succession. Find the probability that
both are Jack when the first drawn card is (i) replaced (ii) not replaced
Solution

Let 4 be the event of drawing a Jack in the first draw,
B be the event of drawing a Jack in the second draw.
ase (i)
Card is replaced
n(A) =4  (Jack)
n(B) =4  (Jack)
and n(S) =52 (Total)

Clearly the event A will not affect the probability of the occurrence of event B and
therefore 4 and B are independent.

P(ANB) = P(4).P(B)

P(4) = ;12 : P(B)Z;iz

P(ANB) = P(4) P(B)
_4 4
52 52
-
169

ase (ii)
Card is not replaced

In the first draw, there are 4 Jacks and 52 cards in total. Since the Jack, drawn at the
first draw is not replaced, in the second draw there are only 3 Jacks and 51 cards in total.
Therefore the first event A affects the probability of the occurrence of the second event B.

Thus 4 and B are not independent. That is, they are dependent events.
Therefore, P(A N B) = P(4) . P(B/A)

P(4) - ;12
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3
P(BIA) = &
P(ANB) = P(4) . P(B/A)
_ 4 3
52751
1
- 221

Example 12.19
A coin is tossed twice. Events £ and F are defined as follows

E= Head on first toss, /"= Head on second toss. Find

(i) P(E U F) (ii) P(E/F)

(iii) P(E/ F) . (iv) Are the events E and F independent?
Solution

The sample space is S={H,T}x{H, T}

S={(H, H),(H, T), (T, H), (T, T}
and E = {(H, H), (H,T)}

F={(H, H), (T, H)}
EUF = {(H, H),(H, T), (T, H)}
ENF = {(H, H)}

) P(EUF) = P(E) + P(F) - P(E nF) or (—
2.2 L 3
4 4 4 4
5 _PEnF) A/4) 1
=, o _ P(ENF)
(1i1) P(E/F) P(F)

_ @2/9-0a/4
(2/4)
1
2
(iv) Are the events £ and F independent?
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We have P(EmF)=%
_2 _2
P(E)—4, P(F) 2
_22_1
P(E)P(F)—4-4 2

= P(E N F) =P(E). P(F)
Therefore E and F are independent events.

Note 12.7

Independent events is a property of probability but mutual exclusiveness is a set-theoretic
property. Therefore independent events can be identified by their probabilities and mutually
exclusive events can be identified by their events.

Theorem 12.9
Suppose 4 and B are two events, such that P(4) # 0, P(B) # 0.

(1) If 4 and B are mutually exclusive, they cannot be independent.
(2) If A and B are independent they cannot be mutually exclusive. (Without proof)

Example 12.20
If A and B are two independent events such that

P(4) = 0.4 and P(Au B)=0.9. Find P(B).
Solution
P(AUB) = P(A)+ P(B)—P(AN B)
P(AU B)=P(A)+ P(B)—P(A).P(B) (since 4 and B are independent)
Thatis, 0.9 =04 + P(B) — (0.4) P(B)

09-04 = (1-0.4) P(B)
Therefore, P(B) = %

Example 12.21
An anti-aircraft gun can take a maximum of four shots
at an enemy plane moving away from it. The probability of
hitting the plane in the first, second, third, and fourth shot are
respectively 0.2, 0.4, 0.2 and 0.1. Find the probability that the
gun hits the plane.
Solution

Let H,, H,, H, and H, be the events of hitting the plane
by the anti-aircraft gun in the first second, third and fourth shot respectively.

Let H be the event that anti-aircraft gun hits the plane. Therefore H is the event that the
plane is not shot down. Given that

P(H)=02 = P(H)=1-P(H,)=0.8
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P(H,)=04 = P(H,)=1-P(H,)=0.6
P(H,)=02 = P(H,)=1-P(H,)=0.8

P(H,)=0.1 = P(H,)=1-P(H,)=09
The probability that the gun hits the plane is

P(H)=1-P(H)=1-P(H,UH, UH, UH,)

:1_P(ﬁlmﬁzmﬁ3mﬁ4)
=1—P(I-_[1)P(ﬁ2)P(H3)P([__[4)

=1-(0.8)(0.6)(0.8)(0.9) =1-0.3456

P(H)=0.6544

Example 12.22

X speaks truth in 70 percent of cases, and Y in 90 percent of cases. What is the probability

that they likely to contradict each other in stating the same fact?
Solution

Let A be the event of X speaks the truth, B be the event of ¥ speaks the truth

. A is the event of X not speaking the truth and B is the event of ¥ not speaking
he truth.

Let C be the event that they will contradict each other.

Given that
P(A) = 070 = P(4) = 1- P(4) = 0.30 §
_ A B
P(B)=090 = PB)=1-PB) =0.10
C = (A speaks truth and B does not speak truth or B speaks truth
and 4 does not speak truth)
C=[(ANnB) U (ANB)] (see figure)

Only A~ - Only B
since (AN 1_3) and (Z M B) are mutually exclusively,

P(C)= P(ANB) +P(ANB)
= P(A4) P(B) + P(A) P(B)

(Since 4, B are independent event, 4, B are also independent events)
= (0.70) (0.10) + (0.30) (0.90)

= 0.070 + 0.270 =0.34
P(C)= 0.34.
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Example 12.23

A main road in a City has 4 crossroads with traffic lights. Each traffic light opens or closes the
traffic with the probability of 0.4 and 0.6 respectively. Determine the probability of

(1) acar crossing the first crossroad without stopping
(i1) a car crossing first two crossroads without stopping
(ii1) a car crossing all the crossroads, stopping at third cross.

(iv) a car crossing all the crossroads, stopping at exactly one cross.
Solution:

Let A, be the event that the traffic light opens at i th cross, for i=1, 2, 3, 4.

Let B;be the event that the traffic light closes at i th cross, for i=1, 2, 3, 4.
The traffic lights are all independent.

Therefore A4 ,and B, are all independent events, for i= 1, 2, 3, 4.

iven that

P(4,)=04, i=12,3,4
P(B)=06,i=1,2,3,4

(1) Probability of car crossing the first crossroad without stopping,
P(4,)=0.4.

@ (i1) Probability of car crossing first two crossroads without stopping, @
P(A4,"A,)=P(4,4,)=(0.4)(0.4)=0.16
(ii1) Probability of car crossing all the crossroads, stopping at third cross

P(4, A, "B, " A,) = P(4,4,B,4,)=(0.4)(0.4)(0.6)(0.4) = 0.0384

(iv) Probability of car crossing all the crossroads, stopping at exactly one of the crossroads is
P(BA,4,A, VA B,AA, WA ABA, A A,AB,)
=P(B\A,4,4,)+ P(4,B,4,4,)+ P(4,4,B,4,) + P(4,4,4,B,)

=4(0.4)(0.4)(0.6)(0.4)=4(0.0384)=0.1536

EXERCISE 12.3

(1) Can two events be mutually exclusive and independent simultaneously?

(2) If A and B are two events such that P(4u B)=0.7, P(4 n B)=0.2,

and P(B) = 0.5, then show that 4 and B are independent.
(3) If 4 and B are two independent events such that P(AuU B)= 0.6, P(4) = 0.2, find P(B).
(4) If P(4)=0.5, P(B) =0.8 and P(B/A)=0.8, find P(4/B)and P(AVUB).

(5) If for two events 4 and B, P(A4)= é, P(B) :% and 4AUB=S (sample space), find the

conditional probability P(4 / B).
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(6) A problem in Mathematics is given to three students whose chances of solving it are

l,l, and é (1) What is the probability that the problem is solved? (ii)) What is the probability

34
that exactly one of them will solve it?

(7) The probability that a car being filled with petrol will also need an oil change is 0.30; the
probability that it needs a new oil filter is 0.40; and the probability that both the oil and filter
need changing is 0.15.

(1) If the oil had to be changed, what is the probability that a new oil filter is needed?
(i1) If a new oil filter is needed, what is the probability that the oil has to be changed?

(8) One bag contains 5 white and 3 black balls. Another bag contains 4 white and 6  black
balls. If one ball is drawn from each bag, find the probability that (i) both are white (ii) both
are black (ii1) one white and one black

(9) Two thirds of students in a class are boys and rest girls. It is known that the probability
of a girl getting a first grade is 0.85 and that of boys is 0.70. Find the probability that a
student chosen at random will get first grade marks.

(10) Given P(A) = 0.4 and P(4uB)= 0.7. Find P(B) if
(i) A and B are mutually exclusive (ii) A and B are independent events
(iii) P(A/ B) = 0.4 (iv) P(B/ A) =0.5

(11) A year is selected at random. What is the probability that
(i) it contains 53 Sundays (ii) it is a leap year which contains 53 Sundays

(12) Suppose the chances of hitting a target by a person X is 3 times in 4 shots, by Y is 4 times in
5 shots, and by Z is 2 times in 3 shots. They fire simultaneously exactly one time. What is the
probability that the target is damaged by exactly 2 hits?

® 12.7 Total Probability of an event ®
Theorem 12.10 (Total Probability of an event)

If 4, A4,, 4,, ..., A, are mutually exclusive and exhaustive events and B is any event in S
then P(B) is called the total probability of event B and

P(B) = P(4).P(B/ A4)+P(4).P(B/ A)++P(4).P(B/ A) =zn:P(Ai).P(B/AI.)

i=1

Proof
Since B is any event in S, from the figure shown here

B=(4,NB)u(4,nB)u(4,NB)uU---(4,NB).
Since 4,, 4,, 4, ...A, are mutually exclusive,
(4,nB),(4,"B),(4,NB), (4, N B)are also mutually

exclusive.
Therefore

P(B)=P[(4 nB)U(4,NB)U(4NB)U--U(4,NB)]
P(B) =P(A4 NB)+P(4,NB)+P(4NB)++P(4,NB)

P(B) = P(4).P(B 4)+P(4,).P(B/ A)+---+P(A).P(B/ 4) =Y P(4).P(BI A)

i=1

The following problems are solved using the law of total probability of an event.
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Example 12.24
Urn-I contains 8 red and 4 blue balls and urn-II contains 5 red and 10 blue balls. One
urn is chosen at random and two balls are drawn from it. Find the probability that both balls

are red.
Solution Red Blue
Let 4, be the event of selecting urn-I balls balls Total
and 4_be the event of selecting urn-II.
: Urn-I 8 4 12
Let B be the event of selecting 2 red
balls. Urn-I 5 10 15
We have to find the total probability of
event B. That iS, P(B) Total 13 14 27
Clearly 4, and AZA1 are mutually exclusive
and exhaustive events.
We have <
4
8 1
P(Al) = la P(B/4)= % zﬂ
2 12¢, 33
5
Pi)= L, PBIay=2-2 b 2
2 15¢, 21
We know B
P(B) = P(A4).P(B/ A4)+P(4,) .P(B/ 4,)
gy - L1412 20
2 33 221 77

Example 12.25
A factory has two machines I and II. Machine-I produces 40% of items of the output
and Machine-II produces 60% of the items. Further 4% of items produced by Machine-I are
defective and 5% produced by Machine-II are defective. If an item is drawn at random,
find the probability that it is a defective item. S
Solution
LetA be the event that the items are produced by Machine-I,
A_ be the event that items are produced by Machine-II. Let B be
the event of drawing a defective item.

We have to find the total probability of event B. That is, P(B).

Clearly A4, and 4, are mutually exclusive and exhaustive events.

Therefore, P(B) = P(4,) . P(B/ A)+ P(4,) .P(B/ 4,)

We have P(4) = 040, P(B/A)=0.04
P(4,) = 0.60, P(B/A4,)=0.05
P(B) = P(4) .P(B/ A)+P(4,) . P(B/ 4,)

= (0.40)( 0.04)+(0.60 )(0.05)
= 0.046.
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12.8 Bayes’ Theorem

Thomas Bayes was an English statistician, philosopher and Presbyterian minister who
is known for formulating a specific case of a theorem. Bayesian methods stem from the
principle of linking prior (before conducting experiment)
| probability and conditional probability (likelihood) to
@&/ posterior (after conducting experiment) probability via
1’;2-1761 Bayes’ rule. Bayesian probability is the name given to
several related interpretations of probability as an amount
of epistemic confidence — the strength of beliefs, hypotheses etc., rather
than a frequency.

Theorem 12.11 (Bayes’ Theorem)

If 4, A4,, 4,,...,4, are mutually exclusive and exhaustive events such that
P(4j) >0, i=1,2,3,....n and B is any event in which P(B) >0, then

P(4) P(B/ 4)
P(A) P(B/ A) +P(4,)) P(B/ Ay))+---+ P(A,) P(B/ 4,)

P(4/B) =

Proof
By the law of total probability of B we have

P(B)=P(A)-P(B/ A)+P(A)-P(B/ A)+---+P(A,)-P(B/A4,))
and by multiplication theorem P(4, NB)= P(B/4)P(4,)

.
.
.
" o

By the definition of conditional probability, |3|.||-|55: -
P(ANB
P48 = PACE)
P(B)
P(B/A)P(A
P(A./B) = (B/4)P(4) (using formulae)

P(A)-P(B/ A)+P(A,)-P(B/ A))+---+P(A,)-P(B/ A,
The above formula gives the relationship between P(A4,/B)and P(B/ 4,)

=
Example 12.26
A factory has two machines I and II. Machine I produces 40% of items of the output
and Machine II produces 60% of the items. Further 4% of items produced by Machine I are
defective and 5% produced by Machine II are defective. An item is drawn at random. If the
drawn item is defective, find the probability that it was produced by Machine II.
(See the previous example, compare the questions). S
Solution A
Let A be the event that the items are produced by
Machine-I, 4, be the event that items are produced by
Machine-II. Let B be the event of drawing a defective item.
Now we are asked to find the conditional probability
P(4,/B). Since 4,, A, are mutually exclusive and exhaustive -
events, by Bayes’ theorem,
P P(B/ A4
P(A)P(B/ A4) +P(4,) P(B/ 4,)
261 Introduction to Probability Theory
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We have,
P(4) =040, P(B/A4)=0.04

P(4,) = 0.60, P(B/A,)=0.05

P(4, | B) = P(4,) P(B/ 4,)
? P(A4) P(B/ A) +P(4,) P(B/ 4,)
_ (0.60 )(0.05) 15
P(4,/8) (0.40)( 0.04)+(0.60 )(0.05) 23

Example 12.27

A construction company employs 2 executive engineers. Engineer-1 does the work for 60% of
jobs of the company. Engineer-2 does the work for 40% of jobs of the company. It is known from
the past experience that the probability of an error when engineer-1 does the work is 0.03, whereas
the probability of an error in the work of engineer-2 is 0.04. Suppose a serious error occurs in the

work, which engineer would you guess did the work?

Solution

Let 4, and A, be the events of job done by engineer-1 and S
eng1neer-2 of the” company respectively. Let B be the event that the

error occurs in the work.
We have to find the conditional probability

P(4,/B) and P(4,/B)to compare their errors in their work.

From the given information, we have
P(4) =0.60, P(B/A4)=0.03
P(4,)=0.40, P(B/A4,)=0.04
4, and A, are mutually exclusive and exhaustive events.

Applying Bayes’ theorem,

P4 /B) - P(4) P(B/ 4)
P(4) P(B/ A4) +P(4,) P(B/ 4,)
_ (0.60 )(0.03)
(0.60)( 0.03)+(0.40 )(0.04)
P(4,/B) = %.
P(4, | B) P(4,) P(B/ 4,)
i P(A) P(B/ 4) +P(4,) P(B/ 4,)
(0.40 )(0.04)
P&, 1B) = (0.60)( 0.03)+(0.40 )(0.04)
P(4,/B) = %

Since P(A4,/ B)>P(A,/ B), the chance of error done by engineer-1 is greater than the chance
of error done by engineer-2. Therefore one may guess that the serious error would have been be

done by engineer-1.
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Example 12.28
The chances of X, Y and Z becoming managers of a certain company are 4 : 2 : 3. The
probabilities that bonus scheme will be introduced if X, ¥ and Z become managers are 0.3,
0.5 and 0.4 respectively. If the bonus scheme has been introduced, what is the probability
that Z was appointed as the manager?

Solution S
Let 4, A2 and A3 be the events of X, Y and Z becoming managers 4,
of the company respectively. Let B be the event that the bonus scheme ~B
. . A B
will be introduced. O y
We have to find the conditional probability P(4, / B). AJ\B g :
3
Since 4,, 4, and 4, are mutually exclusive and exhaustive events, -
applying Bayes’ theorem
We have P(4) P(B/ 4) +P(4,) P(B/ 4,)+P(4) P(B/ 4)
4
P(4) = 3 P(B/A4)=03
2
P(4,) = 3 P(B/A4,)=0.5
P(4,) = %, P(B/ A)=04
@ P(4, | B)= P(4,) P(B/ 4;) @
’ P(4) P(B/ A) +P(4,) P(B/ A)+ P(4,) P(B/ 4,)
31 (04)
9
P(4,/B) =

(3)(0,3)+(§ )(0.5) +3(O.4)

Example 12.29
A consulting firm rents car from three agencies such that 50% from agency L, 30% from
agency M and 20% from agency N. If 90% of the cars from L, 70% of cars from M and 60%
of the cars from N are in good conditions (1) what is the probability that the firm will get
a car in good condition? (ii) if a car is in good condition, what is probability that it has
come from agency N?
Solution S

Let 4,,4,, and A, be the events that the cars are rented from 4
the agencies X, Y and Z respectively. A\(“B ~B
Let G be the event of getting a car in good condition. ~B & A
We have to find b Ay
(1) the total probability of event G that is, P(G) <G
263 Introduction to Probability Theory
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(i) find the conditional probability 4, given G that is, P(4,/G)
We have

P(4,) = 0.50, P(G/A4)=0.90
P(4,) =030, P(G/A,)=0.70
P(4,) =020, P(G/A4)=0.60.

(i) Since 4,4, and 4, are mutually exclusive and exhaustive events and G is an event in S,
then the total probability of event G is P(G).

P(G) = P(4) P(G/ 4) +P(4,) P(G/ A,)+ P(4,) P(G/ 4,)

P(G) = (0.50)( 0.90)+(0.30)(0.70)+(0.20) (0.60)
P(G) = 0.78.

(ii) The conditional probability 4, given G is P(4,/G)
By Bayes’ theorem,

P(A/G) = P(4) PG/ 4,)
P(4) P(G/ A4) +P(4,) P(G/ A)+ P(4,) P(G/ 4,)
P41 G) = (0.20)(0.60) )

(0.50)( 0.90)+(0.30)(0.70)+(0.20) (0.60)

EXERCISE 12.4

(1) A factory has two Machines-I and II. Machine-I produces 60% of items and
Machine-II produces 40% of the items of the total output. Further 2% of the items produced
by Machine-I are defective whereas 4% produced by Machine-II are defective. If an item
is drawn at random what is the probability that it is defective?

(2) There are two identical urns containing respectively 6 black and 4 red balls, 2 black and 2
red balls. An urn is chosen at random and a ball is drawn from it. (i) find the probability
that the ball is black (ii) if the ball is black, what is the probability that it is from the first
urn?

(3) A firm manufactures PVC pipes in three plants viz, X, ¥ and Z. The daily production
volumes from the three firms X, Y and Z are respectively 2000 units, 3000 units and 5000
units. It is known from the past experience that 3% of the output from plant X, 4% from
plant Y and 2% from plant Z are defective. A pipe is selected at random from a day’s total
production,

(1) find the probability that the selected pipe is a defective one.

(i1) if the selected pipe is a defective, then what is the probability that it was produced by
plant Y ?
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(4) The chances of 4, B and C becoming manager of a certain company are 5 : 3 : 2. The
probabilities that the office canteen will be improved if 4, B, and C become managers
are 0.4, 0.5 and 0.3 respectively. If the office canteen has been improved, what is the
probability that B was appointed as the manager?

(5) An advertising executive is studying television viewing habits of married men and women
during prime time hours. Based on the past viewing records he has determined that during
prime time wives are watching television 60% of the time. It has also been determined
that when the wife is watching television, 40% of the time the husband is also watching.
When the wife is not watching the television, 30% of the time the husband is watching the
television. Find the probability that (i) the husband is watching the television during the
prime time of television (ii) if the husband is watching the television, the

wife is also watching the television.

EXERCISE 12.5 [m] 2
BFGIFL)

Choose the correct or most suitable answer from the given four alternatives

(1) Four persons are selected at random from a group of 3 men, 2 women and 4 children. The
probability that exactly two of them are children is

3 10 1 10

1) = 2 — 3) — 4) —

(1) 2 (2) > 3) 5 “4) o

(2) A number is selected from the set {1,2,3,...,20}. The probability that the selected number
@ is divisible by 3 or4 is ¢

2 1 1 2

1) — 2) — 3) — 4 —

(1) 5 (2) g 3) 5 4) 3

(3) 4, B, and C try to hit a target simultaneously but independently. Their respective probabilities
of hitting the target are%, %, % . The probability that the target is hit by 4 or B but not by C'is

21 7 9 7
1) — 2) — 3) — 4) —
()64 ()32 ()64 ()8
(4) If 4 and B are any two events, then the probability that exactly one of them occur is
(1) P(AUB)+P(AUB) (2) P(ANB)+P(AN B)
(3) P(A)+P(B)—P(ANB) (4) P(A)+ P(B)+2P(AN B)

(5) Let A4 and B be two events such thatP(AuB) :%, P(ANB) =% andP(Z) =%. Then

the events 4 and B are
(1) Equally likely but not independent (2) Independent but not equally likely
(3) Independent and equally likely (4) Mutually inclusive and dependent

(6) Two items are chosen from a lot containing twelve items of which four are defective, then the
probability that at least one of the item is defective

19 17 23 13

1) — 2) L 3) =2 I

M 33 @ 33 ) 33 @ 33
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(7) A man has 3 fifty rupee notes, 4 hundred rupees notes and 6 five hundred rupees notes in his
pocket. If 2 notes are taken at random, what are the odds in favour of both notes being of
hundred rupee denomination?

(1) 1:12 2) 12:1 (3) 13:1 4) 1:13

(8) A letter is taken at random from the letters of the word ‘ASSISTANT’ and another letter is
taken at random from the letters of the word ‘STATISTICS’. The probability that the selected
letters are the same is

19

7 17 29
M 7 2 50 3) 350 @ 5

(9) A matrix is chosen at random from a set of all matrices of order 2, with elements 0 or 1 only.
The probability that the determinant of the matrix chosen is non zero will be

3 3 1 5
M 23 )5 @2

(10) Abagcontains 5 white and 3 black balls. Five balls are drawn successively without replacement.
The probability that they are alternately of different colours is

3 5 1 9
M @7 37 S

(11) If 4 and B are two events such that 4 < Band P(B)= 0,then which of the following is

correct?
P(A)
1) P(A/B)=——= 2) P(A/B)< P(A4
® (1) P( )P(B) (2) P(4/B)<P(4) N
(3) P(A/ B)=P(A4) (4) P(A/ B)> P(B)

(12) A bag contains 6 green, 2 white, and 7 black balls. If two balls are drawn simultaneously,
then the probability that both are different colours is

68 71 64 73
1 22 ) 3> 4=
M) 105 ( )105 ( )105 ( )105
(13) If X and Y be two events such that P(X/Y):l, P(Y/X):l and P(XmY)zl, then
P(XUY) is 2 3 6
M 1 @2 O @2
3 5 6 3

(14) Anurn contains 5 red and 5 black balls. A ball is drawn at random, its colour is noted and is
returned to the urn. Moreover, 2 additional balls of the colour drawn are put in the urn and
then a ball is drawn at random. The probability that the second ball drawn is red will be

5 1 7 1
1) — 2) — 3) — 4) —
(1) > () > 3) 12 4 p
(15) A number x is chosen at random from the first 100 natural numbers. Let 4 be the event of

(x—10)(x—50)
x—30
(1)0.20 (2)0.51 (3)0.71 (4)0.70

numbers which satisfies

>0, then P(A) is
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(16) If two events 4 and B are independent such that P(4)=0.35 and P(4UB)=0.6,
then P(B) is

5 1 4 7
M3 2) ) 3) B “4) )

(17) If two events 4 and B are such that P(Z) = % and P(A4 mE) =% ,then P(ANB) is

(2 @ + G 5 @ <
2 3 4 5
(18) If A and B are two events such that Pudig  P(B)= and P(B/A)=0.6, then
P(ZmB) is
(1)0.96 (2) 0.24 (3) 0.56 (4) 0.66

(19) There are three events 4, B and C of which one and only one can happen. If the odds are 7 to
4 against 4 and 5 to 3 against B, then odds against C'is

(1) 23: 65 (2) 65:23 (3) 23: 88 (4) 88:23

(20) If a and b are chosen randomly from the set {1,2,3,4} with replacement, then the probability

of the real roots of the equation x* +ax+bh=0is

3 5 7 11
1) = ) =2 3) L 4 —
M 16 @) 16 ) 16 @ 16
® . ! ! ®
(21) It is given that the events 4 and B are such that P(A) =7 P(A4/B) = and

P(B/A)= % Then P(B) is

1 1 2 1
(< 2 3 3) 3 @ 7

(22) In a certain college 4% of the boys and 1% of the girls are taller than 1.8 meter. Further 60%
of the students are girls. If a student is selected at random and is taller than 1.8 meters, then
the probability that the student is a girl is

2 3 5 7
1) — 2) — 3) — 4) —
(5 ) 5 ()5 * 5
(23) Ten coins are tossed. The probability of getting at least 8 heads is
7 7 7 7
1) — 2) — 3) — 4) —
Ok @ 5 () = ) -

(24) The probability of two events A and B are 0.3 and 0.6 respectively. The probability that both
A and B occur simultaneously is 0.18. The probability that neither 4 nor B occurs is

(1)0.1 (2)0.72 (3)0.42 (4) 0.28
(25) If m is a number such that m < 5, then the probability that quadratic equation

2x% 4+ 2mx+m+1=0 has real roots is

1 2 3 4

= 2) = 3) = 42

(1) s () s C 4) 5
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SUMMARY

Let S be the sample space associated with a random experiment and 4 be an event.

_n(4)  Number of cases favourable to 4

n(S) - Exhaustive Number of cases in S

Axioms of probability

Given a finite sample space S and an event 4 in S, we define P(4), the probability of 4,
satisfies the following three axioms.

(1) P(A)=0
(2) If A and B are mutually exclusive events, then

P(Au B) = P(A) + P(B)
3) PS) =1
The probability of the impossible event is zero. That is

If 4 and B are any two events and B is the complementary events of B, then

|P(4nB) = P(4)~ P(4N B)]

If 4 and B are any two events, then

|P(4UB) = P(4) + P(B)~ P(AN B)|

The conditional probability of an event B, assuming that the event 4 has already

happened is denoted by P(B/A) and is defined as

P(AN B) .
P(B/ A) = provided P(A4) #0
P(AN B) .
P(A/B) = provided P(B) # 0
P(B)

The probability of the simultaneous happening of two events 4 and B is given by

|P(4nB)=P(4/B)P(B) or P(ANB)=P(B/ A)P(4)|
Two events 4 and B are said to be independent if and only if

|P(4nB) = P(4) . P(B)|

If 4, 4,, 4;,...A, are mutually exclusive and exhaustive events and B is any event in §
then P(B) is called the total probability of event B and

P(B) = P(A4).P(B/A)+P(A4,).P(B/A)+--+P(4)PB/A4) = iP(A,).P(B /' 4,)

If A, A4, A4,,..4, are mutually exclusive and exhaustive events such that P(4;) > 0,

n

1=1,2,3,....n and B is any event in with P(B) >0, then

P(4) P(BI 4)

P(Ai/B) = P(Al)P(B/A1) +P(A2) P(B/A2)+...+ P(A,,)P(B/An)
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by clicking “New Problem”. Work out the probabilities and to check your
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ANSWERS
Exercise 7.1
11 9 25 11 >0 b 1
3G = i) —[2 2 6 10 2) +/2,-3,—,1—
(1) () 2[0 . 16] (i) (@) 2,3, .1-7
51 3 7
1[-15 10 -8 1[-12 2 -16
(3)5 4 A== , B=—
3110 -5 5 3l 8 -4 13
. 1 4a . /2 .
(5) 4* = 0 (6) (ii) azzmi?nez (7) x=1
1 =2
) k=2 (12) -1 (14) A:|:2 0] (16) 3x4
1 3 1
(18) A=| 2 12 (19) x==2, y=—1 (20) (i) x=3> (i) p=-2,9=0,r=-3
-5 0
(0 -1 -2
(21) A=|1 0 -1]|, skew-symmetric (24) Pack I - X 280, Pack II - X 440, Pack III - X 730
2 1 0
@ Exercise 7.2 ®
(10) 0 (13) 0 (15) ()0 (i) 0 (16) 4
(17) -81 (18) 0 (190 49 Q1) 7

Exercise 7.3

(3) x =0 (multiplicity 2), x =—(a+b+c¢)

Exercise 7.4

(5) x =0(multiplicity 2),x =—12

(3) (1) singular (ii) non-singular (iii) singular

(1) 2.5 sq.units 2) k=-1,7
@0 a=-2 ()b="" () 5 6) 6
Exercise 7.5
@G| @ |G |G |O]O® ]G |300)] D) | (12) | 13) | (14 | (15)
2 1 2 2 2 2 4 4 2 4 2 4 3 2 4
(16) | (17) | (18) | (19) | (20) | 21) | (22) | (23) | (24) | (25)
3 3 4 1 3 2 3 3 1 2
Exercise 8.1
(7) Other sides b—a,—a,d—b and other diagonalg —2a
Answers
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Exercise 8.2

(1) (1) Not direction cosines (ii) direction cosines  (iii) Not direction cosines

2 3 . 3 -1 3
2) O (\/_ Nk \/_J (11) @,@,m)(lll)(o,o, 1)
-4 8 3 1
3 3,-4.8 ii L1
()()(\/—\/—r]( ) (11)\/—\/—\/—]( )
. 5 -3 —48
(i11) (0, 1, 0) and (0, 1, 0) (1v) 2333’ 42338 72338 ) and (5,-3-48)
) (\/_ e \/_)and(34 -3) (i) % _T)and (1,0,—1)
4) 1 2 —2 L -2 1
55w ) TR T
(5) azi% (6)a=-1,b=2,c=—1,0r a=1,b=-2,c=1 (8) ﬂz%

(11) (1)f[ ! 6)

27 13
NETRN TR (11)\/@( ]

J1123° 112371123

(12) 44 +218 ++/110 (13) r(m 37-10k)
(14) yes (16) m:i%
Exercise 8.3
(1) ()9 (ii) 4 @) () z:% (i) A=2 ® 6=~
(4) (i) 0 =cos™ (;—z) (i) 0:%” 5) 6=2% 8) 55
(1) 52 (12 > (13) s (14) —42
Exercise 8.4
(1) V507 3) +\1/0;/_(5z 3j+k) ) lL(l'+2J3'—2k)
(5) 83 sq. units (6) E\/Q sq. units (10) %

Exercise 8.5

MO |H |G 6 | (D]E | O | 00)dan|az|das) a4

(15)

3 3 4 2 2 3 4 4 2 3 2 1 1 1

(16) | (17) { (18) | (19) | (20) | 21) | (22) | (23) | (24) | (25)

4 1 4 4 1 3 2 4 3 2
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Exercise 9.1

(1) 0.3 (2) 0.25 (3) 0.288 4) —0.25

)1 ©6)0 M1 )3

9) 2 (10) 3 (11) does not exist (12) does not exist
(13) 0 (141 (15) does not exist

(16) exceptatx, =4  (17) exceptatx, =7 (19) f(8)=/f(8")=25
(20) No (21) f(2) cannot be concluded (22) 6, 6 (23) does not exist

Exercise 9.2

(1) 32 ©) % (3) 108 (4) 2\1/;
OF © -5 ™ 3 ®) 4

(9) % (10) —% (11) —%%/Z (12) 0

(13) f(x)—> —oo asx — 0 (limit does not exist) (14) % (15) » \/laTb

Exercise 9.3

() () f(2)>wasx—>-2", f(-2)>-oasx—>-2"

@ (ii) f(%j—)ooasx—)%,f(%)—)—ooasx—>2+ @
(2) fB)—>-wasx—>3", f(3)>wasx—>3" (3) f(x) >xoasx >
4 0 (5) f(x) > o asx— oo 6) -1 (7) %
®) @) % (ii) % (iii) 1 9 i (10) 30
Exercise 9.4 1
(1) @ & 3 1 @ = 5) €
1 if m=n
6) % 7 < 8) = ©) 10 if m>n
p fa)>wasa—>0 if m<n
(10) 2cosa an 2 (12) 2 13y L (14) 2
a 3 2
(15) log§ (16) log9 (17) % (18) log3—1 (19) a
(20) —% Q1) & (22) ﬁ 23) 1 24) &
a 1 1
(25) 2 (26) log*- @7 5 (28) -
273 Answers
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Exercise 9.5

(2) (i) continuous for all xe R (i1)

(ii1) continuous for all xe R—(2n+ 1)%, nez (iv)

(v) continuous for (0, 0) (vi)
(vil) continuous for all xe R —{-4} (viii)
(ix) continuous for all xe R—{-1} (x)

(3) (1) not continuous at x=3 (11)
(ii1) continuous for all xe R (iv)

(4) (i) continuous at x, =1 (ii)
(5) continuous for all xe R (6)
(9) (1) not continuous at x =1 (11)

(10) continuous at x=0,1,3

2_2x-8
x+2

(11) (i) removable discontinuity at x=-2, g(x)=
-6

continuous in R

continuous for all xe R
continuous for all xe R—{0}
continuous for all xe R

. nrw
continuous for all xe R——,ne z

continuous for all xe R

continuous for all xe [0,%}

not continuous at x, =3
o=4 (8) 6

not continuous at x =0

if x#-2

if x=-2

x +64

48

(ii1)) removable discontinuity at x=9, g(x)= 9
6
(12) -2 (13) f(0)=0

Exercise 9.6

(i) removable discontinuity at x =—4, g(x)= { x+4
3-

if x#-4

if x=-4
if x#9

if x=9

(14) f(1)=§

MO H |G ]6 D] 6O

(10) | (11) | (12) | (13) | (14) | (15)

2 3 4 1 1 4 2 2 2

3 4 3 4 3 1

(16) | (17) [ (18) | (19) | (20) | 2D | (22) | (23) | (24)

(25)

1 1 1 4 2 2 2 2 2

4

Exercise 10.1
(D@ 0 (i) —4
(2) 1) f'a)=-1, f'a") =1, not differentiable
(iii) f'(I")=1, f'(1") =2, not differentiable
(3) (1) differentiable
(ii1) not differentiable

(iii) —2x

(5) atx=-1 and x =8 are cusps

(ii) f'(x) > —o as x — 1, not differentiable

(i1) not differentiable
(iv) not differentiable

at x =4 it is not continuous, atx =11, tangent is perpendicular
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(6) does not exist

(7) (i) not differentiable at x =nz,ne z

Exercise 10.2
(1) 1-3cosx
(4) —sinx—2sec’ x
(7) e*(cosx+sinx)

(I-x)cosx+(1+x)sinx

(10)

(sin x +cos x)*

(13) tan@secO+cosf+sind

(16) e |:l —log x]
X

(18) T cosZx
180 180

Exercise 10.3

@ (1) 5Q2x+4)(x* +4x+6)*

2

4) x*(1+x%) ?

(7) 7(3x* +4)(x’ +4x)°

(10) =3x”sin(a’ +x°)

82x=5 _ .. .
(13) (g2 +155-5]
e — 3

28 +1)* (£ -1)*

(19) sinx(1+sec” x)
(22) 3sin xcosx(sinx—cosx)

3e* +2e*

25) (1+e*)’

‘ ‘ Answers.indd 275
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(i1) not differentiable at x = (2n+ 1)%, ne z
(2) cosx—sinx (3) xcosx+sinx

(5) 3t*cost—1t’sint (6) 4secttant+sec’t

xsec’ x—tan x 1
g —— 9
® x’ 2 1+cosx
(11) cosx+sinx (12) xcosx—32smx
X
2
(14) _w (15) xcos2x+sinxcosx
sin” x
SBx| 2 x2+5
(17) e 3(x” +5)log(1+x)+ " +2xlog(1+ x)
+Xx
log,, e
19 —,
(2) 3sec’3x (3) —sec” xsin(tan x)
1 & . .
(%) 2\/;e (6) e cos(e’)
1
3( 1y(, 1 1 -2
8) =|t—=[]|1+= 9) —sec’t(1+tant) 3
(8) 2( t)( tz) 9) 3 ( )
(11) —my (12) 20secSxtan5x
8x” +14x 2 5
149 —= (15) e [1-2x7]
3(x% +2)3
14-3
(17) al (18) —sinxsec’(cosx)
2(7-3x)4/7-3x
1
5 *(log5) sec” x
200 — =2 2]) ———
@0 X ( )\/1+2tanx

23) —ksin kxsin(2 cos kx) (24) —6sin2x(1+cos’ x)°
(23)

2x +1
4[xx+/x

(26) (27) €*“**[cosx—xsin x]
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o8 4\/;m+2\/;+1 (29)cos(tanm)sec2(m)cosx (30) -2
8\/;\/x+«/;m 2sin a

Exercise 10.4

(1) x™ (ﬂ —sin xlog xj (2) x°¥ (2 long + (log x)* {L +log(log x)}
X X log x

— X 10 - logx 1

o Lo @ I 5) oy [@_mnxlogx}

b’x xxX*+y 4y 1—sec’(x+y)—sec’(x—y)
(6) ) (7) - (8 2 2

ay X— x> +y° sec”(x+y)—sec”(x—y)

1 6
(10) - 1) — (12) 1 (13) —tant
t* -1 2 3
(14) tant 15 — (16) —= (17) F
(18) 1 (19) cosx’ (20) 2 @n 5
22) -1 23) —2~ -
. (1-2%)? .

Exercise 10.5
@G| @ |G |G |O]O® ]G 300D | (12) | 13) |14 | (15)
2 4 3 3 1 4 3 2 1 4 3 3 2 2 4
(16) | (17) [ (18) | (19) | (20) | (21) | (22) | (23) | (24) | (25)
2 3 1 4 2 4 1 1 3 2

Exercise 11.1

W @) e (i) ——ste (i) 2xt+e i) St 1o
(2) (1) —lgot xX+c (i1) seg)ycc6+ c (1i1) zcosecx +c (iv) ‘}zfn x+c
(3) (i) 12°x+c (i) log|x|+c (i) e'+c

4) (i) tan"' x+c (i) sin”' x+c

Exercise 11.2

3

. (x+5) . 1 vy 2 S
1) 1) ———+ i +c i) —(3x+2)2+c¢
(1) (@) S te (i) 92327 (iii) 9( )
@) () —cos3x+c (ii) _sin(5-11x)+c (iii) _cot(Sx—7)+c
3 11 5
1 s L e S|
3) () =" +c (i) — +c (i) ——log|6—4x|+c
3 7 4
XI - Mathematics 276
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@) (i) 5tan§+c

(5) (1) %sin"l(4x)+c

Exercise 11.3

(11) —% cosec(5x+3)+c

(i1) ésin_l 9x)+c

(1) (x+4)6+ 1

3) 5tan§+9sin2x+256c(5x+3)+c

(5) 2tan'(3x+2)+3sin'(3—4x)+c

Exercise 11.4

(1) 2x* —5x+3
(4) (1) 8 seconds
(5) (1) 2.5 sq.cm

Exercise 11.5

2
X

(1) —+4x—3log|x|—z+c
2 X
(4) tanx—cotx—2x+c

(7) =3cotx—4cosecx+c

sin5x

+sinx]+c

1
(10) 5[

(ae)’
13) g €

22x+2 22—3x

log2 3log2

+c

(15)

(17) 2log|x+3|—log|x+2|+c

x+2 O
+3tan x+c¢

(19) log

Exercise 11.6

(D) V1+x* +¢

4) log 10" +x" | +c

‘ ‘ Answers.indd 277

cot(3x—1) te
6 3(2-5x)’ 3

(2) 3(x’-x"-1)
(1) 39.2 m/sec
(i) 1.5sq.cm

® [T [ [ [

(111) —% sec(2—-15x)+c

(1i1) %tan_1 (6x)+c

(2) —2sin(5-2x)+3 e ° —6log|6—4x|+c

(4) 2sin”'(4x)+9sin”' (3x)—3tan"'(5x) +c¢

(6) sin(§—4j+log |7x+9| 15¢5 +e

(3) 2x’—3x" +5x+26
(ii1)) 78.4 m/sec

2 3
) %+log|x|+2x+c 3) 8%+26x2—180x+c
(5) 2[sinx+xcosa]+c (6) —2cosec2x+c ®
(8) x—sinx+c 9) 2[Sm3x+sinx]+c
(11) %[x—snﬁ)ox]w (12) —%Cos4x+c

3

2 22 2
(14) E(3x+7)2—§(3x+7)2+c

3 3

(16) %[(x+3)2+(x—4)2]+c

(18) élog|x—1|—élog|x+2|+ +c

3(x+2)

(20) %+3x—log|x—1|+8log|x—2|+c

(2) %tan’l(x3)+c (3) logle' +e ™ |+c

(5) —2cos~/x+c (6) log |log(sin x) |+c
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(7) log

log[tan£]+c
2

(10) (1++/x)* —4(1+x)+2log |1+~/x | +c

(12) —e ™ +¢

sin® x

8

sin® x

.

(15)
Exercise 11.7
(1) (i) e [Bx—1]+c

(iii) —e > [Sx+1]+c

x*log|x| x°

2) (@ 2

2 . .
(i11) x“sinx+2xcosx—2sinx+c

(3) (i) —sin”' xVl1—-x" +x+c¢

+c

(iif) %[4)( tan"' 4x —log | 1+ 16x° |] te

Exercise 11.8

ax

e
a’ +b*

(1 @

[acosbx+bsinbx]+c

e "
5

(iii)

[2sin2x—cos2x]+c¢

e—3x

13

2) @ -

[3sin2x+2cos2x]+c

e3x

(i)

[sinx—3cosx]+c

Exercise 11.9

(1) ' log|secx |+c Q) < tc
2x

(5) xe™ *+c

(4) etanx+c

XI - Mathematics 278

‘ ‘ Answers.indd 278

(8) bizlog |a® +b*sin® x| +c (9)

(13) 2+/secx +c

(sin”' x)’
2

+c

(11) log|log(logx)|+c

(l_x)19 B (I_X)IS e

14
(14 19 18

(16) (x—a)cosa—sinalog|sec(x—a)|+c

xcos3x sin3x
3 9

(iv) xsecx—log|secx+tanx|+c

(i) —

(i) e*[9x* —6x+2]+c
(iv) —x’ cosx+3x”sinx+6xcosx—6sinx+c

(i)

%e*z [x*—2x"+2]+c

(iv) 2 [x tan~' x—log ‘xll +x°

|+

2x

(ii) =

[2sinx—cosx]+c

—4x

(i)

[2sin2x+cos2x]+c

(3) e'secx+c

X
——+c¢
1+log| x|

(6)
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Exercise 11.10

1 2+x 1 5+42x 1 3x-2
1) (i) ~lo ny i) —1o ny i) —1lo te
(D) () log = W 20852, i lees
@ () 5 |‘/_ 3+x|+c (i) —log =2+ ¢ (iii) 10gx+2+\/x2+4x+2‘+c
|\/’ x| 10 °|x+6

3) (i) 10g‘x+2+«/(x+2)2—1‘+c (ii) log

Exercise 11.11

x—2++/x" —4x+5‘+c (ii1) sin_l(x?_“)+c

(1) (i) log | x> +4x—12|~Llog|*=2
8 xX+6

+c (i1) %log|x2+2x+2|—7tan"1(x+1)+c

(iii) 310g|2x2—2x+3|+£talf1 21, .
4 2 J5

(2) (1) SSinlx—\/%;—z 9+4x—x +c¢ (i) Vx> —=1+2log|x+~x>=1|+c

(iii) 2vx* +4x+1—-log|x+2+~/x> +4x+1|+c
Exercise 11.12

© (OINC) xTH\/xz+2x+10+%log|x+l+\/x2+2x+10\+c ®
(i1) %m—2log|x—l+M|+c
(iif) xT_S\/IOx—x2—24 +%sin_l(x—5)+c

@ ) %[(2x+5),/9—(2x+5)2 +9sinl(2x+
(ii) %[(2x+l)w/8l+(2x+l)2 +81log
(i) XTH«/(x+1)2—4+210gx+1+«/(x+1)2—4‘+c

Exercise 11.13

M]|@ | |H |G [® [ ]|® O | d0]day | az|das)|ds | as
L3 4 | 1| 3 | 1 |3 |2 | 4|3 |42 4/|4]01
(16) | (17) | (18) | (19) | (20) | (21) | (22) | (23) | (24) | (25)
2 |3 |2 | 4|1 |3 ]4]3]|1]4

)

2x+1+4/81+(2x+1)°

|+
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Exercise 12.1

(1) (1) permissible (i1) not permissible  (iii) not permissible

@Oy @1 OO @5 @062 G065 i)
37 N7 . 14 N2 S 2

©) = MO (o 605 GG >
627 NS

9) Pory (10) (1) o (i) 2to 3

Exercise 12.2

(D@%(ﬂ%ﬁ@%(@l (2) () 0.50 (i) 0.35 (iii) 0.20

(9% (@) (i) 0.8 (ii) 0.5 (iii) 0.3
(5) (i) 0.9984 (i) 0.0016 (6) (i) 0.64 (i) 0.44

Exercise 12.3

(1) No (3) 0.5 (4) (1) 0.5 (11) 0.9
® (%) % (6) (1) % (i1) % (7) (1) 0.5 (i1) 0.375 ®
1 .09 . 21
(8) (1) 7 (11) 0 (111) 20 9) 0.75
(10) (1) 0.3 (i1) 0.5 (ii1) 0.5 (iv) 0.5 (11) () i (i1) L (12) E
' ' ' ' 28 14 30
Exercise 12.4
L1 L6 N o 3
(1) 0.028(2) (1) 50 (i1) 1 (3) @) 350 (1) 5

15 )
@ (5 O = () =

Exercise 12.5
MA@ |G| @] @O |0A0)]AD) | (12) | (13) | (14) | (15)
4 3 1 2 2 1 1 4 2 3 3 1 4 2 3
(16) | (17) [ (18) | (19) | (20) | (21) | (22) | (23) | (24) | (25)
1 4 3 2 3 2 2 4 4 3
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GLOSSARY

CHAPTER 7 free vector
MATRICES and DETERMINANTS ol bead vesia
matrix Sl co-initial vectors
order aufleng
row matrix Blenr el co-terminal
column matrix Blyed jemfl vectors
zero matrix bRl Siemil collinear vectors
null matrix Qeubml oiemwil
square matrix FZIT el parallel vectors
diagonal matrix epenaail L el coplanar vectors
unit matrix A0S el equal vectors

triangular matrix =~ (PSCHTERT Gig G Sjewi] zero vector

upper triangular GO APSCHTERT GLlg-6 unit vector

matrix s like vectors
lower triangular S W&CHTET Gl 61 :

matrix <oiewfl unlike vectors
principal diagonal ~ (PSETENLD eped Gl LD

scalar matrix FHeanauledl oiemwfl scala.r o
conformable 2 &bHS mul‘tl‘phcatlon
JE———— T — position vector
property section formula
associative CaLiyLl LietorL resolution of
property vector

identity property ~ FLoGILI LictTL direction cosines

inverse property ~ eTSIJOENDLI LievTL direction ratios

FL1q O GleUGL_IT
SIS L QeudLiy
@Gy QTS 1LeTer
OeUSL_T&6IT

@Cr W6 lLéref
OeUSL_T&6T

Gy CarLanlo
OleUGL_T&H6IT

@enenT O\eUSHL_[FEHe6T
6(1h FH6T GlEUSL_[THGIT
FLD QEUGL_TG&HET
Lpsaedll QeusL iy
SIV& CloUGLIT

@Gy deang QeusSL_F&He6T
THT Heva
OeUSL_T&6T
FHengudedls QLI(H&GSLD

Bleney GleudL iy
1ifley &SSTid
OCeusL_anrs
FMISeTTsL L9FlE5H0
Hengd CFHTEF6ITSHGT
FHeng cIFHFmigHeT

distributive LBIEL B Lietr scalar product Henagudladll QLImESSHLD
property vector product QUL QIUI(B&GSLD
symmetric FL0&ET
skew-symmetric o1l FLo&ET
determinant Sianfl&CaTena CHAPTER 9
: . o LIMITS AND CONTINUITY
singular matrix LRedluis Cameal jenfl leul o santlEL
non-singular LgeBluiopm GCamene. calculus LT S L
matrix 2| 6oot] hmlt GTGLEN GV
one sided limit 6(IHLIM GTELENEV
CHAPTER 8 left hand limit @\L_LIL|[D 6TeLEneD

VECTOR ALGEBRA-I right hand limit QUGLIL|M GTELENED

e QeusLiT infinite limit (WPlg- YOI TELENEL

initial point QFTL&&L1 LeTerfl limit at infinity
WPlg-6LI LiGTTer]

QlousL_fleir STk

terminal point

vertical asymptote
support of the Yip

vector

281

(Wlg e9ledludled
6TELENGED
ClFBIESSIS
Qs TeneLs
QaTOGHTH

GLOSSARY
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horizontal FlenL oL LG
asymptote Qs TEneLS
AL CIEEING
Sandwich theorem  @enL Uil (HS
Capmid
continuity QBTLF&HS H6iTenLD
discontinuity QarLF&fludleienLod
S6ITENLD
removable B&FE Falg LI
discontinuity QarLF&fludemenLo
jump discontinuity  gleTeTed
QarL_F&fludemenLo
CHAPTER 10

DIFFERENTIAL CALCULUS -
DIFFERENTIABILITY AND

METHODS OF DIFFERENTIATION

analytic equation
derivative
velocity
acceleration

jerk

tangency
difference quotient

secant line
tangent line

slope of the curve
rectilinear motion
position function
differentiable

differentiation
left hand derivative

right hand
derivative

non-
differentiability

quotient rule
chain rule

composite
functions rule

XI - Mathematics
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LGWenm &FLo6iIm(h
UMNHSH6\FH(LD
HenaFCGousLd
WH&sLD

GHPISGHLD
QaTOGCHTL(HL
LIGgoTL |
NgSHwimgmniserfler
aNdlgLb
Qeul_H&CHT(H)
AEHCIEETINE
QUGMOTELGNI] FITUIG]
CriCamiq W&sLD
BlENOEFF L
QUENSHEHLD /
UMSUIL_S5555
¥k V) [I))

@)L LD cuenSuglL_6d
GUELILIM cUenasudll_6d

S5
SEEHSOTS
QUGSSD g
SememoTLiL| o9l
FryLsefle CayLiL
ailg)

282

function of a
function rule

H .  EEEm

Fmyerr smiL a9

intermediate @evL_Blenev Lomm
argument
implicit 2 GITeMmjbg &ML
differentiation UEnSHUIL_6L
explicit QeuefliuenL_& FmiyLy
differentiation UEnSHUIL_6L
parametric SIEETUICV (& STITL
differentiation QUEnSHUIL_6»
higher order o wyelfleng
derivative QUEmSHUIIL_b
CHAPTER 11
INTEGRAL CALCULUS
integrand QETensEs FTiL
integrator Q@mens Lomm
anti-derivative TH LoD
eUeSUIL_D
indefinite integral ~ erELEMEL
QUENTUWIMISSLILIL TS
Qs Tens

CHAPTER 12 INTRODUCTION TO
PROBABILITY THEORY

experiment
deterministic
experiment
random
experiment
event

sure event or
certain event
impossible event

exhaustive event
sample space

mutually exclusive
events

equally likely
events
conditional
probability
independent
events

Camgener
Bliyemrudl &S L
Cargener
FLOGUIMUILIL |
Cargener
Blap&S

BlFsw Blapas)
@uwier BHlapEs)
WImeLoemmeSlw
BlEp&FS
FamGelerfl
QR6TEN MO\ WIT6ITM)
MNV& G LD

Bla &S Ge6T
FLOGUITWILIL
BlEDEFS ST
FMyLBleney
Blspssay

Fmyeor HlepEFSEH6rT
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