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1 Matrices and Determinants

Matrices and 
    Determinants7Chapter

“Mathematics is the music of reason”
- Sylvester

7.1 Introduction
 The beginnings of matrices and determinants go back to the second century BC although traces 
can be seen back to the fourth century BC. However, it was not until near the end of the seventeenth 
century that the ideas reappeared and development really got underway. It is not surprising that 
the beginnings of matrices and determinants should arise through the study of systems of linear 
equations. The Babylonians studied problems which lead to simultaneous linear equations and some 
of these are preserved in clay tablets which survive till now.

 The evolution of the theory of ‘matrices’ is the result of 
attempts to obtain compact and simple methods for solving 
systems of linear equations. It also began with the study of 
transformations of geometric objects. In 1850, it was James 
Joseph Sylvester an English Mathematician and lawyer, 
coined the word ‘Matrix’ (originally from Latin: M a ter 
means     Mother - Collin’s Dictionary). Matrices are now 
one of the most powerful tools in mathematics.

 Generally, a matrix is nothing but a rectangular array 
of objects. These matrices can be visualised in day-to-day 
applications where we use matrices to represent a military parade or a school assembly or vegetation.

 The term ‘determinant’ was first coined by Carl F Gauss in Disquisitiones arithmeticae 
(1801) while studying quadratic forms. But the 
concept is not the same as that of modern day 
determinant. In the same work Gauss laid out the 
coefficients of his quadratic forms in rectangular 
arrays where he described matrix multiplication.

 It was Cauchy (in 1812) 
who used determinant in its 
modern sense and studied it in 

detail. He reproved the earlier results and gave new results of his own on minors 
and adjoints. It was Arthur Cayley whose major contribution was in developing 
the algebra of matrices and also published the theory of determinants in 1841. 
In that paper he used two vertical lines on either side of the array to denote the 
determinant, a notation which has now become standard.  In 1858, he published Sylvester

(1814 - 1897)
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2XI - Mathematics

Memoir on the theory of matrices which was remarkable for containing the first abstract definition 
of a matrix. He showed that the coefficient arrays studied earlier for quadratic forms and for linear 
transformations were special cases of his general concept.  They simplify our work to a great extent 
when compared with other straight forward methods which would involve tedious computation. 
The mathematicians James Joseph Sylvester (1814 – 1897), William Rowan Hamilton (1805 – 
1865), and Arthur Cayley (1821 – 1895) played important roles in the development of matrix theory. 
English mathematician Cullis was the first to use modern bracket notation for matrices in 1913. 
The knowledge of matrices is absolutely necessary not only within the branches of mathematics but 
also in other areas of science, genetics, economics, sociology, modern psychology and industrial 
management.

 Matrices are also useful for representing coefficients in systems of linear equations. Matrix 
notations and operations are used in electronic spreadsheet programs on computers, which in turn are 
used in different areas of business like budgeting, sales projection, cost estimation, and in science, for 
analyzing the results of an experiment etc.

 Interestingly, many geometric operations such as magnification, rotation and reflection through 
a plane can also be represented mathematically by matrices. Economists use matrices for social 
accounting, input-output tables and in the study of inter-industry economics. Matrices are also 
used in communication theory and network analysis in electrical engineering. They are also used in 
Cryptography.

 In this chapter, we now first discuss matrices and their various properties. Then we continue to 
study determinants, basic properties, minors and their cofactors. Here we now restrict the discussion 
up to determinants of order 3 only.

7.2 Matrices
 A matrix is a rectangular array or arrangement of entries or elements displayed in rows and 
columns put within a square bracket [ ].

 In general, the entries of a matrix may be real or complex numbers or functions of one variable 
(such as polynomials, trigonometric functions or a combination of them) or more variables or any 
other object. Usually, matrices are denoted by capital letters A, B, C, ... etc. In this chapter the entries 
of matrices are restricted to either real numbers or real valued functions on real variables.

General form of a matrix

 If a matrix A has m rows and n columns, then it is written as 

 [ ] ,1 ,1 .ij m nA a i m j n×= ≤ ≤ ≤ ≤  

Learning Objectives

On completion of this chapter, the students are expected to

• visualise difficult problems in a simple manner in terms of matrices.

• understand different types of matrices and algebra of matrices.

• compute determinant values through expansion and using properties of determinants.

• apply the concepts of matrices and determinants to find the area of a triangle and collinearity 
of three points.
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3 Matrices and Determinants

That is,

 Note that m and n are positive integers.
 The following are some examples of matrices :

2

2

1 5 7
7 9 1.2 02 0 1 13.4 2

21 4 5 , sin 2 4 , and .
4 3 49 8 6

cos 1 3 6 5 22

xA B x C
e

x
a

  − 
 −  −        = = =       − −     
 −    

 

 In a matrix, the horizontal lines of elements are known as rows and the vertical lines of elements 
are known as columns. Thus A has 3 rows and 3 columns, B has 3 rows and 4 columns, and C has 4 
rows and 3 columns.

Definition 7.1
 If a matrix A has m rows and n columns then the order or size of the matrix A is defined to be 
m × n (read as m by n). 

 The objects 11 12, , ..., mna a a  are called elements or entries of the matrix A [ ]ij m na ×= . The element 

ija   is common to ith row and jth column and is called (i, j)th element of A.  Observe that the ith row and 

jth column of A are  1  and 1n m× ×  matrices respectively and are given by 

1

2
1 2[ ... ] and  

j

j
i i in

mj

a
a

a a a

a

 
 
 
 
 
  

�
  

 We shall now visualize the representation and construction of matrices for simplifying day-to-day 
problems.
Illustration 7.1
 Consider the marks scored by a student in different subjects and in different terminal examinations. 
They are exhibited in a tabular form as given below :

Tamil English Mathematics Science Social Science
Exam 1 48 71 80 62 55

Exam 2 70 68 91 73 60

Exam 3 77 84 95 82 62

 This tabulation represents the above information in the form of matrix. What does the entry in the 
third row and second column represent?

Column 1 Column 2          Column j       Column 
                               

                            n columns

[ ]ij m n

n

A a ×= =

 Row 1
 Row 2

 rows 

 Row 

 Row 

m

i

m

←
←

←

←

11 12 1 1

21 22 2 2

1 2

1 2

j n

j n

i i ij in

m m mj mn

a a a a
a a a a

a a a a

a a a a

 
 
 
 
 
 
 
 
  

� �
� �

� � � � � �
� �

� � � � � �
� �

Unit7.indd   3 10-08-2018   18:22:51



4XI - Mathematics

 The above information may be represented in the form of a 3 × 5 matrix A as

 
48 71 80 62 55
70 68 91 73 60 .
77 95 82 62

A
 
 =  
  84

 The entry 84 common to the third row and the second column in the matrix represents the mark 
scored by the student in English Exam 3. 

Example 7.1
 Suppose that a matrix has 12 elements. What are the possible orders it can have? What if it has 
7 elements?

Solution
 The number of elements is the product of number of rows and number of columns. Therefore, 
we will find all ordered pairs of natural numbers whose product is 12. Thus, all the possible 
orders of the matrix are 1 12, 12 1, 2 6, 6 2, 3 4 and 4 3.× × × × × ×
 Since 7 is prime, the only possible orders of the matrix are 1 × 7 and 7 × 1.

Example 7.2
 Construct a 2 × 3 matrix whose (i, j)th element is given by 

 3 | 2 3 | (1 2, 1 3).
2ija i j i j= − ≤ ≤ ≤ ≤  

Solution

 In general, a 2 × 3 matrix is given by 11 12 13

21 22 23

a a a
A

a a a
 

=  
 

 

 By definition of ija , we easily have 11
3 3| 2 3 |

2 2
a = − =   and other entries of the matrix 

A may be computed similarly. Thus, the required matrix 

3 7 32 3
2 2is .
3 5 33

2 2

A

 
 
 
 
  

 

7.2.1 Types of Matrices
Row, Column, Zero matrices

Definition 7.2
 A matrix having only one row is called a row matrix.

 For instance, 1 4[ ] [1 0 1.1 2]A A ×= = −  is a row matrix. More generally, 1 1 1[ ] [ ]ij n j nA a a× ×= =  
is a row matrix of order 1 n× .

Definition 7.3
 A matrix having only one column is called a column matrix. 
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5 Matrices and Determinants

 For instance, 
2

4 1

1

[ ]
3
4

x
x

A
x×

+ 
 
 =
 
 
 

 is a column matrix whose entries are real valued functions of real 

variable x. More generally, 1 1 1[ ] [ ]ij m i mA a a× ×= =  is a column matrix of order 1.m×  

Definition 7.4

 A matrix [ ]ij m nA a ×=  is said to be a zero matrix or null matrix or void matrix denoted by O  if 

0ija =  for all values of  and 1 .1 i m j n≤ ≤ ≤ ≤  

 For instance, 
0 0 0

0 0 0 0
[0], 0 0 0  and 

0 0 0 0
0 0 0

 
  
      

 are zero matrices of order 1 1, 3 3 and 2 4× × ×  

respectively.
 A matrix A is said to be a non-zero matrix if at least one of the entries of A is non-zero.
Square, Diagonal, Unit, Triangular matrices

Definition 7.5
 A matrix in which number of rows is equal to the number of columns, is called a square 
matrix.  That is, a matrix of order n × n is often referred to as a square matrix of order n.          

 For instance, 
a b c

A d c f
g h l

 
 =  
  

 is a square matrix of order 3. 

Definition 7.6
 In a square matrix [ ]ij n nA a ×=  of order n, the elements 11 22 33, , ,..., nna a a a  are called the principal 
diagonal or simply the diagonal or main diagonal or leading diagonal elements.

Definition 7.7
 A square matrix [ ]ij n nA a ×=  is called a diagonal matrix if   a i jij � �0 whenever .

 Thus, in a diagonal matrix all the entries except the entries along the main diagonal are zero. For 
instance,

  

 are diagonal matrices of order 3, 2, 1, and n respectively. 
 Is a square zero matrix, a diagonal matrix?
Definition 7.8
 A diagonal matrix whose entries along the principal diagonal are equal is called a  
Scalar matrix.

A B
r
s
C D

a

�

�

�

�
�
�

�

�

�
�
�

�
�

�
�

�

�
� � �

2 5 0 0

0 3 0

0 0 0 5

0

0
6

0 0 0
11

.

.

, , [ ],  and

�
00 0 0

0 0 0

0

22

33

a
a

ann

�
�

� � � � �
� � �

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�
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6XI - Mathematics

 That is, a square matrix [ ]ij n nA a ×=  is said to be a scalar matrix if   
if

0 ifij

c i j
a

i j
=

=  ≠
 

 where c is a fixed number. For instance,

  

 are scalar matrices of order 3, 2, 1, and n respectively.
 Observe that any square zero matrix can be considered as a scalar matrix with scalar 0.

Definition 7.9
 A square matrix in which all the diagonal entries are 1 and the rest are all zero is called a  

unit matrix. Thus, a square matrix [ ]ij n nA a ×=  is said to be a unit matrix if 
1 if 
0 if  ij

i j
a

i j
=

=  ≠
 .

 We represent the unit matrix of order n as .nI   For instance,

  

I I I In1 2 3
1

1 0

0 1

1 0 0

0 1 0

0 0 1

1 0 0

= =










 =



















=[ ], , , and

�
00 1 0

0 0 1

1

2
�

� � � �
�























R
R

Rn

 are unit matrices of order 1, 2, 3 and n respectively.
Note  7.1
 Unit matrix is an example of a scalar matrix.

   There are two kinds of triangular matrices namely upper triangular  and lower triangular matrices. 

Definition 7.10
 A square matrix is said to be an upper triangular matrix if all the elements below the main 
diagonal are zero. 

 Thus, the square matrix [ ]ij n nA a ×=  is said to be an upper triangular matrix if 0 for all .ija i j= >   
For instance,

    are all upper triangular matrices.

Definition 7.11
 A square matrix is said to be a lower triangular matrix if all the elements above the main 
diagonal are zero. 

 More precisely, a square matrix [ ]ij n nA a ×=  is said to be a lower triangular matrix if 

0 for all .ija i j= <  For instance,

A B C D

c

�

�

�

�
�
�
�

�

�

�
�
�
�

�
�

�
�

�
�

�

�
� � ��

�
� �

2 0 0

0 2 0

0 0 2

5 0

0 5
3

0 0

0
, ,  and 

�
cc

c

R
R

Rn

�
� � � �

�

0

0 0

1

2

�

�

�
�
�
�

�

�

�
�
�
�

4 3 0

0 7 8

0 0 2

5 2

0 1

0

11 12 1

22 2



















−









, , and

a a a
a a

n

n

�
�

� �� � �
0 0 0 ann
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7 Matrices and Determinants

    are all lower triangular  

matrices.

Definition 7.12
 A square matrix which is either upper triangular or lower triangular is called a triangular 
matrix.

 Observe that a square matrix that is both upper and lower triangular simultaneously will turn out 
to be a diagonal matrix.

7.2.2 Equality of Matrices
Definition 7.13

 Two matrices [ ] and [ ]ij ijA a B b= =  are equal (written as A = B) if and only if
 (i) both A and B are of the same order
 (ii) the corresponding entries of A and B are equal. That is, ij ija b=  for all i and j.

 For instance, if

  
2.5 1
1 3

52

x y
u v

− 
   =       

, then we must have 1 32.5, 1,  and .
52

x y u v= = − = =  

Definition 7.14
 Two matrices A and B are called unequal if either of condition (i) or (ii) of Definition 7.13 does 
not hold. 

 For instance, 
4 3 8 5

  
0 8 0 4

− −   
≠   

   
 as the corresponding entries are not equal. Also 

5 8
4 3

  3 4
0 8

6 7

− 
−   ≠       

as the orders are not the same.

Example 7.3

 Find x, y, a, and b if 
3 4 6 2 2 6 4

2 3 5 5 3
x y x y
a b a b

+ −   
=   + − − − −   

 .

Solution
 As the orders of the two matrices are same, they are equal if and only if the corresponding 
entries are equal. Thus, by comparing the corresponding elements, we get
 3 4 2, 2 4, 5,   and 2 5.x y x y a b a b+ = − = + = − = −  
 Solving these equations, we get  2, 1, 0,   and  5.x y a b= = − = =  

11

21 22

1 2

0 0
2 0 0 2 0 0

0 02 0
4 1 0 ,   4 1 0 , , and 

9 3
0 0 0 8 5 7

n n nn

a
a a

a a a

 
     −            −    −     

 

�

� � � �
�
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8XI - Mathematics

7.2.3 Algebraic Operations on Matrices
 Basic operations on matrices are
	 (1) multiplication of a matrix by a scalar,
 (2) addition/subtraction of two matrices, and
 (3) multiplication of two matrices.
 There is no concept of dividing a matrix by another matrix and thus, the operation A

B
, where A 

and B are matrices, is not defined.
(1) Multiplication of a matrix by a scalar

 For a given matrix [ ]ij m nA a ×=  and a scalar k, we define a new matrix [ ] ,ij m nkA b ×=  where ij ijb ka=  
for all i and j. 

 For instance, if   A
a b c
d e f

kA
ka kb kc
kd ke kf

�
�

�
�

�

�
� �

�

�
�

�

�
�,  then  

 In particular if 1k = − , we obtain [ ]ij m nA a ×− = − . This - A is called negative of the matrix A. 
Don’t say - A as a negative matrix.
(2) Addition and Subtraction of two matrices
 If A and B are two matrices of the same order, then their sum denoted by A + B, is again a matrix 
of same order, obtained by adding the corresponding entries of A and B. 

 More precisely, if [ ]  and [ ]ij m n ij m nA a B b× ×= =  are two matrices, then the sum A + B of A and B is 
a matrix given by

 [ ]  where ij m n ij ij ijA B c c a b×+ = = + for all i and j.

 Similarly subtraction A - B is defined as ( 1) .A B A B− = + −  

 That is, [ ] ,  where ij m n ij ij ijA B d d a b×− = = −  ∀  i and j.  (The symbol ∀  denotes for every or for 
all).

Note 7.2
 (i) If A and B are not of the same order, then A + B and A - B are not defined.
 (ii) The addition and subtraction can be extended to any finite number of matrices.

Example 7.4
 Compute A + B and A - B if

  
3 5 7.34 5 7  and 1 11 0 0.5 1

3 4

A B
    = =   −    

 . 

Solution
 By the definitions of addition and subtraction of matrices, we have

 
4 3 2 5 14.3 4 3 0 0.3

  and  1 3 1 10 2
3 4 3 4

A B A B
   + − −
   + = − =   − −      
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9 Matrices and Determinants

Example 7.5
 Find the sum A + B + C   if A, B, C are given by

  
2 2

2 2

0 1sin 1 cos 0
,    and  

1 0cot 0 cosec 1
A B C

θ θ
θ θ

−     
= = =     −−     

 .

Solution 
 By the definition of sum of matrices, we have

  
2 2

2 2

1 0sin cos 0 1 0 1
2 1cot cosec 1 0 1 0

A B C
θ θ
θ θ

 + + + −  
+ + = =   −− − + +   

 .

Example 7.6
 Determine 3B + 4C - D  if  B, C, and D are given by

  
2 3 0 1 2 3 0 4 1

,   ,   
1 1 5 1 0 2 5 6 5

B C D
− − −     

= = =     − − −     
 .

Solution 

   3 4B C D+ −  = 
6 9 0 4 8 12 0 4 1 2 3 13

.
3 3 15 4 0 8 5 6 5 6 9 28

− − − −       
+ + =       − − − − − −       

Example 7.7
 Simplify : 

 
sec tan tan sec

sec tan
tan sec sec tan

θ θ θ θ
θ θ

θ θ θ θ
   

−   
   

 .

Solution
 If we denote the given expression by A, then using the scalar multiplication rule, we get

   A = 
2 2

2 2

sec sec tan tan tan sec
sec tan sec sec tan tan

θ θ θ θ θ θ
θ θ θ θ θ θ

   
−   

   
 = 

1 0
0 1

 
 
 

 .

(3) Multiplication of matrices

Definition 7.15
 A matrix A is said to be conformable for multiplication with a matrix B if the number of 
columns of A is equal to the number of rows of B. 

 That is, if [ ]  and [ ]ij m n ij n pA a B b× ×= =  are given two matrices, then the product of matrices A and 
B is denoted by AB  and its order is m × p.
 The order of AB is ( )number of rows of (number of columns of ).m p A B× = ×  

A B
must be same

product is of order 

m n× n p×

m p×
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10XI - Mathematics

    If  

1

2
1 2 1

1

[ ... ]  and ,n n

n n

b
b

A a a a B

b

×

×

 
 
 = =
 
 
 

�
then AB is a matrix of order 1 × 1, that gives a single 

element which is defined by  

1

2
1 2 1 1 2 2

1
[ ... ] [ ... ] .

n

n n n k k
k

n

b
b

AB a a a a b a b a b a b

b
=

 
    = = + + + =     
 
 

∑�

 For instance, 

  
2

[1 2 3] 3 [1( 2) 2(3) 3(5)] [ 2 6 15] [19].
5

− 
  = − + + = − + + = 
  

 

 In general,

 if 

11 12 111 12 1

21 22 221 22 2

1 21 2

[ ]  and [ ]  

pn

pn
ij m n ij n p

n n npm m mn

b b ba a a
b b ba a a

A a B b

b b ba a a

× ×

  
  
  = = = =
  
  
    

��
��

� � � �� � � �
��

 then

 and the product 

11 12 1

21 22 2

1 2

[ ]  

p

p
ij m p

m m mp

c c c
c c a

AB c

c c c

×

 
 
 = =
 
 
  

�
�

� � � �
�

,

 where   ijc = 

1

2
1 2

1
[ ... ] ,  since c  is an element.

j

n
j

i i in ik kj ij
k

nj

b
b

a a a a b

b
=

 
 
  =
 
 
  

∑�

Example 7.8

 If 
0

0
0

c b
A c a

b a

 
 =  
  

 ,  compute 2.A

Solution 

    A2 = AA = 
11 12 13

21 22 23

31 32 33

0 0
0 0

0 0

c b c b c c c
c a c a c c c
b a b a c c c

     
     =     
          

AB =

11 12 1

21 22 2

1 2

n

n

m m mn

a a a
a a a

a a a

 
 
 
 
 
 

�
�

� � � �
�

11 12 1

21 22 2

1 2

p

p

n n np

b b b
b b b

b b b

 
 
 
 
 
  

�
�

� � � �
�
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11 Matrices and Determinants

where 11c  = 2 2

0
[0 ] 0 0c b c c c b b c b

b

 
  = ⋅ + ⋅ + ⋅ = + 
  

 and other elements ijc  may be computed similarly. 

Finally, we easily obtain that

   A2 = 

2 2

2 2

2 2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

c b ab ac
ab c a bc

ac bc b a

 + + + + + +
 + + + + + + 
 + + + + + + 

 = 

2 2

2 2

2 2

b c ab ac
ab c a bc
ac bc a b

 +
 + 
 + 

.

Example 7.9

 Solve for x if   [x    2   -1] 
1 1 2
1 4 1 2
1 1 2 1

x   
   − −   
   − − −   

= O.

Solution 

  [x    2   -1] 
1 1 2
1 4 1 2
1 1 2 1

x   
   − −   
   − − −   

 = O

 That is, [ 2 1 8 1 2 2 2] 2
1

x
x x x

 
 − + − + + +  
  

 = O

  [ 1 7 2 4] 2
1

x
x x x

 
 − − +  
  

 = O

  ( 1) 2( 7) 1(2 4)x x x x− + − + +   = 0 
  2 3 10x x+ −   = 0   ⇒  x = -5, 2.

Note 7.3
 We have the following important observations:

  (1) If A = [ ]  and [ ] ,  and ,ij m n ij n pa B b m p× ×= ≠  then the product AB is defined but not BA.
  (2) The fundamental properties of real numbers namely,

   ,ab ba a b= ∀ ∈

   , , , 0ab ac b c a b c a= ⇒ = ∀ ∈ ≠  

   0 0 or 0 , .ab a b a b= ⇒ = = ∀ ∈  
   Can we discuss these in matrices also?
    (i) Even if AB and BA are defined, then AB = BA is not necessarily true.
    For instance, we consider

     A = 
1 1 2 1

  and  
2 0 3 1

B
−   

=   
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12XI - Mathematics

    and observe that AB ≠ BA, since

     AB = 
5 0 0 2

  and  
4 2 5 3

BA   
=   −   

 

    In this case we say that A and B do not commute (with respect to multiplication)
    Observe that AB = BA is also possible. For instance,

     if   A = 
2 2 1 2 2 0

  and   then, 
2 1 2 2 0 2

B AB BA
− −     

= = =     − −     
 

   In this case we say that A and B commute with respect to multiplication.

  (ii) Cancellation property does not hold for matrix multiplication. That is, ,A O≠  B, and C 
are three square matrices of same order  with 1n n n× > , then AB = AC does not imply 
B = C  and BA = CA does not imply B = C. 

    As a simple demonstration of these facts, we observe that for instance,

     
1 0 0 0
1 0 1 1

   
   
   

 = 
1 0 0 0 0 0
1 0 2 3 0 0

     
=     

     

    but 
0 0
1 1

 
 
 

 ≠ 
0 0

.
2 3

 
 
 

 

  (iii) It is possible that AB = O with A ≠ O and B ≠ O; Equivalently, AB = O is not necessarily 
imply either A = O or B = O. The following relation demonstrates this fact :

     
1 0 0 0
1 0 1 1

   
   
   

 = 
0 0
0 0

 
 
 

  

 (3) In general, for any two matrices A and B which are conformable for addition and multiplication, 
for the below operations, we have

  � � � �( )A B A AB B2 2 2
2 need not be equal to 

  � � � �A B A B A B2 2
 need not be equal to ( )( ).

Example 7.10

 If
1 1 2 1 3
2 1 3 and 1 1

0 3 4 1 2
A B

− −   
   = − = −   
   −   

 find AB and BA if they exist. 

Solution 
 The order of A is 3 × 3 and the order of B is 3 × 2. Therefore the order of AB is 3 × 2.
 A and B are conformable for the product AB. Call C = AB. Then,
 c11 = (first row of A)  (first column of B)

 ⇒   11 [1 1 2]c = − 11

1
1 1 1 2 4,   since is an element.
1

c
 
 − = + + = 
  

 Similarly    12 21 22 31 320, 0, 13, 7, 5.c c c c c= = = = =
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13 Matrices and Determinants

  Therefore, AB C cij= = [ ]  = 
4 0
0 13
7 5

 
 
 
  

 The product BA does not exist, because the number of columns in B is not equal to the 
number of rows in A.

Example 7.11
 A fruit shop keeper prepares 3 different varieties of gift packages. Pack-I contains 6 apples, 
3 oranges and 3 pomegranates. Pack-II contains 5 apples, 4 oranges and 4 pomegranates and 
Pack –III contains 6 apples, 6 oranges and 6 pomegranates. The cost of an apple, an orange and a 
pomegranate respectively are ̀  30, ̀  15 and ̀  45.  What is the cost of preparing each package of  
fruits?

Solution 

  Cost matrix  A  = [30  15  45],        

                             P-I P-II P-III
6 5 6 Apples

Fruit matrix 3 4 6 Oranges
3 4 6 Pomegranates

B
 
 =  
  

 

 Cost of packages are obtained by computing AB. That is, by multiplying cost of each item in A 
(cost matrix A) with number of items in B (Fruit matrix B).

  AB = 
6 5 6 360

[30 15 45] 3 4 6 390
3 4 6 540

   
   =   
      

 

 Pack-I cost ` 360, Pack-II cost ` 390, Pack-III costs ` 540.

7.2.4 Properties of Matrix Addition, Scalar Multiplication and  
         Product of Matrices
 Let A, B, and C be three matrices of same order which are conformable for addition and a, b be 
two scalars. Then we have the following:
 (1) A + B yields a matrix of the same order  
 (2) A + B = B + A  (Matrix addition is commutative)
 (3) (A + B) + C = A + (B + C)  (Matrix addition is associative)
 (4) A + O = O + A = A  (O is additive identity) 
 (5) A + (- A)=O = (- A) + A  (- A is the additive inverse of A)
 (6) (a + b)A = aA + bA and a(A + B) = aA + aB
 (7) a(bA) =(ab)A,   1A = A and 0A = O.
Properties of matrix multiplication
 Using the algebraic properties of matrices we have,
 • If A, B, and C are three matrices of orders m ×  n, n × p and p × q  respectively, then A(BC) 

and (AB)C are matrices of same order m × q and 
  A(BC) = (AB)C (Matrix multiplication is associative).
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 • If A, B, and C are three matrices of orders m × n, n × p, and n × p respectively, then A(B + C) 
and AB + AC are matrices of the same order m × p and 

  A(B + C) = AB + AC. (Matrix multiplication is left distributive over addition)
 • If A, B, and C are three matrices of orders m × n, m × n, and n × p respectively, then (A + B)C 

and AC + BC are matrices of the same order m × p and 
  (A + B)C = AC + BC. (Matrix multiplication is right distributive over addition).
 • If A, B are two matrices of orders m × n and n × p respectively and α is scalar, then 

( ) ( ) ( )AB A B A Bα α α= = is a matrix of order m × p.
 • If I is the unit matrix, then AI = IA = A (I is called multiplicative identity).

7.2.5 Operation of Transpose of a Matrix and its Properties
Definition 7.16
 The transpose of a matrix is obtained by interchanging rows and columns of A and is denoted 
by AT. 
 More precisely, if [ ] ,ij m nA a ×=  then [ ] ,T

ij n mA b ×=  where ij jib a=  so that the (i, j)th entry of 
 is .T

jiA a   

For instance,

  

1 8
1 2 4  implies  2 0
8 0 0.2 4 0.2

TA A

− 
   

= =   −   
 

 

 We state a few basic results on transpose whose proofs are straight forward.

 For any two matrices A and B of suitable orders, we have

 (i) ( )T TA A=   (ii) ( )T TkA kA=  (where k is any scalar)

 (iii) ( )T T TA B A B+ = +   (iv) ( )T T TAB B A=  (reversal law on transpose)

Example 7.12

 If 
4 6 2 0 1 1
0 1 5  and 3 1 4 ,
0 3 2 1 2 1

A B
−   

   = = −   
   −   

 verify (i) ( )T T TAB B A=   (ii)  ( )T T TA B A B+ = +   (iii) ( )T T TA B A B− = −   (iv) (3 ) 3T TA A=  

Solution

 (i)  AB = 
4 6 2 0 1 1 16 2 22
0 1 5 3 1 4 2 9 9
0 3 2 1 2 1 7 1 14

−     
     − = −     
     −     

      

   (AB)T = 
16 2 7
2 9 1

22 9 14

− 
 
 
  

    ... (1)
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15 Matrices and Determinants

   BT = 
0 3 1 4 0 0
1 1 2 , 6 1 3
1 4 1 2 5 2

TA
−   

   − =   
   −   

 

   T TB A  = 
0 3 1 4 0 0 16 2 7
1 1 2 6 1 3 2 9 1
1 4 1 2 5 2 22 9 14

− −     
     − =     
     −     

   ... (2)

  From (1) and (2),  ( ) .T T TAB B A=

 (ii)  A + B = 
4 6 2 0 1 1 4 7 1
0 1 5 3 1 4 3 0 9
0 3 2 1 2 1 1 5 3

−     
     + − =     
     − −     

 

    (A + B)T = 
4 3 1
7 0 5
1 9 3

− 
 
 
  

    ...(3)

   T TA B+  = 
4 0 0 0 3 1 4 3 1
6 1 3 1 1 2 7 0 5
2 5 2 1 4 1 1 9 3

− −     
     + − =     
     −     

  ... (4)

  From (3) and (4),        ( ) .T T TA B A B+ = +  

 (iii)  A - B = 
4 6 2 0 1 1 4 5 3
0 1 5 3 1 4 3 2 1
0 3 2 1 2 1 1 1 1

−     
     − − = −     
     −     

 

   ( )A B T-  = 
4 3 1
5 2 1
3 1 1

− 
 
 
  

   ... (5)

   T TA B−   = 
4 0 0 0 3 1
6 1 3 1 1 2
2 5 2 1 4 1

−   
   − −   
   −   

 = 
4 3 1
5 2 1
3 1 1

− 
 
 
  

    ... (6)

 From (5) and (6)    ( ) .T T TA B A B− = −  

 (iv) 
12 18 6

3 0 3 15  
0 9 6

A
 
 =  
  

  
12 0 0 4 0 0

(3 ) 18 3 9 3 6 1 3 3( )
6 15 6 2 5 2

T TA A
   
   = = =   
      

 .
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7.2.6 Symmetric and Skew-symmetric Matrices

Definition 7.17

 A square matrix A is said to be symmetric if . TA A=  

 That is, [ ]ij n nA a ×= is a symmetric matrix, then ij jia a=  for all i and j. 

 For instance,  
3 6 9
6 8 5

9 5 2
A

− 
 = − 
  

 is a symmetric matrix since AT = A.

 Observe that transpose of AT is the matrix A itself. That is ( )TTA A.=  

Definition 7.18
 A square matrix A is said to be skew-symmetric if .TA A= −

  If [ ]ij n nA a ×=  is a skew-symmetric matrix, then ij jia a= −  for all i and j. 

 Now, if we put i = j, then 2 0 or 0ii iia a= =  for all i. This means that all the diagonal elements of 
a skew-symmetric matrix are zero. 

 For instance,
0 2 3
2 0 4
3 4 0

A
 
 = − 
 − − 

  is a skew-symmetric matrix since TA A= −  .

 It is interesting to note that any square matrix can be written as the sum of symmetric and  
skew-symmetric matrices.  
Theorem 7.1
 For any square matrix A with real number entries, A AT+ is a symmetric matrix and TA A−  is a 
skew-symmetric matrix.
Proof 
 Let B = A + AT.

  TB  = ( )T TA A+  = ( )T T TA A+  = T TA A A A B+ = + = .
 This implies TA A+  is a symmetric matrix.
 Next, we let TC A A= − .  Then we see that

 ( ( )) ( ) ( ) ( )T T T T T T T T T T TC A A A A A A A A A A C= + − = + − = − = − = − − = −  
 This implies TA A−  is a skew-symmetric matrix.
Theorem 7.2
 Any square matrix can be expressed as the sum of a symmetric matrix and a skew-symmetric 
matrix.
Proof
 Let A be a square matrix. Then, we can write

  1 1( ) ( ).
2 2

T TA A A A A= + + −  

 From Theorem 7.1, it follows that ( ) and ( )T TA A A A+ −  are symmetric and skew-symmetric 

matrices respectively. Since ( ) ,T TkA kA=  it follows that 1 ( ) and
2

TA A+  1 ( )
2

TA A− are symmetric 

and skew-symmetric matrices, respectively. Now, the desired result follows.
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17 Matrices and Determinants

Note 7.4
 A matrix which is both symmetric and skew-symmetric is a zero matrix.

Example 7.13

 Express the matrix 
1 3 5
6 8 3
4 6 5

A
 
 = − 
 − 

 as the sum of a symmetric and a skew-symmetric matrices.

Solution 

   A = 
1 3 5
6 8 3
4 6 5

 
 − 
 − 

 ⇒   AT = 
1 6 4
3 8 6
5 3 5

− − 
 
 
  

   Let  1 ( )
2

TP A A= +  = 
2 3 1

1 3 16 9
2

1 9 10

− 
 − 
  

   Now  PT  = 

2 3 1
1 3 16 9
2

1 9 10

− 
 − 
  

=P

   Thus,  P =  1 ( )
2

TA A+  is a symmetric matrix.

   Let Q = 1 ( )
2

TA A−

    = 
0 9 9

1 9 0 3
2

9 3 0

 
 − − 
 − 

   Then   QT  = 
0 9 9

1 9 0 3
2

9 3 0
Q

− − 
  = − 
 − 

   Thus   Q = 1 ( )
2

TA A−  is a skew-symmetric matrix.

   A = 
2 3 1 0 9 9

1 13 16 9 9 0 3
2 2

1 9 10 9 3 0
P Q

−   
   + = − + − −   
   −   

 

Thus A is expressed as the sum of symmetric and skew-symmetric matrices.

EXERCISE 7.1
 (1) Construct an m × n matrix [ ],  where ij ijA a a=  is given by 

  (i) 
2( 2 )  with 2, 3

2ij
i ja m n−= = =           (ii) | 3 4 |  with 3, 4

4ij
i ja m n−= = =  
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 (2) Find the values of p, q, r, and s if

  

2 3 1 0 41 0 31
37 1 9 7 9
2

2 8 1 2 8

p q
r

s π

−  − − −     + =    − −    − − 

 .

 (3) Determine the value of x + y if  
2 4 7 7 13

.
5 7 4 6

x y x y
x x y x

+ −   
=   − +   

 (4) Determine the matrices A and B if they satisfy

  
6 6 0 3 2 8

2 0 and 2
4 2 1 2 1 7

A B A B
−   

− + = − =   − − −   
 

 (5) If 
1
0 1

a
A  

=  
 

,  then compute A4.

 (6) Consider the matrix 
cos sin
sin cos

Aα
α α
α α

− 
=  

 
 

  (i) Show that ( ).A A Aα β α β+=   

  (ii)  Find all possible real values of α satisfying the condition .TA A Iα α+ =  

 (7) If 
4 2
1

A
x

 
=  − 

 and such that ( 2 )( 3 ) ,A I A I O− − =  find the value of x.

 (8) If A = 
1 0 0
0 1 0

1a b

 
 
 
 − 

 , show that A2 is a unit matrix.

 (9) If 3 2

1 0 2
0 2 1  and 6 7 ,
2 0 3

A A A A kI O
 
 = − + + = 
  

 find the value of k.

 (10) Give your own examples of matrices satisfying the following conditions in each case:
  (i) A and B such that AB BA≠ .

  (ii) A and B such that ,  and .AB O BA A O B O= = ≠ ≠  
  (iii) A and B such that  and .AB O BA O= ≠  

 (11) Show that ( ) ( ) ( ),f x f y f x y= +  where 
cos sin 0

( ) sin cos 0
0 0 1

x x
f x x x

− 
 =  
  

 .

 (12) If A is a square matrix such that A2 = A, find the value of 7A - (I + A)3.
 (13) Verify the property A(B + C) = AB + AC, when the matrices A, B, and C are given by

  
3 1 4 7

2 0 3
, 1 0 , and 2 1

1 4 5
4 2 1 1

A B C
   

−     = = − =          −   

 .
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 (14) Find the matrix A which satisfies the matrix relation 
1 2 3 7 8 9
4 5 6 2 4 6

A
− − −   

=   
   

 .

 (15) If 
4 5

2 1 1
1 0  and 

7 5 2
2 3

TA B
 

−  = − =    −   

,  verify the following

  (i) ( )T T T T TA B A B B A+ = + = +    (ii) ( )T T TA B A B− = −     (iii) ( )B BT T = .
 (16) If A is a 3 × 4 matrix and B is a matrix such that both A B BAT T

 and are defined, what is the 
order of the matrix B?

 (17) Express the following matrices as the sum of a symmetric matrix and a skew-symmetric matrix:

  (i) 
4 2

 and 
3 5

− 
 − 

  (ii) 
3 3 1
2 2 1
4 5 2

− 
 − − 
 − − 

.

 (18) Find the matrix A such that 
2 1 1 8 10
1 0 1 2 5
3 4 9 22 15

TA
− − − −   

   = −   
   −   

 .

 (19) If 
1 2 2
2 1 2

2
A

x y

 
 = − 
  

 is a matrix such that 9TAA I= , find the values of x and y.

 (20) (i) For what value of x, the matrix 3

0 1 2
1 0

2 3 0
A x

− 
 = − 
 − 

 is skew-symmetric.

  (ii) If 2

0 3
2 1

1 0

p
q

r

 
 − 
  

 is skew-symmetric, find the values of p, q, and r.

 (21) Construct the matrix 3 3[ ] ,ijA a ×=  where ija i j= − . State whether A is symmetric or                        
skew-symmetric.

 (22) Let A and B be two symmetric matrices. Prove that AB = BA if and only if AB is a symmetric 
matrix.

 (23) If A and B are symmetric matrices of same order, prove that
  (i) AB + BA is a symmetric matrix.
  (ii) AB - BA is a skew-symmetric matrix.
 (24) A shopkeeper in a Nuts and Spices shop makes gift packs of cashew nuts, raisins and almonds. 
  Pack I contains 100 gm of cashew nuts, 100 gm of raisins and 50 gm of almonds. 
  Pack-II contains 200 gm of cashew nuts, 100 gm of raisins and 100 gm of almonds.
  Pack-III contains 250 gm of cashew nuts, 250 gm of raisins and 150 gm of almonds.
  The cost of 50 gm of cashew nuts is ` 50, 50 gm of raisins is `10, and 50 gm of almonds is  

` 60. What is the cost of each gift pack? 
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11 12
11 22 21 12

21 22

| | .
a a

A a a a a
a a

= = −

7.3 Determinants
 To every square matrix A = [aij] of order n, we can associate a number called determinant of the 
matrix A. 

     If A =

11 12 1

21 22 2

1 2

 

n

n

n n nn

a a a
a a a

a a a

 
 
 
 
 
 

�
�

� � � �
�

, then determinant of A is written as |A| = 

11 12 1

21 22 2

1 2

n

n

n n nn

a a a
a a a

a a a

�
�

� � � �
�

.

Note 7.5
 (i) Determinants can be defined only for square matrices.
 (ii) For a square matrix A, |A| is read as determinant of A.
 (iii) Matrix is only a representation whereas determinant is a value of a matrix.

7.3.1 Determinants of Matrices of different order
Determinant of a matrix of order 1
 Let A = [a] be the matrix of order 1, then the determinant of A is defined as ‘a’.
Determinant of a matrix of order 2

 Let A = 11 12

21 22

a a
a a

 
 
 

 be a matrix of order 2.  Then the determinant of A is defined as 

Example 7.14

 Evaluate :   (i) 
2 4
1 2−

  (ii) 
cos sin

.
sin cos

θ θ
θ θ−

Solution

 (i) 
2 4
1 2−

= (2 × 2) - (- 1 × 4) = 4 + 4 = 8.

 (ii)  
cos sin
sin cos

θ θ
θ θ−

 = (cos cos ) ( sin sin )θ θ θ θ− −  = 2 2cos sin 1θ θ+ = .

Determinant of a Matrix of order 3
 We consider the determinant of a 3 × 3 matrix with entries as real numbers or real valued 
functions defined on   and study its properties and discuss various methods of evaluation of certain 
determinants.

Definition 7.19

 Let 3 3[ ]ijA a ×=  be a given square matrix of order 3. The minor of an arbitrary element ija  is the 

determinant obtained by deleting the ith row and jth column in which the element ija  stands. The 

minor of ija  is usually denoted by .ijM  
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Definition 7.20

 The cofactor is a signed minor. The cofactor of ija  is usually denoted by ijA  and is defined as 
( 1)i j

ij ijA M+= −  .

 For instance, consider the 3 × 3 matrix defined by 
11 12 13

21 22 23

31 32 33

a a a
A a a a

a a a

 
 =  
  

 

 Then the minors and cofactors of the elements 11 12 13, ,a a a  are given as follows :

 (i) Minor of 22 23
11 11 22 33 32 23

32 33

 is M
a a

a a a a a
a a

= = − 22 23
11 11 22 33 32 23

32 33

 is M
a a

a a a a a
a a

= = −  

  Cofactor of 22 231 1
11 11 11 22 33 32 23

32 33

 is ( 1)
a a

a A M a a a a
a a

+= − = = − 22 231 1
11 11 11 22 33 32 23

32 33

 is ( 1)
a a

a A M a a a a
a a

+= − = = −

 (ii) Minor of 21 23
12 12 21 33 31 23

31 33

 is 
a a

a M a a a a
a a

= = − 21 23
12 12 21 33 31 23

31 33

 is 
a a

a M a a a a
a a

= = −

  Cofactor 21 231 2
12 12 21 33 31 23

31 33

 is ( 1) ( )
a a

a A a a a a
a a

+= − = − −  21 231 2
12 12 21 33 31 23

31 33

 is ( 1) ( )
a a

a A a a a a
a a

+= − = − −  

 (iii) Minor of 21 22
13 13 21 32 31 22

31 32

 is 
a a

a M a a a a
a a

= = −  21 22
13 13 21 32 31 22

31 32

 is 
a a

a M a a a a
a a

= = −

  Cofactor of 21 221 3
13 13 13 21 32 31 22

31 32

 is ( 1)
a a

a A M a a a a
a a

+= − = = −
 

21 221 3
13 13 13 21 32 31 22

31 32

 is ( 1)
a a

a A M a a a a
a a

+= − = = − .

Result 7.1 (Laplace Expansion)

 For a given matrix 3 3[ ]ijA a ×= , the sum of the product of elements of the first row with their 
corresponding cofactors is the determinant of A.

 That is, 11 11 12 12 13 13| |A a A a A a A= + + .  

 This can also be written using minors. That is, 11 11 12 12 13 13| |A a M a M a M= − + .
 The determinant can be computed by expanding along any row or column and it is important to 
note that the value in all cases remains the same.  For example, 

 expansion  along 1 11 11 12 12 13 13is | | .R A a A a A a A= + + 1 11 11 12 12 13 13is | | .R A a A a A a A= + +

  along 2 21 21 22 22 23 23is | | .R A a A a A a A= + + 2 21 21 22 22 23 23is | | .R A a A a A a A= + +

  along 1 11 11 21 21 31 31is | | .C A a A a A a A= + + 1 11 11 21 21 31 31is | | .C A a A a A a A= + +

Example 7.15

 Compute all minors, cofactors of A and hence compute |A| if 
1 3 2
4 5 6
3 5 2

A
− 

 = − 
 − 

 . Also check 

that | A | remains unaltered by expanding along any row or any column.
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Solution 

 Minors : M11 = 
5 6

10 30 40
5 2

−
= − − = −  

   M12 = 
4 6

8 18 26
3 2

= + =
−

 

   M13 = 
4 5

20 15 5
3 5

−
= − =

−
 

   M21 = 
3 2

6 10 16
5 2

−
= + =  

   M22 = 
1 2

2 6 4
3 2

−
= − = −

−
 

   M23 = 
1 3

5 9 14
3 5

= + =
−

 

   M31 = 
3 2

18 10 8
5 6

−
= − =

−

   M32 = 
1 2

6 8 14
4 6

−
= + =  

   M33 = 
1 3

5 12 17
4 5

= − − = −
−

 
Cofactors :

   A11 = 1 1( 1) ( 40) 40+− − = −  

   A12 = 1 2( 1) ( 26) 26+− + = −  

   A13 = 1 3( 1) (5) 5+− =  

   A21 = 2 1( 1) (16) 16+− = −  

   A22 = 2 2( 1) ( 4) 4+− − = −  

   A23 = 2 3( 1) (14) 14+− = −  

   A31 = 3 1( 1) (8) 8+− =  

   A32 = 3 2( 1) (14) 14+− = −  

   A33 = 3 3( 1) ( 17) 17+− − = −  

 Expanding along 1R  yields

   |A| = 11 11 12 12 13 13a A a A a A+ +  .

   |A| = 1( 40) (3)( 26) ( 2)(5) 128− + − + − = −  .  ... (3)
 Expanding along C1 yields

   |A| = 11 11 21 21 31 31a A a A a A+ +  .
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11 12 13 11 12

21 22 23 21 22

31 32 33 31 32

a a a a a
a a a a a
a a a a a

    = 1( 40) 4( 16) 3(8) 128− + − + − = −   ... (4)
 From (3) and (4), we have
 |A| obtained by expanding along R1 is equal to expanding along C1 .

Evaluation of determinant of order 3 by using Sarrus Rule (named after the French Mathematician 
Pierre Frédéic Sarrus)

  Let  A aij� �[ ]
3 3  = 

11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

 
 
 
  

         

 Write the entries of Matrix A as follows :

 Then | A | is computed as follows :

   | A | = [ ] [ ]11 22 33 12 23 31 13 21 32 33 21 12 32 23 11 31 22 13a a a a a a a a a a a a a a a a a a+ + − + +  

Example 7.16

 Find |A| if 
0 sin cos

sin 0 sin
cos sin 0

A
α α

α β
α β

 
 =  
 − 

 .

Solution

 11 12 13

0 sin cos
sin 0 sin 0 sin cos
cos sin 0

M M M
α α

α β α α
α β

= − +
− 

    = 0 sin (0 cos sin ) cos ( sin sin 0) 0.α α β α α β− − + − − =  

Example 7.17

 Compute |A| using Sarrus rule if 
3 4 1
0 1 2
5 2 6

A
 
 = − 
 − 

 .

Solution 
   

   |A| = [ ]3( 1)(6) 4(2)(5) 1(0)( 2)− + + −  [ ]5( 1)(1) ( 2)(2)3 6(0)(4)− − + − +

    = [ 18 40 0] [ 5 12 0]− + + − − − +  = 22+17 = 39.

Note 7.6
 For easier calculations, we expand the determinant along a row or column which contains 
maximum number of zeros.

3 4 1 3 4
0 1 2 0 1
5 2 6 5 2

− −
− −
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Determinant of square matrix of order n,  n ≥ 4

 The concept of determinant can be extended to the case of square matrix of order , 4.n n ≥  Let 

[ ] , 4.ij n nA a n×= ≥  

 If we delete the ith row and jth column from the matrix of [ ]ij n mA a ×= , we obtain a determinant of 
order ( 1)n − , which is called the minor of the element aij. We denote this minor by Mij. The cofactor 

of the element aij is defined as ( 1) .i j
ij ijA M+= −  

Result 7.2
 For a given square matrix [ ]ij n nA a ×=  of order n, the sum of the products of elements of the first 
row with their corresponding cofactors is  the determinant of A. That is, 

 11 11 12 12 1 1 1 1
1

| | ...
n

n n j j
j

A a A a A a A a A
=

= + + + = ∑ which, by the definition of cofactors and minors, is 

same as

 1
1 1

1
| | ( 1)

n
j

j j
j

A a M+

=

= −∑ ,

 where A1j denotes the cofactor of a1j and M1j denotes the minor of a1j, j = 1, 2, ..., n.
Note 7.7

 (i) If [ ]ij n nA a ×=  then determinant of A can also be denoted as det(A) or det A or ∆ .
 (ii)  It can be computed by using any row or column.

7.3.2  Properties of Determinants
 We can use one or more of the following properties of the determinants to simplify the evaluation 
of determinants.

Property 1 
 The determinant of a matrix remains unaltered if its rows are changed into columns and columns 
into rows. That is,  | | | | .A AT=

 Since the row-wise expansion is same as the column-wise expansion, the result holds good.

Property 2
 If any two rows / columns of a determinant are interchanged, then the determinant changes in 
sign but its absolute value remains unaltered.

Verification 

  Let |A| = 
1 1 1

2 2 2

3 3 3

a b c
a b c
a b c
  

   = 1 2 3 3 2 1 2 3 3 2 1 2 3 3 2( ) ( ) ( )a b c b c b a c a c c a b a b− − − + −

  Let |A1| = 
1 1 1

3 3 3

2 2 2

  
a b c
a b c
a b c

  2 3(since )R R↔  

   = 1 3 2 2 3 1 3 2 2 3 1 3 2 2 3( ) ( ) ( )a b c b c b a c a c c a b a b− − − + −
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   = 1 2 3 3 2 1 2 3 3 2 1 2 3 3 2( ) ( ) ( )a b c b c b a c a c c a b a b− − + − − −  

   = 1 2 3 3 2 1 2 3 3 2 1 2 3 3 2[ ( ) ( ) ( )]a b c b c b a c a c c a b a b− − − − + −  
   = - | A |
Therefore,  | A1 | = - | A | . Thus the property is verified.
Property 3
 If there are n interchanges of rows (columns) of a matrix A then the determinant of the resulting 
matrix is (- 1)n | A |.
Property 4
 If two rows (columns) of a matrix are identical, then its determinant is zero.
Verification 

  Let |A| = 
1 1 1

2 2 2

2 2 2

  
a b c
a b c
a b c

,  with 2nd and 3rd rows are identical.

 Interchanging second and third rows, we get | |A−   = 
1 1 1

2 2 2

2 2 2

  
a b c
a b c
a b c

 = | A |.

                        ⇒ 2|A| = 0  ⇒ |A| = 0.
Property 5
 If a row (column) of a matrix A is a scalar multiple of another row (or column) of A, then its 
determinant is zero.
Note 7.8
 (i) If all entries of a row or a column are zero, then the determinant is zero.
 (ii) The determinant of a triangular matrix is obtained by the product of the principal diagonal 

elements.
Property 6
 If each element in a row (or column) of a matrix is multiplied by a scalar k, then the determinant 
is multiplied by the same scalar k.
Verification 

  Let |A| = 
1 1 1

2 2 2

3 3 3

  
a b c
a b c
a b c

    = 1 2 3 3 2 1 2 3 3 2 1 2 3 3 2( ) ( ) ( )a b c b c b a c a c c a b a b− − − + −  

   Let  |A1| = 
1 1 1

2 2 2

3 3 3

  
ka kb kc
a b c
a b c 

    = 1 2 3 3 2 1 2 3 3 2 1 2 3 3 2( ) ( ) ( )ka b c b c kb a c a c kc a b a b− − − + −  = k| A |

    = 1 2 3 3 2 1 2 3 3 2 1 2 3 3 2[ ( ) ( ) ( )]k a b c b c b a c a c c a b a b− − − + −  = k| A |

    ⇒ |A1| = k| A |.
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Note 7.9
 If A is a square matrix of order n, then 
 (i) | AB | = | A | | B |
 (ii)  If AB = O then either | A | = 0 or | B | = 0.
 (iii) | | (| |)A An n=
Property 7
 If each element of a row (or column) of a determinant is expressed as sum of two or more terms 
then the whole determinant is expressed as sum of two or more determinants.

   That is,   
1 1 1 1

2 2 2 2

3 3 3 3

  
a m b c
a m b c
a m b c

+
+
+

 = 
1 1 1

2 2 2

3 3 3

  
a b c
a b c
a b c

 + 
1 1 1

2 2 2

3 3 3

  
m b c
m b c
m b c

.

Verification 
 By taking first column expansion it can be verified easily.

 LHS = 1 1 2 3 3 2 2 2 1 3 3 1 3 3 1 2 2 1( )( ) ( )( ) ( )( )a m b c b c a m b c b c a m b c b c+ − − + − + + −  

  = 1 2 3 3 2 2 1 3 3 1 3 1 2 2 1 1 2 3 3 2 2 1 3 3 1( ) ( ) ( ) ( ) ( )a b c b c a b c b c a b c b c m b c b c m b c b c− − − + − + − − −  

   3 1 2 2 1( )m b c b c+ −

  = 
1 1 1

2 2 2

3 3 3

  
a b c
a b c
a b c

 + 
1 1 1

2 2 2

3 3 3

  
m b c
m b c
m b c

 = RHS.

Property 8
 If, to each element of any row (column) of a determinant the equi-multiples of the corresponding 
entries of one or more rows (columns) are added or subtracted, then the value of the determinant 
remains unchanged.
Verification 

 Let  | A | = 
1 1 1

2 2 2

3 3 3

a b c
a b c
a b c

 and | A1 | = 
1 2 3 1 2 3 1 2 3

2 2 2

3 3 3

  
a pa qa b pb qb c pc qc

a b c
a b c

+ + + + + +
 

   = 
1 1 1

2 2 2

3 3 3

a b c
a b c
a b c

 + 
2 2 2

2 2 2

3 3 3

  
pa pb pc
a b c
a b c

 + 
3 3 3

2 2 2

3 3 3

  
qa qb qc
a b c
a b c

 
using
Property 7





 

  | A1 | = | A | + p 
2 2 2

2 2 2

3 3 3

  
a b c
a b c
a b c

 + q 
3 3 3

2 2 2

3 3 3

  
a b c
a b c
a b c

 

Unit7.indd   26 10-08-2018   18:23:11



27 Matrices and Determinants

  | A1 | = | A | + p(0) + q(0) = | A |    (using Property 4)
Therefore  | A1 | = | A | 
 This property is independent of any fixed row or column.

Example 7.18

   If a, b, c and x are positive real numbers, then show that 

2 2

2 2

2 2

( ) ( ) 1
( ) ( ) 1
( ) ( ) 1

x x x x

x x x x

x x x x

a a a a
b b b b
c c c c

− −

− −

− −

+ −
+ −
+ −

 is zero.

Solution 

 Applying 1 1 2C C C→ − , we get 1 3

4 1
4 1 0,  since  and 
4 1

C C=

2

2

2

( )
( )
( )

x x

x x

x x

a a
b b
c c

−

−

−

−
−
−

 are proportional.

Example 7.19
 Without expanding the determinants, show that | B | = 2| A |.

 Where B =  
b c c a a b
c a a b b c
a b b c c a

+ + + 
 + + + 
 + + + 

  and A = 
a b c
b c a
c a b

 
 
 
  

 

Solution 

 We have | B | = 1 1 2 3

2( ) 2( ) 2( )
( )

a b c a b c a b c
c a a b b c R R R R
a b b c c a

+ + + + + +
+ + + → + +
+ + +

 

    = 2
a b c a b c a b c

c a a b b c
a b b c c a

+ + + + + +
+ + +
+ + +

 

    = 2
a b c a b c a b c

b c a
c a b

+ + + + + +
− − −
− − −

 2 2 1 3 3 1(  and )R R R R R R→ − → −  

    = 2 1 1 2 3( )
a b c
b c a R R R R
c a b

− − − → + +
− − −

 

    = 22( 1)
a b c
b c a
c a b

−  

    = 2| A |.
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Example 7.20

 Evaluate 
2014 2017 0
2020 2023 1
2023 2026 0

 .

Solution

 
2014 2017 0
2020 2023 1
2023 2026 0

 = 
2014 2017 2014 0
2020 2023 2020 1
2023 2026 2023 0

−
−
−

 = 
2014 3 0
2020 3 1
2023 3 0

 = 3
2014 1 0
2020 1 1
2023 1 0

 

    = - 3(2014 - 2023) = - 3 (- 9) = 27.

Example 7.21

 Find the value of x if 
1 2

0 2 3 0
0 0 3

x x x
x x

x

− −
− − =

−
 .

Solution 
 Since all the entries below the principal diagonal are zero, the value of the determinant is  
(x - 1) (x - 2) (x - 3) = 0 which gives x = 1, 2, 3.

Example 7.22

 Prove that 
2 2 2

1 1 1
x y z
x y z

 = (x - y) (y - z) (z - x).

Solution 

 Applying 2 2 1 3 3 1,C C C C C C→ − → − , we get

 LHS =  
2 2 2 2 2

1 0 0
x y x z x
x y x z x

− −
− −

 = 
2

1 0 0
( )( ) 1 1y x z x x

x y x z x
− −

+ +
 

  = ( )( )[( ) ( )]y x z x z x y x− − + − +  .

  = ( )( )( )y x z x z y− − −  .

  = ( )( )( )x y y z z x− − −  = RHS.

EXERCISE 7.2

 (1) Without expanding the determinant, prove that 

2 2 2

2 2 2

2 2 2

  
s a b c
s b c a
s c a b

+
+
+

 = 0.

 (2) Show that 

2 2

2 2

2 2

  
b c bc b c
c a ca c a
a b ab a b

+
+
+

 = 0.
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29 Matrices and Determinants

 (3) Prove that 

2 2

2 2 2 2 2

2 2

    = 4
a bc ac c

a ab b ac a b c
ab b bc c

+
+

+
 .

 (4) Prove that  . 

 (5) Prove that 

2 2

2 2

sec tan 1
 tan sec 1  = 0.

38 36 2

θ θ
θ θ −

 (6) Show that  
2 2 2

  
x a y b z c

x y z
a b c

+ + +
  = 0.

 (7) Write the general form of a 3 × 3 skew-symmetric matrix and prove that its determinant is 0.

 (8) If   0
0

a b a b
b c b c

a b b c

α +
α + =

α + α +
,  

  prove that a, b, c are in G.P. or a is a root of ax2 + 2bx + c = 0.

 (9) Prove that 

2

2

2

1
1 0
1

a a bc
b b ca
c c ab

−
− =
−

 .

 (10) If a, b, c are pth, qth and rth terms of an A.P, find the value of   .
1 1 1

a b c
p q r

 (11) Show that 

2 2

2 2

2 2

a x ab ac
ab b x bc
ac bc c x

+
+

+
 is divisible by x4.

 (12) If a, b, c are all positive, and are pth, qth and rth terms of a G.P., show that 
log 1

 log 1 0.
log 1

a p
b q
c r

=

 (13) Find the value of 
1 log log

log 1 log
log log 1

x x

y y

z z

y z
x z
x y

  if , , 1.x y z ≠  
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 (14) If A = 

1
2

10
2

α 
 
 
 
  

 , prove that 
1

1 1det( ) 1
3 4

n
k

n
k

A
=

 = −  
∑ .

 (15) Without expanding, evaluate the following determinants :

  (i) 
2 3 4
5 6 8

6 9 12x x x
  (ii) 

1 1 1

x y y z z x
z x y
+ + +

 

 (16) If A is a square matrix and | A | = 2, find the value of | | .AAT

 (17) If A and B are square matrices of order 3 such that | A | = -1 and |B| = 3, find the value of |3AB|.

 (18) If l = - 2, determine the value of  2 2

0 2 1
0 3 1

1 6 1 0

λ
λ λ

λ
+

− −
 .

 (19) Determine the roots of the equation  
2

1 4 20
1 2 5 0.
1 2 5x x

− =  

 (20) Verify that det(AB) = (det A) (det B) for 
4 3 2 1 3 3
1 0 7  and 2 4 0
2 3 5 9 7 5

A B
−   

   = = −   
   −   

 .

 (21) Using cofactors of elements of second row, evaluate | A |, where 
5 3 8
2 0 1
1 2 3

A
 
 =  
  

.

7.3.3 Application of Factor Theorem to Determinants.
Theorem 7.3 (Factor Theorem)
 If each element of a matrix A is a polynomial in x and if | A | vanishes for x = a, then (x - a) is a 
factor of | A |.
Note 7.10
 (i) This theorem is very much useful when we have to obtain the value of the determinant in 

‘factors’ form.
 (ii) If we substitute b for a in the determinant | A |, any two of its rows or columns become 

identical, then | A | = 0, and hence by factor theorem (a - b) is a factor of | A |.
 (iii) If r rows (columns) are identical in a determinant of order n (n ≥  r), when we put x = a, 

then (x - a)r - 1 is a factor of | A |.
 (iv) A square matrix (or its determinant) is said to be in cyclic symmetric form if each row is 

obtained from the first row by changing the variables cyclically.
 (v) If the determinant is in cyclic symmetric form and if  m is the difference between the degree 

of the product of the factors (obtained by substitution) and the degree of the product of the 
leading diagonal elements and if

  (1) m is zero, then the required factor is a constant k
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  (2) m is 1, then the required factor is k(a + b + c) and
  (3) m is 2, then the required factor is k(a2 + b2 + c2) + l (ab + bc + ca).

Example 7.23

 Using Factor Theorem, prove that 2

1 3 5
2 2 5 ( 1) ( 9)
2 3 4

x
x x x

x

+
+ = − +

+
.

 
Solution

   Let | A | = 
1 3 5

2 2 5
2 3 4

x
x

x

+
+

+
 .

   Putting  x = 1, we get  | A | = 
2 3 5
2 3 5 0
2 3 5

=  

 Since all the three rows are identical, (x - 1)2 is a factor of |A|

   Putting x = - 9 in | A |,we get| A | = 
8 3 5 0 3 5

2 7 5 0 7 5 0
2 3 5 0 3 5

−
− = − =

− −
 

 Therefore ( 9)x +  is a factor of |A| 1 1 2 3[since ]C C C C→ + + .

 The product (x - 1)2 (x + 9) is a factor of | A |. Now the determinant is a cubic polynomial in x.

 Therefore the remaining factor must be a constant ‘k’.

              Therefore 2

1 3 5
2 2 5 ( 1) ( 9).
2 3 4

x
x k x x

x

+
+ = − +

+

 Equating x3 term on both sides, we get k = 1. Thus | A | = (x - 1)2 (x + 9).

Example 7.24

 Prove  that 

2 3

2 3

2 3

1
1 ( ) ( ) ( ) ( )
1

x x
y y x y y z z x xy yz zx
z z

= − − − + + .

Solution 

  Let | A | =  

2 3

2 3

2 3

1
1 .
1

x x
y y
z z

 

  Putting x = y gives | A | = 

2 3

2 3
1 2

2 3

1
1 0 (since ).
1

y y
y y R R
z z

= ≡  

  Therefore (x - y) is a factor.
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 The given determinant is in cyclic symmetric form in x, y and z. Therefore (y - z) and  
(z - x) are also factors.
 The degree of the product of the factors ( )( )( )x y y z z x− − −  is 3 and the degree of the 

product of the leading diagonal elements 2 31 y z× ×  is 5. 

 Therefore the other factor is 2 2 2( ) ( )k x y z xy yz zx+ + + + + .

 Thus  

2 3

2 3

2 3

1
1
1

x x
y y
z z

 = 2 2 2[ ( ) ( )] ( )( )( )k x y z xy yz zx x y y z z x+ + + + + × − − −  .

 
 Putting x = 0,  y = 1 and z = 2, we get

   
1 0 0
1 1 1
1 4 8

 = [ ](0 1 4) (0 2 0) ( 1)(1 2)(2 0)k + + + + + − − −

  ⇒ (8 - 4) = [(5 2 )]( 1)( 1)(2)k + − −   

   4 = 10 4 5 2 2.k k+ ⇒ + =    ... (1)

 Putting 0, 1 and 1,x y z= = − =  We get

   
1 0 0
1 1 1
1 1 1

−  = [ (2) ( 1)](1)( 2)(1)k + − −  

  ⇒ [(2 )( 2)]k − −  = 2

   2k −    = - 1. ... (2)

 Solving (1) and (2), we get 0, 1.k = =  

 Therefore 

2 3

2 3

2 3

1
1 ( )( )( )( ).
1

x x
y y x y y z z x xy yz zx
z z

= − − − + +

Example 7.25

 Prove that |A| =  

2 2 2

2 2 2 3

2 2 2

( )
( ) 2  ( ) .

( )

q r p p
q r p q pqr p q r
r r p q

+
+ = + +

+
 

Solution :

 Taking  p = 0, we get  | A | =  
( )

.

q r
q r q
r r q

�
�

2

2 2 2

2 2 2

0 0

0

 Therefore, (p - 0) is a factor. That is,  p is a factor.
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 Since | A | is in cyclic symmetric form in p, q, r and hence q and r also factors.

 Putting p + q + r = 0  ⇒  q + r = - p ; r + p = - q  ;  and p + q = - r.

  | A | = 

2 2 2

2 2 2

2 2 2

p p p
q q q
r r r

 = 0 since 3 columns are identical.

 Therefore, (p + q + r)2 is a factor of | A | .

 The degree of the obtained factor pqr (p + q + r)2 is 5. The degree of | A | is 6.

 Therefore,  required factor is k (p + q + r).

 

2 2 2

2 2 2 2

2 2 2

( )
( )   ( ) ( )

( )

q r p p
q r p q k p q r p q r pqr
r r p q

+
+ = + + + + ×

+
 

 Taking  p = 1,  q = 1,  c = 1, we get

 3

4 1 1
1 4 1 (1 1 1)  (1) (1) (1)
1 1 4

k= + + .

 4(16 - 1) - 1(4 - 1) + 1(1 - 4) = 27k

 60 - 3 - 3 = 27 k  ⇒   k = 2.

 | A |= 2pqr (p + q + r)3.

Example 7.26

 In a triangle ABC, if  
1 1 1

1 sin 1 sin 1 sin 0,  
sin (1 sin ) sin (1 sin ) sin (1 sin )

A B C
A A B B C C
+ + + =

+ + +

 

 prove that DABC is an isosceles triangle.

Solution :
 By putting  we getsin sin ,A B=

    
1 1 1

1 1 1

1 1 1

+ + +
+ + +

sin sin sin

sin ( sin ) sin ( sin ) sin ( sin )

A A C
A A A A C C

 = 0

 That is, by putting sin A = sin B we see that, the given equation is satisfied.
 Similarly by putting sin B = sin C and sin C = sin A, the given equation is satisfied.
 Thus,  we have A = B or B = C or C = A.
 In all cases atleast two angles are equal. Thus the triangle is isosceles.
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EXERCISE 7.3
 Solve the following problems by using Factor Theorem :

 (1) Show that 2( ) ( 2 )
x a a
a x a x a x a
a a x

= − +  .

 (2) Show that 8
b c a c a b
b c c a b a abc
c b c a a b

+ − −
− + − =
− − +

.

 (3) Solve  
x a b c

a x b c
a b x c

+
+

+
 = 0.

 (4) Show that 

2

2

2

( ) ( ) ( ) ( )
b c a a
c a b b a b c a b b c c a
a b c c

+
+ = + + − − −
+

.

 (5) Solve 
4 4 4
4 4 4 0
4 4 4

x x x
x x x
x x x

− + +
+ − + =
+ + −

.

 (6) Show that 
2 2 2

1 1 1
( )( )( )x y z x y y z z x

x y z
= − − − .

7.3.4 Product of Determinants
 While multiplying two matrices “row-by-column” rule alone can be followed. The process of 
interchanging the rows and columns will not affect the value of the determinant (by Property 1). 
Therefore we can also adopt the following procedures for multiplication of two determinants.
 (i) Row by column multiplication rule
 (ii) Row by row multiplication rule
 (iii) Column by column multiplication rule
 (iv) Column by row multiplication rule

Note 7.11
 (i) If A and B are square matrices of the same order n, then | AB | = | A | | B | holds.
 (ii) In matrices, although AB ≠ BA in general, we do have | AB | = | BA | always.

Example 7.27

 Verify that | AB | = | A |  | B | if 
cos sin cos sin

  and  
sin cos sin cos

A B
θ θ θ θ
θ θ θ θ

−   
= =   −   

 .

Solution 

   AB = 
cos sin cos sin
sin cos sin cos

θ θ θ θ
θ θ θ θ

−   
   −   

.
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    = 
2 2

2 2

cos sin cos sin sin cos
sin cos cos sin cos sin

θ θ θ θ θ θ
θ θ θ θ θ θ

 + −
 − + 

 

    = 
1 0
0 1

 
 
 

   ⇒   | AB | = 1. ... (1)

   |A| = 2 2cos sin 1.θ θ+ =  

   |B| = 2 2cos sin 1.θ θ+ =  
   | A |  | B | = 1. ... (2)
 From (1) and (2),  | AB | = | A |  | B |.

Example 7.28

 Show that 

2 2 2

2 2

2 2

0
0

0

c b b c ab ac
c a ab c a bc
b a ab bc a b

+
= +

+
 .

Solution 

   LHS = 

20
0

0

c b
c a
b a

 = 
0 0

0   0
0 0

c b c b
c a c a
b a b a

×  .

    = 

2 2

2 2

2 2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

c b ab ac
ab c a bc

ac bc b a

+ + + + + +
+ + + + + +
+ + + + + +

.

    = 

2 2

2 2

2 2

c b ab ac
ab c a bc
ac bc b a

+
+

+
 = RHS.

Example 7.29

 Show that 

22 2 2

2 2 2

2 2 2

2
2

2

bc a c b a b c
c ca b a b c a
b a ab c c a b

−
− =

−
 .

Solution

   RHS = 

2a b c
b c a
c a b

 = .
a b c a b c
b c a b c a
c a b c a b

×  

    = ( 1)
a b c a b c
b c a c a b
c a b b c a

× −  [In the 2nd determinant 2 3R R↔ ]
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    = .
a b c a b c
b c a c a b
c a b b c a

− − −
×

   Taking row by column method, we get

    = 

2 2 2

2 2 2

2 2 2

a bc cb ab ab c ac b ac
ab c ab b ac ac bc bc a
ac ac b bc a bc c ab ab

− + + − + + − + +
− + + − + + − + +
− + + − + + − + +

 

    = 

2 2 2

2 2 2

2 2 2

2
2

2

bc a c b
c ca b a
b a ab c

−
−

−
= RHS.

Example 7.30

 Prove that 

2 2 2 2

2 2

2 2

1 1 2
1 1 2

1 2 1

x x x x x
x x x x x
x x x x x

− − −
= − − −

− − −
 .

Solution 

   LHS =  

21
1

1

x x
x x
x x

 = 
1 1

1   1 .
1 1

x x x x
x x x x
x x x x

×

    = 
1 1

1   ( 1) ( 1) 1
1 1

x x x x
x x x x
x x x x

× − − − − −
− − −

 

    = 
1 1

1   1
1 1

x x x x
x x x x
x x x x

× − − −
− − −

 

    = 

2 2 2 2

2 2 2 2

2 2 2 2

1
1

1

x x x x x x x x
x x x x x x x x
x x x x x x x x

− − − − − −
− − − − − −
− − − − − −

 

    = 

2 2 2

2 2

2 2

1 2
1 2
2 1

x x x
x x x
x x x

− − −
− − −
− − −

.

    = R.H.S.

7.3.5 Relation between a Determinant and its Cofactor Determinant

 Let 
1 1 1

2 2 2

3 3 3

| |
a b c

A a b c
a b c

= .
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 Let A1, B1, C1 .... be the cofactors of a1, b1, c1 ... in | A |.

 Hence, the cofactor determinant is 
1 1 1

2 2 2

3 3 3

A B C
A B C
A B C

 

 1 1 1 1 1 1| |A a A b B c C= + +  

 Similarly, 2 2 2 2 2 2 3 3 3 3 3 3| |  and | |A a A b B c C A a A b B c C= + + = + +  
 Note that the sum of the product of elements of any row (or column) with their corresponding 
cofactors is the value of the determinant.

  Now  1 2 1 2 1 2a A b B c C+ +  = 1 1 1 1 1 1
1 1 1

3 3 3 3 3 3

b c a c a b
a b c

b c a c a b
− + −  

   = 1 1 3 3 1 1 1 3 3 1 1 1 3 3 1( ) ( ) ( )a b c b c b a c a c c a b a b− − + − − −  

   = 1 1 3 1 3 1 1 1 3 3 1 1 1 3 1 3 1 1 0a b c a b c a b c a b c a b c a b c+ + − − + =  
 Similarly we get

  1 3 1 3 1 3a A b B c C+ +  = 0  ;  2 1 2 1 2 1 0 ;a A b B c C+ + =  

  2 3 2 3 2 3a A b B c C+ +   = 0  ;  3 1 3 1 3 1 3 2 3 2 3 20  and  0a A b B c C a A b B c C+ + = + + = .
Note 7.12
 If elements of a row (or column) are multiplied with corresponding cofactors of any other row 
(or column) then their sum is zero.

Example 7.31

 If , ,i i iA B C  are the cofactors of , ,i i ia b c , respectively,  i = 1 to 3 in

 |A| = 
1 1 1

2 2 2

3 3 3

a b c
a b c
a b c

 ,  show that 
1 1 1

2
2 2 2

3 3 3

| |
A B C
A B C A
A B C

=  .

Solution

Consider the product   
1 1 1

2 2 2

3 3 3

a b c
a b c
a b c

 
1 1 1

2 2 2

3 3 3

A B C
A B C
A B C

 

  = 
1 1 1 1 1 1 1 2 1 2 1 2 1 3 1 3 1 3

2 1 2 1 2 1 2 2 2 2 2 2 2 3 2 3 2 3

3 1 3 1 3 1 3 2 3 2 3 2 3 3 3 3 3 3

a A b B c C a A b B c C a A b B c C
a A b B c C a A b B c C a A b B c C
a A b B c C a A b B c C a A b B c C

+ + + + + +
+ + + + + +
+ + + + + +

 

  = 
| | 0 0
0 | | 0
0 0 | |

A
A

A
= 3| |A

 That is, |A| × 
1 1 1

2 2 2

3 3 3

A B C
A B C
A B C

 = 3| |A .

 
1 1 1

2 2 2

3 3 3

A B C
A B C
A B C

⇒  = 2| |A  .
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7.3.6 Area of a Triangle
 We know that the area of a triangle whose vertices are 1 1 2 2 3 3( , ), ( , ) and ( , )x y x y x y  is equal to 
the absolute value of

 1 2 2 1 2 3 3 2 3 1 1 3
1 ( )
2

x y x y x y x y x y x y− + − + − .

 This expression can be written in the form of a determinant as the absolute value of

 
1 1

2 2

3 3

1
1 1
2

1

x y
x y
x y

  . 

Example 7.32
 If the area of the triangle with vertices (- 3, 0), (3, 0) and (0, k) is 9 square units, find the 
values of k .

Solution

  Area of the triangle = absolute value of 
1 1

2 2

3 3

1
1 1 .
2

1

x y
x y
x y

  9 = 
3 0 1

1 13 0 1 ( )( 3 3)
2 2

0 1
k

k

−
= − − −  

  ⇒    9 = 3| k | and hence, k = ± 3.

Note 7.13
 The area of the triangle formed by three points is zero if and only if the three points are collinear. 
Also, we remind the reader that the determinant could be negative whereas area is always non-
negative.

Example 7.33
 Find the area of the triangle whose vertices are (- 2, - 3), (3, 2), and (- 1, - 8).

Solution 

  Area of the triangle = 
1 1

2 2

3 3

1
1 1 .
2

1

x y
x y
x y

 
2 3 1

1 13 2 1 ( 20 12 22) | 15 | 15
2 2

1 8 1

− −
= − + − = − =

− −
 

 and therefore required area is 15 sq.units. 

Example 7.34
 Show that the points (a, b + c), (b, c + a), and (c, a + b) are collinear.
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Solution 

 To prove the given points are collinear, it suffices to prove  | A | = 
1
1 0
1

a b c
b c a
c a b

+
+ =
+

 .

 Applying 1 1 2C C C→ + , we deduce that

 
1 1 1

| | 1 ( ) 1 1 ( ) 0 0
1 1 1

a b c b c b c
A a b c c a a b c c a a b c

a b c a b a b

+ + + +
= + + + = + + + = + + × =

+ + + +
 

 which shows that the given points are collinear.

7.2.11 Singular and non-singular Matrices

Definition 7.21
 A square matrix A is said to be singular if | A | = 0. A square matrix A is said to be                                         
non-singular if | A |  ≠  0.

 For instance, the matrix  
3 8 1
4 1 1
4 1 1

A
 
 = − 
 − 

 is a singular matrix, since

  | | 3(1 1) 8( 4 4) 1( 4 4) 0.A = − − − + + − + =  

 If  
2 6 1
3 0 5

5 4 7
B

 
 = − 
 − 

  then | B | = 2(0 - 20) - (- 3) (- 42 - 4) + 5(30 - 0) = - 28 ≠ 0.

 Thus B is a non-singular matrix.

Note 7.14
 If A and B are non-singular matrices of the same order then AB and BA are also non-singular 
matrices because | AB | = | A |  | B | = | BA |.

EXERCISE 7.4
 (1) Find the area of the triangle whose vertices are (0, 0), (1, 2) and (4, 3).

 (2) If (k, 2), (2, 4) and (3, 2) are vertices of the triangle of area 4 square units then determine the 
value of k.

 (3) Identify the singular and non-singular matrices:

  (i) 
1 2 3
4 5 6
7 8 9

 
 
 
  

       (ii) 
2 3 5
6 0 4
1 5 7

− 
 
 
 − 

     (iii) 
0

0 5
5 0

a b k
b a

k

− 
 − 
 − − 
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 (4) Determine the values of a and b so that the following matrices are singular:

  (i) 
7 3

 
2

A
a

 
=  − 

 (ii) 
1 2 3

3 1 2
1 2 4

b
B

− 
 =  
 − 

 (5) If cos 2 0θ = , determine 

20 cos sin
cos sin 0
sin 0 cos

θ θ
θ θ
θ θ

.

 (6) Find the value of the product ; 3 4 2 8

3 4 3 3

log 64 log 3 log 3 log 3
log 8 log 9 log 4 log 4

×  .

EXERCISE 7.5
Choose the correct or the most suitable answer from the given four alternatives.

 (1) If 2 2
1 (3 2 ) and [ ]
2 ×= − =ij ija i j A a  is

  (1) 

1 2
2
1 1
2

 
 
 
 −  

  (2) 
1 1
2 2
2 1

 − 
 
 

  (3) 
2 2
1 1
2 2

 
 
 −
 

  (4) 
1 1
2 2

1 2

 − 
 
 

 

 (2) What must be the matrix X, if 
1 2 3 8

2 ?
3 4 7 2

X    
+ =   

   
 

  (1) 
1 3
2 1

 
 − 

  (2) 
1 3
2 1

− 
 − 

  (3) 
2 6
4 2

 
 − 

  (4) 
2 6
4 2

− 
 − 

 

 (3) Which one of the following is not true about the matrix 
1 0 0
0 0 0
0 0 5

 
 
 
  

 ?

  (1) a scalar matrix  (2) a diagonal matrix
  (3) an upper triangular matrix (4) a lower triangular matrix
 (4) If A and B are two matrices such that A + B and AB are both defined, then
  (1) A and B are two matrices not necessarily of same order
  (2) A and B are square matrices of same order
  (3) Number of columns of A is equal to the number of rows of B
  (4) A = B.

 (5) If A = 
1

1
λ

λ
 
 − − 

, then for what value of 2, ?A Oλ =  

  (1) 0 (2) ±1 (3) - 1 (4) 1
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41 Matrices and Determinants

 (6) If 2 2 21 1 1
,  and ( ) ,

2 1 1
a

A B A B A B
b

−   
= = + = +   − −   

 then the values of a and b are

  (1) 4, 1a b= =   (2) 1, 4a b= =   (3) 0, 4a b= =   (4) 2, 4a b= =  

 (7) If 
1 2 2
2 1 2

2
A

a b

 
 = − 
  

 is a matrix satisfying the equation 9TAA I= , where I is 3 × 3 identity 

matrix, then the ordered pair (a, b) is equal to

  (1) (2, - 1) (2) (- 2, 1) (3) (2, 1) (4) (- 2, - 1)

 (8) If A is a square matrix, then which of the following is not symmetric?

  (1) TA A+   (2) TAA   (3) TA A   (4) TA A−  

 (9) If A and B are symmetric matrices of order , where ( ),n A B≠  then

  (1) A + B is skew-symmetric (2) A + B is symmetric

  (3) A + B is a diagonal matrix (4) A + B is a zero matrix

 (10) If 
a x

A
y a

 
=  

 
 and if 1,xy =  then det ( )TA A  is equal to

  (1) 2( 1)a −   (2) 2 2( 1)a +   (3) 2 1a −   (4) 2 2( 1)a −  

 (11) The value of x, for which the matrix 
2 7

2 2 3

x x

x x

e e
A

e e

− +

+ +

 
=  

 
 is singular is

  (1) 9 (2) 8 (3) 7 (4) 6

 (12) If the points ( , 2), (5, 2), (8,8)x −  are collinear, then x is equal to

  (1) - 3 (2) 1
3

  (3) 1 (4) 3

 (13) If 
1 1

2 2

3 3

2
2 0,

2
2

a x y
abcb x y

c x y
= ≠  then the area of the triangle whose vertices are 

3 31 1 2 2, , , , ,x yx y x y
a a b b c c

    
          

 is

  (1) 1
4

  (2) 1
4

abc   (3) 1
8

  (4) 1
8

abc  

 (14) If the square of the matrix 
α β
γ α

 
 − 

 is the unit matrix of order 2, then ,  and α β γ  should 
satisfy the relation.

  (1) 21 0α βγ+ + =    (2) 21 0α βγ− − =   

  (3) 21 0α βγ− + =    (4) 21 0α βγ+ − =  
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 (15) If , then 
a b c ka kb kc
x y z kx ky kz
p q r kp kq kr

∆ =  is

  (1) D (2) kD (3) 3kD (4) 3k ∆  

 (16) A root of the equation 
3 6 3

6 3 3 0
3 3 6

x
x

x

− −
− − =

− −
  is

  (1) 6 (2) 3 (3) 0 (4) - 6

 (17) The value of the determinant of  
0

0
0

a b
A a c

b c

− 
 = − 
 − 

 is

  (1) - 2abc (2) abc (3) 0 (4) 2 2 2a b c+ +  

 (18) If 1 2 3, ,x x x  as well as 1 2 3, ,y y y  are in geometric progression with the same common ratio, 

then the points 1 1 2 2 3 3( , ), ( , ), (x , )x y x y y  are

  (1) vertices of an equilateral triangle

  (2) vertices of a right angled triangle

  (3) vertices of a right angled isosceles triangle

  (4) collinear

 (19) If .    denotes the greatest integer less than or equal to the real number under consideration and 

1 0, 0 1, 1 2x y z− ≤ < ≤ < ≤ < , then the value of the determinant 
1

1  is
1

x y z
x y z
x y z

+          
+          

+          

 

  (1) z    (2) y    (3) x    (4) 1x +  

 (20) If 
2 2

, ,  satisfy 3 0,  then 
4

a b c
a b b c b c abc

a b
≠ = =  

  (1) a b c+ +   (2) 0 (3) 3b   (4) ab bc+  

 (21) If 
1 2 4 2 4 2

3 1 0  and 6 2 0 ,
2 4 2 2 4 8

A B
− −

= =
− −

  then B is given by

  (1)  B A= 4  (2) 4B A= −   (3) B A= −   (4) 6B A=  
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 (22) If A is skew-symmetric of order n and C is a column matrix of order n × 1, then TC AC  is
  (1) an identity matrix of order n (2) an identity matrix of order 1
  (3) a zero matrix of order 1 (4) an identity matrix of order 2

 (23) The matrix A satisfying the equation 
1 3 1 1

 is
0 1 0 1

A   
=   −   

 

  (1) 
1 4
1 0

 
 − 

  (2) 
1 4
1 0

− 
 
 

  (3) 
1 4
0 1

 
 − 

  (4) 
1 4
1 1

− 
 
 

 

 (24) If A I� �
��

�
�

�

�
�

3 2

4 1
, then ( )( )A I A I� �  is equal to

  (1) 
� �

�
�

�
�

�

�
�

5 4

8 9
  (2) 

�
�
�

�
�

�

�
�

5 4

8 9
  (3) 

5 4

8 9

�

�
�

�

�
�   (4) 

� �
� �
�

�
�

�

�
�

5 4

8 9
 

 (25) Let A and B be two symmetric matrices of same order. Then which one of the following 
statement is not true?

  (1) A + B is a symmetric matrix (2) AB is a symmetric matrix

  (3) AB BA T= ( )    (4) A B ABT T=   

SUMMARY
 In this chapter we have acquired the knowledge of 
 • A matrix is a rectangular array of real numbers or real functions on 



or complex 
numbers.

 • A matrix having m rows and n columns, then the order of the matrix is m × n.

 • A matrix A aij m n� �[ ]  is said to be a
  square matrix if m = n 
  row matrix if m = 1
  column matrix if n = 1
  zero matrix if aij= 0∀ i and j
  diagonal matrix if m = n and aij = 0∀ ≠i j
  scalar matrix if m = n and aij = 0∀ ≠i j and aii = l for all i 
  unit matrix or identity matrix if m = n and aij = 0 for all i ≠ j and aii = 1 ∀  i
  upper triangular matrix if m = n and aij = 0 ∀   i > j
  lower triangular matrix if m = n and aij = 0 ∀  i < j.

 • Matrices [ ]  and [ ] ,ij m n ij m nA a B b× ×= =  are said to be equal if a bij ij=  ∀  i and j

 • If [ ]  and [ ] ,ij m n ij m nA a B b× ×= =  then A B cij m n� � �[ ] ,  where c a bij ij ij� �  

 • If A aij m n� �[ ]  and l is a scalar, then � �A aij m n� �[ ]  
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 • - A = ( -1)A
 • A + B = B + A
 • A - B = A + (- 1)B
 • (A + B) + C = A + (B + C)  where A, B and C have the same order.
 • A(BC) = (AB)C    (ii) A(B+C) = AB+AC  (iii) (A+B)C = AC+BC 
 • The transpose of A, denoted by AT is obtained by interchanging rows and columns of A.
  (i) ( ) , ( ) , ( ) , ( )A A kA kA A B A B AB B AT T T T T T T T T T� � � � � �(ii) (iii) (iv)  
 • A square matrix A is called
  (i)  symmetric if AT = A   and  (ii) skew-symmetric if AT = - A
 • Any square matrix can be expressed as sum of a symmetric and skew-symmetric matrices.
 • The diagonal entries of a skew-symmetric must be zero.
 • For any square matrix A with real entries, A + AT is symmetric and A - AT is skew-

symmetric and further A A A A AT T� � � �
1

2

1

2
( ) ( ) .

 • Determinant is defined only for square matrices. 

 • | | | |A AT =  .
 • | | | | | |AB A B=  where A and B are square matrices of same order.

 • If A a kA k Aij m n
n� ��[ ] , | | | |, then  where k is a scalar.

 • A determinant of a square matrix A is the sum of products of elements of any row (or 

column) with its corresponding cofactors; for instance, | |A a A a A a A� � �
11 11 12 12 13 13

.
 • If the elements of a row or column is multiplied by the cofactors of another row or 

column, then their sum is zero; for example, a A a A a A
11 13 12 23 13 33

0� � � .
 • The determinant value remains unchanged if all its rows are interchanged by its columns.
 • If all the elements of a row or a column are zero, then the determinant is zero.
 • If any two rows or columns are interchanged, then the determinant changes its sign.
 • If any two rows or columns are identical or proportional, then the determinant is zero.
 • If each element of a row or a column is multiplied by constant k, then determinant gets 

multiplied by k.
 • If each element in any row (column) is the sum of r terms, then the determinant can be 

expressed as the sum of r determinants.
 • A determinant remains unaltered under a row (Ri) operation of the form 

R R R j k ii j k� � �� � ( , )  or a Column (Ci) operation of the form C C C j k ii j k� � �� � ( , )  
where � �,   are scalars.

 • Factor theorem : If each element of |A| is a polynomial in x and if |A| vanishes for  
x a= , then x - a is a factor of |A|. 

 • Area of the triangle with vertices (x1, y1), (x2, y2) and (x3, y3) is given by the absolute value 

of  1

2

1

1

1

1 1

2 2

3 3

x y
x y
x y

. 

  If the area is zero, then the three points are collinear.
 • A square matrix A is said to be singular if |A| = 0 and non-singular if |A| ≠ 0.
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Matrices and Determinants

Expected Outcome

Browse in the link:
Matrices and Determinants: https://ggbm.at/cpknpvvh

ICT CORNER 7(a)

Step1 Step2

Step 1
Open the Browser type the URL Link given below (or) Scan the QR Code.
GeoGebra Workbook called “Matrices and Determinants” will appear. In 
that there are several worksheets related to your lesson.

Step 2
Select the work sheet “Matrices-Algebraic operations”work out the 
operations given and Select the check boxes to verify corresponding 
answers.
Click on “New Problem” to get new question.
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Matrices and Determinants

Expected Outcome

Step 1
Open the Browser type the URL Link given below (or) Scan the QR Code.
GeoGebra Workbook called “Matrices and Determinants” will appear. In 
that there are several worksheets related to your lesson.

Step 2
Select the work sheet “Determinants” Evaluate the determinant for the 
matrix given and Select the check boxes to verify steps.
Click on “New Problem” to get new question.

Browse in the link:
Matrices and Determinants: https://ggbm.at/cpknpvvh

ICT CORNER 7(b)

Step1 Step2
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8.1 Introduction  

 A pilot constructing a flight plan has to be concerned about the plane’s 
course, heading, air speed, and ground speed. In order for the plane to proceed 
directly toward its destination, it must head into the wind at an angle such that 
the wind is exactly counteracted. If available, a navigation computer will do 
the calculation quickly and accurately. If, however, a navigation computer 
is not accessible, the pilot may have to depend on pencil-and-paper work 
supplemented by a calculator with a knowledge of vectors.  An understanding 
of vectors and their operations is therefore vitally 
important.

 At a certain point during a jump, there are two principal forces acting 
on a skydiver. One force ( )g  gravity exerting straight down and another air 
resistance ( )r   exerting up as well as to some direction. What is the net force 
acting on the skydiver? The answer is  g r+ .  (how?)
 Let v  be the velocity vector of an aircraft. Suppose that the wind 
velocity is given by the vector w , what is the effective velocity of aircraft? 
The answer is .v w+   In what direction should the aircraft head in order to fly 
due west?

 

A global positioning system (GPS) is a system designed to help to navigate on the earth, in the air 
and on water. Vectors are also used in GPS.

Vector Algebra - I8Chapter

“On earth there is nothing great but man;  
In man there is nothing great but mind”

- Hamilton

g r�� �

g r
� �

� �v w+

�v �w

Unit8.indd   47 10-08-2018   18:34:42



48XI - Mathematics

 The development of the concept of vectors was influenced by the works of the German 
mathematician H.G. Grassmann (1809 - 1877) and the Irish mathematician W.R. Hamilton  
(1805 - 1865). While Hamilton occupied high positions, Grassman was a secondary school teacher.

 The best features of Quaternion Calculus and Cartesian Geometry 
were united, largely through the efforts of the American Mathematician  
J.B. Gibbs (1839 - 1903) and Q.Heaviside (1850 - 1925) of England 
and new subject called Vector Algebra was created. The development of 
the algebra of vectors and of vector analysis as we know it today was first 
revealed in sets of remarkable notes made by Gibbs for his students at Yale 
University. Clifford (1845 – 1879), in his Elements of Dynamics (1878), 
broke down  the  product  of  two quaternions into two very different vector 
products, which he called the scalar product and the vector product. The term 

vectors was due to Hamilton and it was derived from the Latin word ‘to carry’. 
 The theory of vector was also based on Grassman’s theory of extension.

 It was soon realised that vectors would be the ideal tools for the fruitful study of many ideas in 
geometry and physics. Vectors are now the modern language of a great deal of physics and applied 
mathematics and they continue to hold their own intrinsic mathematical interest.

Hamilton
(1805 - 1865)

Sun

Force

Velocity

Earth

Learning Objectives

On completion of this chapter, the students are expected to
• realise vectors as a tool to study the various geometric and physics problems.
• distinguish the scalars from vectors.
• understand different types of vectors and algebra of vectors.
• understand the geometrical interpretations and resolutions of 2D and 3D vectors.
• appreciate the usage of matrix theory in vector algebra.
• visualise scalar product and vector product yielding scalars and vectors respectively as a 

unique feature.
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8.2 Scalars and Vectors 

Definition 8.1
 A scalar is a quantity that is determined by its magnitude. 

 For instance, distance, length, speed, temperature, voltage, mass, pressure, and work are scalars.

Definition 8.2
 A vector is a quantity that is determined by both its magnitude and its direction and hence it is 
a directed line segment. 

 For instance, force, displacement, and velocity (which gives the speed and direction of the 
motion) are vectors.  
 We denote vectors by lower case letters with arrow. A two dimensional vector is a directed line 
segment in R2  and a three dimensional vector is a directed line segment in R3. 

8.3 Representation of a vector and types of vectors

 A vector has a tail and a tip. Consider the diagram as in Fig. 8.1.

Definition 8.3
 The tail point A is called the initial point and the tip point  B is called the terminal point of the 
vector a .  The initial point of a vector is also taken as origin of the vector.

 The initial point A of the vector a  is the original position of a point and the terminal point B is 
its position after the translation. 
 The length or magnitude of the vector a is the length of the line segment AB and is denoted  
by | |a  .
 The undirected line AB is called the support of the vector a . 
To distinguish between an ordinary line segment without a direction and a line segment representing 
a vector, we make an arrow mark for the vector as AB



 and a . So AB denotes the line segment.

Definition 8.4
 If we have a liberty to choose the origin of the vector at any point then it is said to be free  
vector, whereas if it is restricted to a certain specified point then the vector is said to be localized 
vector. 

 Upto vector product we will be dealing with free vectors only. Localised vectors are involved in 
finding equations of straight lines. 

Definition 8.5
 Co-initial vectors are having the same initial point. On the other hand, the co-terminous 
vectors are having  the same terminal point.

a→

A

B

 Fig 8.1
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Definition 8.6
 Two or more vectors are said to be collinear or parallel if they have same line of action or have 
the lines of action parallel to one another.
 Two or more vectors are said to be coplanar if they lie on the same plane or parallel to the same 
plane.

Definition 8.7
 Two vectors are said to be equal if they have same direction and same magnitude.

 Let us note that it is not necessary to have the same initial point and same 
terminal point for two equal vectors. For instance, in Fig. 8.2, the vectors b



and  c  are equal since they have same direction and same length, whereas 
a  and b



are not equal because of opposite direction even though they are 
having same length. The vectors c  and d



are not equal even though they are 
having same direction but not having same length.

Definition 8.8
  Zero vector is a vector which has zero magnitude and an arbitrary direction and it is  
denoted by 0



.

 That is, a vector whose initial and terminal points are coincident is called a zero vector. 
 We observe that the initial and terminal points of a zero vector are the same.  The zero vector is 
also called null vector or void vector.
 A vector of magnitude 1 is called a unit vector. The unit vector in the direction of a is denoted 
by â  (read as ‘a cap’ or ‘a hat’). Clearly  ˆ| |a = 1.  
 We observe that there are infinitely many directions and hence there are infinitely many unit 
vectors. In fact, for each direction there is one unit vector in that direction. 
 Any non-zero vector a  can be written as the scalar multiple of a unit vector in the direction of 
a . This scalar is nothing but the magnitude of the vector. 

 Thus for any vector a = a â , where â  is the unit vector along the direction of a .

 Clearly ˆ
| |
aa
a

=



for any non-zero vector.

Definition 8.9
 Two vectors are said to be like vectors if they have the same direction. Two vectors are said to 
be unlike vectors if they have opposite directions. 

Fig. 8.3

Fig. 8.2

a�

d
�b

�
c�

▲

▲

▲

▲

▲

▲

b
→

a
→

d
→

→
ν→

Like Vectors Unlike Vectors

Neither like Vectors
nor unlike Vectors

�u

c
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 We observe that if two vectors are like vectors or unlike vectors, then the undirected lines (support) 
of the vectors are parallel to each other.  There are pair of vectors which are neither like nor unlike 
vectors. 

8.4  Algebra of Vectors
 We have studied basic algebraic operations on real numbers and on matrices. Similarly we studied 
some operations on vectors. Now let us see how to add two vectors, subtract a vector from another 
vector and multiply a vector by a scalar. 

8.4.1 Addition of Vectors
 Let us define the sum of two vectors in two ways and see that they are the same. Let us assume 
that an object of unit mass is placed at the origin (0,0) in R2. We assume that the size of the object is 

just a point. Let us assume that two forces  a  and b


of unit magnitude act on the object in the positive 
directions of x-axis and y-axis respectively (Fig.8.4). It is easy to guess that the object will move in 

the direction 45° to the x-axis as indicated in Fig.8.5. The forces a  and b


are equal to the vectors a  

and b


 as indicated in Fig. 8.6. We may think that the forces push the object in Fig. 8.4 and pull the 
object in Fig.8.6. 

 Fig. 8.4 Fig. 8.5 Fig. 8.6 Fig. 8.7
 The next question before us is ‘How long will it go?’. Let us assume that the forces act one after 
the other. The force a  will move the object one unit along the x-axis. So the object will move from  

(0, 0) to (1, 0). Now the force b


will move the object vertically from (1, 0) to (1, 1). So finally the 
object will be at (1, 1) (Fig. 8.7). Thus the sum of the two vectors may be defined as the line segment 
joining (0, 0) and (1, 1) in the direction ‘(0, 0) to (1, 1)’. 

 Now, as in the same situation discussed above, let us assume that the force a  has magnitude 2 
instead of 1 (Fig. 8.8). It will not be difficult to guess that the object will move in a direction much 
closure to the x-axis as indicated in Fig. 8.9. Also we may guess that the object will go to the point 
(2,1). Thus the sum of the two vectors may be defined as the line segment joining (0,0) and (2,1) in 
the direction “(0,0) to (2,1)”.

 Fig. 8.8 Fig. 8.9
 In the two situations discussed above the directions of the forces are perpendicular to each other. 
This need not be the case in general. Even then we can add the forces by considering one after the 
other. For example let a  and b



be two forces in a plane as shown in Fig. 8.10. 

b→

a→ a→

b

x

y

x

y

→

a→

b→
a→

b→

b→

a→ a→

b→

x x x x

y y y y
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 Fig. 8.10 Fig. 8.11 Fig. 8.12

 Bringing the initial point of b


to the terminal point of a  (Fig. 8.11), we can get the resultant of 
these two forces (see Fig. 8.12). This motivates us to define the sum of two vectors. 

Triangle law of addition

 Let a and b


be two vectors. Let 1 1 and A B  be the initial 
points of a  and b



, and 2 2 and A B  be the terminal points of  
a and b



respectively. 

 Draw 3 3A B  parallel to 1 2B B  so that 3 3 1 2.A B B B=  Then 

the vector 1 3A B


 is defined as the sum of the vectors a and 

,b


 and it is denoted as a +b


.   This can be restated as,

Definition 8.10 (Triangle law of addition)
 If two vectors are represented in magnitude and direction by the two sides of a triangle taken in 
order, then their sum is represented by the third side taken in the reverse order.

Result 8.1
 If ,  and a b c



   are the sides of a triangle taken in order then 0a b c+ + =
 

   
 Proof 
 Let         AB



 = , , and .a BC b CA c= =
 

   

 Now a b c+ +


   = AB BC CA AC CA AA
� ��� � ��� � ��� � ��� � ��� � ��� �

� � � � � = 0 .
 Thus the result is proved.

Parallelogram law of vector addition

 Let a and b


be two vectors. Assuming that the initial points of the two vectors are the same, 

let us find the sum according to Definition 8.7. Let A and B be the terminal points of  a and b


respectively (Fig. 8.15). To find a + b


, we draw AC parallel to OB so that OB = AC and declare that 
OC


 is the sum (Fig. 8.16). We observe that OA and BC are parallel (Fig. 8.17). 

 Fig. 8.15 Fig. 8.16 Fig. 8.17

 So to find the sum of two vectors with the same initial point, draw the parallelogram with the 
given vectors as adjacent sides and declare the diagonal as the sum. Even the vectors do not have the 

Fig. 8.13

Fig. 8.14
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same initial point, we can move one of the vectors suitably and make them to have same initial point. 
This leads us to the following Definition 8.11. 
 Let a and b



be two vectors with the same initial point O. Let A and B be the terminal points of  
a and b



 respectively. 

 Complete the parallelogram OACB. Then the vector OC


 is defined as the sum of the vectors a

and b


. Thus 

Definition 8.11 (Parallelogram law of addition)
 In a parallelogram OABC  if  and OA OB

 

 represents two adjacent sides, then the diagonal OC


 
represents their sum (see Fig. 8.17).

 Though we have two definitions for addition of vectors, they are one and the same. Definition 
8.10 is defined using the triangle law for addition of vectors and Definition 8.11 is defined using the 
parallelogram law for addition of vectors:
 In a triangle ABC if AB



 and BC


 represent two sides, then the third side AC


 represents their 
sum. 

8.4.2 Difference between two Vectors
 Now let us see how to subtract one vector from another vector.

Definition 8.12
 Let a  be a vector. Then the reverse of a , denoted by a−  , is defined as the vector having the 
magnitude of a  and the direction opposite to the direction of a .

 Notice that if ,  then AB a BA a= = −
 

  . 

Geometrical interpretation of difference between two vectors

 Let a  be a vector with initial point P and terminal point Q. Let b


 be the vector with initial point 
Q and terminal point P. The magnitude of both of the vectors is the length of the line segment joining 

P and Q. So they have the same magnitude. But clearly they have opposite directions. So b


 is equal 
to a− . 

 If  a  and b


are two vectors, then the vector  a b−




 is defined as the sum of the vectors and  .a b−




That is ( )a b+ −


 . 

 We can view the vector a b−


  geometrically. Let OA


 and OB


 represent the vectors a  and b


respectively (Fig. 8.18) . Draw AC parallel to OB with AC = OB. Then  AC


 is equal to b


. Extend the 

line CA to D so that CA = AD. Then AD


 is equal to b−


. Thus ( )a b OD+ − =


  . Hence a b OD− =


  
(Fig. 8.19).

 Let us complete the parallelogram OACB. We observe that BA and OD are parallel and they 

have equal length. Thus the two vectors BA


 and  OD


 are equal. So we may consider BA


 as a b−


 . 

This shows that if the sides OA


 and OB


 of the parallelogram OACB represent the vectors a and b


respectively, then the diagonal  BA


 will represent the vector .a b−


  (Fig. 8.20). We note that we have 

already seen that the diagonal OC
� ���

 represents the vector .a b+
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 Fig. 8.18 Fig. 8.19 Fig. 8.20

 Thus, if  and a b


   represent two adjacent sides of a parallelogram then the diagonals 

represent  a b+




 and a b−


 .

8.4.3 Scalar multiplication of a vector
 Now let us see how to multiply a vector by a scalar. 
 Let a  be a vector and m be a scalar. Then the vector ma  is called the scalar multiple of a vector 
a by the scalar m.
 Let us note that when m is zero, the magnitude of m a becomes 0 and hence m a becomes the zero 
vector. If m is positive, then both a and m a have the same direction and when m is negative, then a

and m a have opposite directions. Thus a and m a are like vectors if m is positive and unlike vectors 
if m is negative.  The magnitude of m a is | | | | | | .ma m a =  

Definition 8.13
 Two vectors a  and b



are said to be parallel if a bλ=


 , where λ is a scalar. If 0λ > , they are in 
the same direction. If 0λ <  then they are in the opposite direction to each other.

8.4.4 Some properties and results
 For any two vectors a and b



and scalars m and n, we have
 (i) ( ) ( ) ( )m na mn a n ma= =    ( ) ( ) ( )m na mn a n ma= =  

 (ii) ( )m n a ma na+ = +    ( )m n a ma na+ = +  

 (iii) ( )m a b ma mb+ = +
 

   ( )m a b ma mb+ = +
 

 

Result 8.2 
 Vector addition is associative. 

 For any three vectors ,  and ,a b c


   

   ( )a b c+ +


   = ( )a b c+ +


  .
Result 8.3

 For any vector ,   0 0a a a a+ = + =


    . 
Result 8.4

 For any vector ,   ( ) ( ) 0.a a a a a+ − = − + =


      
 This result states that the additive inverse exists for every vector.
Result 8.5
 Vector addition is commutative. 

B B B

O O O

D D

A A A
b
→

b
→

– b
→

b
→

a
→

– b
→

b
→

b
→

a
→

C C

▲

▲

▲

▲

▲

▲

▲
▲

▲

▲

a
→ ▲
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Proof  
 Let a and b



be two vectors. Let  ,   a OA b OB= =
 





.

 Complete the parallelogram OACB with  and a b


  as adjacent sides. The vectors  and OB AC
 

 
have same direction and equal magnitude; so OB AC=

 

. Thus

  
   a b+



  = OA AC OC+ =
  

.

 As ,  OA


 = BC


,

  b a+


  = .OB BC OC+ =
  

 

 Thus a b+


  = b a+


 .

Polygon law of addition

 Let  , , , ,OA AB BC CD
   

 and DE


 be any five vectors as 
shown in the Fig. 8.22.

 We observe from the figure that each vector is drawn 
from the terminal point of its previous one. By the triangle 
law,

 OA AB OB+ =
  

 ;  OB BC OC+ =
  

 

 OC CD OD+ =
  

 ;  OD DE OE+ =
  

  

 Thus OA AB BC CD DE OE+ + + + =
     

.

 Thus the line joining the initial point of first vector to the terminal point at the last vector is the 
sum of all the vectors. This is called the polygon law of addition of vectors.

Example 8.1
 Represent graphically the displacement of 
  (i) 30 km 60°  west of north
  (ii) 60 km 50°  south of east.

Solution 

a
→

b
→

b
→

B

C

A

O

▲

▲

▲▲
▲

Fig. 8.21
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Fig. 8.22

 Fig. 8.23 Fig. 8.24
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Example 8.2

 If a  and b


 are vectors represented by two adjacent sides of a regular hexagon, then find 
the vectors represented by other sides. 

Solution 
 Let A,B,C,D,E,F be the vertices of a regular hexagon. 

 Let  and a AB b BC= =
 

  
We use the following facts about regular hexagon.
 (i) The lines AB, CF and ED are parallel and the lines BC, AD 

and EF are parallel. 
 (ii) The length of CF is twice the length of AB and the length 

of AD is twice the length of BC. 
 Since the lines AB and DE are parallel, equal in length and 
opposite in direction we have 
  DE



 = a− .
 Since the lines AB and CF are parallel and opposite in direction we have 
  CF



 = 2 .a−   

 Similarly  EF


 =  and 2 .b AD b− =
 

 Since  AB BC AC+ =
  

 we have 
  AC



 = a + .b


 Since AC CD AD+ =
  

 we have 

  2 .a b CD b+ + =
 

  

 Thus  CD


 = 2 ( ) .b a b b a− + = −
  

   

 As ,FA CD= −
 

 we have 

  FA


 = .a b−


  

 Hence, for given sides  and ,AB a BC b= =
  

  we have obtained all other sides of the hexagon 

as , , , and  CD b a DE a EF b FA a b= − = − = − = −
     

   .

8.5 Position vectors 
Definition 8.14
 Let O be the origin and P be any point (in the plane or space). Then the vector OP



 is called the 
position vector of the point P with respect to the origin O (point of reference).

 The relation between the vectors and position vectors are given in the following result.

Result 8.6
 Let O be the origin, A and B be two points. Then  AB



 = OB OA−
 

 where,  and OA OB
 

 are 
position vectors of A and B respectively. 

Proof 
 We know that,   . Thus .OA AB OB AB OB OA+ = = −

     

 

E D

C

BA

F
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→
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→

▲

▲
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▲

Fig. 8.25
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Theorem 8.1 (Section Formula - Internal Division)   
 Let O be the origin. Let A and B be two points. Let P be the point which divides the line segment 

AB internally in the ratio m : n. If a  and b


are the position vectors of A and B, then the position 
vector OP



 of P is given by 

   OP


 = .na mb
n m

+
+





 

Proof  
 Since O is the origin, a  and  b



 are the position vectors of A and B, we have

   OA


 = a  and OB


=b


.

   Let  OP


 = .r

 Since P divides the line segment AB internally in the ratio m : n,  
we have,

   | |
| |
AP
PB



  = m
n

 

 and hence  | |n AP


 = m | |PB


.

 But the vectors  and AP PB
 

 have the same direction. Thus 

   nAP


 = .mPB


  (8.1)

   But   AP


 =  and OP OA r a PB OB OP b r− = − = − = −
    





   
 Substituting this in (8.1), we get 

   ( )n r a−   = ( )m b r−




 and hence 

   ( )n m r+   = .na mb+


  

 Thus  OP


 = .na mb
n m

+
+





 

Theorem 8.2  Section Formula - External Division (Without proof)

 Let O be the origin. Let  A and B be two points. Let P be the point which divides the line segment 

AB externally in the ratio m : n. If a and b


 are the position vectors of A and B, then the position 

vector OP


 of P is given by 

   OP


 = .na mb
n m

−
−





 

Note  8.1
 By taking m = n = 1 in Theorem 8.1, we see that the position vector of the midpoint of the line 

joining the points A and B is  
2

a b+




, where a  and b


 are the position vectors of the points A and B 
respectively. 
 From the above theorem we can get a condition for three points to be collinear. 

P

A

a
→

b
→

B

O

m

n

▲

▲
▲

▲

Fig. 8.26
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Result 8.7

 Three distinct points A, B and C with position vectors a ,  b


 and c  are collinear if and only if 
there exist real numbers x,y,z, none of them is zero, such that 

   x + y + z = 0  and  0.xa yb zc+ + =
 

   

Example 8.3

 Let A and B be two points with position vectors 2 4  and 2 8 .a b a b+ −
 

   Find the position 
vectors of the points which divide the line segment joining A and B in the ratio 1:3 internally and 
externally. 

Solution 
 Let O be the origin. It is given that

   OA


 = 2 4  and 2 8 .a b OB a b+ = −
 

 

 Let C and D be the points which divide the segment AB in the ratio 1 : 3 internally and 
externally respectively. Then 

   OC


 = 3 3(2 4 ) (2 8 ) 2 .
3 1 4

OA OB a b a b a b+ + + −= = +
+

   

 





   OD


 = 3 3(2 4 ) (2 8 ) 2 10 .
3 1 2

OA OB a b a b a b− + − −= = +
−

   

 





 Let us recall the definition that the line joining a vertex of a triangle with the midpoint of its 
opposite side is called a median. The centroid divides the median from vertex to the midpoint of the 
opposite side internally in the ratio 2:1.

Theorem 8.3
 The medians of a triangle are concurrent. 

Proof
 Let ABC be a triangle and let D, E, F be the mid points of its sides BC, CA and AB respectively. 
We have to prove that the medians AD, BE, CF are concurrent.
 Let O be the origin and , ,a b c



   be the position vectors of A, B, and C respectively.

 The position vectors of D, E, and F are respectively

 , ,
2 2 2

b c c a a b+ + +
 

   

 .

 Let G1 be the point on AD dividing it internally in the ratio 2 : 1

 Therefore, position vector of G
1  = 1 2

1 2
OA OD+

+

 

  1OG


 = 
1 2

2
3 3

b ca
a b c

 ++  
+ +  =









 

  (1)

 Let G2 be the point on BE dividing it internally in the ratio 2 : 1   

  Therefore,    2OG


 = 1 2
1 2

OB OE+
+

 

   

Fig. 8.27
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   2OG


 = 
1 2

2

3 3



 







b c a
a b c

�
��

�
�

�
�
�
�

� �
.   (2)

 Similarly if G3 divides CF in the ratio 2 : 1 then

   3OG


 = 
3

a b c+ +


 

 (3)

 From (1), (2), and (3) we find that the position vectors of the three points G1, G2, G3 are one and 
the same. Hence they are not different points. Let the common point be G.
 Therefore the three medians are concurrent and the point of concurrence is G.

Theorem 8.4  
 A quadrilateral is a parallelogram if and only if its diagonals bisect each other. 

Proof 
 Let A, B, C, D be the vertices of a quadrilateral with diagonals AC and 
BD. Let , ,  and a b c d

 

   be the position vectors of A, B, C, and D respectively 
with respect to O.

Let the quadrilateral ABCD be a parallelogram. Then

 AB DC OB OA OC OD b a c d b d a c= ⇒ − = − ⇒ − = − ⇒ + = +
         

     

 and hence  
2

b d+
 

 = .
2

a c+   

 This shows that the position vectors of the midpoint of the line segments AC and BD are the 
same. In other words, the diagonals bisect each other.
Conversely let us assume that the diagonal bisects each other. Thus the position vectors of the midpoint 
of the line segments AC and BD are the same. Thus 

 .
2 2

a c b d a c b d c d b a+ += ⇒ + = + ⇒ − = −
 

 

   

   

 This implies that OC OD OB OA− = −
   

 and hence .DC AB=
 

 This shows that the lines AB and 

DC are parallel. From a c b d+ = +
 

   we see that a d b c− = −
 

   which shows that the lines AD and 

BC are parallel. Hence ABCD is a parallelogram. 

EXERCISE 8.1
 (1) Represent graphically the displacement of
  (i) 45  30cm °  north of east. (ii) 80 ,  60km ° south of west

 (2) Prove that the relation R defined on the set V of all vectors by ‘ a  R b


 if a  = b


’ is an 
equivalence relation on V.

 (3) Let a  and b


 be the position vectors of the points A and B. Prove that the position vectors 

of the points which trisects the line segment AB are  2 2 and .
3 3

a b b a+ +
 

 

 

B

CD

A

Fig. 8.28
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 (4) If D and E are the midpoints of the sides AB and AC of a triangle ABC, prove that 

3
2

BE DC BC+ =
  

.

 (5) Prove that the line segment joining the midpoints of two sides of a triangle is parallel to the 
third side whose length is half of the length of the third side. 

 (6) Prove that the line segments joining the midpoints of the adjacent sides of a quadrilateral 
form a parallelogram. 

 (7) If a  and b


represent a side and a diagonal of a parallelogram, find the other sides and the 
other diagonal. 

 (8)  If PO OQ QO OR+ = +
   

, prove that the points P, Q, R are collinear. 
 (9)  If D is the midpoint of the side BC of a triangle ABC, prove that 2 .AB AC AD+ =

  

 
 (10)  If G is the centroid of a triangle ABC, prove that 0.GA GB GC+ + =

   

 
 (11)  Let A, B, and C be the vertices of a triangle. Let D,E, and F be the midpoints of the sides BC, 

CA, and AB respectively. Show that 0.AD BE CF+ + =
   

 
 (12)  If ABCD is a quadrilateral and E and F are the midpoints of AC and BD respectively, then 

prove that 4 .AB AD CB CD EF+ + + =
    

 

8.6 Resolution of Vectors
 Resolution of a vector can be done for any finite dimension. But we will discuss only in two and 
three dimensions.  Let us start with two dimension. 

8.6.1 Resolution of a vector in two dimension
Theorem 8.5

 Let ˆ ˆ and i j  be the unit vectors along the positive x-axis and the y-axis having initial point at 
the origin O.  NowOP



 is the position vector of any point P in the plane. Then OP


 can be uniquely 
written as 

 OP


 = ˆ ˆ xi y j+  for some real numbers x and y. Further  |OP


| = 2 2 .x y+  

Proof 
 Let (x, y) be the coordinates of the point P. Let L and M be the 
foots of the perpendiculars drawn from P to the x and y axes. Then 

.OP OL LP OL OM= + = +
    

 

 Since ˆ ˆ and i j  are unit vectors, we have ˆ ˆ and  .OL xi OM y j= =
 

  

Thus    OP


 = ˆ ˆ xi y j+

 If  ˆ ˆ  then  .OP r r xi yj= = +


 

To prove the uniqueness, let 1 1 2 2
ˆ ˆ ˆ ˆ and x i y j x i y j+ +  be two representations of the same point P. Then

  1
ˆx i + 1

ˆy j  = 2 2
ˆ ˆx i y j+ .

 This implies that  1 2 2 1
ˆ ˆ( ) ( )x x i y y j− − −  = 1 2 2 10 0, 0.x x y y⇒ − = − =



 

 In other words 1 2 1 2 and x x y y= =  and hence the uniqueness follows.

M

O L

P(x,y)

▲
▲

▲

y
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r
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î
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 In the triangle OLP, 2 2 2 2 2;  hence | | .OP OL LP OP x y= + = +


  

 That is, 2 2| |r r x y= = +  .

 Observe that if î and ĵ  are the unit vectors in the postive directions of x and y axes, then the 

position vector of the point (6,4) can be written as ˆ ˆ6 4i j+  and this is the only way of writing it. 

Result 8.8

  If  and a b


  are two non-collinear vectors in a plane, then any vector in the plane can be written 
as the linear combination of  and a b



 in a unique way. That is, any vector in the plane is of the form 

a mb+l  for some scalars l and m.

Proof 

 Let , ,  and OA a OB b r= =
  

   be any vector coplanar with 
 and .a b



  
 Draw PL  parallel to OB. Clearly  and LP mb OL la= =

 

  for 
some l and m.
 Now .OP OL LP= +

  

 
 That is, .r la mb= +



   

 Therefore if , ,r a b


   are coplanar then r  is a linear combination 
of  and .a b



    
Note  8.2
 Further if three non collinear vectors are coplanar then any one of the vector can be written as a 
linear combination of other two. Note that the converse is also true.
Result 8.9
 If ,  and a b c



   are three non-coplanar vectors in the space, then any vector in the space can be 

written as a mb nc+ +l  in a unique way for some scalars l, m and n.

Definition 8.15

 Let ˆ ˆ and  i j be the unit vectors in the positive directions of x and y axes respectively. Let r  be 
any vector in the plane. Then ˆ ˆ r xi y j= +

for some real numbers x and y.  Here  ˆ ˆ and  xi y j  are 
called the rectangular components of r  along the x and y axes respectively in two dimension. 

 What we discussed so far can be discussed in the three dimensional space also. 

8.6.2 Resolution of a vector in three dimension
Theorem 8.6

 Let ˆˆ ˆ,   and i j k  be the unit vectors in the direction of postive x, y and z axes respectively having 
initial point at the origin O. Let OP



 be the position vector of any point P in the space. Then  OP


 can be 

uniquely written as ˆˆ ˆ OP xi y j zk= + +


for some real numbers x, y and z. Further  2 2 2| | .OP x y z= + +


 
Proof 
 Let (x, y, z) be the coordinates of the point P. Let Q be the foot of the perpendicular drawn from 
P to the xy-plane. Let R and S be the foots of the perpendiculars drawn from Q to the x and y axes 
respectively.  Let OP



= r .

Fig. 8.30
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62XI - Mathematics

 Then, OR  = x,   OS = y,   and   QP = z.

 Thus,OR


  = ˆˆ ˆ,  ,  and xi RQ OS yj QP zk= = =
  

 

        OP


 = ˆˆ ˆ r OQ QP OR RQ QP xi y j zk= + = + + = + +
    

 .

  That is  OP


 = ˆˆ ˆr xi yj zk= + +

 This OP


 vector is called the position vector of P with 
respect to the origin O in three dimension.
In the triangle ORQ, 

  2OQ  = 2 2OR RQ+  (how?)
 and in the triangle OQP, 

  2OP  = 2 2.OQ QP+

 Thus 2OP  = 2 2 2 2 2 2 2 2OQ QP OR RQ QP x y z+ = + + = + +

and hence | |OP


 = 2 2 2x y z+ + , that is 2 2 2| |r r x y z= = + +  

Components of vector joining two points

 Let us find the components of the vector joining the point  1 1 2 2( , ) to ( , ).x y x y  

 Let A and B be the points 1 1 2 2( , ) and ( , ).x y x y  Let P be the point 2 1 2 1( , ).x x y y− −   Then .AB OP=
 

 

The components of OP


 are   2 1
ˆ( )x x i− and 2 1

ˆ( ) .y y j−  Hence the components of AB


 in the directions 

of x and y axes are 2 1
ˆ( )x x i−  and 2 1

ˆ( ) .y y j−  

 Similarly if A and B are the points 1 1 1 2 2 2( , , ) and ( , , ),x y z x y z  then the components of AB


 in the 

directions of x, y and z axes are 2 1
ˆ( )x x i− ,  2 1

ˆ( )y y j− , and 2 1
ˆ( )z z k− . 

8.6.3 Matrix representation of a vector
 A vector with three components can be visualised as either a row or column matrix as  

 [x, y, z] or 
x
y
z

 
 
 
  

 respectively.

 Thus any vector 1 2 3
ˆˆ ˆA a i a j a k= + +



 can be obtained from 1 2 3 1 2 3

ˆ
ˆˆ ˆ ˆ[ ]

ˆ

i
a a a j a i a j a k A

k

 
 

= + + = 
 
 



 .

 Hence addition of vectors and multiplication of a vector by a scalar can be defined as follows.

 If 1 2 3 1 2 3
ˆ ˆˆ ˆ ˆ ˆ and A a i a j a k B b i b j b k= + + = + +

 

  then 
1 1 1 1

2 2 2 2

3 3 3 3

a b a b
A B a b a b

a b a b

+     
     + = + = +     
     +     

 

 resulting in 

1 1 2 2 3 3
ˆˆ ˆ( ) ( ) ( )A B a b i a b j a b k+ = + + + + +

 

 .

 Also kA k=


 
1 1

2 2

3 3

a ka
a ka
a ka

   
   =   
      

 yielding 

Fig. 8.31
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 kA


 1 2 3
ˆˆ ˆka i ka j ka k= + +  

 For , 1k k∈ >  yields magnification, 0 1k< <  yields contraction of a vector and k = 0 yields a 

zero vector ˆˆ ˆ0 0 0 0OA i j k= + + = .




 

Result 8.10
 Using the commutative, associative properties of vector addition and the distributive property of 
the scalar multiplication we can prove the following. 

 If 1 2 3 1 2 3
ˆ ˆˆ ˆ ˆ ˆ,  a a i a j a k b b i b j b k= + + = + +


  and if m is a scalar, then 

 (i) 1 1 2 2 3 3
ˆˆ ˆ( ) ( ) ( )a b a b i a b j a b k+ = + + + + +





 (ii) 1 1 2 2 3 3
ˆˆ ˆ( ) ( ) ( )a b a b i a b j a b k− = − + − + −





 (iii)  
1 2 3

ˆˆ ˆ  andma ma i ma j ma k= + +

 (iv) a  = b


 if and only if 1 1 2 2 3 3, , and .a b a b a b= = =

Example 8.4

 Find a unit vector along the direction of the vector ˆˆ ˆ5 3 4 .i j k− +  

Solution

 We know that a unit vector along the direction of the vector a  is given by .
| |
a
a





 So a unit 

vector along the direction of ˆˆ ˆ5 3 4i j k− +  is given by

  
ˆˆ ˆ5 3 4
ˆˆ ˆ| 5 3 4 |

i j k
i j k

− +
− +

 = 
2 2 2

ˆ ˆˆ ˆ ˆ ˆ5 3 4 5 3 4
505 3 4

i j k i j k− + − +=
+ +

.

Note  8.3

 Now we have another unit vector parallel to ˆˆ ˆ5 3 4i j k− +  in the opposite direction. That is, 

ˆˆ ˆ5 3 4
50

i j k− +−  .

8.7 Direction Cosines and Direction Ratios

 Let P be a point in the space with coordinates (x, y, z) and of distance r from the origin. Let R, S 
and T be the foots of the perpendiculars drawn from P to the x, y and z axes respectively. Then 
  PRO∠  = 90 .PSO PTO∠ = ∠ = °
  OR = x,  OS = y,   OT = z and OP = r.
 (It may be difficult to visualize that PRO∠  = 90PSO PTO∠ = ∠ = °  in the figure; as they are foot 
of the perpendiculars to the axes from P; in a three dimensional model we can easily visualize the 
fact.)
 Let α, β, γ be the angles made by the vector OP



 with the positive x, y and z axes respectively. 
That is, 
  POR∠  = ,    ,    and   .POS POTα β γ∠ = ∠ =  
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 In , 90 , , ,  and .OPR PRO POR OR x OP rα∆ ∠ = ° ∠ = = =  Therefore

               cosα  = .OR x
OP r

=  

 In a similar way we can find that cos  and cosy z
r r

β γ= = .
 Here the angles , ,α β γ  are called direction angles of the vector  andOP r=



  cos ,cos ,cosα β γ  are 

called direction cosines of the vector ˆˆ ˆ .OP xi yj zk= + +


 Thus , ,x y z
r r r

 
  

, where  2 2 2 ,r x y z= + +  

are the direction cosines of the vector ˆˆ ˆr xi yj zk= + + .
 Any three numbers which are proportional to the direction cosines of vector are called the 
direction ratios of the vector. Hence the direction ratios of a vector is not unique. For a given vector, 
we have, infinitely many set of direction ratios.

Observations
 (i) For a given non-zero vector, one can find the direction ratios as well as the direction cosines. 
 (ii) For a given set of direction ratios, one cannot find the corresponding vector.
 (iii) For a given set of direction cosines, one cannot find the corresponding vector.
 (iv) For a given vector, the triplet of direction cosines is also a triplet of direction ratios.
 (v) To find the vector, the magnitude as well as either the set of direction cosines or a set of 

direction ratios are essential.

Note 8.4
 Here we consider a vector OP



 whose initial point is at the origin. If the vector whose initial point 
is not the origin, then, in order to find its direction cosines, we draw a vector with initial point at the 
origin and parallel to the given vector of same magnitude by translation. By the principle of two equal 
vectors having the same set of direction cosines, we can find direction cosines of any vector.

Result 8.11

 Let  ˆˆ ˆr xi yj zk= + +   be the position vector of any point and let , ,α β γ  be the direction angles of 
r . Then 
 (i) the sum of the squares of the direction cosines of r  is 1. 

 Fig. 8.32 Fig. 8.33
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 (ii) 2 2 2sin sin sin 2α β γ+ + = .

 (iii) the direction cosines of r  are 
2 2 2 2 2 2 2 2 2

, , .x y z
x y z x y z x y z+ + + + + +

 

 (iv) l, m, n are the direction cosines of a vector if and only if 2 2 2 1l m n+ + = .

 (v) any unit vector can be written as ˆˆ ˆcos cos cosi j kα β γ+ +  
Proof 

 (i) 
2 2 2 2 2 2 2

2 2 2
2 2 2 2 2cos cos cos 1x y z x y z r

r r r r r
α β γ + ++ + = + + = = =

 The proofs of (ii), (iii), (iv), and (v) are left as exercise.

Example 8.5
 Find a direction ratio and direction cosines of the following vectors. 

 (i) ˆˆ ˆ3 4 6i j k+ − , (ii) ˆˆ3 4 .i k−  
Solution

 (i) The direction ratios of ˆˆ ˆ3 4 6i j k+ −  are 3, 4, - 6.

  The direction cosines are , ,x y z
r r r

, where 2 2 2r x y z= + +  .

  Therefore, the direction cosines are 3 4 6, ,
61 61 61

−  

 (ii) The direction ratios of ˆˆ3 4i k−  are 3, 0, - 4.

  The direction cosines are 3 4,0,
5 5

− .

Example 8.6
 (i) Find the direction cosines of a vector whose direction ratios are 2, 3, - 6.

 (ii) Can a vector have direction angles 30 ,45 ,60° ° ° ?

 (iii) Find the direction cosines of ,AB


 where A is (2, 3, 1) and B is (3, - 1, 2).
 (iv) Find the direction cosines of the line joining (2, 3, 1) and (3, - 1, 2).
 (v) The direction ratios of a vector are 2, 3, 6 and it’s magnitude is 5. Find the vector.

Solution 

 (i) The direction cosines are 
2 2 2 2 2 2 2 2 2

, , .x y z
x y z x y z x y z+ + + + + +

  That is, 2 3 6, ,
7 7 7

−  .

 (ii) The condition is 2 2 2cos cos cos 1α β γ+ + =
  Here 30 , 45 , 60α β γ= ° = ° = °  

  2 2 2 3 1 1cos cos cos 1
4 2 4

α β γ+ + = + + ≠ . 

  Therefore they are not direction angles of any vector.
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 (iii) ˆˆ ˆ4AB OB OA i j k= − = − +
  

 

  Direction cosines are 
1 4 1, , .
18 18 18

−
 

 (iv) Let A and B  be the points (2, 3, 1) and (3,-1, 2). The direction cosines of 1 4 1 are , , .
18 18 18

AB −

 

  But any point can be taken as first point. Hence we have another set of direction cosines 

with opposite direction. Thus, we have another set of direction ratios 1 4 1, ,
18 18 18
− − .

 (v) The direction cosines are 2 3 6, , .
7 7 7

 

  The unit vector is 2 3 6 ˆˆ ˆ .
7 7 7

i j k+ +  

  The required vector is 5 ˆˆ ˆ(2 3 6 )
7

i j k+ + .

Example 8.7

 Show that the points whose position vectors are ˆ ˆˆ ˆ ˆ ˆ2 3 5 ,  3 2i j k i j k+ − + −  and ,  ˆˆ ˆ6 5 7i j k− +
are collinear. 

Solution 

 Let O be the origin and let , , and OA OB OC
  

 be the vectors ˆ ˆˆ ˆ ˆ ˆ2 3 5 ,  3 2i j k i j k+ − + −  and 
ˆˆ ˆ6 5 7i j k− +    respectively. Then

   AB


 = ˆ ˆˆ ˆ ˆ ˆ2 3  and   4 8 12 .i j k AC i j k− + = − +


 Thus  4AC AB=
 

 and hence AB


 and AC


 are parallel. They have a common point namely 
A. Thus, the three points are collinear.

Alternative method 
 Let O be the point of reference.

  Let OA


 = ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 3 5 , 3 2  and 6 5 7i j k OB i j k OC i j k+ − = + − = − +
 

 

   AB


 = ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 3 ; 3 6 9 ; 4 8 12i j k BC i j k CA i j k− + = − + = − + −
 

 

   AB


 = 14 ; 126 3 14 ; 224 4 14BC CA= = = =
 

.

  Thus, AC = AB + BC.

 Hence A, B, C are lying on the same line. That is, they are collinear.

Example 8.8
 Find a point whose position vector has magnitude 5 and parallel to the vector ˆˆ ˆ4 3 10 .i j k 

Solution :

 Let a  be the vector ˆˆ ˆ4 3 10i j k− + . 
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 The unit vector â  along the direction of a is 




a
a| |

which is equal to 
 4 3 10 .

5 5
i j k− +

 The vector 

whose magnitude is 5 and parallel to ˆˆ ˆ4 3 10i j k− + , is 
ˆˆ ˆ4 3 10 4 3 ˆˆ5 2 5 .

5 5 5 5
i j k i j k

 − + = − +   



 

So a required point is 4 3, , 2 5 .
5 5

 −  
 

Example 8:9 

 Prove that the points whose position vectors ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 4 3 ,  4 9  and 10 6i j k i j k i j k+ + + + − +  form 
a right angled triangle. 

Solution 
 Let A, B, C be the given points and O be the point of reference or origin.

 Then  OA


 = ˆˆ ˆ2 4 3i j k+ + , ˆ ˆˆ ˆ ˆ ˆ4 9  and 10 6OB i j k OC i j k= + + = − +
 

  AB


 = ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ(4 9 ) (2 4 3 ) 2 3 6 .OB OA i j k i j k i j k− = + + − + + = − +
 

  AB = 2 2 2| |   2 ( 3) 6AB = + − +


= 4 9 36 7+ + =

  BC


 = ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ(10 6 ) (4 9 ) 6 2 3 .OC OB i j k i j k i j k− = − + − + + = − −
 

  BC = | BC


| = 2 2 26 ( 2) ( 3)+ − + − = 36 4 9 7+ + =

  CA


 = ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ(2 4 3 ) (10 6 ) 8 5 3 .OA OC i j k i j k i j k− = + + − − + = − + −
 

  CA = 2 2 2| |  = ( 8) 5 ( 3)CA − + + −


= 64 25 9 98+ + =  
  BC2 = 49, CA2 = 98,  AB2 = 49.
  Clearly  CA2 = BC2 + AB2.
 Therefore, the given points form a right angled triangle.

Example 8.10

 Show that the vectors ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ5 6 7 ,  7 8 9 ,  3 20 5i j k i j k i j k+ + − + + +  are coplanar.

Solution 

  Let ˆˆ ˆ5 6 7i j k+ +   = ˆ ˆˆ ˆ ˆ ˆ(7 8 9 ) (3 20 5 )s i j k t i j k− + + + +  
 Equating the components, we have
 7s + 3t = 5
 -8s + 20t = 6
 9s + 5t = 7

 Solving first two equations, we get,  s = t = 1
2

, which satisfies the third equation.

 Thus one vector is a linear combination of other two vectors.
 Hence the given vectors are coplanar.
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EXERCISE 8.2
 (1) Verify whether the following ratios are direction cosines of some vector or not. 

  (i)   1 3 4, ,
5 5 5

  (ii)  1 1 1, ,
2 22

  (iii) 4 3,0,
3 4

 (2) Find the direction cosines of a vector whose direction ratios are
  (i)   1 , 2 , 3 (ii) 3 , - 1 , 3 (iii) 0 , 0 , 7 
 (3) Find the direction cosines and direction ratios for the following vectors.

  (i)  ˆˆ ˆ3 4 8i j k− +  (ii)  ˆˆ ˆ3i j k+ +  (iii)  ĵ

  (iv) ˆˆ ˆ5 3 48i j k− −  (v)  ˆˆ ˆ3 3 4i k j− +  (vi) ˆî k−
 (4) A triangle is formed by joining the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). Find the direction 

cosines of the medians. 

 (5) If 1 1, ,
2 2

a  are the direction cosines of some vector, then find a. 

 (6) If (a , a + b , a + b + c) is one set of  direction ratios of the line joining (1, 0, 0) and  
(0, 1, 0), then find a set of values of a, b, c.

 (7) Show that the vectors

  ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 ,  3 4 4 ,  3 5i j k i j k i j k− + − − − −  form a right angled triangle.

 (8) Find the value of l for which the vectors ˆ ˆˆ ˆ ˆ ˆ3 2 9  and 3a i j k b i j kλ= + + = + +


  are parallel.
 (9) Show that the following vectors are coplanar

  (i)  ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ2 3 ,  2 3 4 ,  2i j k i j k j k− + − + − − +

  (ii) ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ5 6 7 ,  7 8 9 ,  3 20 5i j k i j k i j k+ + − + + + .

 (10) Show that the points whose position vectors ˆ ˆˆ ˆ ˆ4 5 ,  ,i j k j k+ + − −  ˆˆ ˆ3 9 4i j k+ +  and 
ˆˆ ˆ4 4 4i j k− + +  are coplanar.

 (11) If ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 3 4 ,  3 4 5 ,  and   3 2 3 ,a i j k b i j k c i j k= + − = − − = − + +


   find the magnitude and 

direction cosines of      (i)  a b c+ +


         (ii)  3 2 5 .a b c− +


 

 (12) The position vectors of the vertices of a triangle are ˆ ˆˆ ˆ ˆ ˆ2 3 ;  3 4 5i j k i j k+ + − +  
ˆˆ ˆ and 2 3 7i j k− + − . Find the perimeter of the triangle.

 (13) Find the unit vector parallel to 

  ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ3 2 4  if 3 4 ,  2 4 3 ,  and 2 .a b c a i j k b i j k c i j k− + = − − = − + − = + −


 



   

 (14) The position vectors , ,a b c


  of three points satisfy the relation 2 7 5 0.a b c− + =




   Are these 
points collinear?

 (15) The position vectors of the points P, Q, R, S are  ˆˆ ˆ ˆ ˆ, 2 5 , 3 2 3 ,i j k i j i j k+ + + + −  and 
ˆˆ ˆ6i j k− −  respectively. Prove that the line PQ and RS are parallel.

 (16) Find the value or values of m for which m ˆˆ ˆ( )i j k+ +  is a unit vector.
 (17) Show that the points A (1, 1, 1), B(1, 2, 3) and C(2, - 1, 1) are vertices of an isosceles 

triangle. 
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8.8 Product of Vectors
 We have seen the notion of addition of two vectors, subtraction of one vector from another vector 
and the multiplication of a vector by a scalar. Now we study the notion of product of two vectors. 
There are two ways of multiplying two vectors.
 (i) scalar product (dot product) and
 (ii) vector product (cross product).

 To define such products we need the angle between two vectors.

8.8.1 Angle between two vectors
 Let anda b



  be any two vectors represented by OA


 and OB


 respectively. Angle between anda b




is the angle between their directions when these directions are either both converge as in Fig. 8.36 or 
both diverge as in Fig. 8.34 from their point of intersection

 Note that, if q is the angle between two vectors then 0 θ π≤ ≤  
 When 0 orθ π= , the vectors are parallel.
 If two vectors neither converge nor diverge as in Fig. 8.35 then we can make them into either 
converge or diverge by extending the length of the vectors to find the angle between the two vectors.

8.8.2 Scalar product 
Definition 8.16
    Let a  and b



 be any two non-zero vectors and q be the included angle of the vectors as in Fig. 8.34. 

Their scalar product or dot product is denoted by .a b


  and is defined as a scalar | | | | cosa b θ


 .

 Thus a b⋅


 = | | | | cosa b θ


 .

 Since the resultant of a b⋅
�� is a scalar, it is called scalar product. Further we use the symbol dot   

(‘ ⋅ ’) and hence another name dot product.

Geometrical meaning of scalar product (projection of one vector on another vector)
 Let OA a=



 ,  OB b=
 

  and  q be the angle between a  and b


.
 Draw BL perpendicular to OA.  From the right triangle OLB

 cos OL
OB

θ =  

 cosOL OB θ=  = | | cosb θ


 

 But OL is the projection of b


on a

 | | | | cosa b a b θ⋅ =
 

   = | | ( )a OL  

θ

▲▲
▲

▲

▲

▲b
�

a�
θ

O

b
�

b
�

θ

θ θ

a�
a�

▲

▲

 Fig. 8.34 Fig. 8.35 Fig. 8.36

Fig. 8.37
a�

θ

B

O

▲

▲

b
�

L
A

Unit8.indd   69 10-08-2018   18:34:54



70XI - Mathematics

 | | (projection of on )a b a b a⋅ =
 

  

 Thus, projection of onb a


  = .
| |
a b

a
⋅






 In the same manner, projection of  on a b


  = .
| |
b a

b
⋅






8.8.3 Properties of Scalar Product
 (i) Scalar product of two vectors is commutative.

  With usual definition, | | | |cos | | | |cosa b a b b a b aθ θ⋅ = = = ⋅
   

   

  That is, for any two vectors  and ,a b a b b a⋅ = ⋅
  

   .
 (ii) Nature of scalar product 
  We know that 0 θ π≤ ≤ .

   If 0 then a b abθ = ⋅ =


   [Two vectors are parallel in the same direction ⇒  0θ = ] .

   If then a b abθ π= ⋅ = −


 [Two vectors are parallel in the opposite direction .θ π⇒ = ].

  If then 0
2

a bπθ = ⋅ =


  [Two vectors are perpendicular 
2
πθ⇒ = ].

  If 0
2
πθ< <  then cosθ  is positive and hence a b⋅



 is positive.

  If 
2
π θ π< < then cosθ is negative and hence a b⋅



 is negative.

  That is, a b⋅


  is 
0 for 0 / 2

0 for / 2
0 for / 2

> ≤ <
 =
< < ≤

θ π
θ π
π θ π

 

 (iii) 0a b⋅ = ⇒


  | | 0 ora =   | | 0 or     =
2

b πθ=


 (iv) For any two non-zero vectors a  and b


,  0a b⋅ =


  a⇔   is perpendicular to b


 .
 (v) Different ways of representations of a a⋅  .
  2| |a a a⋅ =   = 2 2 2( )a a a= =  .
  These representations are essential while solving problems.
 (vi) ˆ ˆˆ ˆ ˆ ˆ 1i i j j k k⋅ = ⋅ = ⋅ =  and  ˆ ˆˆ ˆ ˆ ˆ 0i j j k k i⋅ = ⋅ = ⋅ =  (how?).
 (vii) For any two scalars andλ µ
   a bλ µ⋅



 = ( )a bλµ ⋅


 = ( ) ( )a b a bλµ λµ⋅ = ⋅
 

  .
 (viii) Scalar product is distributive over vector addition.
  That is, for any three vectors , ,a b c



   
   ( )a b c⋅ +



   = (Left distributivity)a b a c⋅ + ⋅


    
   ( )a b c+ ⋅



   = (Right distributivity)a c b c⋅ + ⋅


  

  Subsequently,
   ( )a b c⋅ −



   = a b a c⋅ − ⋅


    and ( )a b c− ⋅


   =  a c b c⋅ − ⋅


  

  These can be extended to any number of vectors.
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 (ix) Vector identities

   2( )a b+


  = 2 2| | | | 2a b a b+ + ⋅
 

 

   2( )a b−


  = 2 2| | | | 2a b a b+ − ⋅
 

 

   ( ) ( )a b a b+ ⋅ −
 

   = 2 2| | | |a b−




Proof
  By property  (iii)  

  2( )a b+


  = ( ) ( )a b a b+ ⋅ + =
 

  2 2| | | |a b a b b a+ + ⋅ + ⋅
  

    = 2 2| | | | 2a b a b+ + ⋅
 

 

  Similarly one can prove other results.
 (x) Working rule to find scalar product of two vectors

  Let 1 2 3
ˆˆ ˆa a i a j a k= + +  and  1 2 3

ˆˆ ˆb b i b j b k= + +


 

   a b⋅


  = 1 2 3 1 2 3
ˆ ˆˆ ˆ ˆ ˆ( ) ( )a i a j a k b i b j b k+ + ⋅ + +

    = 1 1 1 2 1 3
ˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( )a b i i a b i j a b i k⋅ + ⋅ + ⋅

2 1 2 2 2 3 3 1
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )a b j i a b j j a b j k a b k i+ ⋅ + ⋅ + ⋅ + ⋅ 3 2 3 3

ˆ ˆ ˆˆ( ) ( )a b k j a b k k+ ⋅ + ⋅

    = 1 1 2 2 3 3.a b a b a b+ +
  Therefore, the scalar product of two vectors is equal to the sum of the products of their 

corresponding rectangular components.

 (xi) If θ is the angle between the vectors anda b


  then 1cos .
| | | |

a b
a b

θ −  ⋅=  
 









 

 (xii) For any two vectors anda b


 , | | | | .a b a b+ ≤ +
 

   

  We know that if anda b


  are the two sides of a triangle then the sum a b+


   represents the 

third side of the triangle. Therefore, by triangular property, | | | | | |a b a b+ ≤ +
 

   

 (xiii) For any two vectors  and , | | | | | | .a b a b a b⋅ ≤
  

    
  If one of them is zero vector then the equality holds. So, let us assume that both are  

non-zero vectors. We have 

   cosθ  = 
| | | |

a b
a b

⋅








 

   That is,  | |
| || |

a b
a b

⋅








 = | cos | 1θ ≤

   | |a b⇒ ⋅


  ≤ | | | | .a b




Example 8.11

 Find a b⋅


  when

 (i) ˆˆ ˆ 5a i j k= − +  and ˆˆ3 2b i k= −


 
 (ii)  and a b



  represent the points (2, 3, - 1) and (- 1, 2, 3).
Solution 

 (i)  a b⋅




 = ˆ ˆˆ ˆ ˆ( 5 ) (3 2 ) (1)(3) ( 1)(0) (5)( 2) 3 10 7i j k i k− + ⋅ − = + − + − = − = −  

 (ii)          ˆ ˆˆ ˆ ˆ ˆ2 3   and  2 3a i j k b i j k= + − = − + +


  

  a b⋅


  = (2)( 1) (3)(2) ( 1)(3) 2 6 3 1.− + + − = − + − =
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Example 8.12

 Find ( 3 ) (2 ) ifa b a b+ ⋅ −
 

   a  = ˆ ˆˆ ˆ ˆ ˆ2  and 3 2i j k b i j k+ + = + −


 
Solution

 ( 3 ) (2 )a b a b+ ⋅ −
 

   = 2 5 3 2(1 1 4) 5(3 2 2) 3(9 4 1) 15a a a b b b⋅ + ⋅ − ⋅ = + + + + − − + + = −
  

   .

Example 8.13

 If ˆ ˆˆ ˆ ˆ ˆ2 2 3 , 2a i j k b i j k= + + = − + +


  and ˆ ˆ3c i j= +  be such that a bλ+


  is perpendicular to c  
then find λ.

Solution 
   ( ) 0a b cλ+ ⋅ =



 

 ⇒	 0a c b cλ⋅ + ⋅ =


  

    	⇒ 	 (6 + 2)+ λ (- 3 + 2) = 0
    ⇒  λ = 8.

Example 8.14

 If | | | |a b a b+ = −
 

   prove that anda b


  are perpendicular.
Solution

  | |a b+


  = | |a b−




    2| |a b+


  = 2| |a b−




   2 2| | | | 2a b a b+ + ⋅
 

   = 2 2| | | | 2a b a b+ − ⋅
 

 

   ⇒      4 a b⋅


  = 0 

  a b⋅


  = 0

 Hence anda b


  are perpendicular.

Example 8.15

 For any vector r  prove that ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( )r r i i r j j r k k= ⋅ + ⋅ + ⋅    .
Solution

 Let ˆˆ ˆr xi yj zk= + +

   ˆr i⋅  = ( )ˆˆ ˆ ˆxi yj zk i x+ ⋅+ =  

   ˆr j⋅  = ( )ˆˆ ˆ ˆxi yj zk j y+ ⋅+ =

   ˆr k⋅  = ( )ˆ ˆˆ ˆxi yj zk k z+ ⋅+ =

   ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )r i i r j j r k k xi yj zk r⋅ + ⋅ + ⋅ = + + =     

 Thus ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( )r r i i r j j r k k= ⋅ + ⋅ + ⋅    .

Example 8.16

 Find the angle between the vectors ˆ ˆˆ ˆ ˆ ˆ5 3 4  and 6 8i j k i j k+ + − − .
Solution

 Let ˆ ˆˆ ˆ ˆ ˆ5 3 4 ,  and  6 8a i j k b i j k= + + = − −


 .
 Let θ be the angle between them.
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  30 24 4 2cos
| | | | 50 101 5 101

a b
a b

θ ⋅ − −= = =








   1 2cos
5 101

θ −  
⇒ =  

 
.

Example 8.17
 Find the projection of AB



on  CD


 where A, B, C, D are the points (4, - 3, 0), (7, - 5, - 1), 
(- 2, 1, 3), (0, 2, 5).

Solution
 Let O be the origin.

 Therefore, ˆ ˆ4 3OA i j= −


 ;  ˆˆ ˆ7 5OB i j k= − −


   ;  ˆˆ ˆ2 3OC i j k= − + +


 ; ˆˆ2 5OD j k= +


 

 ˆˆ ˆ3 2AB OB OA i j k= − = − −
  

 ;  ˆˆ ˆ2 2CD OD OC i j k= − = + +
  

 Projection of 6 2 2 2on
3 3

AB CDAB CD
CD

⋅ − −= = =
 

 


.

Example 8.18

 If , ,  and a b c


 

 are three unit vectors satisfying 3 0a b c− + =
 

   then find the angle between 
 and .a c   

Solution
 Let θ be the angle between  and .a c 

  3a b c− +


   = 


0

 ⇒  | ( ) |a c+   = | 3 |b


 

 ⇒  2 2| | | | 2 | | | | cosa c a c θ+ +     = 23 | |b


 ⇒  1 + 1 + (2) (1) (1) cos θ = 3(1)

 ⇒  cos θ = 1
2

    ⇒   � �
�

3
.

Example 8.19
 Show that the points (4, - 3, 1), (2, - 4, 5) and (1, - 1, 0) form a right angled triangle.

Solution

 Trivially they form a triangle. It is enough to prove one angle is 
2
π  . So find the sides of the 

triangle. 
 Let O be the point of reference and A,B,C be (4, - 3, 1), (2, - 4, 5) and (1, - 1, 0) respectively.

 ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ4 3 , 2 4 5 ,OA i j k OB i j k OC i j= − + = − + = −
  

 

 Now,  AB


 = ˆˆ ˆ2 4OB OA i j k− = − − +
 

 Similarly, BC


  = ˆˆ ˆ3 5i j k− + −   ;  CA


 = ˆˆ ˆ3 2i j k− +

 Clearly, AB


⋅ CA


 = 0

 Thus one angle is 
2
π  . Hence they form a right angled triangle.
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Note 8.5
 Suppose three sides are given in vector form, prove 
 (i) either sum of the vectors is 0



  or sum of any two vectors is equal to the third vector, to form 
a triangle.

 (ii) dot product between any two vectors is 0 to ensure one angle is 
2
p .

EXERCISE 8.3
 (1) Find .a b



  when 

  (i) ˆˆ ˆ2a i j k= − +  and ˆˆ ˆ3 4 2b i j k= − −


    (ii) ˆ ˆˆ ˆ ˆ ˆ2 2  and 6 3 2 .a i j k b i j k= + − = − +




 (2) Find the value l for which the vectors anda b


  are perpendicular, where

  (i) ˆ ˆˆ ˆ ˆ ˆ2  and 2 3a i j k b i j kλ= + + = − +


      (ii) ˆ ˆˆ ˆ ˆ ˆ2 4  and 3 2 .a i j k b i j kλ= + − = − +




 (3) If   and a b


  are two vectors such that | | 10,| | 15a b= =


  and 75 2a b⋅ =


 , find the angle 

between  and a b


 .

 (4) Find the angle between the vectors   

  (i)  ˆ ˆˆ ˆ ˆ ˆ2 3 6  and 6 3 2i j k i j k+ − − +      (ii) ˆˆ ˆ ˆ and .i j j k− −

 (5) If , ,a b c


   are three vectors such that 2 0a b c+ + =
 

    and | | 3, | | 4, | | 7a b c= = =


  , find the 

angle between  and a b


 .

 (6) Show that the vectors ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 3 6 , 6 2 3 , and 3 6 2a i j k b i j k c i j k= + + = + − = − +


   are 

mutually orthogonal.

 (7) Show that the vectors ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 6 ,2 ,  and 3 5i j k i j k i j k− − − − + − + +  form a right angled triangle.

 (8) If | | 5, | | 6, | | 7a b c= = =


   and 0a b c+ + =
 

  ,  find a b b c c a⋅ + ⋅ + ⋅
 

    .

 (9) Show that the points (2, - 1, 3), (4, 3, 1) and (3, 1, 2) are collinear.

 (10) If ,a b


  are unit vectors and q  is the angle between them, show that

  (i) 1sin | |
2 2

a bθ = −


      (ii)  1cos | |
2 2

a bθ = +


     (iii) 
| |tan .

2 | |
a b
a b

θ −=
+









 

 (11) Let , ,a b c


   be three vectors such that | | 3, | | 4, | | 5a b c= = =


   and each one of them being 

perpendicular to the sum of the other two, find | |a b c+ +


  .

 (12) Find the projection of the vector ˆˆ ˆ3 7i j k+ +  on the vector ˆˆ ˆ2 6 3i j k+ + .

 (13) Find l, when the projection of ˆ ˆˆ ˆ ˆ ˆ4   on  2 6 3a i j k b i j kλ= + + = + +


  is 4 units.

 (14) Three vectors ,  and a b c


   are such that | | 2, | | 3,| | 4a b c= = =


  , and 0a b c+ + =
 

  . Find 

4 3 3 .a b b c c a⋅ + ⋅ + ⋅
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8.8.4 Vector Product
 To define vector product between two vectors, we need the concept of right handed and left 
handed system.
 If we align the fingers of our right hand along the vector a  and bend our 
fingers around in the direction of rotation from a  towards b



 (through an angle 
less than 180° ), our thumb will point in the direction of a b×



 . Now, following 
the right-hand rule, b a×



  will point in the direction opposite to a b×


  (See Fig. 
8.38).
 We may also say that if a  is rotated into the direction of b



 through the 
angle ( )θ π< , then a b×



  advances in the same direction as a right-handed 
screw would if turned in the same way.
 A Cartesian coordinate system is called right-handed if the corresponding 

unit vectors ˆˆ ˆ, ,i j k  in the positive direction of the axes form a right-handed 
triple as in Fig. 8.39. The system is called left handed if the sense of k̂  is 
reversed as in Fig 8.40.

Definition 8.17
 Vector product of any two non-zero vectors  and a b



  is 
written as a b×



  and is defined as

 ˆ| | | | sin ,a b a b nθ× =
 

   

             where θ  is the angle between  and ,0a b θ π≤ ≤


 . 

 Here ˆ, ,a b n


  form a right handed system. 

 The resultant is a vector with magnitude | || | sina b θ


  and has the direction ˆ.n  

 Further a b×


  is a vector perpendicular to both  and a b


 .  That is, a b×


 is normal to the plane 

containing  and a b


 .

Note 8.6

 (i) Note that the order of the vectors is very important to decide the direction of n̂  .

 (ii) Since the resultant is a vector, this product is named as vector product. Again, we use the 

symbol cross ‘×’ to define such a product and hence it has another name cross product.

Right handed Left handed Right handed screw Left handed screw

x y

z

î ĵ

k̂
x y

z

î ĵ

k̂

 Fig. 8.39 Fig. 8.40 Fi. 8.41 Fig. 8.42

a b×
��

b
�n̂

θ

a�

Fig. 8.43

b a×
� �

a b×
��

a�
b
�

b
�a�

Fig. 8.38
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Geometrical interpretation of vector product
 Construct a parallelogram OACB with OA a=



  and OB b=
 

 
as adjacent sides.
 Let AOB θ=  
 From the diagram, 

  sinθ  = BL
OB

 

  BL = (OB) sin θ = | | sinb θ


 

 Now  | |a b×


  = | | | | sina b θ =


 | | ( )a BL

   = (base) (height) = area of the parallelogram OACB.
 Thus, a b×



  is a vector whose magnitude is the area of the parallelogram, having  and a b


  as 
its adjacent sides and whose direction n̂  is perpendicular to the plane containing  and a b



  such that 

ˆ, ,a b n


  form a right handed system.

 Thus, | |a b×


  = area of the parallelogram whose adjacent sides are  and a b


 .
 From the area of the parallelogram, we can deduct the area of the triangle OAC as half of the area 
of OACB.

Deduction

 The area of any triangle whose two sides are 1 and | |
2

a b a b= ×
 

  .

8.8.5 Properties 
 (i) Vector product is non-commutative

  By definition

   b a´


   = ˆ| | | | sin ( )b a nq -


    

         [since , ,b a n−


   form a right handed system] 

    = ˆ| | | | sina b nθ−


   

    = ( )a b− ×


  

 Thus vector product is non-commutative.

 (ii) If two vectors are collinear or parallel then 0a b× =
 

  (how?)
  But   0a b× = ⇒

 

        0a =


     or   0b =
 

    or   and a b


  are parallel.
 (iii) For any two non-zero vectors  and a b



 , 0  and a b a b× = ⇔
 

   are parallel.

Deduction
  0a a× =



   

 (iv) With usual meaning of ˆˆ ˆ,  and i j k  (they form a right handed system), the 
following results are obtained.

  It is clear that, 

       ˆ ˆi i×  = ˆ ˆˆ ˆ 0j j k k× = × =


 

                             ˆˆ ˆi j k× =  ; ˆˆ ˆj k i× =  ; ˆ ˆ ˆk i j× =

         ˆˆ ˆj i k× = −  ; ˆ ˆ ˆk j i× = −  ; ˆˆ ˆi k j× = −    (how?)

▲

▲

O L

B
n̂

a� A

C

θ

b
�

| |� �a b×

Fig. 8.44

b
�

θ

a�

n̂

n̂−

Fig. 8.46

▲

▲

▲

ĵ

î

k̂

Fig. 8.45
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 (v) If ˆ then | | | |
2

a b a b nπθ = × =
 

   .

  (vi) For any scalars m and n, 

   ma nb×


   = ( ) ( ) ( )mn a b mna b a mnb na mb× = × = × = ×
   

     .
 (vii) Vector product is distributive over addition.

  That is, ( )a b c× +


    = ( ) ( )a b a c× + ×


    

   ( )a b c+ ×


    = ( ) ( ).a c b c× + ×


    
  This property can be extended to subtraction and to any number of vectors.

  That is, ( )a b c× −


    = ( ) ( )a b a c× − ×


    

   ( )a b c d× + +
 

    = ( ) ( ) ( ).a b a c a d× + × + ×
 

    . 
 (viii) Working rule to find the cross product

   Let      a   = 1 2 3
ˆˆ ˆa i a j a k+ +  ,     b



 = 1 2 3
ˆˆ ˆb i b j b k+ +  .

   a b×


  = 1 2 3
ˆˆ ˆ( )a i a j a k+ +  ×	 1 2 3

ˆˆ ˆ( )b i b j b k+ +

    = 1 1 1 2 1 3 2 1
ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )a b i i a b i j a b i k a b j i× + × + × + ×  

     2 2 2 3 3 1 3 2 3 3
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )a b j j a b j k a b k i a b k j a b k k+ × + × + × + × + ×  

    = 2 3 3 2 1 3 3 1 1 2 2 1
ˆˆ ˆ( ) ( ) ( )a b a b i a b a b j a b a b k− − − + −  

   a b×


  = 1 2 3

1 2 3

ˆˆ ˆi j k
a a a
b b b

 .

 (ix) If  θ  is the angle between  and a b


  then 1sin
| | | |

a b

a b
θ −

 ×
 =
  









 .

  (The proof of this result is left as an exercise)
Note 8.7
  In this case  θ  is always acute. Thus, if we try to find the angle using vector product, we get 
only the acute angle. Hence in problems of finding the angle, the use of dot product is preferable since 
it specifies the position of the angle  θ .

 (x) The unit vectors perpendicular to both  and a b


  are ( )ˆ
| |
a bn
a b

×± = ±
×









 (how?)

 Vectors of magnitude λ, perpendicular to both  and a b


 are ( )ˆ
| |
a bn
a b

λ λ ×± = ±
×









 .

Example 8.20

 Find | |a b×


 , where ˆˆ ˆ ˆ ˆ3 4  and a i j b i j k= + = + +


 .
Solution

  a b×


   = 

ˆˆ ˆ

3 4 0
1 1 1

i j k
 = ˆˆ ˆ(4 0) (3 0) (3 4)i j k− − − + −  = ˆˆ ˆ4 3i j k− − .

  | |a b×


  = | 4 3 | 16 9 1 26i j k− − = + + =


 

.
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Example 8.21

 If ˆ ˆˆ ˆ ˆ ˆ3 4 7  and 6 2 3a i j k b i j k= − + − = + −


 ,
 verify (i)  and a a b×



   are perpendicular to each other.
  (ii)  and b a b×

 

  are perpendicular to each other.
Solution :

   a b×


 = 

ˆˆ ˆ

3 4 7
6 2 3

i j k
− −

−
 = ˆˆ ˆ( 12 14) (9 42) ( 6 24)i j k− + − + + − −  = ˆˆ ˆ2 51 30i j k− −  

 (i) ( )a a b⋅ ×


   = ˆ ˆˆ ˆ ˆ ˆ( 3 4 7 ) (2 51 30 )i j k i j k− + − ⋅ − −  = 6 204 210 0− − + =  .
        Therefore,  and a a b×



   are perpendicular.

 (ii) ( )b a b⋅ ×
 

   = ˆ ˆˆ ˆ ˆ ˆ(6 2 3 ) (2 51 30 )i j k i j k+ − ⋅ − −  = 12 102 90− +  = 0.
  Therefore  and b a b×

 

  are perpendicular.

Example 8.22
 Find the vectors of magnitude 6 which are perpendicular to both vectors

 ˆ ˆˆ ˆ ˆ4 3  and 2 2a i j k b i j k= − + = − + −


 .
Solution

   a b×


  = 

ˆˆ ˆ

4 1 3
2 1 2

i j k
−

− −
 = ˆˆ ˆ(2 3) ( 8 6) (4 2)i j k− − − + + −  = ˆˆ ˆ2 2i j k− + +  

 Unit vectors perpendicular to both 
ˆˆ ˆ( ) 2 2 and  are 

3| |
a b i j ka b
a b

 × − + + ± = ±  ×   

���� ��  

 Vectors of magnitude 6 perpendicular to both  and  area b


  ˆˆ ˆ2( 2 2 )i j k± − + +  .

Example 8.23

 Find the cosine and sine angle between the vectors ˆ ˆˆ ˆ ˆ ˆ2 3  and 4 2 2a i j k b i j k= + + = − +


 .
Solution

 Let  θ  be the angle between  and a b
 

 
  a b⋅

 

 = ˆ ˆˆ ˆ ˆ ˆ(2 3 ) (4 2 2 )i j k i j k+ + ⋅ − +  = 8 2 6 12− + =  
  | |a



  = ˆˆ ˆ| 2 3 | 14i j k+ + =    ;   | |b


 = ˆˆ ˆ| 4 2 2 | 24i j k− + =  

  cosθ   = . 12 3
7| | | | 14 24

a b
a b

= =








 

  a b×


   = 

ˆˆ ˆ

2 1 3
4 2 2

i j k

−
 = ˆˆ ˆ(2 6) (4 12) ( 4 4)i j k+ − − + − −   = ˆˆ ˆ8 8 8i j k+ −  

  | |a b×


   = ˆˆ ˆ| 8 8 8 |i j k+ −  = 8 3  

  sinθ   = | |
| | | |
a b
a b

×








  = 8 3 4 3 2
14 24 7 12 7

= = .

Unit8.indd   78 10-08-2018   18:34:59



79 Vector Algebra - I

Example 8.24

 Find the area of the parallelogram whose adjacent sides are ˆ ˆˆ ˆ ˆ ˆ3 4  and a i j k b i j k= + + = − +


 .
Solution

  a b×


   = 

ˆˆ ˆ

3 1 4
1 1 1

i j k

−
 = ˆˆ ˆ(1 4) (3 4) ( 3 1)i j k+ − − + − −  = ˆˆ ˆ5 4i j k+ −  .

  | |a b×


  = ˆˆ ˆ| 5 4 | 42i j k+ − =  

 Area of the parallelogram is 42  sq.units.

Example 8.25

 For any two vectors  and ba


 ,  prove that  2| |a b×


  + 2 2 2( ) | | | |a b a b⋅ =
 

   

Solution

 We have, | |a b×


  = | | | | sina b θ


  and  a b⋅


  = | | | | cosa b θ




  2 2| | ( )a b a b× + ⋅
 

   = 2 2 2 2 2 2| | | | sin | | | | cosa b a bθ θ+
 

 

   = 2 2 2 2| | | | (sin cos )a b θ θ+


 = 2 2| | | | .a b




Example 8.26
 Find the area of a triangle having the points (1,0,0), (0,1,0),  and (0,0,1)A B C  as its vertices.

Solution :
 Let us find two sides of the triangle.

  AB


 = ˆˆ ˆ ˆ;i j AC i k− + = − +


 

  AB AC×
 

 = 

ˆˆ ˆ
ˆˆ ˆ1 1 0

1 0 1

i j k
i j k− = + +

−
 

  | |AB AC×
 

 = 3  

 The area of the triangle ABC is 1 3| |
2 2

AB AC× =
 

 .

Note 8.8
 Instead of  and AB AC

 

, one can take any two sides.

EXERCISE 8.4
 (1) Find the magnitude of a b×



  if ˆ ˆˆ ˆ ˆ ˆ2 3   and  3 5 2a i j k b i j k= + + = + −


  .

 (2) Show that ( ) ( ) ( ) 0a b c b c a c a b× + + × + + × + =
   

       .

 (3) Find the vectors of magnitude 10 3  that are perpendicular to the plane which contains 
ˆ ˆˆ ˆ ˆ ˆ2   and  3 4 .i j k i j k+ + + +  

 (4) Find the unit vectors perpendicular to each of the vectors 

  ˆ ˆˆ ˆ ˆ ˆ and ,  where  and 2 3 .a b a b a i j k b i j k+ − = + + = + +
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 (5) Find the area of the parallelogram whose two adjacent sides are determined by the vectors 
ˆ ˆˆ ˆ ˆ ˆ2 3  and 3 2 .i j k i j k+ + − +  

 (6) Find the area of the triangle whose vertices are 
  A(3, - 1, 2), B(1, - 1, - 3) and C(4, - 3, 1).

 (7) If , ,a b c


   are position vectors of the vertices A, B, C of a triangle ABC, show that the area of 

the triangle ABC is 1 | |
2

a b b c c a× + × + ×
 

    . Also deduce the condition for collinearity of the 

points A, B, and C.

 (8) For any vector a  prove that 2 2 2 2ˆˆ ˆ| | | | | | 2 | |a i a j a k a× + × + × =     .

 (9) Let , ,a b c


   be unit vectors such that 0a b a c⋅ = ⋅ =


    and the angle between  and  is 
3

b c π

 . 

Prove that 2 ( )
3

a b c= ± ×


  .

 (10) Find the angle between the vectors ˆ ˆˆ ˆ ˆ ˆ2  and 2i j k i j k+ − + +  using vector product.

EXERCISE 8.5
Choose the correct or the most suitable answer from the given four alternatives
 (1) The value of  isAB BC DA CD+ + +

   

  (1) AD


  (2) CA


  (3) 0


  (4) AD−


 

 (2) If 2  and 3a b a mb+ +
 

  are parallel, then the value of m is

  (1) 3 (2) 1
3

  (3) 6 (4) 1
6

 

 (3) The unit vector parallel to the resultant of the vectors ˆ ˆˆ ˆ ˆ ˆ and 2  isi j k i j k+ − − +

  (1) 
ˆˆ ˆ

5
i j k− +   (2) 

ˆ ˆ2
5

i j+  (3) 
ˆˆ ˆ2

5
i j k− +  (4) 

ˆ ˆ2
5

i j−

 (4) A vector OP


 makes 60° and 45° with the positive direction of the x and y axes respectively. 
Then the angle between OP



 and the z-axis is
  (1) 45° (2) 60° (3) 90° (4) 30°

 (5) If ˆ ˆˆ ˆ ˆ ˆ3 2  and the position vector of  is 3 ,BA i j k B i j k= + + + −


 then the position vector A is

  (1) ˆˆ ˆ4 2i j k+ +  (2) ˆ ˆ4 5i j+  (3) ˆ4i  (4) ˆ4i−
 (6) A vector makes equal angle with the positive direction of the coordinate axes. Then each 

angle is equal to

  (1) 1 1cos
3

−  
  

  (2) 1 2cos
3

−  
  

  (3) 1 1cos
3

−  
  

  (4) 1 2cos
3

−  
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 (7) The vectors ,  ,   area b b c c a− − −
 

   

  (1) parallel to each other (2) unit vectors
  (3) mutually perpendicular vectors (4) coplanar vectors.
 (8) If ABCD is a parallelogram, then AB AD CB CD+ + +

   

 is equal to

  (1) 2( )AB AD+
 

 (2) 4AC


  (3) 4BD


  (4) 0


 (9) One of the diagonals of parallelogram ABCD with 

   and  as adjacent sides is . The other diagonal  isa b a b BD+
 

 

  (1) a b−


  (2) b a−


  (3) a b+


  (4) 
2

a b+




 

 (10) If ,a b


  are the position vectors A and B, then which one of the following points whose 
position vector lies on AB, is

  (1) a b+


  (2) 2
2

a b−




 (3) 2
3

a b+




 (4) 
3

a b−




 (11) If ,  ,a b c


  are the position vectors of three collinear points, then which of the following is 
true?

  (1) a b c= +


   (2) 2a b c= +


   (3)  b c a= +


   (4) 4 0a b c+ + =




 

 (12) If 9 7 ,  
16

a br +=




  then the point P whose position vector  r divides the line joining the points 

with position vectors  and a b


 in the ratio
  (1) 7 : 9 internally  (2) 9 : 7 internally
  (3) 9 : 7 externally  (4) 7 : 9 externally

 (13) If ˆˆ ˆ2 2i j kλ λ λ+ +  is a unit vector, then the value of  isλ

  (1) 1
3

  (2) 1
4

  (3) 1
9

  (4) 1
2

 

 (14) Two vertices of a triangle have position vectors ˆ ˆˆ ˆ ˆ ˆ3 4 4  and 2 3 4 . i j k i j k+ − + + If the position 

vector of the centroid is ˆˆ ˆ2 3 ,i j k+ +  then the position vector of the third vertex is

  (1) ˆˆ ˆ2 9i j k− − +  (2) ˆˆ ˆ2 6i j k− − −  (3) ˆˆ ˆ2 6i j k− +  (4) ˆˆ ˆ2 6i j k− + +

 (15) If | | 60,| | 40 and | | 46,  then | | isa b a b b a+ = − = =
  

    
  (1) 42 (2) 12 (3) 22 (4) 32

 (16) If  and a b


   having same magnitude and angle between them is 60°  and their scalar product 

is 1
2

 then | |a  is

  (1) 2 (2) 3 (3) 7 (4) 1

 (17) The value of 0,
2
πθ  ∈  

 for which the vectors ˆ ˆ(sin ) (cos )a i jθ θ= +   and ˆˆ ˆ3 2b i j k= − +


are perpendicular, is equal to

  (1) 
3
π   (2) 

6
π   (3) 

4
π   (4) 

2
π  
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 (18) If | | 13,| | 5 and 60a b a b= = ⋅ = °
 

   then | |a b×


  is
  (1) 15 (2) 35 (3) 45 (4) 25

 (19) Vectors a  and b


  are inclined at an angle 120 .θ = °  If | | 1,| | 2a b= = , then 2[( 3 ) (3 )]a b a b+ × −
 

   
is equal to

  (1) 225 (2) 275 (3) 325 (4) 300
 (20) If  and a b



  are two vectors of magnitude 2 and inclined at an angle 60° , then the angle 
between a  and a b+



  is
  (1) 30° (2) 60° (3) 45° (4) 90°

 (21) If the projection of ˆˆ ˆ5 3i j k− −  on the vector ˆˆ ˆ3i j kλ+ +  is same as the projection of 
ˆ ˆˆ ˆ ˆ ˆ3  on 5 3 ,  then i j k i j kλ λ+ + − −  is equal to

  (1) ± 4 (2) ± 3 (3) ± 5 (4) ±1

 (22) If (1, 2, 4) and (2, - 3λ - 3) are the initial and terminal points of the vector ˆˆ ˆ5 7i j k+ − , then 
the value of  λ  is equal to

  (1) 7
3

  (2) 7
3

−   (3) 
5
3

−   (4) 5
3

 

 (23) If the points whose position vectors ˆ ˆ ˆ ˆ ˆ ˆ10 3 , 12 5   and  11i j i j ai j+ − + are collinear then a is 
equal to

  (1) 6 (2) 3 (3) 5 (4) 8

 (24) If ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, 2 , 4  and ( ) 70a i j k b i xj k c i j k a b c= + + = + + = − + ⋅ × =
 

    , then x is equal to
  (1) 5 (2) 7 (3) 26 (4) 10

 (25) If ˆˆ ˆ2 2 ,| | 5a i j k b= + + =


  and the angle between  and  is ,
6

a b π

  then the area of the triangle 
formed by these two vectors as two sides, is

  (1) 7
4

  (2) 15
4

  (3) 3
4

  (4) 17
4

 

SUMMARY
In this chapter we have acquired the knowledge of the following :
 • A scalar is a quantity that is determined by its magnitude.

 • A vector is a quantity that is determined by both its magnitude and its direction

 • If we have a liberty to choose the origins of the vector at any point then it is said to be a 
free vector, whereas if it is restricted to a certain specified point then the vector is said 
to be a localized vector.

 • Two or more vectors are said to be coplanar if they lie on the same plane or parallel to 
the same plane.

 • Two vectors are said to be equal if they have equal length and the same direction.

 • A vector of magnitude 0 is called the zero vector.

 • A vector of magnitude 1 is called a unit vector.
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 • Let a  be a vector and m be a scalar. Then the vector ma  is called the scalar multiple 
of a vector a by the scalar m.

 • Two vectors a  and b


are said to be parallel if a bλ=


 , where  λ is a scalar.

 • If  


a b c,  and are the sides of a triangle taken in order then 0a b c+ + =
 

 

 • Vector addition is associative.

 • For any vector ,   0 0a a a a+ = + =


    .

 • For any vector ,   ( ) ( ) 0.a a a a a+ − = − + =


    

 • Vector addition is commutative.
 •  “If two vectors are represented in magnitude and direction by the two sides of a triangle 

taken in the same order, then their sum is represented by the third side taken in the 
reverse order”. This is known as the triangle law of addition.

 • In a parallelogram OABC, if  and OA OB
 

 represents two adjacent sides, then the 
diagonal OC



 represents their sum. This is parallelogram law of addition.

 • If , ,α β γ  are the direction angles then cos ,cos ,cosα β γ  are the direction cosines.

 • The direction ratios of the vector ˆˆ ˆr xi yj zk= + + are , ,x y z .

 • If ,  and a b c


   are three non-coplanar vectors in the space, then any vector in the space 

can be written as a mb nc+ +l  in a unique way.

 Let  ˆˆ ˆr xi yj zk= + +   be the position vector of any point and let , ,α β γ  be the direction 
angles of r . Then 
 (i) the sum of the squares of the direction cosines of r  is 1. 

 (ii) 2 2 2sin sin sin 2α β γ+ + = .

 (iii) the direction cosines of r  are 
2 2 2 2 2 2 2 2 2

, , .x y z
x y z x y z x y z+ + + + + +

 

 (iv) l, m, n are the direction cosines of a vector if and only if 2 2 2 1l m n+ + = .

 (v) any unit vector can be written as ˆˆ ˆcos cos cosi j kα β γ+ + .

 • The scalar product of the vectors  anda b


  is  a b⋅


 = | | | | cosa b θ


 .

 • Vector product of any two non-zero vectors  and a b


  is written as a b×


  and is defined 

as ˆ| | | | sin ,a b a b nθ× =
 

   where θ is the angle between  and ,0a b θ π≤ ≤


 .  Here ˆ, ,a b n


  
form a right handed system.
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Vector Algebra - I

Expected Outcome

Step 1
Open the Browser type the URL Link given below (or) Scan the QR Code.
GeoGebra Workbook called “XI Standard Vector Algebra” will appear. In 
that there are several worksheets related to your lesson. 

Step 2
Select the work sheet “Direction Cosines”. 3-D representation is found on 
Right side. You can rotate 3-D picture by right clicking on the mouse to see 
various positions
You can move the sliders or entering x, y and z values to change the vector.

Browse in the link:
XI Standard Vector Algebra: https://ggbm.at/cem3sdq5

ICT CORNER 8(a)

Step1 Step2
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Vector Algebra - I

Expected Outcome

Step 1
Open the Browser type the URL Link given below (or) Scan the QR Code.
GeoGebra Workbook called “XI Standard Vector Algebra” will appear. In that 
there are several worksheets related to your lesson. 

Step 2
Select the work sheet “Product of Vectors”. 3-D representation is found on Right 
side. You can rotate 3-D picture by right clicking on the mouse to see various 
positions
You can move the sliders or entering x, y and z values to change the vector.(for 
clear understanding do not change a1,a2, and a3 values.  For ABXAC, components 
are given vertically)

ICT CORNER 8(b)

Step1 Step2

Browse in the link:
XI Standard Vector Algebra: https://ggbm.at/cem3sdq5
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Differential Calculus -
Limits and Continuity9Chapter

“Men pass away, but their deeds abide”
- Augustin-Louis Cauchy

9.1 Introduction
 Calculus is about rates of change. Rates of change occur in all the sciences. A mathematician 
is interested in measuring the rate of change of the deviations of a straight line at a point on a curve, 
while a physicist is interested in the rate of change of displacement, and the velocity of a moving 
object. A chemist wants to know the rate of a chemical reaction that would result in the formation of 
one or more substances (called products) from one or more starting materials (called reactants). 
 A biologist would like to analyse the changes that take 
place in the number of individuals in an animal population or 
plant population at any time; he would also want to know the 
rate at which blood flows through a blood vessel, such as a 
vein or artery and the part of the vessel / artery in which this 
flow is lowest or highest.
 An economists also studies marginal demand, marginal 
revenue, and marginal profit, which are drawn from rates 
of change (that is, derivatives) of this demand, revenue and 
profit functions.
 A geologist is interested in knowing the rate at which 
an intruded body of molten rock cools by conduction of heat 
into surrounding rocks. An engineer wants to know the rate 
at which water flows into or out of a reservoir. An urban geographer is interested in the rate of 
change of population density in a city with the expansion of the city. A meteorologist is concerned 
with the rate of change of atmospheric pressure with respect to height.
 In psychology, those interested in learning theory, study the so called learning curve, which 
graphs the performance of someone learning a skill as a function of the training time. Of particular 
interest is the rate at which performance improves as time passes.

 When we enter a 
darkened room, our eyes 
adjust to the reduced level of 
light by increasing the size of 
our pupils, allowing more light 
to enter the eyes and making 
objects around us easier to see. 
By contrast, when we enter a 
brightly lit room, our pupils 
contract, reducing the amount 

of light entering the eyes, as too much light would overload our visual 
system. Researchers study such mechanisms based on limits.

Normal Heart

to Lungs

Pulmonary Veins
from Lungs

Mitral Valve

Aortic Valve

Ventricular
Septum

Oxygen-rich Blood
Oxygen-poor BloodPulmonary Valve

Interior
Vena Cava
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Valve

Atrial Septum

Superior
Vena Cava

Pulmonary
Veins from
Lungs

to Lungs
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87 Limits and Continuity

  Velocity, density, current, power and temperature gradient in physics; rate of reaction and 
compressibility in chemistry, rate of growth and blood velocity in biology; marginal cost and marginal 
profit in economics; rate of heat flow in geology; rate of improvement of performance in psychology 
– these are all cases of a single mathematical concept, the derivative.
 This is an illustration of the fact that part of the power of mathematics lies in its abstractness. A 
single abstract mathematical concept (such as derivatives) can have different interpretations in each 
of the sciences. When we develop the properties of the mathematical concept, we can then apply 
these results to all of the sciences. This is much more efficient than developing properties of special 
concepts in each separate science.
 One of the greatest creations of the ancient past was Euclidean geometry. This monumental work 
was not matched in importance until the discovery of calculus almost two thousand years later.
 Calculus was created independently in England by Sir Isaac Newton (1642 - 1727) and in 
Germany by Gottfried Wilhelm Leibnitz (1646 - 1716) in the last quarter of the seventeenth century.
 Newton’s interest in mathematics began with his study of two of the great books on mathematics 
at that time: Euclid’s Elements and Descartio La Geometric. He also became aware of the work of 
the great scientists who preceded him, including Galileo and Fermat.
 By the end of 1664, Newton seemed to have mastered all the mathematical knowledge of the 
time and had begun adding substantially to it. In 1665, he began his study of the rates of change or 
flexions, of quantities, such as distances or temperatures that varied continuously. The result of this 
study was what we today call differential calculus. All who study mathematics today stand on Isaac 
Newton’s shoulders.
 Many of Leibnitz’s mathematical papers appeared in the journal ‘Acta 
Eruditorum’ which he cofounded in 1682. This journal contained his work 
on calculus and led to the bitter controversy with Newton over who first 
discovered calculus. Leibnitz was the first to publish the important results 
on calculus and was the first to use the notation that has now become 
standard.
 Augustin-Louis Cauchy (1789 - 1857), born in Paris in 1789 is 
considered to be the most outstanding mathematical analyst of the first half 
of the nineteenth century. Cauchy made many contributions to calculus. 
In his 1829 text book ‘Lecons le calcul differential’, he gave the first 
reasonably clear definition of a limit and was the first to define the derivative 
as the limit of the difference quotient,

 ( ) ( )y f x x f x
x x

∆ + ∆ −=
∆ ∆

 .

 Karl Weierstrass (1815-1897), a German mathematician gave the precise definition 
(  definition)δ∈ −  of the concepts of limit, continuity and differentiability.
What is Calculus?
 Calculus is the mathematics of ratio of change of quantities. It is also the mathematics of tangent 
lines, slopes, areas, volumes, arc lengths, centroids, curvatures and a variety of other concepts that 
have enabled scientists, engineers and economists to model real-life situations.
 Although pre calculus mathematics deals with velocities, accelerations, tangent lines, slopes and 
so on, there is a fundamental difference between pre calculus mathematics and calculus. Pre calculus 
mathematics is more static, whereas calculus is more dynamic. Here are some examples:
 	An object travelling at a constant velocity can be analyzed with pre calculus mathematics. 

To analyse the velocity of an accelerating object, you need calculus.
 	The slope of a line can be analysed with pre calculus mathematics. To analyse the slope of a 

curve, you need calculus.

Augustin – Louis Cauchy
(1789 - 1857)
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 	A tangent line to a circle can be analysed with pre calculus mathematics. To analyse a line 
tangential to a general graph, you need calculus. 

 	The area of a rectangle can be analysed with pre calculus mathematics. To analyze the area 
under a general curve, you need calculus.

 Each of these situations involves the same general strategy, the reformulation of pre calculus 
mathematics through the use of a limit process. So, one way to answer the question ‘What is calculus?’ 
is to say that calculus is a ‘limit machine’ that involves three stages. The first stage is pre calculus 
mathematics such as the slope of a line or the area of a rectangle. The second stage is the limit process 
and the third stage is a new calculus formulation, such as a derivative or integral.

Pre calculus 
Mathematics ⇒ Limit 

Process ⇒ Calculus

 It is cautioned that those who try to learn calculus as if it were simply a collection of new formulae 
rather than as a process, will miss a great deal of understanding, self-confidence and satisfaction.

9.2 Limits
9.2.1 The calculation of limits 
 The notion of a limit, which we will discuss extensively in this chapter, plays a central role in 
calculus and in much of modern mathematics. However, although mathematics dates back over three 
thousand years, limits were not really understood until the monumental work of the great French 
mathematician Augustin – Louis Cauchy and Karl Weierstrass in the nineteenth century, the age of 
rigour in mathematics.

 In this section we define limit and show how limits can be calculated. 

Illustration 9.1
 We begin by looking at the function = = +2( ) 3y f x x . Note that f is a function from  

→ 
.

 Let us investigate the behaviour of this function near x = 2. We can use two sets of x values : one 
set that approaches 2 from the left (values less than 2) and one set that approaches 2 from the right 
(values greater than 2) as shown in the table.

                 
x 1.7 1.9 1.95 1.99 1.999 1.9999 2 2.0001 2.001 2.01 2.05 2.1 2.3
f(x) 5.89 6.61 6.8025 6.9601 6.99601 6.99960001 7 7.0040001 7.004001 7.0401 7.2025 7.41 8.29

Learning Objectives

On completion of this chapter, the students are expected to
• visualize the concept of limit / continuity through geometric process.
• relate the concept of limit / continuity with every day life activities.
• assimilate limit / continuity as the heart and spirit of calculus.
• understand limit / continuity as an operation (operator) to measure / quantify / mathmatize 

changes in physical world.
• concretize the concept of limit / continuity via illustrations real life related situations.

x approaches 2 from the left x approaches 2 from the right
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 It appears from the table that as x gets close to  
x = 2, f(x) = x2 + 3 gets close to 7. This is not surprising 
since if we now calculate f(x) at x = 2, we obtain   
f(2) = 22 + 3 = 7.

 In order to guess at this limit, we didn’t have to 
evaluate x2 + 3 at x = 2.

 That is, as x approaches 2 from either the left 
(values lower than 2) or right (values higher than 
2) the functional values f(x) are approaching 7 from 
either side; that is, when x is near 2, f(x) is near 7. 
The above situation is described in a condensed 
form: 

The value 7 is the left limit of f(x) as x approaches 
2 from the left as well as 7 is the right limit of  
f(x) as x approaches 2 from the right and write :
f x x f x x( ) ( )� � � �� �

7 2 7 2as and   as  
 

    or

 
−→2

lim
x

 f(x) = 7 and 
+→2

lim
x

 f(x) = 7.

 Note also that 
2

lim
x −→

 f(x) = 7 = 
2

lim
x +→

 f(x).  The common value is written as 
2

lim
x→

 f(x) = 7.

 We also observe that the limit is a definite real number. Here, definiteness means that  

2
lim
x −→

 f(x) and 
2

lim
x +→

 f(x) are the same and 

 
2

lim
x→

 f(x) = 
2

lim
x −→

 f(x) = 
2

lim
x +→

 f(x)  is a unique real number.

 The figure in Fig. 9.1 explains the geometrical significance of the above discussion of the 

behaviour of f(x) = x2 + 3 as x → 2.  

Illustration 9.2
 Next, let us look at the rational function f(x) = 

216
4

x
x

−
+

. 

 The domain of this function is 
 \{ }.-4  Although f(- 4) is not defined, nonetheless, f(x) can be 

calculated for any value of x near - 4 because the symbol → −

 −
 + 

2

4

16lim
4x

x
x  says that we consider values 

of x that are close to - 4 but not equal to - 4. The table below gives the values of f(x) for values of x 
that approach - 4.

(x < - 4)
( )x �� �

4
f(x) (x > - 4)

( )x �� �
4

f(x)

- 4.1 8.1 - 3.9 7.9

- 4.01 8.01 - 3.99 7.99

- 4.001 8.001 - 3.999 7.999

Fig. 9.1

5 -4 -3 -2 -1 1 2 3 4 5 6

1

2

3

4

5

6

7

8

9

10

11

y

y= x2+ 3

(0,3)

x
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 For x  ≠  - 4, f(x) can be simplified by 
cancellation :

 f(x) = 
216

4
x
x

−
+

  = (4 )(4 )
(4 )

x x
x

+ −
+

 = 4 - x.

 As seen in Fig.9.2, the graph of f(x) is essentially 

the graph of y = 4 - x with the exception that the 
graph of f has a hole (puncture) at the point that 
corresponds to x = - 4. As x gets closer and closer 
to - 4, represented by the two arrow heads on the 
x-axis, the two arrow heads on the y-axis simultaneously get closer and closer to the number 8. 

 Here, note that 

 
4

lim
x −→−

 f(x) = 8 = 
4

lim
x +→−

 f(x) and hence  
4

lim
x→−

 f(x) = 
4

lim
x→−

 
216

4
x
x

−
+

 = 8.

 In Illustration 9.2, note that the function is not defined at 4x = −  and yet f(x) appears to be 
approaching a limit as x approaches - 4. This often happens, and it is important to realise that the 
existence or non-existence of f(x) at = −4x  has no bearing on the existence of the limit of  f(x) 
as x approaches −4 .

Illustration 9.3 
  Now let us consider a function different from Illustrations 9.1 and 9.2.

 Let f(x) = 
| |

.
x
x

 x = 0  does not belong to the domain of 
this function,   \ {0}. Look at the graph of 
this function. From the graph one can see that 
for positive values of x, 

 | |x
x

 = x
x

 = + 1 and 

 for negative x values, | |x
x

 = 1x
x

− = − .

 This means that no matter how close   x 

gets to 0 (in a small neighbourhood of 0),  there 

will be both positive and negative x values that 
yield f(x) = 1 and f(x) = - 1.

 That is,  
0

lim
x −→

 f(x) = - 1  and 
0

lim
x +→

 f(x) = +1.

 This means that the limit does not exist. Of course, for any other value of x, there is a limit.

   For example 
2

lim
x −→

 | |x
x

 = 1  and  
2

lim
x +→

| |x
x

 = 1. 

Fig. 9.3

y

o

o 8

-4

y = 4 - x

x

Fig. 9.2

x

y

( ) 1f x =

( ) 1f x = − | |( ) xf x
x

=

1

1−
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91 Limits and Continuity

   Similarly,  
3

lim
x −→−

 | |x
x

 = 
3

lim
x −→−

 x
x

− = - 1

   
3

lim
x +→−

 | |x
x

 = 
3

lim
x +→−

 x
x

−  = - 1. 

 In fact, for any real number x0 ≠ 0,  
0 0

| | | |lim 1 lim
x x x x

x x
x x− +→ →

= − =  if x0 < 0 and

   
0 0

| | | |lim 1 lim
x x x x

x x
x x− +→ →

= =  if x0 > 0.

 We call the attention of the reader to observe the differences reflected in Illustrations 9.1 to 9.3. In 
Illustration 9.1, the function f(x) = x2 + 3 is defined at x = 2. i.e., 2 belongs to the domain of f namely 
  = (-∞, ∞). In Illustration 9.2, the function is not defined at x = - 4. In the former case we say 

the limit, 
2

lim
x→

 f(x) exists as x gets closer and closer to 2 to mean that 
2

lim
x −→

f(x) and 
2

lim
x +→

f(x) stand for 

a unique real number.  In the later case, although it is not defined at x = - 4, 
4

lim
x→−

 f(x) exist as x gets 

closer and closer to - 4. In Illustration 9.3, 
0

| |lim
x

x
x→

 does not exist to mean that the one sided limits  

0
lim
x −→

 | |x
x

 and 
0

lim
x +→

| |x
x

 are different as x gets sufficiently close to 0. In the light of these observations 

we have the intuitive notion of limit as in

Definition 9.1 
 Let I be an open interval containing x

0
∈.  Let : .f I →

 Then we say that the limit of 

f(x) is L, as x approaches x0  [symbollically written as 
0

lim ( )
x x

f x L
→

= ],  if, whenever x becomes 

sufficiently close to x0 from either side with 0 ,   ( )x x f x≠  gets sufficiently close to L. 

 The following (Fig 9.4 and 9.5) graphs depict the above narrations.

 Fig. 9.4 Fig. 9.5
9.2.2 One sided limits 
Definition 9.2
 We say that the left-hand limit of f(x) as x approaches x0 (or the limit of f(x) as x approaches 
from the left) is equal to l1 if we can make the values of f(x) arbitrarily close to l1 by taking x to be 

sufficiently close to x0 and less than x0. It is symbolically written as 
0

0 1( ) lim ( )
x x

f x f x l
−

−

→
= = .

 Similarly,  we define the right hand limit.

x0 x

y

0

lim ( ) exists
x x

f x
→

x0 x

y

0

lim ( ) exists
x x

f x
→

Unit9.indd   91 10-08-2018   18:23:59



92XI - Mathematics

Definition 9.3
 We say that the right-hand limit of f(x) as x approaches x0 (or the limit of f(x) as x approaches 
from the right) is equal to l2  if we can make the values of f(x) arbitrarily close to l2 by taking x to 

be sufficiently close to x0 and greater than x0. It is symbolically written as 
0

0 2( ) lim ( )
x x

f x f x l
+

+

→
= = .

 Thus the symbols  “ 0x x−→ ” and “ 0x x+→ ” mean that we consider only x < x0 and x > x0 
respectively. 
 These definitions are illustrated in the following Fig. 9.6 to 9.9.

 
      
  Fig. 9.7

 Fig. 9.8 Fig. 9.9
 (Different values are obtained as  (Function not defined to the left of x0)
 x0 is approached from the 
 left and from the right)

 From the above discussions we conclude that  
0

lim ( )
x x

f x L
→

=  exists if the following hold :

 (i) 
0

lim ( )
x x

f x
+→

 exists,

 (ii) 
0

lim ( )
x x

f x
−→

 exists and

 (iii) 
0 0

lim ( ) lim ( )
x x x x

f x f x L
+ −→ →

= = .

 From the definitions of one sided limits and that of the limit of f(x) as we have the following :

 
0

lim ( )
x x

f x L
→

=   iff 
0

lim ( )
x x

f x
−→

 = L = 
0

lim ( )
x x

f x
+→

.

x
x0O

y

0

lim ( ) does not exist
x x

f x
→ 0

lim ( ) does not exist
x x

f x
→

y

x
x0O

0

lim ( ) does not exist
x x

f x
→

x x0

y

x

f(x)
l1

y

x
x0 x

l2
f(x)

0
1 0lim ( ) ( )

x x
f x l f x

−

−

→
= =

0
2 0lim ( ) ( )

x x
f x l f x

+

+

→
= =Fig. 9.6
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Fig. 9.10

 Thus, when we say 
0

lim ( )
x x

f x
→

 exists, it is understood that L is a unique real number. If any one of 

the above conditions fails then we say the limit of f(x) as x approaches x0 does not exist.

 We remark that the existence of one sided limits is weaker than the existence of limits.

 Sometimes it is very useful to use the following in computing left and right limits. For 0,h >  

 f x f x h f x f x h
h h

( ) lim ( ) ( ) lim ( ).
0

0
0 0

0
0

�

�

�

�
� � � � and 

 Note that f x f x( ) ( )
0 0

� �
 and  stand for the left and right limiting values. But f x( )

0  is the value 
of the function at x x=

0
.

Example  9.1 

 Calculate 
0

lim | |
x

x
→

.

Solution 

 Recall from the earlier chapter 1 

 that    |x| = 
  if   0

0     if   0
     if   0

x x
x

x x

− <
 =
 >

 

 If x > 0, then |x| = x, which tends to 0 as       

       x → 0  from the right of 0. That is, 
0

lim | | 0
x

x
+→

=

 If x < 0, then |x| = - x which again tends to 0 as x → 0 from the left of 0. That is, 
0

lim | | 0
x

x
−→

= . 

 Thus, 
0 0

lim | | 0 lim | |
x x

x x
− +→ →

= = . 

 Hence 
0

lim | |
x

x
→

= 0.

Example  9.2  

 Consider the function f(x) = x , x ≥ 0.

 Does 
→0

lim ( )
x

f x  exist?

Solution 

 No.    f(x) = x  is not even defined for x < 0.  

Therefore as 0x −→ , 
−→0

lim
x

x  does not exist. 

However, 
0

lim 0
x

x
+→

= . Therefore 
0

lim
x

x
→

 does not exist.

 Does 
0

lim log
x

x
−→

 exist?  

 Look at the graph of log x for the answer.

x

y

0

y x= − y x=

0x >0x <

( )f x x=

y

x
0

Fig. 9.11
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Fig. 9.12

Example  9.3 

 Evaluate 
2 2

lim and lim
x x

x x
− +→ →
        .

Solution 

 The greatest integer function ( )f x x=     is defined as the greatest integer lesser than or 
equal to x.

 From the graph (Fig. 1.25) of this function it is clear that 
2

lim 1
x

x
−→

=    and  
2

lim 2
x

x
+→

=    .

 Moreover, for any integer n, 
−→

= −  lim 1
x n

x n   and 
+→

=  lim
x n

x n .

Does  f(x) = lim
x n

x
→

    exist? Look at the graph of  x    (Fig.1.26)  for the answer.

Example  9.4 

 Let f(x) = 
1, 0
1, 0

x x
x x

+ >
 − <

.  

 Verify the existence of limit as x → 0 .

Solution 

 The function is graphed in Fig.9.12.

 Clearly 
0

lim ( ) 1
x

f x
−→

= −  and 
0

lim ( ) 1
x

f x
+→

= .      Since 

these limits are different, 
0

lim ( )
x

f x
→

  does not exist.

Example 9.5 

 Check if   
5

lim ( )
x

f x
→−

 exists or not, where f(x) = 
| 5 | ,   for  5

5
    0,        for  5

x x
x

x

+ ≠ −
+

 = −
Solution 

 (i) ( 5 )f −−  .
  For x < - 5,   |x + 5| = - (x + 5)

  Thus 
5

( 5)( 5 ) lim 1
( 5)x

xf
x−

−

→−

− +− = = −
+

 

 (ii) ( 5 )f +− .
  For x > - 5,   |x + 5| =  (x + 5)

  Thus 
5

( 5)( 5 ) lim 1
( 5)x

xf
x+

+

→−

+− = =
+

 

 Note that ( 5 )f −−  ≠ ( 5 )f +− .   Hence the limit does not exist.

-3 -2 -1 1 2 3

y

x

( )
1

f x
x=
−

( )
1

f x
x=
+

-1
-2
-3

2
3
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Example 9.6

 Test the existence of the limit,  
1

4 | 1 | 1lim
| 1 |x

x x
x→

− + −
−

 , x ¹1.

Solution  

 For x > 1,    |x - 1| = x - 1 and (1 )f + = 
+ +→ →

− + − −= =
− −1 1

4( 1) 1 5( 1)lim lim 5
1 ( 1)x x

x x x
x x

.

 For x < 1,   |x - 1| = - (x - 1), and (1 )f −  = 
1 1

4( 1) ( 1) 3( 1)lim lim 3
( 1) ( 1)x x

x x x
x x− −→ →

− − + − −= =
− − −

.

 Thus  (1 )f −  ≠ (1 )f +  and hence the limit does not exist.

EXERCISE 9.1
 In problems 1-6, complete the table using calculator and use the result to estimate the limit.

 (1) 22

2lim
2x

x
x x→

−
− −

 

x 1.9 1.99 1.999 2.001 2.01 2.1
f(x)

 (2) 22

2lim
4x

x
x→

−
−

  

x 1.9 1.99 1.999 2.001 2.01 2.1

f(x)

 (3) 
0

3 3lim
x

x
x→

+ −   

x - 0.1 - 0.01 - 0.001 0.001 0.01 0.1

f(x)

 (4) 
3

1 2lim
3x

x
x→−

− −
+

x - 3.1 - 3.01 - 3.00 - 2.999 - 2.99 - 2.9
f(x)

 (5) 
0

sinlim
x

x
x→

x - 0.1 - 0.01 - 0.001 0.001 0.01 0.1

f(x)

 (6) 
0

cos 1lim
x

x
x→

−

x - 0.1 - 0.01 - 0.001 0.0001 0.01 0.1

f(x)
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 In exercise problems 7 - 15, use the graph to find the limits (if it exists). If the limit does not 
exist, explain why?

 (7) 
3

lim(4 )
x

x
→

− . (8) 2

1
lim( 2)
x

x
→

+ .

 (9) 
2

lim ( )
x

f x
→

 (10) 
1

lim ( )
x

f x
→

  where f(x) = 
4 ,   2
   0,     2

x x
x

− ≠
 =

 .  where f(x) = 
2 2, 1
1, 1

x x
x

 + ≠


=
 .

 (11) 
3

1lim
3x x→ −

 (12) 
5

| 5 |lim
5x

x
x→

−
−

 Fig. 9.13 Fig. 9.14

 Fig. 9.15 Fig. 9.16

 Fig. 9.17 Fig. 9.18

-2 -1 1 2 3 4 5

-3

-2

-1

1

2

3

x

y

-2 -1 1 2 3 4 5 6 7

-2

-1

1

2

x

y

O

O3x �

-2 -1 1 2 3 4 5

-1

1

2

3

4

5

y

0

•
x

-4 -3 -2 -1 1 2 3 4 5
-1

1

2

3

4

5

6

7

8

9

y

x

-4 -3 -2 -1 1 2 3 4 5
-1

1

2

3

4

5

6

7

8

9

y

x
-2 -1 1 2 3 4 5

-1

1

2

3

4

5

y

0
x

�
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 (13) 
1

lim sin
x

xπ
→

 (14) 
0

lim sec
x

x
→

 (15) 
2

lim tan
x

x
π→

  Sketch the graph of f, then identify the values of   x0 for which 
0

lim ( )
x x

f x
→

 exists.

 (16) f(x) = 

2 , 2
8 2 , 2 4
4, 4

x x
x x

x

 ≤
 − < <
 ≥

 .

 (17) f(x) = 
sin , 0
1 cos , 0
cos ,

x x
x x

x x
π

π

<
 − ≤ ≤
 >

 (18) Sketch the graph of a function f that satisfies the given values :

  (i) f(0) is undefined (ii) f(- 2) = 0

   
0

lim ( ) 4
x

f x
→

=    f(2) = 0

   f(2) = 6  
2

lim ( ) 0
x

f x
→−

=    

   
2

lim ( ) 3
x

f x
→

=    
2

lim ( )
x

f x
→

  does not exist.

Fig. 9.21

π

x

y

3π/2π/2-π/2

 Fig. 9.19 Fig. 9.20
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 (19) Write a brief description of the meaning of the notation 
8

lim ( ) 25.
x

f x
→

=
.

 (20) If f(2) = 4, can you conclude anything about the limit of f(x) as x approaches 2?

 (21) If the limit of f(x) as x approaches 2 is 4, can you conclude anything about f(2)? Explain 
reasoning.

 (22) Evaluate : 
2

3

9lim
3x

x
x→

−
−

 if it exists by finding (3 )f −  and (3 )f + .

 (23) Verify the existence of 
1

lim ( ),
x

f x
→

 where f(x) = 
| 1| , for 1

1
0,          for 1

x x
x

x

− ≠
−

 =
 .

9.2.3 Theorems on limits 
 The intention of the informal discussion in the earlier section was to have an intuitive grasp of 
existence or non existence of  limit. However, it is neither desirable nor practical in every instance, 
to reach a conclusion about the existence of a limit based on a graph or table of functional values. We 
must be able to evaluate a limit, or discern its non existence, in a somewhat mechanical fashion. The 
theorems that we shall consider in this section establish such a means. The proofs of these theorems 
are more of technical and are beyond the scope of this textbook.

 In Illustration 9.1, we concluded that 2 2

2
lim( 3) 2 3 7.
x

x
→

+ = + =  That is, the limit of f(x) = x2 + 3 as 

x tends to 2 is equal to f(x) evaluated at x = 2. [That is, f(2)]. However, this process of evaluation, as 
noted earlier, will not always work because f(x) may not even be defined at x0. Nevertheless, it is true 
that if f is a polynomial, then it is always possible to calculate the limit by evaluation.
Theorem 9.1
 Let P(x) = a0 + a1x + a2x

2 + ... + an x
n be a polynomial, where a0, a1, ..., an are real numbers and n 

is a fixed positive integer. Then

 
0

2
0 1 0 2 0 0 0lim ( ) ( )n

nx x
P x a a x a x a x P x

®
= + + + + = .

Example 9.7 

 Calculate 3

3
lim( 2 6)
x

x x
→

− + .

Solution 

  3( ) 2 6P x x x= − +  is a polynomial.

  Hence, 3

3
lim ( ) (3) 3 2 3 6
x

P x P
→

= = − × +  = 27.

Example 9.8 

 Calculate 
0

lim (5)
x x→

for any real number x0.

Solution 
  f(x) = 5 is a polynomial (of degree 0).

  Hence 
0

0lim (5) ( ) 5
x x

f x
→

= = .

 The limit of a constant function is that constant.
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Theorem 9.2 
 Let I be an open interval containing  x

0
∈.  

 Let f g I, : .→

 Suppose that c is a constant and the limits 
0

lim ( )
x x

f x
→

 and 
0

lim ( )
x x

g x
→

 exist. Then 

0 0

lim ( ( )), lim[ ( ) ( )]
x x x x

cf x f x g x
→ →

+ , 
0

lim
x x→

 [f(x) - g(x)], 
0

lim [ ( ) ( )]
x x

f x g x
→

 and 
0

( )lim , ( )
( )x x

f x g x
g x→

≠ 0, all exist. 

Moreover,

 (i) 
0 0

lim ( ) lim ( )
x x x x

cf x c f x
→ →

= ,

 (ii) 
0 0 0

lim[ ( ) ( )] lim ( ) lim ( )
x x x x x x

f x g x f x g x
→ → →

± = ± ,

 (iii) 
0 0 0

lim[ ( ). ( )] lim ( ) . lim ( )
x x x x x x

f x g x f x g x
→ → →

=  and

 (iv) 0

0

0

lim ( )( )lim
( ) lim ( )

x x

x x
x x

f xf x
g x g x

→

→
→

= ,  provided 
0

lim ( ) 0.
x x

g x
→

≠  

  These results can be extended to any finite number of functions.

Example 9.9 

 Compute (i) : 
8

lim(5 )
x

x
→

    (ii) 
2

3lim
2x

x
→−

 −  
.

Solution 

 (i) 
8 8

lim(5 ) 5 lim( ) 5 8 40
x x

x x
→ →

= = × = .

 (ii) 
2 2

3 3 3lim lim ( ) ( 2) 3
2 2 2x x

x x
→− →−

   − = − = − − =      
.

Example 9.10 

 Compute 
2

3

0
lim 4 3
x

x x x
x→

 + + + 
 

.

Solution

   
2

3

0
lim 4 3
x

x x x
x→

 + + + 
 

 = 
2

0
lim
x

x x
x→

 +
 
 

 + 3

0
lim(4 3)
x

x
→

+

    = 3

0 0
lim( 1) lim(4 3)
x x

x x
→ →

+ + +

    = (0 + 1) + (0 + 3) 

    = 4.

Unit9.indd   99 10-08-2018   18:24:10



100XI - Mathematics

Example 9.11 

 Calculate 2 10

1
lim ( 3)
x

x
→−

− .

Solution 

   2

1
lim ( 3)
x

x
→−

−  = 1 - 3 = - 2.

   Therefore,  
→−

−2 10

1
lim ( 3)
x

x  = 2 2 2

1
lim ( 3) ( 3)...( 3)
x

x x x
→−

− − −  (10 times)

    = 2 2 2

1 1 1
lim( 3) lim ( 3)... lim ( 3)
x x x

x x x
→− →− →−

− − −  (10 times)

    = 
10

2

1
lim ( 3)
x

x
→−

 −  =  (-2)10 = 210 = 1024.

   Note that lim( )
x

x
��

�
1

2 103  = 
10

2

1
lim ( 3)
x

x
→−

 −  .

Theorem 9.3 

 If  
0

lim ( )
x x

f x
→

 exists then 
0

lim [ ( )]n

x x
f x

→
 exists and  

0

lim[ ( )]n

x x
f x

→
 = 

0

lim ( )
n

x x
f x

→

 
  

.

Example 9.12

 Calculate 3 2

2
lim ( 3 6) ( 15)
x

x x x
→−

− + − + .

Solution 

   3

2
lim ( 3 6)
x

x x
→−

− +  = (-2)3 - 3(-2) + 6 = - 8 + 6 + 6 = 4

   2

2
lim ( 15)
x

x
→−

− +  = -(- 2)2 + 15 = - 4 + 15 = 11

   3 2

2
lim ( 3 6) ( 15)
x

x x x
→−

− + − +  = 3 2

2 2
lim ( 3 6) lim ( 15)
x x

x x x
→− →−

− + − +  = 4 × 11 = 44.

Example 9.13

 Calculate 
2

33

( 6 5)lim
8 7x

x x
x x→

− +
− +

.

Solution

   2

3
lim( 6 5)
x

x x
→

− +  = 32 - 6 × 3 + 5 = -4

   3

3
lim( 8 7)
x

x x
→

− +  = 33 - 8 × 3 + 7 = 10 ≠ 0.

   Therefore,    
2

33

( 6 5)lim
8 7x

x x
x x→

− +
− +

 = 
2

3
3

3

lim( 6 5)

lim( 8 7)
x

x

x x

x x
→

→

− +

− +
 = 4 2

10 5
− = − .

Caution

 Do not use the limit theorem for the quotient if  
0

lim ( ) 0
x x

g x
→

= .
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Example 9.14

 Compute 
1

1lim
1x

x
x→

−
−

. 

Solution 

 Here 
1

lim( 1) 0
x

x
→

− = . In such cases, rationalise the numerator.

 
1

1lim
1x

x
x→

−
−

 = lim
( )

( ) ( )x

x
x x�

�
� �1

1

1 1
 = 

1

1lim
1x x→ +

 = ( )
1

1

lim(1) 1
2lim 1

x

x
x

→

→

=
+

.

Example 9.15 

 Find 
→

+ −2

20

9 3lim
t

t
t

.

Solution 
 We can’t apply the quotient theorem immediately. Use the algebra technique of rationalising 
the numerator.

 
2

2
9 3t

t
+ −  = 

( )( )
( ) ( )

2 2
2

2 2 2 2

9 3 9 3 9 9

9 3 9 3

t t t

t t t t

+ − + + + −=
+ + + +

 

 
→

+ −2

20

9 3lim
t

t
t

 = 
→ →

= = =
++ + + +

2

2 2 20 0

1 1 1lim lim .
69 39 3 9 3t t

t
t t t

 

 
Theorem 9.4 

 1lim
n n

n

x a

x a na
x a

−

→

− =
−

.

Proof

 We know that 1 2 3 2 2 1( )( )n n n n n n nx a x a x x a x a xa a- - - - -- = - + + + + +  

  lim
n n

x a

x a
x a→

−
−

 = 
1 2 3 2 2 1( )( )lim

( )

n n n n n

x a

x a x x a x a xa a
x a

− − − − −

→

− + + + + +
−

  

   = 1 2 3 2 2 1lim( )n n n n n

x a
x x a x a xa a− − − − −

→
+ + + + +

 

   = 1 1 1  (  times)n n na a a n− − −+ + +  

  lim
n n

x a

x a
x a→

−
−

 = 1nna −  .

 It is also true for any rational number n.

Example 9.16 

 Compute 
3

1

1lim
1x

x
x→

−
−

.

Solution 

   
3

1

1lim
1x

x
x→

−
−

 = 
3 3

1

1lim
1x

x
x→

−
−

 = 3 13(1) 3− =  .
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Example 9.17 

 Calculate  
→

−
−1

1lim
1t

t
t

.

Solution 

   
1

1lim
1x

t
t→

−
−

 = 

1 1
2 2

1

1lim
1x

t
t→

−
−

 = 
1 1
21 1(1)

2 2
−

= .

Example 9.18

 Find 
5 5

0

(2 ) 2lim
x

x
x→

+ −  .

Solution 
 Put 2 + x = y so that as y x→ →2 0 as .

 Therefore,    
→ →

+ − −= = =
−

5 5 5 5
4

0 2

(2 ) 2 2lim lim 5(2 ) 80
2x y

x y
x y

 .

Example 9.19

 Find the positive integer n  so that 
3

3lim 27
3

n n

x

x
x→

− =
−

 .
Solution 

 1

3

3lim .3 27
3

n n
n

x

x n
x

−

→

− = =
−

 That is 1 2 3 1.3 3 3 3 3 3nn n− −= × = × ⇒ =  .

Example 9.20

     Find the relation between a and b if 
3

lim ( )
x

f x
→

 exists where f(x) = 
         if  3

3 4 1  if  3
ax b x
ax b x

+ >
 − + <

 .

Solution 

  
3

lim ( )
x

f x
−→

= 9a - 4b + 1

  
3

lim ( ) 3
x

f x a b
+→

= + .   Now the existence of limit forces us to have

  
3

lim ( )
x

f x
−→

=
3

lim ( )
x

f x
+→

.

 ⇒  9a - 4b + 1 = 3a + b
  ⇒  6a - 5b + 1 = 0.

EXERCISE 9.2
Evaluate the following limits :

 (1) 
4

2

16lim
2x

x
x→

−
−

 (2) 
1

1lim
1

m

nx

x
x→

−
−

, m and n are integers.

 (3) 
2

3

81lim
3x

x
x→

−
−

 (4) 
0

lim , 0
h

x h x x
h→

+ − >   (5)   →

+ −
−5

4 3lim
5x

x
x
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 (6)  
2

1 1
2lim
2x

x
x→

−

−
 (7) 

2

1
lim

1x

x x
x→

−
−   (8)   

2

20

1 1lim
16 4x

x
x→

+ −
+ −

 (9) 0

1 1lim
x

x
x→

+ −
  (10) 

3 3 2

1

7 3lim
1x

x x
x→

+ − +
−

 (11) 3 32

2 2lim
2 4x

x
x→

− +
− −

 (12) 
2

0

1 1lim
x

x
x→

+ −
  (13) 

→

− −
20

1 1lim
x

x
x  (14) 

5

1 2lim
5x

x
x→

− −
−

 (15)   2 2lim ( )
x a

x b a b a b
x a→

− − − >
−   

9.2.4 Infinite limits and limits at infinity 
Infinite Limits 

 Let 2

1: \{0}  be defined by ( ) .f f x
x

→ =   

 Let us consider the problem of calculating 20

1lim
x x→

.

 The following table gives the values of 2
1
x

 near 0.

 x � �0  x � �0

x x2
2

1
x

x x2
2

1
x

1 1 1 -1 1 1

0.5 0.25 4 - 0.5 0.25 4

0.1 0.01 100 - 0.1 0.01 100

0.01 0.0001 10,000 - .01 0.0001 10,000

0.001 0.000001 10,00,000 - 0.001 0.000001 10,00,000

0.0001 0.00000001 10,00,00,000 - 0.001 0.00000001 10,00,00,000

 The table values tell us that as x gets closer and closer to 0, f(x) = 2
1
x

 gets larger and larger. In 

fact, 2
1
x

 grows without bound as x approaches 0 from either side. In this situation we say that f(x)               

tends to infinity as x approaches zero and write 2 2
1 1 as 0  and  as 0x x
x x

− +→ ∞ → → ∞ →

and hence 2

1  as 0x
x

→ ∞ → .
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 Geometrically, x = 0 namely the y-axis is 
a vertical asymptote to the curve representing                   

f(x) = 2
1
x

.

 The graph of the function f(x) = 2
1
x

 is shown 
in Fig. 9.22.
 Remember that the limit is infinite and so 

20

1lim
x x→

does not exist. Students are cautioned 

that ∞ is a symbol for this behaviour of f(x) = 2
1
x

 and is 

not a new number.

 Similarly, if we look at f(x) = 1 ,
x

 

 it is easy to see that,  1  as 0x
x

−→ −∞ →  

 and 1   as  0x
x

+→ +∞ →  

which is geometrically clear from the graph of        

f(x) = 1
x

 (Fig. 9.23) .
 In general we have the following intuitive 
definitions.

Definition 9.4
 For a given M > 0, open intervals of the form (M, ∞) is called neighbourhood of ∞.
 Similarly, for given K < 0, open intervals of the form (-∞, K) is called neighbourhood of - ∞.

Definition 9.5
 We say,   f x( ) �� as x approaches x0 if for given positive number M there is a neighbourhood 
of x0, such that whenever x is in the neighbourhood of x f x M f x M

0
, ( ) . ( ) ( , ).� � �  i.e.,  

 Similarly, f x( ) ��� as x approaches x0 if for a given  K < 0 there is a neighbourhood of x0 
such that whenever x is in the neighbourhood of x f x K f x K

0
, ( ) . ( ) ( , ).� � ��  i.e.,   

 To describe this situation symbolically, we write

 0( )   as  f x x x→ ∞ →  

 0( )   as  f x x x→ −∞ →  

 0( )   as  f x x x −→ ∞ →  

 0( )   as  f x x x +→ −∞ →  

 0and  ( )   as  f x x x +→ ∞ →  

 0( )   as  f x x x −→ −∞ →  
 are called infinite limits. If any one of the foregoing conditions hold, then the line  
x = x0 is a vertical asymptote for the graph of f(x).

y

2

1( ) , 0f x x
x

� �
2

1( ) , 0f x x
x

� �

x

Fig. 9.22

Fig. 9.23

1( ) ,f x x 0x� �

1
x�( ) , 0f x x �

x

y
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Example 9.21 

 Calculate 2 30

1lim
( )x x x→ +

.

Solution 

 One can tabulate values of x near 0 (from either side) and conclude 2 3
1( )f x

x x
=

+
 grows 

without bound and hence ( )   as  0f x x→ ∞ →  .
 To calculate this limit without making a table, we first divide the numerator and denominator 
by x2. This division can be done, since in the calculation of the limit x ≠ 0 and hence x2 ≠ 0. We 
can have

  2 30

1lim
x x x→ +

 = 
2

2 30

2

1

lim
x

x
x x

x
→ +

 = 
20

0

1lim
.

lim(1 )
x

x

x
x

→

→

 
  

+
 

 Now 2

1   as  0x
x

→ ∞ →   and 
0

lim(1 ) 1
x

x
→

+ =  .

 Thus the numerator grows without bound while the denominator approaches 1, implying 

that 2 3
1

( )x x+
 does tend to infinity. 

 This example illustrates how a difficult calculation can be greatly simplified by a few algebraic 
manipulations.

Example 9.22 

 Evaluate 32

1lim
( 2)x x→ −

 .

Solution 

From the graph of    f(x) = 3
1

( 2)x −  
, 

clearly, 3

1   as  2
( 2)

x
x

−→ −∞ →
−

 and 

3

1   as  2
( 2)

x
x

+→ ∞ →
−

.
 
 Hence the limit does not exist.

In general 
 (i) If n is an even positive integer then (ii) If n is an odd positive integer, then

   1   as  
( )n x a
x a

→ ∞ →
−

   1   as  
( )n x a
x a

−→ −∞ →
−

  

   1   as  
( )n x a
x a

−→ ∞ →
−

   1   as  
( )n x a
x a

+→ +∞ →
−

.

   1   as  
( )n x a
x a

+→ ∞ →
−

The line x a=  becomes a vertical asymptote.

y

3

1( )
( 2)

f x
x

�
�

2x �

x

Fig. 9.24
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9.2.5 Limits at infinity 
 In the previous section we investigated infinite limits and vertical asymptotes. There, we let x 
approach a number and the result was that the values of y became arbitrarily large (very large positive 
or very large negative). In this section, we let x become arbitrarily large (positive or negative) and see 
what happens to y.

 Let’s begin by investigating the behaviour of :f →   defined by

  f(x) =  x
x

2

2

1

1

�
�

as x becomes large.

 We tabulate the values of this function as in
x f(x)
0    -1

±1    0
±2 0.6000000
±3 0.800000
±4 0.882353
±5 0.923077
±10 0.980198
±50 0.999200
±100 0.999800
±1000 0.999998

 As x grows larger and larger (large positive or large negative) 
you can see that the values of f(x) gets closer and closer to 1. In 
fact, it seems that we can make the values of f(x) as close as to 1 by 
taking x sufficiently large. This situation is expressed symbolically 
by writing

  
→±∞

−
+

2

2
1lim
1x

x
x

  = 1.

 If we look at the graph :
 Geometrically, (see Fig. 9.25) this situation also leads us to have 

Definition 9.6 
 The line  y = l is called a horizontal asymptote of the curve y = f(x) if either 

   lim ( )   or  lim ( ) .
x x

f x l f x l
→−∞ →+∞

= =  

Illustration 9.4 

 If f : ,→ −












p p
2 2

is defined by f x x( ) tan ,� �1

 
find  and lim ( ) lim ( ).

x x
f x f x

�� �� �

Solution
 If we look at the graph of y = tan-1x, 

 1lim tan
x

x−

→−∞
  =  ,

2
p

-

 1lim tan
x

x−

→+∞
  = 

p
2

.

1y �

2

2

1( )
1

xf x
x
�

�
�

y

0 -1 10
x

Fig. 9.25

Fig. 9.26

3 / 2π−

π−

/ 2π−

π

0

3 / 2π1tany x−=

/ 2π

x

y
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Illustration 9.5

 Calculate  
2

2
2 2 3lim

4 4x

x x
x x→∞

− +
+ +

 .
Solution
 If we could try to use limit theorems to calculate this limit, we end up in the following situations.

 2(2 2 3)   as  x x x− + → ∞ → ∞  

 2( 4 3)   as  x x x+ + → ∞ → ∞  

 
2

2
2 2 3lim

4 3x

x x
x x→∞

 − +
 + + 

  = ∞
∞

 which is called an indeterminate form.

 But actual calculation and tabulation gives the following :

x 22 2 3x x− +  2 4 4x x+ +  
2

2
2 2 3

4 4
x x

x x
− +

+ +
 

1 3 9 0.3333

10 183 144 1.27083

100 19803 10404 1.90340

1000 1998003 1004004 1.99003

10000 199980003 100040004 1.99900

 Table values show that as x becomes sufficiently large, f(x) becomes closer and closer to 2. Then,

  
2

2
2 2 3lim

4 4x

x x
x x→∞

 − +
 + + 

  = 2.

 Fortunately, we may simplify the problem by dividing the numerator and denominator by x2. We 
have

    
2

2
2 2 3lim

4 4x

x x
x x→∞

− +
+ +

  = 
2

2

2 32
lim 4 41
x

x x

x x
→∞

 − + 
 
 + +
 

 

     = 2 0 0
1 0 0

− +
+ +

 (since  as   as  
1

0
1

0
2x

x
x

x� �� � ��, )

     = 2.

 Note that the degree of both numerator and denominator expressions are the same.

 In general, the limits as x ���  of rational expressions can be found by first dividing the numerator 
and denominator by the highest power of x that appears in the denominator, and then calculating the 
limit as x x�� ���( )or  of both numerator and denominator.

Example 9.23 

 Calculate  
3

2
2 3lim

(5 1)x

x x
x→∞

+ +
+

 .
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Solution 

 Dividing by x2

 
3

2
2 3lim

(5 1)x

x x
x→∞

+ +
+

 = 
2

2

2 3

lim 15
x

x
x x

x
→∞

+ +
→ ∞

+
 

 That is, 
3

2

2 3   as  .
(5 1)

x x x
x
+ + → ∞ → ∞

+
 

 In other words, the limit does not exist.

 Note that the degree of numerator is higher than that of the denominator.

Example 9.24 

 Calculate 
31lim

3 2x

x
x→∞

−
+

 .

Solution 
 Dividing by x, we get

    
31

3 2
x

x
−

+
 = 

21

23

x
x

x

−

+
 ��� ��  as  x .

 Therefore the limit does not exist.

9.2.6 Limits of rational functions 

 If R (x) = ( )
( )

p x
q x

 and the degree of the polynomial p(x) is greater than the degree of q(x), then 

  ( )   or    as  .
( )

p x x
q x

→ +∞ − ∞ → ∞

 If the degree of q(x) is greater than the degree of p(x), then 

    ( )lim
( )x

p x
q x→∞

 = 0.

 Finally, if the degree of p(x) is equal to the degree of q(x), then

    ( )lim
( )x

p x
q x→∞

 = coeffiecent of highest power of in ( )
coefficient of highest power of  in ( )

x p x
x q x

.

Remark 

 We reemphasize that statements such as ( )   as  , ( )   as  ,f x x a f x x a→ ∞ → → −∞ → and 
( )   as  , ( )   as  f x x f x x→ ∞ → ∞ → −∞ → ∞ mean that the limits do not exist. The symbol ∞  does 

not represent a number and should not be treated as a number.
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9.2.7 Applications of limits
Example 9.25 
 Alcohol is removed from the body by the lungs, the kidneys, and by chemical processes in 
liver. At moderate concentration levels, the majority work of removing the alcohol is done by 
the liver; less than 5% of the alcohol is eliminated by the lungs and kidneys. The rate r at which 
the liver processes alcohol from the bloodstream is related to the blood alcohol concentration 

x by a rational function of the form r(x) = x
x
α

β+
 for some positive constants a and b. Find the 

maximum possible rate of removal.
Solution 

 As the alcohol concentration x increases the rate of removal increases.

  Therefore, the maximum possible rate of removal = lim ( )
x

r x
→∞

 

   = lim
x

x
x
α

β→∞ +
 = lim

1
x

x

α
β→∞  +  

  = .α

Example 9.26 
 According to Einstein’s theory of relativity, the mass m of a body moving with velocity v 

is m = 0
2

21

m
v
c

−
 , where m0 is the initial mass and c is the speed of light. What happens to m as 

v c� �.   Why is a left hand limit necessary?
Solution 

  lim( )
c

m
ν −→

 = 0
2

2

lim
1

c

m

c

ν ν−→

−
 =  0

2

2lim 1
v c

m

v
c-®

æ ö÷ç ÷-ç ÷ç ÷çè ø

  

 For    This implies,  h c h v c c h v c> − < < − < <0
2 2 2

, . ( ) .

 
That is,    That is,   

( )
. lim

( )
lim

c h
c

v
c

c h
ch h

−
< <

−
<

→

2

2

2

2
0

2

2
1

→→ →
<

0

2

2
0

1
v
c h

lim .

 
That is,   That is,   By San1 1 1 1

0

2

2

2

2
< < < <

→ → −
lim . lim .
h v c

v
c

v
c

ddwich theorem,   lim .
v c→ −
=1

 
Therefore,  lim( ) .

v c
m

→ −
→∞

 That is, the mass becomes very very large (infinite) as v→ cc−.

 The left hand limit is necessary. Otherwise as 
2

2 makes 1 0vc
c

ν +→ − <  and consequently 
we cannot find the mass.

Example 9.27
 The velocity in ft/sec of a falling object is modeled by 

2 32

2 32

32 1( )
1

t k

t k

er t
k e

−

−

−= −
+

 , where k is 

a constant that depends upon the size and shape of the object and the density of the air. Find the 
limiting velocity of the object, that is, find lim ( )

t
r t

→∞
.
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Solution

   lim ( )
t

r t
→∞

 = 
2 32

2 32

32 1lim
1

t k

t kt

e
k e

−

−→∞

−−
+

 

   = 
2 32

2 32

32 1lim
1

t k

t kt

e
k e

−

−→∞

−−
+

 

   = 32 (1 0) 32  ft/sec.
(1 0)k k

−− = −
+

Example 9.28

 Suppose that the diameter of an animal’s pupils is given by 
0.4

0.4

160 90( )
4 15

xf x
x

−

−

+=
+

, where 

x is the intensity of light and f(x) is in mm. Find the diameter of the pupils with (a) minimum 

light (b) maximum light.

Solution

 (a) For minimum light it is enough to find the limit of the function when 0 .x +→  

   
0

lim ( )
x

f x
+→

 = 
0.4 0.4

0.4 0.40 0

160 90 160 90lim lim
4 15 4 15x x

x x
x x+ +

−

−→ →

+ +=
+ +

 

    = 160 40mm
4

=  .

 (b) For maximum light, it is enough to find the limit of the function when x → ∞  

  
0.4

0.4

160 90 90lim ( ) lim 6mm
4 15 15x x

xf x
x

−

−→∞ →∞

+= = =
+

  That is, the pupils have a limiting size of 6mm, as the intensity of light is very large. 

EXERCISE 9.3

 (1) (a) Find the left and right limits of 
2

2

4( )  at 2.
( 4 4)( 3)

xf x x
x x x

-
= =-

+ + +
 

  (b) ( ) tanf x x=  at 
2

x π=  .

Evaluate the following limits

 (2) 
2

2 23

9lim
( 6 9)x

x
x x x→

−
− +

  (3) 2

3 2 11lim
2 6x

x
x x x→∞

+−
− + −

  (4) 
3

4 2lim
3 1x

x x
x x→∞

+
− +

 (5) 
4

2
5lim

3 1x

x x
x x→∞

−
− +

  (6) 
3

2 3
1 3lim
1 3x

x x
x x→∞

+ −
+ +

 (7) 
3 2

2lim
2 1 2 1x

x x
x x→∞

 
− − + 
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 (8) Show that

   (i)  2

1 2 3 ... 1lim
3 7 2 6n

n
n n→∞

+ + + + =
+ +

    (ii) 
2 2 21 2 ... (3 ) 9lim

1 2 ... 5 )(2 3) 25n

n
n n→∞

+ + + =
+ + + +

 

   (iii) 1 1 1 1lim ... 1
1.2 2.3 3.4 ( 1)n n n→∞

+ + + + =
+

 

 (9) An important problem in fishery science is to estimate the number of fish presently spawning 
in streams and use this information to predict the number of mature fish or “recruits” that will 
return to the rivers during the reproductive period. If S is the number of spawners and R the 

number of recruits, “Beverton-Holt spawner recruit function” is R(S) =
( )

S
Sα β+

 where a and 

b are positive constants. Show that this function predicts approximately constant recruitment 
when the number of spawners is sufficiently large.

 (10) A tank contains 5000 litres of pure water. Brine (very salty water) that contains 30 grams of 
salt per litre of water is pumped into the tank at a rate of 25 litres per minute. The concentration 

of salt water after t minutes (in grams per litre) is C(t) = 30
200

t
t+

 .

  What happens to the concentration as t ��?

9.2.8 Sandwich Theorem 
 Sandwich theorem is also known as squeeze theorem. As 
shown in the figure 9.27, if f(x) is ‘squeezed’ or ‘sandwiched’ 
between g(x) and h(x) for all x close to x0, and if we know that the 
functions g and h have a common limit l as x x→

0
,  it stands to 

reason that f also approaches l as x x→
0
.

Theorem 9.5 (Sandwich Theorem)
 If  f g h I, , : � �   such that g x f x h x( ) ( ) ( )£ £  for all x 
in a deleted neighbourhood of x0 contained in I, and if 

  
0 0

lim ( ) lim ( ) ,
x x x x

g x h x l
→ →

= =   then  
→

=
0

lim ( )
x x

f x l .

Example 9.29

 Evaluate 2

0

1lim sin
x

x
x→

 
  

 .

Solution 

 We know that � � � � � � �1
1

1
12 2 2

sin sin
x

x x
x

x

   Take g(x) = -x2, f(x) = =2 21sin ; ( )x h x x
x

   Then  
0

lim ( )
x

g x
→

 = 2

0
lim( ) 0
x

x
→

− =  and

   
0

lim ( )
x

h x
→

 = 2

0
lim( ) 0
x

x
→

= .

Fig. 9.27

0x

y = h(x)
y = f(x)
y = g(x) 

x
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 By Sandwich theorem,

   2

0

1lim sin
x

x
x→

 
  

 = 0.

 We could have wrongly concluded had we resorted to applying the limit theorems, namely

   2

0

1lim sin
x

x
x→

 
  

  = 2

0 0

1lim( ) lim sin
x x

x
x→ →

 
  

 

 Now, 
0

1lim sin
x x→

 does not exist,    2

0
lim
x

x
→

= 0 and hence 2

0

1lim sin
x

x
x→

 
  

 leading us into trouble.

 Note that If  a f x a f x a
x x

� � �
�

( ) , lim ( ) .  then  
0

Example 9.30

 Prove that 
0

lim sin 0
x

x
→

= .
Solution  

 Since � � � �x x x xsin  for all 0  

   
0

lim( )
x

x
→

−  = 0  and

   
0

lim( )
x

x
→

 = 0.
 By Sandwich theorem

   
0

lim sin
x

x
→

 = 0.

Example 9.31

 Show that 
0

1 2 15lim 120
x

x
x x x+→

      + + + =            
 .

Solution 
   1 1

x
−  ≤ 1 1 1

x x
  ≤ +  

 

   2 1
x

−  ≤ 2 2 1
x x

  ≤ +     


 

   15 1
x

−  ≤ 15 15 1
x x

  ≤ +   Summing, we get,

   120 15
x

−  ≤ 1 2 15 120 15
x x x x

≤     + + + +          


   120 15x−  ≤ 1 2 15 120 15x x
x x x

      + + + ≤ +            


   
0

lim (120 15 )
x

x
+→

−  ≤ 
0 0

1 2 15lim lim (120 15 )
x x

x x
x x x+ +→ →

      + + + ≤ +            
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   120  ≤ 
0

1 2 15lim 120
x

x
x x x+→

      + + + ≤            


 
0

1 2 15lim 120
x

x
x x x+→

      + + + =            
 .

9.2.9 Two special Trigonometrical limits 
Result 9.1

 (a)  lim
sin

�

�
��

�
0

1 (b)  
θ

θ
θ→

− =
0

1 coslim 0  .
Proof
 We use a circular sector to prove the result.
 Consider the circle with centre (0, 0) and radius 1. Any point on this circle is  
P(cosq, sinq).  

   By area property  tan sin
2 2 2

θ θ θ≥ ≥  .

 Multiplying each expression by 2
sinθ

 produces 1 1
cos sin

θ
θ θ

≥ ≥   and taking reciprocals

 sincos 1θθ
θ

≤ ≤  .

 Because cos (- q) = cosq  and sin( ) sinθ θ
θ θ
− =

−
  one can conclude that this inequality is valid for 

all non-zero q in the open interval ,
2 2
π π −  

. 

   We know that 
θ θ

θ
→ →

= =
0 0

lim cos 1; lim(1) 1 and applying Sandwich theorem we get 
θ

θ
θ→

=
0

sinlim 1 .

(b) 
θ

θ
θ→

− =
0

1 coslim 0 .

   1 - cosq = 
θ22sin
2

 

   
θ

θ
−1 cos

  = 
θ 

  
sin

2
  

θ

θ

 
  

 
  

sin
2

2

 

 Fig. 9.28 Fig. 9.29 Fig. 9.30 Fig. 9.31

y

x
}�

tan � sin �

�
�

(1,0) 

(cos �, sin �) 

�

Area of sector 
2
�

tanArea of triangle 
2
�

sinArea of triangle 
2
�
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   Therefore,  
θ

θ
θ→

−
0

1 coslim   = 
θ θ

θ
θ

θ→ →

 
  
     
 

0 0

sin
2lim sin . lim

2
2

 

    = 0 × 1 = 0.

9.2.10 Some important other limits 
Result 9.2

 
0

1lim 1.
x

x

e
x→

− =  

Result 9.3

 
0

1lim log , 0
x

x

a a a
x→

− = >  

Proof   

 We know that , logx
aa x  are inverses of each other.

 Since log ( )f x  is the inverse of  exp( ( )), exp(log ( )) ( ).f x f x f x   =

 Therefore, xa  = exp(log )a x  

   = logx ae  

 Therefore,   1xa
x
−  = 

log 1 log
log

x ae a
x a

− ×  

 Now as x y→ 0,  = x alog → 0  

 Therefore,  
0

1lim
x

x

a
x→

−  =  
0 0

1 1lim log log lim log
y y

y y

e ea a a
y y→ →

 − −× = = 
 

 

0

1(since lim 1).
x

x

e
x→

− =  
Result 9.4

 
0

log(1 )lim 1.
x

x
x→

+ =  

Proof  
   Take   log(1 )x+  = y

   Then 0 as 0 andy x→ →  

   1 x+  = ye  

   x = 1ye −  

   Therefore,   
0

log(1 )lim
x

x
x→

+  = 
0

lim
1yy

y
e→ −

 

    = 
0

1 1lim 1.
11yy e

y
→

= =
 −
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Some important limits without proof 
Results 9.5 to 9.9

 (5) 
1

0

sinlim 1
x

x
x

−

→
=  

 (6) 
1

0

tanlim 1
x

x
x

−

→
=  

 (7) 1lim 1
x

x x→∞

 +  
 exists and this limit is e.

 (8) 1/

0
lim(1 ) x

x
x e

→
+ =  

 (9) lim 1 .
x

k

x

k e
x→∞

 + =  
 

 This number e is also known as transcendental number in the sense that e never satisfies a 
polynomial (algebraic) equation of the form  
 
 a x a x a x an n

n n0 1

1

1
0� � � � ��

� .

Example 9.32

 Evaluate : 2 cosec 

0
lim(1 sin ) x

x
x

→
+   

Solution 

 Let   sin x = 1
y

 

  As x y� ��0,  and  

  2 cosec 

0
lim(1 sin ) x

x
x

→
+  = 

22
1 1lim 1 lim 1

y y

y yy y→∞ →∞

    + = +    
     

  = e2 .

 
Example 9.33

 Evaluate : 2lim
2

x

x

x
x→∞

+ 
 − 

.

Solution 

   
2lim
2

x

x

x
x→∞

+ 
 − 

 = 
2 2 ( 2) 22 4 4lim lim 1

2 2

x x

x x

x
x x

− + − +

→∞ →∞

− +   = +   − −   
 

 Let y x x y y x x y� � �� �� � � �� ��2 2, , , , ) as  and (Let Then as 

   
2lim
2

x

x

x
x→∞

+ 
 − 

 = 
2 2

4 4 4lim 1 lim 1 .lim 1
y y

y y yy y y

+

→∞ →∞ →∞

     + = + +     
     

 

    = e4.1 = e4 .

Example 9.34

 Evaluate : 
5

4

4 2 (cos sin )lim
1 sin 2x

x x
xπ→

− +
−

.
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Solution 

     
54 2 (cos sin )

1 sin 2
x x

x
− +

−
 = 

5 5
22 22 (cos sin )

1 sin 2
x x

x

 − + 
−

 

      = 

5 5
2 22 (1 sin 2 )
2 (1 sin 2 )

x
x

− +
− +

      = 

5 5
2 22 (1 sin 2 )
2 (1 sin 2 )

x
x

− +
− +

 Therefore,   

5
2 5/22

4

2 [(cos sin ) ]lim
2 [1 sin 2 ]x

x x
xπ→

− +
− +

 = [ ]
π→

− +
− +

5 5
2 2

4

2 1 sin 2 )
lim

2 (1 sin 2 )x

x
x

. 

 Take y = 1 + sin2x. As 
4

x π→ , y → 2

      = 

5 5
2 2

2

2lim
2y

y
y→

−
−

      = 
5 31
2 25 5.2 2 5 2

2 2
−

= × = .

Example 9.35
  Do the limits of following functions exist as x → 0?  State reasons for your answer.

 (i) sin | |x
x

 (ii) sin
| |

x
x

 (iii) 
sin | |
x x

x
    (iv) 

( )sin x x
x x

−   
−   

.

Solution  

 (i)   ( )f x  = 

sin( )    if 1 0

sin         if  0 1

− − < <

 < <


x x
x
x x

x

 

    Therefore,   
−→0

lim ( )
x

f x  = 1−  and

    
0

lim ( )
x

f x
+→

 = 1+ .

 Hence the limit does not exist. Note that (0 ) (0 )f f− +≠ .

 (ii)   sin
| |

x
x

  =  

sin( )    if 1 0

sin         if  0 1

x x
x
x x

x

 − < < −

 < <


    Therefore,   
0

lim ( )
x

f x
−→

 = -1

    
0

lim ( )
x

f x
+→

  = 1

  Hence the limit does not exist.
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 (iii)  ( )
sin | |
x x

f x
x

  =   = 
   if 1 0

sin( )
.0        if 0 1

sin

x x
x

x x
x

− − < < −

 < <

 

     = 
  if 1 0

sin
0        if  0 1

x x
x

x

 − < <

 < <

 

    Therefore,   
−→0

lim ( )
x

f x  = +1

    
0

lim ( )
x

f x
+→

 = 0.

 Hence the limit does not exist.

 (iv)  
( )sin x x
x x

−   
−   

  =  

sin( ( 1))    if 1 0
( 1)

sin( 0)         if  0 1
0

x x
x

x x
x

− − − < < − −


− < < −

    f x( )  = 

sin( 1)    if 1 0
( 1)

sin         if  0 1

x x
x
x x

x

+ − < < +

 < <

    
0

lim ( )
x

f x
−→

 = sin1 sin1
1

=

    
0

lim ( )
x

f x
+→

 = 1.

 Hence the limit does not exist.

Example 9.36

 Evaluate : 
0

3 1lim
1 1

x

x x→

−
+ −

 .

     3 1
1 1

x

x
−

+ −
 = 

( )(3 1) 1 1(3 1) 1 1 (3 1)( 1 1)
(1 ) 11 1 1 1

xx x xx x
x xx x

− + +− + + − + += =
+ −+ − + +

 

      Therefore  
0

3 1lim
1 1

x

x x→

−
+ −

 = 
0 0

3 1lim .lim 1 1
x

x x
x

x→ →

− + +  = (log 3)(2) = 2 log 3 = log 9.

EXERCISE  9.4
Evaluate the following limits :

 (1) 
71lim 1

x

x x→∞

 +  
 (2) 1/3

0
lim(1 ) x

x
x

→
+  

 (3) lim 1
m
x

x

k
x→∞

 +  
 (4) 

28 32

2

2 3lim
2 5

x

x

x
x

+

→∞

 +
 + 
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 (5) 
23lim 1

x

x x

+

→∞

 +  
  (6) 

3

30

sin
2lim

x

x

x→

 
  

 (7) 
0

sinlim
sinx

x
x

α
β→

 (8) 
0

tan 2lim
sin 5x

x
x→

 

 (9) 
α

α
α→0

sin( )lim
(sin )

n

m  (10) 
0

sin( ) sin( )lim
x

a x a x
x→

+ − −  

 (11) 
2 2

2 20
lim
x

x a a
x b b→

+ −
+ −

 (12) 
0

2arcsinlim
3x

x
x→

 

 (13) 20

1 coslim
x

x
x→

−  (14) 
0

tan 2lim
x

x
x→

 (15) 
→

−
0

2 3lim
x x

x x
 (16) 

0

3 1lim
1 1

x

x x→

−
+ −

 (17) 
2

0

1 coslim
sin 2x

x
x x→

−  (18) 
1 11lim 3 1 cosx x

x
x e

x→∞

  + − −    

 (19) lim{ [log( ) log( )]}
x

x x a x
→∞

+ −  (20) sin 3lim
sin 2x

x
xπ→

 (21) 2 cosec

2

lim(1 sin ) x

x
x

π→
+  (22) 20

2 1 coslim
sinx

x
x→

− +

 (23) 
0

1 sin 1 sinlim
tanx

x x
x→

+ − −  (24) 
2

2
2 1lim
4 2

x

x

x x
x x→∞

 − +
 − + 

 (25) 
0

lim
sin

x x

x

e e
x

−

→

−  (26) 
0

lim
ax bx

x

e e
x→

−

 (27) 30

sin (1 cos )lim
x

x x
x→

−  (28) 30

tan sinlim
x

x x
x→

−
 

9.3 Continuity 
 One of the chief features in the behaviour of functions is the property known as continuity. It 
reflects mathematically the general trait of many phenomena observed by us in nature. For instance, 
we speak of the continuous expansion of a rod on heating, of the continuous growth of an organism, 
of a continuous flow, or a continuous variation of atmospheric temperature etc.
 The idea of continuity of a function stems from the geometric notion of “no breaks in a graph”. 
In fact, the name itself derives from the Latin continuere, “to hang together”. Nevertheless, to identify 
continuity with “no breaks in a graph” or “a hanging together” has serious drawbacks, at least from 
the point of view of applying the concept to the analysis of functions. Accordingly, a premature use 
of the graph to gain insight into the meaning of continuity is advised against as gravely misleading. 
However, we will realise later that for functions with interval domains, continuity means essentially 
that the graph may be traced without lifting the point of the pencil.
 The proper and effective way of attitude which allows us to put the concept to work is to 
correlate continuity with limit. Loosely speaking, to possess the property of continuity will mean “to 
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have a favourable limit”. In order to formulate the concept of continuity in terms of limit we must 
focus our attention at a point. Both continuity and limit are primarily concepts defined at a point, but 
continuity acquires a global character in a pointwise way.
 For motivation, consider 
the following physical situation. 
A thermometer T measures 
temperatures along a given hot 
wire L.
 To each point x on the hot 
wire L is assigned a temperature 
readings t(x) on thermometer, 
T. Suppose, to fix ideas, the 
temperature recordings are 
observed to be the same, 250°F, 
as one moves along the wire L until 
a point x0 is reached on L.
 Then suppose that at x0 the temperature drops suddenly to near room temperature, say 75°F, as 
if an insulation were at x0. But, beyond x0 suppose readings of 250°F are again observed. In function 
notation we are assuming that

 t(x) = 0

0

250   if  

75    if   

F x x

F x x

 ≠


=





 

 Thus the point x0 stands out as singular point (“singular” means “special” or “unusual”). 
Analyzing the range of temperature readings, we should say that the approach of x to x0 had no 
bearing on the approach of the corresponding t(x) values to t(x0). Briefly, a jump occurs at x0. Thus 
we would be led to say that the temperature function “lacks continuity at x0”. For, we would have 
expected t(x0) to be 250°F since the x  values neighbouring x0 showed t(x) = 250°F. We now abstract 
the notion of continuity, and demand that images be “close” when pre-images are “close”. In our 
example the points on the hot wire were the pre-images, while the temperature readings there were 
the corresponding images.
 The students should reflect on the intuitive idea of continuity by considering instead the 
contrasting idea of lack of continuity, or more simply “discontinuity” as manifested in every day 
experiences of abrupt changes which could be headed “then suddenly!”. A few that come readily to 
mind are listed below along with functions which correspond as mathematical models:
 (1) Switching on a light : light intensity as a function of time.
 (2) Collision of a vehicle : Velocity as a function of time.
 (3) Switching off a radio : Sound intensity as a function of time.
 (4) Busting of a balloon: Radius as a function of air input.
 (5) Breaking of a string : Tension as a function of length.
 (6) Cost of postage : Postage as a function of weight.
 (7) Income tax : Tax-rate as a function of taxable income.
 (8) Age count in years : Age in whole years as a function of time.
 (9) Cost of insurance premium : Premium as a function of age.
 Actually, examples (1) - (5) are not quite accurate. For example, light intensity has a transparent 
but continuous passage from zero luminosity to positive luminosity. Indeed, nature appears to abhor 

 Fig. 9.32

L

T

x

hot wire

Thermometer
reading 

250 F75 F

0x
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discontinuity. On the other hand, (6) - (9) are in fact discontinuous and really show jumps at certain 
points.
 Students are advised to relate the mathematical definition of continuity corresponds closely 
with the meaning of the word continuity in everyday language. A continuous process is one that takes 
place gradually, without interruption or abrupt change. That is, there are no holes, jumps or gaps. 
Following figure identifies three values of x at which the graph of a function f is not continuous. At all 
other points in the interval (a, b), the graph of f is uninterrupted and continuous.

 Looking at the above graphs (9.33 to 9.35), three conditions exist for which the graph of f is not 
continuous at x = x0.

 It appears that continuity at x = x0 can be destroyed by any one of the following three conditions:

 (1) The function is not defined at x = x0.

 (2) The limit of f(x) does not exist at x = x0.

 (3) The limit of f(x) exists at x = x0, but, it is not equal to f(x0).

 Now let us look at the illustrative examples 

Illustration 9.6

 (i) f(x) = x2+3 (ii) f(x) = 
216

4
x
x

−
+

 

 (i) As x → 2 , the one sided limits are

   
2

lim ( )
x

f x
−→

 = 7

   
2

lim ( )
x

f x
+→

  = 7

 and hence 
2

lim ( ) 7
x

f x
→

=  and moreover f(2) is defined and f(2) = 7 = 
2

lim ( )
x

f x
→

 . In this case f(x) 

is continuous at x = 2. 

 (ii) The one sided limits are : 
4

lim ( )
x

f x
−→−

 = 8

   
4

lim ( )
x

f x
+→−

 = 8

 and therefore 
4

lim ( )
x

f x
→−

  = 8   but f(- 4) does not exist.

 Fig. 9.33 Fig. 9.34 Fig. 9.35 

a a a
( ( (

b b b
) ) )x x x

y y y

x0 x0 x0

f(x0)

0( ) is not definedf x lim ( ) ( )
x x

f x f x
→

≠
0

0
both  and 
exist, but not equal

f x f x( ) ( )0 0
− +
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 Note that although 
4

lim ( )
x

f x
→−

 exists, the function value at - 4, namely f(- 4) is not defined. 

Thus the existence of 
4

lim ( )
x

f x
→−

 has no bearing on the existence of f(- 4).

 Now we formally define continuity as in

Definition 9.7
 Let I be an open interval in 



 containing x0.  Let f I: .→ Then f is said to be continuous 
at x0 if it is defined in a neighbourhood of this point and if the limit of this function, as the 
independent variable x tends to x0, exists and is equal to the value of the function at x = x0.

 Thus three requirements have to be satisfied for the continuity of a function y = f(x) at x = x0 :
 (i) f(x) must be defined in a neighbourhood of x0  (i.e., f x( )

0
 exists);

 (ii) 
0

lim ( )
x x

f x
→

 exists ;

 (iii) f(x0) = 
0

lim ( )
x x

f x
→

 .

 The condition (iii) can be reformulated as [ ]0 00
lim ( ) ( ) 0
x

f x x f x
∆ →

+ ∆ − =   and the continuity of f 

at x0 can be restated as follows :

Definition 9.8
 A function y = f(x) is said to be continuous at a point x0 (or at x = x0) if it is defined in some 

neighbourhood of x0 and if lim ( ) ( )
� �

� � �� � �
x

f x x f x
0 0 0 0 . 

 The condition (iii) can also be put in the form ( )
0 0

lim ( ) lim
x x x x

f x f x
→ →

=  . Thus, if the symbol of the 

limit and the symbol of the function can be interchanged, the function is continuous at the limiting 
value of the argument.

9.3.1 Examples of functions Continuous at a point 
 (1) Constant function is continuous at each point of  .

  Let ( ) ,f x k k= ∈  is constant. If 0 ,x ∈  then 0( ) .f x k=  

  
0 0

lim ( ) lim( ) .
x x x x

f x k k
→ →

= =  

 (2) Power functions with positive integer exponents are continuous at every point of 

  If f(x) = xn,  domain of f is   = (- ∞, ∞) and 
→

= ∈
0

0lim ,n n
ox x

x x x  by the limit theorem.

 (3) Polynomial functions, p(x) =  a x a x a x a an n
n n0 1

1

1 0
0� � � � ��

� ,

  are continuous  at every point of  . By limit theorem,

   
0

lim ( )
x x

p x
→

 = a x a x a x a p xn n
n n0 0 1 0

1

1 0 0
� � � � ��

� ( ) .
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 (4) Quotients of polynomials namely rational functions of the form

  R(x) = ( )
( )

p x
q x

 , are continuous at every point where q(x) ≠ 0, and 

   
0

lim ( )
x x

R x
→

 = 
0

lim
x x→

 ( )
( )

p x
q x

    = 0

0

0
0

0

lim ( ) ( ) ( )
lim ( ) ( )
x x

x x

p x p x R x
q x q x

→

→

= = .

 (5) The circular functions sin x  and cos x are continuous at every point of their domain                            

  = (- ∞, ∞) since 
0

lim
x x→

 sin x = sin x0,  
0

0lim cos cos
x x

x x
→

= .

 As a consequence, tan x, cot x, cosec x, sec x are continuous on their proper domains in view of 
the reciprocal and quotient rules in the algebra of limits.

 (6) The nth root functions, 
1

( ) nf x x=  are continuous in their proper domain since 
0

1 1

0lim .n n
x x

x x
→

 
= 

 
 

 (7) The reciprocal function 1( )f x
x

=  is not defined at 0 and hence it is not continuous at 0. It is 

continuous at each point of {0}− .

 (8) h(x) = 2

1,     0
1,   0

x x
x x

+ ≤


+ >
 

  The domain of h is all of real numbers and

    
0

lim
x −→

 h(x) = 
0

lim ( 1) 1 (0)
x

x h
−→

+ = =  

    
0

lim
x +→

 h(x) = 2

0
lim ( 1) 1 (0)
x

x h
+→

+ = = .

 Thus h(x) is continuous at x = 0.

 Indeed, h(x) is continuous at each point of (- ∞, 0) and each point of (0, ∞) and hence h is 
continuous in the whole of (- ∞, ∞).

 (9) The greatest integer function f(x) = x    is not continuous at x = 0.

  For, 
0

lim
x −→

 x     = - 1 and 

   
0

lim
x

x
+→
    = 0 

  It is discontinuous at each integer point. In fact, 

   lim
x n

x
−→
    = n - 1 and

   lim
x n

x
+→
    = n.
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 (10) The modulus function

  f(x) = |x| = 
  if 0

0     if 0
     if 0

x x
x

x x

− <
 =
 >

 

  is continuous at all points of the real line  .
  In particular, 

   
0

lim | |
x

x
−→

 = 
0

lim ( )
x

x
−→

−  = 0,

   
0

lim | |
x

x
+→

 = 
0

lim
x +→

(x) = 0, and

   
0

lim ( )
x

f x
−→

 = 0 = 
0

lim ( )
x

f x
+→

=  0 = f(0).

 (11) The exponential function f(x) = ex is continuous on  .
 (12) The logarithmic function f(x) = log x (x > 0) in continuous in (0, ∞)

9.3.2 Algebra of continuous functions 
 If f and g are continuous at x0  then 
 (1) f + g is continuous at x = x0,
 (2)   f g- is continuous at x = x0,
 (3) f . g is continuous at x = x0, and

 (4) f
g

 is continuous at x = x0  (g(x) ≠ 0).

 (5) Composite function theorem on continuity.
 If f is continuous at g(x0) and g is continuous at x0  then  fog is continuous at x0.

Continuity in a closed  interval 

Definition  9.9
 A function :[ , ]f a b →   is said to be continuous on the closed interval [a, b] if it is 
continuous on the open interval (a, b) and

 lim ( ) ( )
x a

f x f a
+→

=  and lim ( )
x b

f x
−→  

= f(b).

 That is, the function f is continuous from the right at a and continuous from the left at b, 

and is continuous at each point 0 ( , )x a b∈ .

Illustration  9.7

 Discuss the continuity of f(x) = 21 x− .
 The domain of definition of f is the closed interval [-1,1].

 (f is defined if 1 - x2 ≥ 0)  
 For any point c� �( , )1 1
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  lim
x c→

 f(x) = 2lim 1
x c

x
→

−  = 
1
22lim(1 )

x c
x

→
 −   

   = 
1

2 2(1 ) ( )c f c− = .

  
1

lim ( )
x

f x
+→−

 = +→−
− = =

1
2 2

1
lim (1 ) 0 (1)

x
x f .

  
−→−1

lim ( )
x

f x  = 
−→−

 −  

1
22

1
lim (1 )

x
x = 0 = f(-1).

 Thus f is continuous on [-1, 1]. One can also solve 
this problem using composite function theorem.

Example 9.37
 Describe the interval(s) on which each function is continuous.
 (i) f(x) = tan x 

 (ii) g(x) = 
1sin ,    0

0,           0

x
x

x

 ≠

 =

 

 (iii) h(x) = 
1sin ,    0

0,             0

x x
x

x

 ≠

 =

 

Solution 

 (i) The tangent function f(x) = tanx is undefined at x n n Z= + ∈( ) , .2 1
2

p

  At all other points it is continuous, so f(x) = tan x is continuous on each of the open 
intervals

  3 3... , , , , , , ...
2 2 2 2 2 2
π π π π π π     − − −          

  

 (ii) The function 1y
x

=  is continuous at all points of   except at x = 0 where it is 
undefined.

  The function 1( ) sing x
x

=  is continuous at all points except x = 0, where 
0

lim ( )
x

g x
→

 

does not exist. So, g is continuous on the intervals (- ∞, 0) and (0, ∞)
 (iii) The function h(x) is defined at all points of the real line   = (- ∞, ∞) ; for any  

x0 ≠ 0,

    
0

lim ( )
x x

h x
→

 = 
0

1lim sin
x x

x
x→

 
  

     = 0
0

1sinx
x

 = h(x0)

  For 0 0x =  

    h(x) = 1.sinx
x

    - x ≤ 1sinx x
x

≤

-1 1

1

y

o

x

2( ) 1f x x� �

 Fig. 9.36
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    g(x) = 1, ( ) sin , ( )x f x x h x x
x

− = =  

    
0

lim ( )
x

g x
→

 = 0, 
0

lim ( ) 0
x

h x
→

=  

    and have 
0

1lim sin 0.
x

x
x→

=    

   By Sandwich theorem

    
0

1lim sin
x

x
x→

 
  

 = 0 = h(0).

  Therefore  h(x) is continuous in the entire real line.

Example 9.38
 A tomato wholesaler finds that the price of a newly harvested tomatoes is ₹ 0.16  
per kg if he purchases fewer  than 100 kgs each day. However, if he purchases at least 100 kgs 
daily, the price drops to ₹ 0.14 per kg. Find the total cost function and discuss the cost when the 
purchase is 100 kgs.

Solution 

   Let x denote the number of kilograms bought per day and C denote the cost. Then,

    C(x) = 
0.16 ,    if  0 100
0.14 ,    if   100

x x
x x

≤ <
 ≥

 .

 The sketch of this function is shown in Fig. 9.37.

 It is discontinuous at x = 100 since  
100

lim ( ) 16
x

C x
−→

=  and 
100

lim ( ) 14
x

C x
+→

=  .

 Note that C(100) = 14. Thus, 
100 100

lim ( ) 16 14 lim ( ) (100)
x x

C x C x C
− +→ →

= ≠ = =  .

  Note also that the function jumps from one finite value 14 to another finite value 16.

 Fig.9.37

100

-8
-6
-4
-2

2
4
6
8

10
12
14
16
18
20
22
24 y

m = .14

m = .16

x
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9.3.3 Removable and Jump Discontinuities 
 Let us look at the following  functions :

 (i) sin( ) xf x
x

=  

 (ii) ( ) ( ),g x C x=  where C(x) is as defined in Example 9.37.

 The function f(x) is defined at all points of the real line except x = 0. That is, f(0) is undefined, but 

0

sinlim 1
x

x
x→

=  exists. If we redefine the function f(x) as

   h(x) = 
sin , 0

1,       0

x x
x

x

 ≠

 =

 

 h is defined at all points of the real line including x = 0. Moreover, h is continuous at  
x =0 since 

   
0

lim ( )
x

h x
→

 = 
0

sinlim 1 (0)
x

x h
x→

= = .

 Note that  h(x) = f(x) for all x ≠ 0. Even though the original function f(x) fails to be continuous at 
x = 0, the redefined function became continuous at 0. That is, we could remove the discontinuity by 
redefining the function. Such discontinuous points are called removable discontinuities. This example 
leads us to have the following.

Definition 9.10
 A function f defined on an interval I ⊆   is said to have removable discontinuity at x I0 ∈  if 

there is a function h I h x
f x x x

f x x x
x x

: ( )

( ),

lim ( ),
� �

�
�

�
�
�

� �

 such that 

if  

if  

0

0
0��

.

 Note that for removable discontinuity, 
0

lim ( )
x x

f x
→

 must exist.

 Now if we examine the function g(x) = C(x) (see Example 9.38) , eventhough it is defined at all points 

of   [0, ∞), 
100

lim ( )
x

g x
→

 does not exist and it has a jump of height 
100 100

lim ( ) lim ( ) 16 14 2,
x x

g x g x
+ −→ →

− = − =  

which is finite. Since 
100

lim ( )
x

g x
→

 does not exist, it is not continuous at x = 100. Such discontinuities are 

called jump discontinuities. Thus we have the following :

Definition 9.11

Let f be a function defined on an interval I ⊆  . Then f is said to have  jump discontinuity at a 
point x I0 ∈  if f is defined at x0, 

 0 0

lim ( ) and lim ( )
x x x x

f x f x
− +→ →

 exist but

   
0 0

lim ( ) lim ( ).
x x x x

f x f x
− +→ →

≠  
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Example 9.39

 Determine if f defined by   f(x) = 
2 1sin ,   if 0

0,             if 0

x x
x

x

 ≠

 =

    is continuous in   .

Solution 
 By Sandwitch theorem 2

0

1lim sin 0
x

x
x→

=  and f(0) = 0 by the definition of f(x). Hence it is 

continuous at x = 0. For other values it is clearly continuous and hence continuous in  .

EXERCISE 9.5
 (1) Prove that f(x) = 2x2 + 3x - 5 is continuous at all points in  .
 (2) Examine the continuity of the following :

  (i) x + sin x (ii) 2 cosx x  (iii) tanxe x  

  (iv) 2 2xe x+   (v) . lnx x   (vi) 2
sin x

x
 

  (vii) 
2 16

4
x
x

−
+

  (viii) |x + 2| + |x - 1| (ix) | 2 |
| 1 |
x
x

−
+

 

  (x) cot x + tan x
 (3) Find  the points of discontinuity of the function f, where

  (i) f(x) = 
4 5,   if  3
4 5,   if  3

x x
x x

+ ≤
 − >

  (ii)  f(x) = 2

2,  if  2
,       2

x x
x if x

+ ≥


<
 

  (iii) f(x) = 
3

2

3,   if  2
1,   if  2

x x
x x

 − ≤


+ >
   (iv) f(x) = 

sin ,    0
4

cos ,   
4 2

x x

x x

π ≤ ≤
 π π < <

 

 (4) At the given point 0x  discover whether the given function is continuous or discontinuous 
citing the reasons for your answer :

   (i) x0 = 1,  f(x) = 

2 1 ,   1
1

2,           1

x x
x

x

 − ≠
−

 =

  (ii) x0 = 3,  f(x) = 

2 9 ,   if  3
3

5,            if  3

x x
x

x

 − ≠
−

 =

 

 (5) Show that the function  

3 1 ,   if  1
1

3,           if  1

x x
x

x

 − ≠
−

 =

  is continuous on (- ∞, ∞)

 (6) For what value of a is this function  f(x) = 

4 1 ,    if  1
1

,           if  1

x x
x

x

 − ≠
−

α =

  continuous at x = 1 ?
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 (7) Let f(x) = 2

0,     if  0
,   if  0 2

4,    if   2

x
x x

x

<
 ≤ <
 ≥

 .Graph the function. Show that f(x) continuous on (- ∞, ∞).

 (8) If f and g are continuous functions with f(3) = 5 and [ ]
3

lim 2 ( ) ( ) 4
x

f x g x
→

− = , find g(3).

 (9) Find the points at which f is discontinuous. At which of these points f is continuous from the 
right, from the left, or neither? Sketch the graph of f.

  (i) f(x) = 
2 1,   if   1
3         if  1 1
2 1,  if   1

x x
x x
x x

+ ≤ −
 − < <
 − ≥

  (ii) f(x) = 
3

3

( 1) ,    if  0
( 1) ,    if  0
x x
x x

 − <


+ ≥
 

 (10) A function f is defined as follows :

  f(x) = 2

0                    for   0;
                    for    0 1;

4 2  for   1 3;
4               for    3

x
x x

x x x
x x

<
 ≤ <


− + − ≤ <
 − ≥

 

  Is the function continuous?

 (11) Which of the following functions f has a removable discontinuity at x = x0? If the discontinuity 
is removable, find a function g that agrees with f for x ≠ x0 and is continuous on   .

  (i) f(x) = x x
x

x
2

0

2 8

2
2

� �
�

� �, .

  (ii) f(x) = 
3

0
64 ,   4
4

x x
x

+ = −
+

.

  (iii) f(x) = 0
3 ,     9
9

x x
x

− =
−

 .

 (12) Find the constant b that makes g continuous on ( , )−∞ ∞ .

  
2 2   if  4

( )
20  if  4

x b x
g x

bx x
 − <

= 
+ ≥

 

 (13) Consider the function ( ) sin .f x x
x
π=   What value must we give f(0) in order to make the 

function continuous everywhere?

 (14) The function 
2

3

1( )
1

xf x
x

−=
−

 is not defined at x = 1. What value must we give f(1) inorder to 

make f(x) continuous at x = 1 ?
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 (15) State how continuity is destroyed at 0x x=  for each of the following graphs.

EXERCISE 9.6
Choose the correct or the most suitable answer from the given four alternatives.              

 (1) sinlim
x

x
x→∞

 

  (1) 1 (2) 0 (3) ∞   (4) −∞  

 (2) 
/2

2lim
cosx

x
xπ

π
→

−  

  (1) 2 (2) 1 (3) 2−   (4) 0

 (3) 
0

1 cos 2lim
x

x
x→

−  

  (1) 0 (2) 1 (3) 2   (4) does not exist

 (4) 
0

sinlim
sinθ

θ
θ→

 

  (1) 1 (2) - 1 (3) 0 (4) 2

 (5)  lim
x

x
x x
x x��

� �
� �

�

�
�

�

�
�

2

2

5 3

3
is

  (1) e4  (2) e2  (3) e3  (4) 1

  Fig. 9.38 Fig. 9.39

x

y

O
x

y(a) (b)

0x
0xO

x

y
(c) (d)

0xO

-2 -1 1 2 3 4 5

-3

-2

-1

1

2

3

y

0x x�

x

  Fig. 9.40 Fig. 9.41
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 (6) 
2 1lim

2 1x

x
x→∞

− =
+

 

  (1) 1 (2) 0 (3) - 1 (4) 1
2

 

 (7) lim
x x

x

a b
x→∞

− =  

  (1) log ab (2) log a
b

 
  

  (3) log b
a

 
  

  (4) a
b

 

 (8) 20

8 4 2 1lim
x x x x

x x→

− − + =  

  (1) 2 log 2 (2) 22(log 2)   (3) log 2 (4) 3 log 2

 (9) If   f x x xx
( ) ( ) ,� � �

�
��
�
��1 0

1

, then the value of 
0

lim ( )
x

f x
→

 is equal to
  (1) - 1 (2) 0 (3) 2 (4) 4

 (10) lim
x

x
�
�� �� �

3

  (1) 2 (2) 3 (3) does not exist (4) 0

 (11) Let the function f  be defined by 
13 0

( )
3 5 1 2

xx
f x

x x
≤ ≤

= − + < ≤
 , then

  (1) 
1

lim ( ) 1
x

f x
→

=    (2) 
1

lim ( ) 3
x

f x
→

=  

  (3) 
1

lim ( ) 2
x

f x
→

=    (4) 
1

lim ( )
x

f x
→

 does not exist

 (12) If :f →   is defined by  f x x x x( ) | | ,� ��� �� � � �3 4  for   then 
3

lim ( )
x

f x
−→

 is equal to
  (1) - 2 (2) - 1 (3) 0 (4) 1

 (13) 
0

sinlim
x

x

xe x
x→

−  is

  (1) 1 (2) 2 (3) 3 (4) 0

 (14) If 
0

sinlim 4
tan 3x

px
x→

=  , then the value of p is

  (1) 6 (2) 9 (3) 12 (4) 4

 (15)  lim
sin cos

/α π

α α

α
π→

−

−
4

4

is

  (1) 2   (2) 1
2

  (3) 1 (4) 2

 (16) 2 2 2 2

1 2 3lim ...
n

n
n n n n→∞

 + + + +  
 is

  (1) 1
2

  (2) 0 (3) 1 (4) ∞  
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 (17) 
sin

0

1lim
x

x

e
x→

− =  

  (1) 1 (2) e (3) 1
e

  (4) 0

 (18) 
tan

0
lim

tan

x x

x

e e
x x→

− =
−

 

  (1) 1 (2) e (3) 1

2
  (4) 0

 (19) The value of 
20

sinlim
x

x
x→

 is

  (1) 1 (2) - 1 (3) 0 (4) ¥

 (20) The value of lim ,  where 
x k

x x k
−→

−     is an integer is

  (1) - 1 (2) 1 (3) 0 (4) 2

 (21) At 3
2

x =  the function 
| 2 3 |( )
2 3

xf x
x
-

=
-

 is

  (1) continuous (2) discontinuous (3) differentiable (4) non-zero

 (22) Let :f →    be defined by 
  is irrational

( )
1  is rational
x x

f x
x x


=  −

  then f is

  (1) discontinuous at 1
2

x =   (2) continuous at 1
2

x =  
  (3) continuous everywhere (4) discontinuous everywhere

 (23) The function 

2

3

1 1( ) 1
1

x xf x x
P x

 − ≠ −= +
 = −

 is not defined for 1x = − . The value of ( 1)f −  so that the 

function extended by this value is continuous is

  (1) 2
3

  (2) 2
3

−   (3) 1 (4) 0

 (24) Let f be a continuous function on [2, 5]. If f takes only rational values for all x and (3) 12f =  , 
then (4.5)f  is equal to

  (1) (3) (4.5)
7.5

f f+   (2) 12 (3) 17.5 (4) (4.5) (3)
1.5

f f−  

 (25) Let a function f be defined by | |( )  for 0 and (0) 2x xf x x f
x

−= ≠ = . Then f is

  (1) continuous nowhere (2) continuous everywhere
  (3) continuous for all x except x = 1 (4) continuous for all x except x = 0 
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SUMMARY
In this chapter we have acquired the knowledge of

 • Limit of a function ( )y f x=  as x approaches 0x  from the lower values of 0x .  

 • Limit of ( )y f x=  as x approaches 0x  from the higher values of 0x . 

 • Limit of a function as x approaches 0 ,x  in the deleted neighbourhood of 0x   exists if and 

only if 
00 0

lim ( ) lim ( ) lim ( ) .
x xx x x x

f x L f x f x L
− + →→ →

= = = =

 • 
0

lim ( )
x x

f x L
→

=  also means that f(x) converges to L as x approaches 0x  from either side of 

0x  except at 0x x= .

 • If  
0 0

lim ( )  and  lim ( )
x x x x

f x g x
→ →

 exist then 

  (i) [ ]
0 0 0

lim ( ) ( ) lim ( ) lim ( )
x x x x x x

f x g x f x g x
→ → →

± = ± , 

  (ii) [ ]
0 0 0

lim ( ). ( ) lim ( ). lim ( )
x x x x x x

f x g x f x f x
→ → →

=  

  (iii) 0

0

0

lim ( )( )lim
( ) lim ( )

x x

x x
x x

f xf x
g x g x

→

→
→

 
= 

 
  if ( ) 0g x ≠  and 

0

lim ( ) 0
x x

g x
→

≠ .

 • Limit of f(x) as x approaches 0x  does not exist if either 0( )   as  f x x x −→ ±∞ →  

  or 0( )   as  f x x x +→ ±∞ →  or 
0 0

1 2lim ( ) lim ( )
x x x x

f x l l f x
− +→ →

= ≠ =  

 • ( , )M ∞   is the neighborhood of +∞ , M >0

  ( , )K−∞  is the neighborhood of , 0.K−∞ <  

 • If 0( )   as  f x x x→ ±∞ →  then 0x x=  is a vertical asymptote.

 • The line 1 2(or )y l l=  is a horizontal asymptote of the curve y = f(x) if either 

  1 2( )   as    or  ( )   as  f x l x f x l x→ → ∞ → → −∞ .

 • ( )f x  is continuous at 0x  if and only if

  (i) 
0

0lim ( ) ( )
x x

f x f x
→

=  

  (ii) 0 00
lim[ ( ) ( )] 0
x

f x x f x
∆ →

+ ∆ − =  

  (iii) ( )
0 0

lim ( ) lim
x x x x

f x f x
→ →

=  .

 • Jump and removable discontinuities.
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Limits and continuity

Expected Outcome

Step 1
Open the Browser type the URL Link given below (or) Scan the QR Code.
GeoGebra Workbook called “XI Standard Limits” will appear. In that there 
are several worksheets related to your lesson. 

Step 2
Select the work sheet “Limits basic”. A continuous function is given. You 
can select the limit at a desired point by moving the slider “a”. Then move 
the lines x=h(nearest to a point ) both left and right side to check f(h) by 
moving the slider “h”
Compare this with the definition given in book.

Browse in the link:
Matrices and Determinants: https://ggbm.at/cpknpvvh

ICT CORNER 9(a)

Step1 Step2
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Limits and continuity

Expected Outcome

Step 1
 Open the Browser type the URL Link given below (or) Scan the QR Code.
  GeoGebra Workbook called “XI Standard Limits” will appear. In that there 

are several worksheets related to your lesson. 
Step 2
  Select the work sheet “Piece-wise limit”. Piece-wise function is given. Move 

the lines x=h(nearest to x = 1 ) both left and right side to check f(h) by moving 
the slider “h”

 Compare this with the defi nition given in book.

Browse in the link:
Matrices and Determinants: https://ggbm.at/cpknpvvh

ICT CORNER 9(b)

Step1 Step2
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135 Differentiability and Methods of Differentiation

10.1 Introduction
 In this chapter we discuss the concept of derivative and related concepts and develop tools 
necessary for solving real life problems. In this connection, let us look at the following problem of 
finding average velocity.

 Almost everyone has an intuitive notion of speed or velocity as a rate at which a distance is 
covered in a certain length of time. When, say, a bus travels 60 km in one hour, the average velocity 
of the bus must have been 60 km/h. Of course, it is difficult to maintain this rate of 60 km/h for the 
entire trip because the bus slows down for towns and speeds up when it passes cars. In other words, 
the velocity changes with time. If a bus company’s schedule demands that the bus travel 60 km from 
one town to another in one hour, the driver knows instinctively that he must compensate for velocities 
or speeds greater than this at other points in the journey. Knowing that the average velocity is 60 km/h 
does not, however, answer the question: What is the velocity of the bus at a particular instant? 

 In general, this average 
velocity or average speed of a 
moving object is the time rate 
of change of position defined 
by 

distance travelled
time of travelavev =

 Consider a runner who 
finishes a 10 km race in an 
elapsed time of 1 h 15 min 
(1.25 h). The runner’s average 
velocity or average speed for 
this race is

vave = =
10

1 25
8

.
.

 
 But suppose we now wish 
to determine the runner’s exact 
velocity v at the instant the runner is one-half into the race. If the distance run in the time interval 

from 0 h to 0.5 h is measured to be 5 km, then   vave = =
5

0 5
10

.
.

Differential Calculus-
Differentiability and Methods of Differentiation10Chapter

“Take what you need, 
do what you should, you will get what you want” 

- Leibnitz

Usain Bolt’s average speed
�
�

� �
y
x

m
s

100

9 58
10 4

.
.

How fast is Usain Bolt right now?  →   Calculus
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 Again this number is not a measure or necessarily such a good indicator, of the instantaneous 
rate v at which the runner is moving 0.5 h into the race. If we determine that rate at 0.6 h the runner 

is 5.7 km from the starting line, then the average velocity from 0 h to 0.6 h is  
5.7 5 7 /

0.6 0.5avev km h−= =
−

 

 The latter number is a more realistic measure of the rate v. By “shrinking” 

the time interval between 0.5 h and the time that corresponds to a measured 
position close to 5 km, we expect to obtain even better approximations to the 
runner’s velocity at time 0.5 h.

 This problem of finding velocities leads us to deal with the general 
problem of finding the derivative of a general mathematical model represented by the analytic 
equation, ( )y f x=  Consequently, we will move towards in achieving the following objectives and 
subsequently deal with the analysis of derivatives.

10.2 The concept of derivative 
 Calculus grew out of four major problems that mathematicians were working on during the 
seventeenth century.

 (1) The tangent line problem

 (2) The velocity and acceleration problem

 (3) The minimum and maximum problem

 (4) The area problem

 We take up the above problems 1 and 2 for discussion in this chapter while the last two problems 
are dealt with in the later chapters.

10.2.1 The tangent line problem 
 What does it mean to say that a line is tangent to a curve at a point? For a circle, the tangent line 
at a point P is the line that is perpendicular to the radial line at a point P, as shown in fig. 10.1.

Gottfried Wilhelm Leibnitz
(1646 - 1716)

Learning Objectives

On completion of this chapter, the students are expected to
• acquire the concept of a derivative as limit of quotients.
• visualise the concept of derivative geometrically.
• understand derivative as a process of measuring changes.
• realise derivative as a tool to measure slopes of tangents to curves / rates of changes.
• understand different methods of differentiation.
• apply calculus as a tool to solve everyday real life problems.
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137  

 For a general curve, however, the problem is more difficult, 
for example, how would you define the tangent lines shown in the 
following figures 10.2 to 10.4.

 You might say that a line is tangent to a curve at a point P if 
it touches, but does not cross, the curve at point P. This definition 
would work for the first curve (Fig. 10.2), but not for the second 
(Fig. 10.3). Or you might say that a line is tangent to a curve if 
the line touches or intersects the curve exactly at one point. This 
definition would work for a circle but not for more general curves, 
as the third curve shows (Fig. 10.4).

 Fig. 10.2 Fig. 10.3 Fig. 10.4

 Essentially, the problem of finding the tangent line at a point P boils down to the problem of 
finding the slope of the tangent line at point P. You can approximate this slope using a secant line 
through the point of tangency and a second point on the curve as in the following Fig. 10.5.

 Let P(x0, f(x0)) be the point of tangency and Q(x0 + Dx, f(x0 + Dx)) be the second point. 

 The slope of the secant line through the two points is given by substitution into the slope 
formula

m = 2 1

2 1

y y
x x

−
−

 

 msec = 0 0

0 0

( ) ( )
( )

f x x f x
x x x

+ ∆ −
+ ∆ −

 = change in 
change in 

y y
x x

∆=
∆

.

That is,  msec = 0 0( ) ( )f x x f x
x

+ ∆ −
∆

, which is the slope of the 

secant line.

 The right hand side of this equation is a difference quotient. The denominator Dx is the change 

in x (increment in x), and the numerator Dy = f(x0 + Dx) - f(x0) is the change in y.

 The beauty of this procedure is that you can obtain more and more accurate approximations of 

the slope of the tangent line by choosing points closer and closer to the point of tangency.

x

y

P

Fig. 10.1

x

y

P

x

y

P

x

y

P

( )y f x=

(
)

y
f

x
=( )y f x=

x

y

sec
an

t li
ne

  

  

∆x

( )
y f x=

0 0( , ( ))P x f x

0 0( , ( ))Q x x f x x+ ∆ + ∆

0 0( ) ( )y f x x f x∆ = + ∆ −

Fig. 10.5
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Tangent line approximation

Fig. 10.6 to 10.13

y∆

x∆

y∆

x∆

y∆

x∆

y∆

x∆

y∆

x∆

y∆

x∆

0x∆ → 0x∆ →

0 0( , ( ))x f x

0 0( , ( ))x f x

0 0( , ( ))x f x

0 0( , ( ))x f x
0 0( , ( ))x f x

0 0( , ( ))x f x

0 0( , ( ))x f x

0 0( , ( ))x f x
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Illustration 10.1
 Let us make an attempt to find the slope of 
the tangent line to the graph of f x x( ) = 2

at (1, 1).

As a start, let us take Dx = 0.1 and find the slope 
of the secant line through ( , ) ( . , ( . ) ).1 1 1 1 1 1

2
 and

 (i) f(1.1) = ( . ) .1 1 1 21
2 =

 (ii) Dy = f(1.1) - f(1)

   = 1.21 - 1 = 0.21

 (iii) y
x

∆
∆

  = 0.21
0.1

  = 2.1

 Tabulate the successive values to the right and left of 1 as follows :

Dx 1 + Dx f(1) f(1 + Dx) Dy Dy / Dx

0.1 1.1 1 1.21 0.21 2.1

0.01 1.01 1 1.0201 1.0201 2.01

0.001 1.001 1 1.002001 0.002001 2.001

- 0.1 0.9 1 0.81 - 0.19 1.9

- 0.01 0.99 1 0.9801 - 0.0199 1.99

- 0.001 0.999 1 0.998001 - 0.001999 1.999

 Clearly, 
0

lim
x

y
x−∆ →

∆
∆

 = 2 ;  
0

lim
x

y
x+∆ →

∆
∆

 = 2.

 This shows that 
0

lim 2
x

y
x∆ →

∆ =
∆

.

 Thus the slope of the tangent line to the graph of y = x2 at (1, 1) is mtan = 2.

 On the basis of the Fig.10.6 to 10.13, Illustration 10.1, and our intuition, we are prompted to say 

that if a graph of a function y = f(x) has a tangent line L at a point P, then L must be the line that is the 

limit of the secants PQ through P and Q as Q →  P (Dx →  0). Moreover, the slope mtan of L should 

be the limiting value of the values msec as Dx →  0. This is summarised as follows:

Definition 10.1  (Tangent line with slope m) 
 Let f be defined on an open interval containing x0, and if the limit 

 0 0
tan0 0

( ) ( )lim lim
x x

f x x f xy m
x x∆ → ∆ →

+ ∆ −∆ = =
∆ ∆

  exists, then the line passing through (x0, f(x0)) with 

slope m is the tangent line to the graph of f at the point (x0, f(x0)).

 The slope of the tangent line at (x0, f(x0)) is also called the slope of the curve at that point.

 The definition implies that if a graph admits tangent line at a point (x0, f(x0)) then it is unique 
since a point and a slope determine a single line.

2y x=

tan 2m =

x

y

Fig. 10.14
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 The conditions of the definition can be formulated in 4 steps :

 (i) Evaluate f at x0 and x0 + Dx : f(x0) and f(x0 + Dx)

 (ii) Compute Dy : Dy = f(x0 + Dx) - f(x0)

 (iii) Divide Dy by Dx (≠ 0) :  y
x

∆
∆

 = 0 0( ) ( )f x x f x
x

+ ∆ −
∆

 

 (iv) Compute the limit as � � �x 0 0( ) : mtan = 
0

lim
x

y
x∆ →

∆
∆  .

 The computation of the slope of the graph in the Illustration 10.1 can be facilitated using the 
definitions.

 (i) f(1) = 12 = 1. For any � �x 0

  f(1 + Dx) = (1 + Dx)2 = 1 + 2Dx + (Dx)2

 (ii) Dy = f(1 + Dx) - f(1) = 2Dx + (Dx)2 = Dx (2 + Dx)

 (iii) y
x

∆
∆

  = (2 )x x
x

∆ + ∆
∆

 

   = 2 + Dx .

 (iv) mtan = 
0

lim
x

y
x∆ →

∆
∆

   = 
0

lim (2 ) 2 0 2
x

x
∆ →

+ ∆ = + = .

Example 10.1 
 Find the slope of the tangent line to the graph of f(x) = 7x + 5 at any point (x0, f(x0)).

Solution 
Step (i)  f(x0) = 7x0 + 5. 
  For any � �x 0 ,
   f(x0 + Dx) = 7(x0 + Dx) + 5
    = 7x0 + 7Dx + 5
Step (ii)  Dy = f(x0 + Dx) - f(x0)

    = 0 0(7 7 5) (7 5)x x x+ ∆ + − +  
    = 7Dx

Step (iii)  y
x

∆
∆

  = 7

 Thus, at any point on the graph of f(x) = 7x + 5, we have

Step (iv)  mtan = 
0

lim
x

y
x∆ →

∆
∆

 

    = 
0

lim (7)
x∆ →

 

    = 7.

 Note that for a linear graph, y
x

∆
∆

 is a constant, depends neither on x0 nor on the 
increment Dx.
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Example 10.2 
 Find the slope of tangent line to the graph of f(x) = - 5x2 + 7x at (5, f(5)).

Solution 
Step (i) f(5) = - 5(5)2 + 7 × 5 = - 125 + 35 = - 90.
 For  any � �x 0 ,
  f(5 + Dx) = - 5(5 + Dx)2 + 7(5 + Dx) = - 90 - 43Dx - 5(Dx)2.
Step (ii) Dy = f(5 + Dx) - f(5)
   = - 90 - 43Dx - 5(Dx)2 + 90 = - 43Dx - 5(Dx)2

   =  Dx [- 43 - 5Dx].

Step (iii) y
x

∆
∆

 = - 43 - 5Dx

Step (iv) mtan = 
0

lim
x

y
x∆ →

∆
∆

 = - 43.

10.2.2 Velocity of Rectilinear motion 
 Suppose an object moves along a straight line according to an equation of motion s = f(t), where 
s is the displacement (directed distance) of the object from the origin at time t. The function f that 
describes the motion is called the position function of the object. In the time interval from t = t0 to  
t = t0 + Dt, the change in position is f(t0 + Dt) - f(t0). The average velocity over this time interval is

 vavg = 0 0( ) ( )displacement Change in 
time Change in 

f t t f t s s
t t t

+ ∆ − ∆= = =
∆ ∆

  which is same as the slope of the 

secant line PQ in fig. 10.16.

 Fig. 10.15 Fig. 10.16

 In this time interval Dt (from t0 to t0 + Dt) the motion may be of 
entirely different types for the same distance covered (traversed). 
This is illustrated graphically by the fact that we can draw entirely 
different curves C1, C2, C3 ... between the points P and Q in the 
plane. These curves are the graphs of quite different motions in 
the given time intervals, all the motions having the same average 

velocity s
t

∆
∆

. 

o  

 T

S

O

 

0

Position at
t t= 0

Position at
t t t= + ∆

0 0( ) ( )f t t f t+ ∆ −

0( )f t t+ ∆

0( )f t

0 0( , ( ))P t f t

0 0( , ( ))Q t t f t t+ ∆ + ∆

0t t+ ∆0t

0 0( ) ( )Slope of PQ
f t t f tPQ m

t
+ ∆ −

= =
∆

P

Q
1C

2C

3C

0t 0t t+ ∆ T

S

Fig. 10.17
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 Now suppose we compute the average velocities over shorter and shorter time intervals  
[t0, t0 + Dt]. In other words, we let Dt approach 0. Then we define the velocity (or instantaneous 
velocity) v(t0) at time t = t0 as the limit of these average velocities.

   v(t0) = 0 0

0

( ) ( )lim
t

f t t f t
tD ®

+D -
D

 = 
0

lim
t

s
t∆ →

∆
∆

.

 This means that the velocity at time t = t0 is equal to the slope of the tangent line at P.
Illustration 10.2 
 The distance s travelled by a body falling freely in a vacuum and the time t of descent are 
variables. They depend on each other. This dependence is expressed by the law of the free fall :

   s = 21
2

gt  (absence of initial velocity), g is the gravitational constant.

 Step (i) f(t0 + Dt) = ( )2 2 2
0 0 0

1 1( ) 2 ( )
2 2

g t t g t t t t+ ∆ = + ∆ + ∆  

 Step (ii) Ds = f(t0 + Dt) - f(t0)

    = 2 2 2
0 0 0

1 1( 2 ( )
2 2

g t t t t gt + ∆ + ∆ − 

    = 0
1
2

g t t t ∆ + ∆  
 

 Step (iii) s
t

∆
∆

 = 
0

0

1
12
2

g t t t
g t t

t

 ∆ + ∆     = + ∆ ∆  
 

 Step (iv) v(t0) = 00
lim

t

s gt
t∆ →

∆ =
∆

.

 It is clear from this that the velocity is completely defined by the instant t0. It is proportional to 
the time of motion (of the fall).

10.2.3 The derivative of a Function 
 We have now arrived at a crucial point in the study of calculus. The limit used to define the slope 
of a tangent line or the instantaneous velocity of a freely falling body is also used to define one of the 
two fundamental operations of calculus – differentiation.
Definition 10.2
 Let f be defined on an open interval  I ⊆   containing the point x0, and suppose that

0 0

0

( ) ( )lim
x

f x x f x
x∆ →

+ ∆ −
∆

  exists. Then f is said to be differentiable at x0 and the derivative of f at x0, 

denoted by 0( )f x′ , is given by

   0( )f x′  = 0 0

0 0

( ) ( )lim lim
x x

f x x f xy
x x∆ → ∆ →

+ ∆ −∆ =
∆ ∆

 .

For all x for which this limit exists,

   ( )f x′  = lim lim
( ) ( )

� � � �

�
�

�
� � �
�x x

y
x

f x x f x
x0 0

 is a function of x.
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 Be sure you see that the derivative of a function of x is also a function of x. This “new” function 
gives the slope of the tangent line to the graph of f at the point (x, f(x)), provided the graph has a 
tangent line at this point.

 The process of finding the derivative of a function is called differentiation. A function is 
differentiable at x if its derivative exists at x and is differentiable on an open interval  (a, b) if it is 
differentiable at every point in (a, b).

 In addition to ( )f x′ , which is read as ‘f prime of x’ or ‘f dash of x’, other notations are used to 
denote the derivative of y = f(x). The most common notations are 

  [ ]( ), , , ( ) , [ ]x
dy df x y f x D y
dx dx

′ ′  or 1 or Dy y . Here d
dx

or D is the differential operator.

 The notation dy
dx

 is read as “derivative of y with respect to x” or simply “dy - dx”, or we should 

rather read it as “Dee y Dee x” or “Dee Dee x of y”. But it is cautioned that we should not regard dy
dx

as the quotient dy ÷ dx and should not refer it as “dy by dx”. The symbol dy
dx

 is known as Leibnitz 
symbol.

10.2.4 One sided derivatives (left hand and right hand derivatives)

 For a function y = f(x) defined in an open interval (a, b) containing the point x0, the left hand and 

right hand derivatives of f at x = x0 are respectively denoted by 0( )f x−′  and 0( ),f x+′ are defined as

   0( )f x −′  = 0 0

0

( ) ( )lim
x

f x x f x
x−∆ →

+ ∆ −
∆

   and  0( )f x +′  = 0 0

0

( ) ( )lim
x

f x x f x
x+∆ →

+ ∆ −
∆

, provided the limits exist.

 That is, the function is differentiable from the left and right. As in the case of the existence 

of limits of a function at x0, it follows that 0 0
0 0

( ) ( )( ) lim
x

f x x f xf x
x∆ →

+ ∆ −′ =
∆

 exists if and only 

if both 0( )f x −′ = 0 0

0

( ) ( )lim
x

f x x f x
x−∆ →

+ ∆ −
∆

 and 0( )f x +′ = 0 0

0

( ) ( )lim
x

f x x f x
x+∆ →

+ ∆ −
∆

 exist and  

0( )f x −′ = 0( )f x +′ . 

 Therefore 0 0
0 0

( ) ( )( ) lim
x

f x x f xf x
x∆ →

+ ∆ −′ =
∆

 if and only if 0( )f x −′ = 0( )f x +′ .

 If any one of the condition fails then f is not differentiable at x
0
.

 In terms of  h = Dx > 0,

   0( )f x+′  = 0 0

0

( ) ( )lim
h

f x h f x
h→

+ −   and

   0( )f x −′  = 
0

lim
h→

 0 0( ) ( )f x h f x
h

− −  .
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Definition 10.3 
 A function f is said to be differentiable in the closed interval [ , ]a b  if it is differentiable on 
the open interval  ( , )a b  and at the end points  a b and ,

   ( )f a′  = 
0

( ) ( )lim
x

f a x f a
x+∆ →

+ ∆ −
∆

 = 
0

( ) ( )lim , 0
h

f a h f a h
h→

+ − >  

   ( )f b′  = 
0

( ) ( )lim
x

f b x f b
x−∆ →

+ ∆ −
∆

 = 
0

( ) ( )lim , 0.
h

f b h f b h
h→

− − >  

  If f is differentiable at x = x0, then  
0

0
0

0

( ) ( )( ) lim
x x

f x f xf x
x x→

−′ =
−

, where x = x0 + Dx and � �x 0 is 

equivalent to x x→
0
.  This alternative form is some times more convenient to be used in computations.

 As a matter of convenience, if we let ,h x= ∆  then 
0

( ) ( )( ) lim ,
h

f x h f xf x
h→

+ −′ =  provided the 
limit exists.

10.3 Differentiability and Continuity
Illustration 10.3 
 Test the differentiability of the function f(x) = |x - 2| at x = 2. 
Solution 
 We know that this function is continuous at  x = 2.

 But  (2 )f −′  = 
2

( ) (2)lim
2x

f x f
x−→

−
−

   
    = 

2

| 2 | 0lim
2x

x
x−→

− −
−

    = 
2

| 2 |lim
2x

x
x−→

−
−

 = 
2

( 2)lim 1
( 2)x

x
x−→

− − = −
−

  and

   (2 )f +′  = 
2

( ) (2)lim
2x

f x f
x+→

−
−

    = 
2

| 2 | 0lim
2x

x
x+→

− −
−  = 2

( 2)lim 1
( 2)x

x
x+→

− =
−

 Since the one sided derivatives (2 )f −′  and (2 )f +′  are not equal, f ′ (2) does not exist. That is, f 
is not differentiable at x = 2. At all other points, the function is differentiable. 
 If x

0
2¹  is any other point then

   0( )f x′  = 
0

0

0

| |lim
x x

x x
x x→

− =
−

 0

0

1 if
1 if  

x x
x x

>
− <

 

   Thus   (2)f ′  =  
1 2

1

     if  

  if  < 2

x
x
�

�
�
�
�

 The fact that f ′ (2) does not exist is reflected geometrically in the fact that the curve y = |x - 2| 
does not have a tangent line at (2, 0). Note that the curve has a sharp edge at (2, 0).

x

y

-3 -2 -1 1 2 3

1

2

3

Graph of  y=|x-2|

Fig. 10.18
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Illustration 10.4 

 Examine the differentiability of 
1
3( )f x x=  at x = 0.

Solution 

 Let 
1
3( )f x x= . Clearly, there is no hole (or break) in the 

graph of this function and hence it is continuous at all points of 
its domain.

 Let us check whether (0)f ′  exists.

Now (0)f ′  = 

1
3

0 0

( ) (0) 0lim lim
0x x

f x f x
x x→ →

− −=
−

   = 
2

3
0

lim
x

x
−

→
 = lim

x
x

�
��

0
2

3

1

Therefore, the function is not differentiable at x = 0. From the Fig. 10.19, further we conclude that the 
tangent line is vertical at x = 0. So f is not differentiable at   x = 0.

 If a function is continuous at a point, then it is not necessary that the function is 
differentiable at that point.

Example 10.3

 Show that the greatest integer function ( )f x x=     is not differentiable at any integer? 
Solution 

 The greatest integer function ( )f x x=      is not continuous at every integer point n,  since 

lim 1
x n

x n
−→

= −    and lim
x n

x n
+→

=   . Thus ( )f n′  does not exist. 

 What can you say about the differentiability of this function at other points?
Illustration 10.5

 Let f(x) = 
0

1 0
x x

x x
≤

 + >
 

 Compute (0)f ′ if it exists.
Solution 
 Look at the graph drawn.

  
  (0 )f −′  = 

0

(0 ) (0)lim
x

f x f
x−∆ →

+ ∆ −
∆

   

   = 
0

( )lim
x

f x
x−∆ →

∆
∆

  
  (0 )f −′  = 

0
lim 1
x

x
x−∆ →

∆ =
∆

  
  (0 )f +′  = 

0

1lim
x

x
x+∆ →

+ ∆
∆

Fig. 10.19

x
-3 -2 -1

1

2

3

1/3

( )f x
x=

y

x

y

O

, 0
( )

1 , 0
x

f x
x x
≤

=  + >

Fig. 10.20
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   =  lim
� � �

�
�

�
�
�

�
�
� ��

x x0

1
1

 Therefore f ′ (0) does not exist.

 Here we observe that the graph of f has a jump at x = 0. That is x = 0 is a jump discontinuity.
 The above illustrations and examples can be summarised to have the following conclusions.
 A function  f  is not differentiable at a point x0 belonging to the domain of  f  if one of the following 
situations holds:
 (i) f  has a vertical tangent at x0.
 (ii) The graph of  f  comes to a point at x0 (either a sharp edge ∨  or a sharp peak ∧ )
 (iii) f  is discontinuous at x0.
 A function fails to be differentiable under the following situations :

 We have seen in illustration 10.3 and 10.4, the function 
1
3( ) | 2 |  and ( )f x x f x x= − =   are 

respectively continuous at x = 2 and x = 0 but not differentiable there, whereas in Example 10.3 and 

Illustration 10.5, the functions 
0

( )  and ( )
1 0
x x

f x x f x
x x

≤
= =    + >

  are respectively not continuous 

at any integer x = n and x = 0  respectively and not differentiable too. The above argument can be 

condensed and encapsuled to state: Discontinuity implies non-differentiability.

Theorem 10.1 (Differentiability implies continuity) 
 If f is differentiable at a point x = x0, then f is continuous at x0.

Proof 
 Let f(x) be a differentiable function on an interval (a, b) containing the point x0. Then    

0 0
0 0

( ) ( )( ) lim
x

f x x f xf x
x∆ →

+ ∆ −′ =
∆

 exists, in the sense that 0( )f x′  is a unique real number.

   Now [ ]0 00
lim ( ) ( )
x

f x x f x
∆ →

+ ∆ −  = 0 0

0

( ) ( )lim
x

f x x f x x
x∆ →

+ ∆ − × ∆
∆

x

y

O x0

Vertical tangent 

x

y

O x0

Discontinuity

x

y

O x0

Vertical tangent-

O

 Fig. 10.21 Fig. 10.22 Fig. 10.23
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    = 0 0

0 0

( ) ( )lim lim ( )
x x

f x x f x x
x∆ → ∆ →

+ ∆ −  × ∆ ∆ 
    = 0( ) 0 0f x′ × = .
  This implies,  f is continuous at x = x0.
Derivatives from first principle 
 The process of finding the derivative of a function using the conditions stated in the definition of 
derivatives is known as derivatives from first principle.

EXERCISE  10.1

 (1) Find the derivatives of the following functions using first principle.

  (i) ( ) 6f x =   (ii) f(x) = - 4x + 7 (iii) f(x) = - x2 + 2
 (2) Find the derivatives from the left and from the right at x = 1 (if they exist) of the following 

functions. Are the functions differentiable at x = 1?

  (i) f(x) = |x - 1| (ii) 2( ) 1f x x= −   (iii) f(x) = 2

, 1
, 1

x x
x x

≤


>
 

 (3) Determine whether the following function is differentiable at the indicated values.

  (i) f(x) = x | x | at x = 0           (ii) f(x) = | |x x2
1 1� �at

  (iii) f(x) = |x| + |x - 1| at x = 0, 1 (iv) ( ) sin | |  at 0f x x x= =  
 (4) Show that the following functions are not differentiable at the indicated value of x.

  (i) f(x) = 
2, 2

; 2
2 4, 2

x x
x

x x
− + ≤

= − >
          (ii) f(x) = 

3 , 0
' 0

4 , 0
x x

x
x x

<
=− ≥

 

 (5) The graph of f is shown below. State with reasons that x values (the numbers), at which f is not 
differentiable.

 (6) If f(x) = |x + 100| + x2, test whether ( 100)f ′ −  exists.

 (7) Examine the differentiability of functions in   by drawing the diagrams.

  (i) | sin |x   (ii) | cos |x  .

x

y

0 2 4 6 8 10 12 14-4

11

Fig. 10.24
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10.4 Differentiation Rules 
 If f is a real valued function of a real variable defined on an open interval I and if y = f(x) is a 

differentiable function of x, then 
0

( ) ( )( ) lim
x

dy f x x f xf x
dx x∆ →

+ ∆ −′= =
∆

 . In general finding such direct 

derivatives using first principle is extremely laborious and difficult operation in the majority of cases. 
But if we know, once and for all, the derivatives of all the basic elementary functions, together with 
rules of differentiating the algebra of functions and functions of a function, we can find the derivative 
of any element – any function without carrying out limit process each time. Hence the operation of 
differentiation can be made automatic for the class of functions that concern us.
 Now we divert our attention to the rules for differentiation of a sum, product and quotient.
Theorem 10.2
 The derivative of the sum of two (or more) differentiable functions is equal to the sum of their 

derivatives. That is, if u and v are two differentiable functions then ( )d d du v u v
dx dx dx

+ = +
Proof 
 Let u and v be two real valued functions defined and differentiable on an open interval  I ⊆  . 
Let y = u + v, then y = f(x) is a function defined on I, and by hypothesis

   ( )u x′  = 
0

( ) ( )lim
x

du u x x u x
dx x∆ →

+ ∆ −=
∆

   ( )v x′  = 
0

( ) ( )lim
x

dv v x x v x
dx x∆ →

+ ∆ −=
∆

 exist.

 Now,  ( )f x x+ ∆  = ( ) ( )u x x v x x+ ∆ + + ∆

   ( ) ( )f x x f x+ ∆ −  = ( ) ( ) ( ) ( )u x x u x v x x v x+ ∆ − + + ∆ − .

   ( ) ( )f x x f x
x

+ ∆ −
∆

 = ( ) ( ) ( ) ( )u x x u x v x x v x
x x

+ ∆ − + ∆ −+
∆ ∆

.

   This implies, 
0

( ) ( )lim
x

f x x f x
x∆ →

+ ∆ −
∆

 = 
0 0

( ) ( ) ( ) ( )lim lim
x x

u x x u x x x v x
x x∆ → ∆ →

+ ∆ − + ∆ −+
∆ ∆

 .

   That is,   
0

( ) ( )lim
x

f x x f x
x∆ →

+ ∆ −
∆

 = ( ) ( )u x v x′ ′+ .

   That is,    ( )f x′  = ( ) ( )u x v x′ ′+ .

   or ( ) ( )u xv+ ′  = ( ) ( )u x v x′ ′+ .

   That is,    ( )d d du v u v
dx dx dx

+ = +  .

 This can be extended to finite number of differentiable functions 1 2, , ..., nu u u  and 

1 2 1 2( ... ) ...n nu u u u u u′ ′ ′′+ + + = + + +  .
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Theorem 10.3

 Let u and v be two differentiable functions. Then d
dx
uv u dv

dx
v du
dx

( ) .� �
Proof 
 Let u and v be the given two differentiable functions so that 

  
0

( ) ( )lim
x

u x x u x
x∆ →

+ ∆ −
∆

 = du
dx

 and  
0

( ) ( )lim
x

v x x v x
x∆ →

+ ∆ −
∆

  = dv
dx

 .

  Let   y = f(x) = u.v
  Then f(x + Dx) = u(x + Dx) v(x + Dx), and
  f(x + Dx) - f(x) = u(x + Dx) v(x + Dx) - u(x).v(x)

   = v(x + Dx) [ ] [ ]( ) ( ) ( ) ( ) ( )u x x u x u x v x x v x+ ∆ − + + ∆ − .

 This implies,  ( ) ( )f x x f x
x

+ ∆ −
∆

 = [ ] [ ]( ) ( ) ( ) ( )
( ) ( )

v x x v x u x x u x
u x v x x

x x
+ ∆ − + ∆ −

+ + ∆
∆ ∆

 .

  
0

( ) ( )lim
x

f x x f x
x∆ →

+ ∆ −
∆

 = 
0 0 0

( ) ( ) ( ) ( )( ) lim lim ( ) lim
x x x

v x x v x u x x u xu x v x x
x x∆ → ∆ → ∆ →

+ ∆ − + ∆ −+ + ∆
∆ ∆

 

   = u x v x v x u x v v x x v
x

( ) ( ) ( ) ( ) ( lim ( )� � � � � �
� �

since  is continuous,
0

(( )x .

  That is,   ( )f x′  = 
d
dx
uv u dv

dx
v du
dx

( ) .� �

  or   ( )uv uv vu′ ′ ′= +       

 Similarly ( )uvw uvw uv w u vw′ ′ ′ ′= + +  .

 This can be extended to a finite number of differentiable functions u1, u2, ...  un, using induction :

 1 2 1 2 1 1 2 1 1 2( . ..., ) ... ...n n n n n nu u u u u u u u u u u u u u− −′ ′ ′ ′= + + +  .

Theorem 10.4 (Quotient Rule) 

 Let u and v be two differentiable functions with v x d
dx

u
v

v du
dx

u dv
dx

v
( ) . .� �

�
�

�
�
� �

�
0

2
 Then

Proof 

 Let ( ) ,uy f x
v

= =  u and v are differentiable functions of x and where v x( ) ¹ 0 .

  Now    ( )f x x+ ∆  = ( )
( )

u x x
v x x

+ ∆
+ ∆

  This implies, ( ) ( )f x x f x+ ∆ −   = ( ) ( )
( ) ( )

u x x u x
v x x v x

+ ∆ −
+ ∆

 

   = ( ) ( ) ( ) ( )
( ) ( )

v x u x x u x v x x
v x x v x
+ ∆ − + ∆

+ ∆
 .
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  This implies,   ( ) ( )f x x f x
x

+ ∆ −
∆

 = 

[ ] [ ]( ) ( ) ( ) ( ) ( ( )

( ) ( )

v x u x x u x u x v x x v x
x x

v x x v x

+ ∆ − + ∆ −
−

∆ ∆
+ ∆

 

  This implies,    
0

( ) ( )lim
x

f x x f x
x∆ →

+ ∆ −
∆

 = 0 0

0

( ) ( ) ( ) ( )( ) lim ( ) lim

( ) lim ( )
x x

x

u x x u x v x x v xv x u x
x x
v x v x x

∆ → ∆ →

∆ →

+ ∆ − + ∆ −−
∆ ∆

+ ∆
 

   = ( ) ( ) ( ) ( )
( ) ( )

v x u x u x v x
v x v x
′ ′−        ( )0

lim ( ) ( )
x

v x x v x
∆ →

+ ∆ =  

  This implies,       ( )f x′  = 
[ ]2

( ) ( ) ( ) ( )
( )

v x u x u x v x
v x

′ ′−  .

  That is,   ( )d f
dx

 = 2

vu uv
v
′ ′−  

  or  d
dx

u
v

v du
dx

u dv
dx

v
�
�
�

�
�
� �

�
2

 .

Theorem 10.5 (Chain Rule / Composite Function Rule or Function of a Function Rule) 

 Let y = f(u)   be a function of u and in turn let u = g(x)  be a function of x so that ( )( ) ( )( ).y f g x fog x= =  

Then d
dx

f g x f g x g x( ( ( )) ( ( )) ( ).� � �

Proof 
 In the above function u = g(x) is known as the inner function and f is known as the outer function. 
Note that, ultimately, y is a function of x.

 Now ( ) ( )u g x x g x∆ = + ∆ −  

 ( ) ( ) ( ) ( )Therefore, y y u f u u f u g x x g x
x u x u x

∆ ∆ ∆ + ∆ − + ∆ −= × = ×
∆ ∆ ∆ ∆ ∆

 .

 Note that 0 as 0u x∆ → ∆ →  

   
0

Therefore,  lim
x

y
x∆ →

∆
∆

  = 
0

lim
x

y y
u x∆ →

∆ ∆ × ∆ ∆ 
 

    = 
0 0

lim . lim
u x

y y
u x∆ → ∆ →

∆ ∆   
   ∆ ∆   

 

    = 
0 0

( ) ( ) ( ) ( )lim lim
u x

f u u f u g x x g x
u x∆ → ∆ →

+ ∆ − + ∆ −×
∆ ∆

 

    = ( ) ( )f u u x′ ′×

    = ( )( ) ( )f g x g x′ ′   or  ( ) ( )( ( ) ( .) ( )d f g x f g x g x
dx

′ ′=
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 Thus, to differentiate a function of a function ( )( )y f g x= , we have to take the derivative of the 
outer function f regarding the argument g(x) = u, and multiply the derivative of the inner function g(x) 
with respect to the independent variable x. The variable u is known as intermediate argument.

Theorem 10.6
 Let   f(x) be a differentiable function and  let y k f x k� �( ), .0 Then 

d
dx
k f x k d

dx
f x( ( )) ( ).=

Proof

 Since f is differentiable,  
0

( ) ( )lim ( )
x

f x x f x f x
x∆ →

+ ∆ − ′=
∆

.

   Let  y = h(x) = kf(x)

   h(x + Dx) = kf(x + Dx)

   h(x + Dx) - h(x) = kf(x + Dx) - kf(x)

    = [ ]( ) ( )k f x x f x+ ∆ −  .

   ( ) ( )h x x h x
x

+ ∆ −
∆

 = [ ]( ) ( )f x x f x
k

x
+ ∆ −

∆
 .

   This implies,   
0

( ) ( )lim
x

h x x h x
x∆ →

+ ∆ −
∆

 = 
[ ]

0

( ) ( )
lim
x

f x x f x
k

x∆ →

+ ∆ −
∆

    = k [ ]
0

( ) ( )
lim
x

f x x f x
x∆ →

+ ∆ −
∆

 

    = ( ) ( )dkf x k f x
dx

′ =   

     ( )( )d h x
dx

 = ( )dk f x
dx

.

                              That is,    d
dx
kf x k d

dx
f x( ) ( ) .� ��

10.4.1 Derivatives of basic elementary functions 
 We shall now find the derivatives of all the basic elementary functions; we start with the constant 
function.
(1) The derivative of a constant function is zero.
   Let y = f(x) = k, k is a constant.
   Then f(x +Dx) = k and
   f(x + Dx) - f(x) = k - k = 0.

   This implies,   ( ) ( )f x x f x
x

+ ∆ −
∆

 = 0

   This implies,   
0

( ) ( )lim
x

f x x f x
x∆ →

+ ∆ −
∆

 = 0.
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   That is,  ( )f x′  = 0.

          or  
d
dx
k( ) .=0

(2) The power function y = xn, n > 0 is an integer.

  Let  f(x) = xn.

  Then,  f(x+ Dx) = (x + Dx)n and

  f(x + Dx) - f(x) = (x + Dx)n - xn.

  This implies,   ( ) ( )f x x f x
x

+ ∆ −
∆

 = ( )
( )

n nx x x
x x x
+ ∆ −
+ ∆ −

  This implies, 
0

( ) ( )lim
x

f x x f x
x∆ →

+ ∆ −
∆

 = 
0

( )lim
( )

n n

x

x x x
x x x∆ →

+ ∆ −
+ ∆ −

 

   = lim
n n

y x

y x
y x→

−
−

= 1,nnx −
where  and  as y x x y x x� � � � �� 0.

  That is,   ( )d f x
dx

 = 1nnx −    or   
d
dx

x nxn n
( ) .� �1

Corollary 10.1

 When , ( , ) 1,pn p q
q

= =  
1p p

q qd px x
dx q

− 
=   

 .

Corollary 10.2

 For any real number 1, ( )d x x
dx

α α−α = α  . 

For instance,

 (1)  (5)d
dx

 = 0 since 5 is a constant.

 (2)  3( )d x
dx

 = 23 ,x   by power function rule.

 (3)  
3
2d x

dx
 
 
 

 = 
3 11
2 23 3 ,

2 2
x x

−
=    by power function rule.

 (4)  ( )2d x
dx

 = 2 12 ,x −  by power function rule.

 (5)  
2
3d x

dx
 
 
 

 = 
2 11
3 32 2 , ( 0),

3 3
x x x

−−
= ≠  by power function rule.

 (6)  9(100 )d x
dx

 = 9 9 1 8100 ( ) 100 9 900d x x x
dx

−= × =  by theorem 10.6.
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 (3) Derivative of the logarithmic function
 The natural logarithm of x is denoted by loge x  or logx or ln x

   Let  y = ( )f x = log x

   Now   ( )f x x+ ∆  = log (x + Dx) and

   f(x + Dx) - f(x) = log (x + Dx) - log x

    = log x x
x

+ ∆ 
  

 .

    = log 1 x
x

∆ +  
 .

   ( ) ( )f x x f x
x

+ ∆ −
∆

 = 
log 1 x

x
x

∆ +  
∆

 .

   We know that  
0

log(1 )lim k
α→

+ α
α

 = k 
0

log(1 )lim k k
kα→

+ α =
α

   
0

( ) ( )Therefore, lim
x

f x x f x
x∆ →

+ ∆ −
∆

 = 
0

log 1
lim
x

x
x

x∆ →

∆ +  
∆

 = 1 .
x

 

   That is,  d
dx

x
x

(log ) .=
1

Corollary  10.3

   If  y = ( ) logaf x x=   then 1( )
(log )

f x
a x

′ =  .

   We have     f(x) = log log   log (log ) loga a e ax e x e x= × =   

   ( )Therefore, ( )d f x
dx

 = a
d (log log )e x
dx

×  

    = (log ) (log )a
de x
dx

  (by constant multiple rule)

    = 1log .a e
x

  (or)  1
(log )a x

 .

(4) Derivative of the exponential function

   Let  y = ax
.

   Then  ( )f x x+ ∆  - ( ) x x xf x a a+∆= −

    = ( 1)x xa a∆ −  and

Unit10.indd   153 10-08-2018   18:26:24



154XI - Mathematics

   ( ) ( )f x x f x
x

+ ∆ −
∆

 = 1x
x aa

x

∆ −
 ∆ 

.

   We know that  
0

1lim
x

x

a
x

∆

∆ →

−
∆

  = log a .

   
0

( ) ( )Therefore, lim
x

f x x f x
x∆ →

+ ∆ −
∆

  = 
0

1lim
x

x

x

aa
x

∆

∆ →

 −
 ∆ 

 

    = logxa a×  

   or  
d
dx
a a ax x

( ) log .=

   In particular, ( )xd e
dx

 = logxe e  

    

d
dx
e ex x

( ) .=

(5) The derivatives of the Trigonometric functions 
 (i) The sine function, sinx.

   Let  y = ( ) sinf x x=  .

   Then  ( )f x x+ ∆  = sin( )x x+ ∆  and

   ( ) ( )f x x f x+ ∆ −  = sin( ) sin 2sin cos
2 2
x xx x x x∆  + ∆ − = +  

.

   Now ( ) ( )f x x f x
x

+ ∆ −
∆

 = 
sin

2 cos
2

2

x
xx

x

∆ 
  ∆   + ∆   

  

 .

  This implies,  
0

( ) ( )lim
x

f x x f x
x∆ →

+ ∆ −
∆

  =  
0 0

sin
2lim . lim cos

2
2

x x

x
xx

x∆ → ∆ →

∆ 
  ∆   + ∆   

  

 

  = 1 × cosx   
0

cos is continuous(Since lim cos( ) cos ),
x

x xx x
∆ →

+ ∆ =  .

  = cosx

 
That is 

d
dx

x x(sin ) cos .=
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(ii) The cosine function, cos x 

   Let  y = cosx = sin
2

x π +  
.

   Then,  dy
dx

 = sin
2

d x
dx

π +  
 

   Let  u = 
2

x π+  

   du
dx

 = 1 + 0 = 1

   Therefore, dy
dx

 = (sin ) (sin )d d duu u
dx dx dx

=  by Chain rule

    = cos 1u × = cosu   = cos
2

x π +  
 = sin x−  .

   
That is,  

d
dx

x x(cos ) sin .� �

(iii) The tangent function,  tan x 

   Let y = ( ) tanf x x=  .

    = sin
cos

x
x

 

   Therefore,  (tan )d x
dx

 = sin
cos

d x
dx x

 
  

    = 2

cos (sin ) sin (cos )

cos

d dx x x x
dx dx

x

−
     (by quotient rule)

    = 2

cos (cos ) sin ( sin )
cos

x x x x
x

− −

    = 
2 2

2

cos sin
cos
x x

x
+  

    = 2

1
cos x

 .

   
That is,  

d
dx

x x(tan ) sec .= 2

(iv) The secant function,   sec x

   Let   y = 11sec (cos )
cos

x x
x

−= =  .
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   Then  dy
dx

  = 2( 1)(cos ) ( sin )x x−− −     (by chain rule)

    =  2

sin 1 sin. sec . tan
cos cos cos

x x x x
x x x

= =  .

  
That is, 

d
dx

x x x(sec ) sec tan .=

(v) The cosecant function,   cosec x 

   Let  y = 11cosec (sin )
sin

x x
x

−= =  .

   dy
dx

 = 2( 1)(sin ) (cos )x x−−      (by chain rule)

   = 2

cos
sin

x
x

−  = 1 cos.
sin sin

x
x x

−   = cosec cotx x− .

  That is,  cosec cosec
d
dx

x x x( ) cot .� �

(vi) The cotangent function,   cot x

   Let   y = coscot
sin

xx
x

= .

   dy
dx

 = cos
sin

d x
dx x

 
  

 

    = 2

sin (cos ) cos (sin )

sin

d dx x x x
dx dx

x

−
 

    = 2

sin ( sin ) cos (cos )
sin

x x x x
x

− −  

    = 
2 2

2

sin cos
sin

x x
x

− −   = 2
2

1 cosec
sin

x
x

− = −  

 
That is,  cosec

d
dx

x x(cot ) .� � 2

(6) The derivatives of the inverse trigonometric functions 

(i) The derivative of arcsin x or 1sin x−  

   Let y = 1 si( ) n xf x −= .

   Then  y y+ ∆  = 1( ) sin ( )f x x x x−+ ∆ = + ∆  

   This implies,   x = sin y   and
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   x + Dx = sin (y + Dy).

   Therefore,  y
x

∆
∆

 = 

1
sin( ) sin

sin( ) sin
y y y y

y y y y
∆ + ∆ −=

+ ∆ − ∆
 

 As also, so that� � � �x y0 0,

   dy
dx

 = 
0

lim
x

y
x∆ →

∆
∆

    = 
0

1
sin( ) sinlim

y

y y y
y∆ →

+ ∆ −
∆

 

    = 1
cos y

    = 
2 2

1 1
1 sin 1y x

=
− −

 

 That is,   d
dx

x
x

(sin ) .1

2

1
1

(ii) The derivative of arccos x or 1cos− x  

 We know the identity :

   1sin x−  + 1cos x−  = 
2
π  .

   This implies,  1 1(sin cos )d x x
dx

− −+  = 0
2

d
dx

π  =  
 

   This implies,  1 1(sin ) (cos )d dx x
dx dx

− −+  = 0

   1

2

1Therefore, (cos )
1

d x
dxx

−+
−

 = 0

  
or

d
dx

x
x

(cos ) .
� � �

�
1

2

1

1

(iii) The derivative of arctan x or 1tan x−  

   Let  y = 1( ) tanf x x−=  . ... (1)

   This implies,  y + Dy = f(x + Dx) = 1tan−  (x + Dx)  ... (2)
   x = tan y and
   x + Dx = tan (y + Dy)
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   This implies,   Dx = tan (y + Dy) - tan y

   Therefore, y
x

∆
∆

 = 
tan( ) tan

y
y y y

∆
+ ∆ −

    = 

1
tan( ) tany y y

y
+ ∆ −

∆
 .

 As also, so that� � � �x y0 0,

   
0

lim
x

y
x∆ →

∆
∆

 = 0

1
lim tan( ) tan 1

(tan )

y
y y y

dy y
dy

∆ →
+ ∆ −

=
∆

 

    = 2

1
sec y

 

    = 2 2

1 1
1 tan 1y x

=
+ +

  
That is,

d
dx

x
x

(tan ) .
� �

�
1

2

1

1

(iv) The derivative of arccot x or 1cot x−  
 We know the identity

   1tan x−  + 1cot x−   = 
2
π  .

   This implies,  1 1(tan cot )d x x
dx

− −+  = 0
2

d
dx

π  =  
 

   This implies,   1 1(tan ) (cot )d dx x
dx dx

− −+  = 0

   That is,   1(cot )d x
dx

−  = 1(tan )d x
dx

−− = 2

1
1 x

−
+

 

  That is,   
d
dx

x
x

(cot ) .
� � �

�
1

2

1

1

(v) The derivative of arcsec x or 
d
dx

x
x x

(sec ) .
� �

�
1

2

1

1

(vi) The derivative of arccosec x or  
d
dx

x
x x

( ) .cosec
� �

�

�
1

2

1

1

 The proofs of (v) and (vi) are left as exercises.
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Example 10.7 
  Differentiate the following with respect to x :

 (i) 3 25 3 7y x x x= + + +   (ii) sin 2xy e x= + +  

 (iii) 4cosec log 2 xy x x e= − −   (iv) 
21y x

x
 = −  

 (v) logxy xe x=

  (vi) 3

cos xy
x

=    (vii) log
x

xy
e

=   

 (viii) Find  f f f x x'( ) '( ) ( ) | | .3 5 4 and  if � �

Solution 

 (i) 23 10 3.= + +dy x x
dx

  (ii) cos .= +xdy e x
dx

 

 (iii) 14 cosec .cot 2 .= − − − xdy x x e
dx x

  

 (iv) 2 2 2
2

1 2 2y x x x
x

−= + − = + −

   2 1
3

22 2 2 .− −= − = −dy x x x
dx x

 

 (v) 1 .log (1) log ( )x x xdy xe e x x x e
dx x

 = + +  
 

        log log (1 log log ).= + + = + +x x x xe e x xe x e x x x  

 (vi) 3

cos xy
x

=  

  
3 2 2

6 6

( sin ) cos (3 ) ( sin 3cos )dy x x x x x x x x
dx x x

− − − += =  4

( sin 3cos ) .+= − x x x
x

 

 (vii) log .logx
x

xy e x
e

−= =  

  1 log ( )( 1)x xdy e x e
dx x

− − = + −  
 

        1 logxe x
x

−  = −  
 .

 (viii) 
( 4) ; 4

( ) | 4 |
( 4) ; 4

x x
f x x

x x
− − <

= − =  − ≥
 

  
1 if 4

( )
1 if 4

x
f x

x
− <′ = + ≥

 

  Therefore, (3) 1f ′ = −  

                     (5) 1f ′ =  .
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EXERCISE 10.2
Find the derivatives of the following functions with respect to corresponding independent variables:
 (1) f(x) = x - 3 sinx (2) y = sin x + cos x
 (3) f(x) = x sin x (4) y = cos x - 2 tan x
 (5) g(t) = t3cos t (6) g(t) = 4 sec t + tan t

 (7) y = ex sin x (8) tan xy
x

=  

 (9) sin
1 cos

xy
x

=
+

  (10) 
sin cos

xy
x x

=
+

 (11) tan 1
sec

xy
x
−=   (12) 2

sin xy
x

=  

 (13) y = tan q(sin q + cos q) (14) y = cosec x . cot x
 (15) y = x sin x cos x (16) y = e-x. log x

 (17)  y x x e x� � � �
( ) log( )

2 3
5 1  (18) siny x= °  

 (19) 10logy x=   (20) Draw the function '( )f x  if 2( ) 2 5 3f x x x= − +

10.4.2 Examples on Chain Rule 

Example 10.8 

 Find 2( ) if ( ) 1F x F x x′ = + .
Solution 

   Take u  = 2( ) 1 and ( )g x x f u u= + =

   ( )F x∴  = ( )( ) ( ( ))fog x f g x=

   Since  ( )f u′  = 
1
21 1

2 2
u

u
−

=  and

   ( )g x′  = 2x,  we get    

   ( )F x′  = ( ( )) ( )f g x g x′ ′

    = 
2 2

1 .2
2 1 1

xx
x x

=
+ +

 .

Example 10.9 
 Differentiate : (i) y = sin(x2) (ii) y = sin2x

Solution 
  (i) The outer function is the sine function and the inner function is the squaring function.
   Let  u = x2

   That is,  y = sin u.

   Therefore,   dy
dx

 = dy du
du dx

×  
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    = cos u × (2x)
    = cos(x2).2x
    = 2x cos(x2).
  (ii) u = sin x
   Then,    y = u2

   and   dy
dx

 = dy du
du dx

×  

    = 2u × cos x
    = 2 sin x . cos x
    = sin 2x.

Example 10.10 

 Differentiate : 3 100( 1)y x= −  .
Solution 

   Take   u = x3-1 so that
   y = u100

   and   dy
dx

 = dy du
du dx

×  

    = 100 1 2100 (3 0)u x− × −

    = 3 99 2100( 1) 3x x− ×

    = 2 3 99300 ( 1)x x − .

Example 10.11 

 Find 
3 2

1( ) if ( )
1

f x f x
x x

′ =
+ +

 .

Solution 
   First we write : f(x) = 

1
2 3( 1)x x

−

+ +

   Then,  ( )f x′  = 
1 12 231 ( 1) ( 1)

3
dx x x x
dx

− −
− + + + +

    = 
4

2 31 ( 1) (2 1)
3

x x x
−

− + + × +  

    = 
4

2 31 (2 1)( 1)
3

x x x
−

− + + +  .

Example 10.12 

 Find the derivative of the function 
92( )

2 1
tg t
t
− =  + 

 .
Solution 

   ( )g t′  = 
9 12 29

2 1 2 1
t d t
t dt t

−− −   
   + +   
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    = 
8

2

(2 1) ( 2) ( 2) (2 1)29
2 1 (2 1)

d dt t t tt dt dt
t t

 + − − − + − 
  + +   
 

 

    = 
8

2

2 (2 1) 1 ( 2) 29
2 1 (2 1)
t t t
t t

 − + × − − × 
   + +   

 

    = 
8

2

2 2 1 2 49
2 1 (2 1)
t t t
t t

 − + − + 
   + +   

 

    = 
8

10

45( 2)
(2 1)

t
t

−
+

 .

Example 10.13 
 Differentiate (2x + 1)5  (x3 - x + 1)4.

Solution 
   Let   y = (2x + 1)5  (x3 - x + 1)4

   Take  u = 2x + 1 ; v = x3 - x + 1   so that

   y = u5 . v4

   
dy
dx

 = 
5 4 4 5. ( ) ( )d du v v u

dx dx
+       by Product Rule

    = 
5 4 1 4 5 1.4 .5dv duu v v u

dx dx
− −+   by Chain Rule

    = 5 3 2 4 44 . (3 1) 5 2u v x v u× − + ×

    = 5 3 3 2 3 4 44(2 1) ( 1) (3 1) 10( 1) (2 1)x x x x x x x+ − + − + − + +  

    = 4 3 3 2 3(2 1) ( 1) 4(2 1)(3 1) 10( 1)x x x x x x x + − + + − + − + 

    = 4 3 3 3 22(2 1) ( 1) (17 6 9 3)x x x x x x+ − + + − + .

Example 10.14 
 Differentiate : y = esin x

.

Solution 
   Take  u = sin x   so that
   y = eu

   dy
dx

 = ( )ud e du
du dx

×  = eu × cos x = cos x esin x.

Example 10.15 
 Differentiate 2x .

Solution 
   Let y = 2

2x xe= log
.
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   Take  u = (log 2)x     so that

   y = eu

   dy
dx

 = dy du
du dx

×  = log 2log 2 log 2× =u xe e  

    =  (log2)2x
. 

 By using the differentiation formula for ax , one can find the derivative directly.

Example 10.16 

 If y = tan-1 1
1

x
x

+ 
 − 

 , find y′ .

Solution 

   y = tan-1 1
1

x
x

+ 
 − 

   Let   1
1

x
x

+
−

 = t

   Then,   y = tan-1t

   dy
dx

 = 1(tan ).d dtt
dt dx

−

    = 2 2

1 (1 ).1 (1 )( 1).
1 (1 )

x x
t x

− − + −
+ −

 

    = 2 2 2

1 (1 ) (1 ) 1.
(1 ) 111

1

x x
x xx

x

− + + =
− ++ +  − 

 .

EXERCISE 10.3
Differentiate the following :

 (1) 2 5( 4 6)y x x= + +   (2) y = tan3x (3) y = cos (tanx)

 (4) y = 3 31 x+   (5) xy e=   (6) sin( )xy e=

 (7) 3 7( ) ( 4 )F x x x= +   (8) 
3
21( )h t t

t
 = −  

 (9) 3( ) 1 tanf t t= +

 (10)  3 3cos( )y a x= +  (11)  mxy e−=  (12)  y = 4 sec 5x

 (13)  4 2 3(2 5) (8 5)y x x −= − −  (14)  32 2( 1) 2y x x= + +  (15)  
2xy xe−=

 (16) 
3

4
3

1( )
1

ts t
t

+=
−

 (17)  ( )
7 3

xf x
x

=
−  (18)  tan(cos )y x=

 (19) 
2sin

cos
xy
x

=  (20)  
1

5 xy
−

=  (21) 1 2 tany x= +
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 (22)  3 3sin cosy x x= +  (23)  2sin (cos )y kx=  (24)  2 6(1 cos )y x= +

 (25)  
3

1

x

x

ey
e

=
+  (26)  y x x= +  (27)  cosx xy e=

 (28)  y x x x= + +  (29) ( )( )sin tan siny x=   (30)  y
x
x

�
�
�

�

�
�

�

�
�

�
sin

1

2

2

1

1

10.4.3 Implicit Differentiation 

 A function in which the dependent variable is expressed solely in terms of the independent variable 

x, namely, y = f(x), is said to be an explicit function. For instance, 31 1
2

y x= −  is an explicit function, 

whereas an equivalent equation 32 2 0y x− + =  is said to define the function implicitly or y is an 
implicit function of x.
 Now, as we know, the equation

   2 2x y+  = 4   (1)
 describes a a circle of radius 2 centered at the origin. Equation (1) is not a function since for any 
choice of x in the interval - 2 < x < 2 there correspond two values of y, namely

   ( )f x  = 24 , 2 2x x− − ≤ ≤   (2)

   ( )g x  =  24 , 2 2x x− − − ≤ ≤   (3)
 (2) represents the top half of the circle (1) and (3) represents the bottom half of the circle (1). 
By considering either the top half or bottom half, of the circle, we obtain a function. We say that (1) 
defines at least two  implicit functions of x on the interval - 2 ≤ x  ≤  2.

Note that both equations

 [ ]22 ( ) 4x f x+ =  and [ ]22 ( ) 4x g x+ =  are identities on the interval 2 2x− ≤ ≤ .

 In general, if an equation ( , ) 0F x y =  defines a function f implicitly on some interval, then 
( , ( )) 0F x f x =  is an identity on the interval. The graph of f is a portion (or all) of the graph of the 

equation ( , ) 0F x y =  .

 A more complicated equation such as 4 2 3 5 2 1x x y y x+ − = +  may determine several implicit 
functions on a suitably restricted interval of the x-axis and yet it may not be possible to solve for 

y in terms of x. However, in some cases we can determine the derivative dy
dx

 by a process known 

x

y

x

y

–1–2 1 2

–1–2 1 2

2 2 4, 0x y y+ = ≥

2 2 4, 0x y y+ = ≤

 Fig. 10.25 Fig. 10.26
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as implicit differentiation. This process consists of differentiating both sides of an equation with 

respect to x, using the rules of differentiation and then solving for dy
dx

. Since we think of y as being 

determined by the given equation as a differentiable function, the chain rule, in the form of the power 
rule for functions, gives the result.

   d
dy

y n y dy
dx

n n
( ) ,� �1    where n is an integer.

Example 10.17 

 Find dy
dx

 if 2 2 1x y+ = .

Solution 
 We differentiate both sides of the equation,

   d
dx

x d
dx

y( ) ( )
2 2+  = (1)d

dx

   2 2 dyx y
dx

+  = 0
 Solving for the derivative yields

   dy
dx

 = x
y

−

Example 10.18 

 Find the slopes of the tangent lines to the graph of 2 2 4x y+ =  at the points corresponding 
to x = 1.

Solution 

 Substituting x = 1 into the given equation yields 2 3y =  or 3.y = ±   

 Hence, there are tangent lines at ( )1, 3  and ( )1, 3− . Although ( )1, 3  and ( )1, 3−  are 
points on the graphs of two different implicit functions, we got the correct slope of each point. 
We have

   ( )1, 3dy at
dx

 = ( )1 1 1and at 1, 3
3 3 3

dy
dx

−− − = =
−

.

Example 10.19 

 Find 4 2 3 5if 2 1dy x x y y x
dx

+ − = +  .

Solution 
 Differentiating implicitly, we have     

   4 2 3 5( ) ( ) ( )d d dx x y y
dx dx dx

+ −  = (2 1)d x
dx

+  
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   This implies,  3 2 2 3 44 3 (2 ) 5dy dyx x y x y y
dx dx

 + + −  
 = 2 + 0

   This implies,   3 2 2 3 44 3 2 5dy dyx x y xy y
dx dx

+ + −  = 2

   This implies,   ( )3 5
2 2 4x y y dy

dx
-  = 3 32 4 2x xy− −  

   or    dy
dx

 = 
3 3

2 2 4

2 4 2
3 5

x xy
x y y

− −
−

 .

Example 10.20 

 Find dy
dx

 if sin cos 2y y x=  .

Solution 

 We have sin cos 2y y x= .

   Differentiating, sind y
dx

 = ( cos 2 )d y x
dx

   That is, cos dyy
dx

 = ( 2sin 2 ) cos 2 dyy x x
dx

− +  

   This implies,   2 (cos cos 2 ) dyy x
dx

−  = 2 sin 2y x−

   or   dy
dx

 = 2 sin 2
cos cos 2

y x
y x

−
−

 .

10.4.4 Logarithmic Differentiation
 By using the rules for differentiation and the table of derivatives of the basic elementary 
functions, we can now find automatically the derivatives of any elementary function, except for one 
type, the simplest representative of which is the function y = xx. Such functions are described as 
power-exponential and include, in general, any function written as a power whose base and index 
both depend on the independent variable.
 In order to find by the general rules the derivative of the power-exponential function y = xx, we 
take logarithms on both sides to get 
 log y = x log x, x > 0
 Since this is an identity, the derivative of the left-hand side must be equal to the derivative of the 
right, we obtain by differentiating with respect to x (keeping in mind the fact that the left hand side is 
a function of function) :

  1 dy
y dx

 = log 1x +

  Hence      dy
dx

 = (log 1) (log 1)xy x x x+ = +  
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 The operation consists of first taking the logarithm of the function f(x) (to base e) then differentiating 
is called logarithmic differentiation and its result

   
d
dx

f x f x
f x

(log ( ))
( )

( )
.�

�

is called the logarithmic derivative of f(x).

 The advantage in this method is that the calculation of derivatives of complicated functions 
involving products, quotients or powers can often be simplified by taking logarithms.

Example 10.21 

 Find the derivative of 2 24 . sin .2xy x x= +  

Solution 
  Taking logarithm on both sides and using the law of logarithm, 

 we have, 21log log( 4) 2 log(sin ) log(2).
2

y x x x= + + +  

   This implies,   y
y
′
 = 2

1 2 cos2. log 2
2 4 sin

x x
x x

+ +
+

 

    = 2 2cot log 2
4

x x
x

+ +
+

 

   Therefore,  y′  = 2 2cot log2
4

dy xy x
dx x

 = + + + 
 .

Example 10.22 

 Differentiate : 

3
24

5

1
(3 2)
x xy

x
+=

+
 .

Solution 
 Taking logarithm on both sides of the equation and using the rules of logarithm we have, 

 23 1log log log( 1) 5log (3 2).
4 2

= + + − +y x x x  

 Differentiating implicitly

      y
y
′
 = 2

3 1 2 5×3
4 2 ( 1) 3 2

x
x x x

+ −
+ +

 

    = 2

3 15
4 ( 1) 3 2

x
x x x

+ −
+ +

 

   Therefore,  dy
dx

 = 

3
24

5 2

1 3 15 .
(3 2) 4 1 3 2
x x xy

x x x x
+  = + −′  + + + 
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Steps in Logarithmic Differentiation 

 (1) Take natural logarithm on both sides of an equation y = f(x) and use the law of logarithms to 
simplify.

 (2) Differentiate implicitly with respect to x.

 (3) Solve the resulting equation for ′y .

 In general there are four cases for exponents and bases.

 (1) ( ) 0bd a
dx

=  (a and b are constants).

 (2) [ ] [ ] 1( ) ( ) ( )b bd f x b f x f x
dx

− ′=  

 (3) ( ) ( )[ ] (log ) ( )g x g xd a a a g x
dx

′=  

 (4) [ ] ( )( ) g xd f x
dx

=  ( ) ( ) ( )[ ( )] log ( ). ( )
( )

g x g x f xf x f x g x
f x

′ ′+ 
 

Example 10.23 

 Differentiate xy x=  .

Solution 
 Take logarithm :

   log y  = logx x  
 Differentiating implicitly,

   y
y
′
 = 1 1. .log

2
x x

x x
+  

    = log 2
2

x
x
+  

   Therefore,  ( )xd x
dx

 = log 2
2

x xy x
x
+ ′ =   

 .

10.4.5 Substitution method 
 It is very much useful in some processes of differentiation, in particular the differentiation involving 
inverse trigonometrical functions.

 Consider f(x) = tan-1 
1

1

2

2

�
�

�

�
�

�

�
�

x
x

.

 For this function ( )f x′  can be found out by using function of a function rule. But it is laborious. 
Instead we can use the substitution method. 
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   Take      x = tan θ.

   Then  
2

2

1
1

x
x

+
−

 = 
2

2

1 tan tan 2
1 tan

θ θ
θ

+ =
−

 and

   ( )f x   = 1tan (tan 2 ) 2θ θ− =
    = 2 tan-1x

   ( )f x′  = 2

2
1 x+

 .

Example 10.24 

 If y = tan-1 1
1

x
x

+ 
 − 

 , find y′ .

Solution 
 Let x = tan q

   Then  1
1

x
x

+
−

  = 1 tan tan
1 tan 4

θ θ
θ

+ π = + −  
 .

   tan-1 1
1

x
x

+ 
 − 

 = 1 1tan tan tan
4 4 4

xθ θ− − π  π π + = + = +    
 

   y = 1tan
4

x−π +

   y′  = 2

1
1 x+

 .

Example 10.25 

 Find 1 3( ) if ( ) cos (4 3 )f x f x x x−′ = −  .

Solution 
   Let  x = cos θ.

   Then  34 3x x−  = 34cos 3cos cos3θ θ θ− =  and

   f(x) = 1 1cos (cos3 ) 3 3cos xθ θ− −= =  

   Therefore,  ( )f x′  = 
2 2

1 33
1 1x x

 − −= 
− − 

 .

10.4.6 Derivatives of variables defined by parametric equations 
 Consider the equations x = f(t), y = g(t).
 These equations give a functional relationship between the variables x and y. Given the value of t 
in some domain [a, b], we can find x and y.
 If two variables x and y are defined separately as a function of an intermediating (auxiliary) variable 
t, then the specification of a functional relationship between x and y is described as parametric and 
the auxiliary variable is known as parameter.
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 The operation of finding the direct connection between x and y without the presence of the 
auxiliary variable t is called elimination of the parameter. The question as to why should we deal 
with parametric equations is that two or more variables are reduced to a single variable, t.

 For example, the equation of a circle with centre (0, 0) and radius r is 2 2 2x y r+ =   This equation 
describes the relationship between x and y and the equations
 x = r cos t  ;  y = r sin t   are parametric equations. 

 Conversely, if we eliminate t, we get 2 2 2x y r+ =

 If y is regarded as a function of x then ( ) .
( )

dy
dy f tdt

dxdx g t
dt

′
= =

′
 

 If we regard x as a function of y, then the derivative of x with respect to y is,

   ( ) .
( )

dx
dx g tdt

dydy f t
dt

′
= =

′
 

 In the case of the circle, then dy
dx

 is the slope of the tangent to the circle namely

   cos cot
sin

dy
dy r tdt tdxdx r t

dt

= = = −
−

 .

Example 10.26 

 Find dy
dx

 if  2x at=  ;  y = 2at,    t  ≠ 0.

Solution 

   We have   x = 2at    ;  y = 2at

   dy
dx

  = ( ) 2 1.
( ) 2

y t a
x t at t
′

= =
′

Example 10.27 

 Find dy
dx

 if x = a(t - sin t), y = a(1 - cos t).

Solution 
   We have  x = a(t - sin t), y = a(1 - cos t).

   Now  dx
dt

 = a(1 - cos t) ; dy
dt

 = a sin t

   Therefore,  dy
dx

 = sin sin
(1 cos ) (1 cos )

dy
a t tdt

dx a t t
dt

= =
− −

 .
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10.4.7 Differentiation of one function with respect to another function :
 If ( )y f x=  is differentiable, then the derivative of y with respect to x is

   
0

( ) ( )lim
h

dy f x h f x
dx h→

+ −=  .

 If f and g are differentiable functions of x and if '( ) 0, thendg g x
dx

= ≠  

  
'( ) .
'( )

= =

df
df f xdx

dgdg g x
dx

Example 10.28

 Find the derivative of xx  with respect to x log x.
Solution

 Take u = , logxx v x x=

   logu  = logx x  

   
1 du
u dx

  = 
1. 1.log 1 logx x x
x

+ = +  

   
du
dx

 = (1 log ) (1 log )xu x x x+ = +  

   
dv
dx

  = 1 log x+  

   
( )

( log )

xd x
d x x

 = 

du
du xdx xdvdv

dx

= =  .

 Note that when g is the identity function ( )g x x=  then 
df
dg

 reduces to ( ).df f x
dx

′=

Example 10.29

 Find the derivative of 1 2tan (1 )x− +  with respect to 2 1.x x+ +  
Solution :

  Let  ( )f x   = 1 2tan (1 )x− +  

   ( )g x   =  x x2
1+ +

   
df
dg

 = 
'( )
'( )

f x
g x

 

   '( )f x   = 2

2
1

x
x+
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   '( )g x   = 2 1x +  

   
df
dg

  = 
2

2

2
21

2 1 (2 1)(1 )

x
xx

x x x
+ =

+ + +
 .

Example 10.30

  Differentiate 2sin( )ax bx c+ +  with respect to 2cos( )lx mx n+ +  
Solution 

   Let    u = 2sin( )ax bx c+ +  

   v = 2cos( )lx mx n+ +  

   
du
dv

 = 
'( )
'( )

u x
v x

 

   '( )u x   = 2cos( )(2 )ax bx c ax b+ + +  

   '( )v x   = 2sin( )(2 )lx mx n lx m− + + +  

   
du
dv

  = 
2

2

'( ) (2 )cos( )
'( ) (2 ) sin( )

u x ax b ax bx c
v x lx m lx mx n

+ + +=
− + + +

 .

10.4.8 Higher order Derivatives 
 If s = s(t) is the position function (displacement) of an object that moves in a straight line, we 
know that its first derivative has the simple physical interpretation as the velocity v(t) of the object as 
a function of time :

 ( )
0

( ) ( )( ) lim
t

f t t f t dsv t s t
t dt∆ →

+ ∆ −′= = =
∆

 .

 The instantaneous rate of change of velocity with respect to time is called the acceleration a(t) of 
the object. Then, the acceleration function is the derivative of the velocity function and is therefore 
the second derivative of the position function:

   ( ) ( )a t v t′=  = 
0

( ) ( )lim
t

v t t v t
t∆ →

+ ∆ −
∆

    = ( ( ))d v t
dt

 

    = 
2

2 ( )d ds d s s t
dt dt dt

  ′′= =  
 

 Thus, if f is a differentiable function of x, then its first derivative 
0

( ) ( )( ) lim
x

f x x f xf x
x∆ →

+ ∆ −′ =
∆

 

has a very simple geometrical interpretation as the slope of a tangent to the graph of y = f(x). Since 
f ′  is also a function of x, f ′ may have a derivative of its own, and if it exists, denoted by ( )f f′ ′ ′′=  

is,

   ( )f x′′  = 
0

( ) ( )lim
x

f x x f x
x∆ →

′ ′+ ∆ −
∆

 .
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    = ( )( ) ( )d d df x f x
dx dx dx

 ′ =   
 

    = 
2 2

2 2

d f d y
dx dx

=  

     Other notations are 2 2
2( )D f x D y y y′′= = =  

 We can interpret a second derivative as a rate of change of a rate of change. But its geometrical 
interpretation is not so simple. However, there is a close connection exists between the second 
derivative ( )f x′′  and the radius of curvature of the graph of ( )y f x=  which you will learn in higher 
classes.

 Similarly, if f ′′  exists, it might or might not be differentiable. If it is, then the derivative of f ′′  is 
called third derivative of f and is denoted by

   ( )f x′′′  = 
3

33 .d y y y
dx

′′′= =  

 We can interpret the third derivative physically in case when the function is the position function  
f(t) of an object that moves along a straight line. Because ( ) ( )s s a t′′′ ′′ ′ ′= = , the third derivative of the 
position function is the derivative of the acceleration function and is called the jerk:

   j = 
3

3

da d s
dt dt

=  .

 Thus, jerk is the rate of change of acceleration.
 It is aptly named because a large jerk means a sudden change in acceleration, which causes an 
abrupt movement in a vehicle.

Example 10.31

 Find , andy y y′ ′′ ′′′  if  y  = 3 26 5 3x x x− − + .
Solution 

   We have,  y  = 3 26 5 3x x x− − +  and

   y′  = 23 12 5x x− −  

   y′′  = 6x - 12

   y′′′  = 6.

Example 10.32

 Find y′′′  if y = 1
x

.

Solution 

   We have,  y  = 11 x
x

−=   

   y′  = 2
2

11x
x

−− = −   

   y′′  = 
2

3 ( 1) 2!( 1)( 2) .−
3

−− − =x
x
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   and  y′′′  = 
3

4
4

( 1) 3!( 1)( 2)( 3)x
x

− −− − − =  .

Example 10.33

 Find f ′′  if f(x) = x cos x.
Solution 

   We have,  f(x) = x cos x.

   Now ( )f x′  = - x sin x + cos x, and

   ( )f x′′  = - (x cos x + sin x) - sin x
    = - x cos x - 2 sin x.

Example 10.34

 Find y′′  if 4 4 16x y+ =  .
Solution 

  We have   4 4 16x y+ =  .

  Differentiating implicitly,   3 34 4x y y′+  = 0

  Solving for y′  gives

   y′  = 3

x
y

3

−  .

 To find  y′′ we differentiate this expression for y′using the quotient rule and remembering 
that y is a function of x.

   
3

3

d xy
dx y

 −′′ =  
 

 = 

3 3 3 3

3 2

( ) ( )

( )

d dy x x y
dx dx

y

 − −  

    = 
3 2 3 2

6

.3 (3 )y x x y y
y

′ − −

    = 

3
2 3 3 2

3

6

3 3 xx y x y
y

y

 
− − 

 −  

    = 
2 4 6

7

3( )x y x
y

+−  = 
2 4 4

7

3 [ ]x x y
y

− +  

    = 
2 2

7 7

3 (16) 48x x
y y

− −=  .

Example 10.35
 Find the second order derivative if x and y are given by
   x = a cos t
   y = a sin t.
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Solution 
 Differentiating the function implicitly with respect to x, we get

   dy
dx

 = cos cos
sin sin

dy
a t tdt

dx a t t
dt

= = −
−

   
2

2

d y
dx

  = d dy
dx dx

 
  

 

    = cos
sin

d t
dx t

− 
  

 

    = cos
sin

d t dt
dt t dx

− 
  

 = 2 1[ cosec ]
( )

t
x t

− − ×
′

 

    = 2 1cosec
sin

t
a t

×
−

    = 
3cos ec t

a
−  .

Example 10.36

 Find 
2

2

d y
dx

 if 2 2 4x y+ =  .

Solution 

   We have   2 2x y+  = 4

   As before,    dy
dx

 = x
y

−

 Hence, by the quotient rule

   
2

2

d y
dx

 = d x
dx y

 
−  

 

    = - 2

.1 . dyy x
dx

y

−
 

    = 2

xy x
y

y

 − − 
 −  

    = - 
2 2

3 3

4x y
y y
+ = −  . 
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EXERCISE 10.4
Find the derivatives of the following (1 - 18) :

 (1) y = xcos x (2) y = xlogx + (log x)x

 (3) xy  = e(x - y) (4) xy = yx

 (5) log(cos ) xx   (6) 
2 2

2 2 1x y
a b

+ =

 (7) 2 2 1tan yx y
x

−  + =   
 (8)  tan (x + y) + tan (x - y) = x

 (9) If cos (xy) = x, show that ( )1 sin( )
sin
y xydy

dx x xy
− +

=    (10)  tan-1 1 cos
1 cos

x
x

−
+

 

 (11) tan-1 2

6
1 9

x
x

 
 − 

  (12) cos 1 12 tan
1

x
x

− −
  + 

 

 (13) x = a cos3t  ;  y = a sin3t (14) x = a (cos t + t sin t) ; y = a (sin t - t cos t)

 (15) x = 
2

2 2

1 2,
1 1

t ty
t t

− =
+ +

  (16) 
2

1 1cos
1

x
x

−
2

 −
 + 

 

 (17) 1 3sin (3 4 )x x− −   (18) 1 cos sintan
cos sin

x x
x x

− + 
 − 

 .

 (19) Find the derivative of sin x2 with respect to x2
.

  (20) Find the derivative of sin
�

�
�
�
�

�
�
�

1

2

2

1

x
x

with respect to tan .
-1 x

 (21) If u
x
x

v x du
dv

�
� �

�� �
tan tan , .

1

2

11 1
 and find 

 (22) Find the derivative with tan
sin

cos
tan

cos

sin

� �

�
�
�
�

�
�
� �

�
�
�

�
�

1 1

1 1

x
x

x
x

 with respect to ��.

 (23) If y = sin-1x then find y′′ . 

 (24) If 
1tan ,

−

= xy e  show that 2(1 ) (2 1) 0x y x y′′ ′+ + − = .

 (25) If 
1

2

sin
1

xy
x

−

=
−

, show that 2
2 1(1 ) 3 0.x y xy y− − − =  

 (26) If x = a (q + sin q), y = a (1 - cos q) then prove that at 1,
2

y
a

θ π ′′= = . 

 (27) If sin sin( )y x a y= + , then prove that 
2sin ( ) , .
sin

dy a y a n
dx a

π+= ≠

 (28) If y = 1 2(cos )x− , prove that 
2

2
2(1 ) 2 0d y dyx x

dx dx
− − − = .  Hence find 2  when 0y x =  
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EXERCISE 10.5
Choose the correct or the most suitable answer from the given four alternatives.

 (1) 2 sin  isd x
dx π

 °  
  

  (1) cos
180

xπ °   (2) 1 cos
90

x°   (3) cos
90

xπ °   (4) 2 cos x
π

°  

 (2) If 2( 2) and '(3) 5,  then  at 1 isdyy f x f x
dx

= + = =  

  (1) 5 (2) 25 (3) 15 (4) 10

 (3) If 4 31 2,  5, then  is
4 3

dyy u u x
dx

= = +  

  (1) 2 3 31 (2 15)
27

x x +    (2) 3 32 (2 5)
27

x x +  

  (3) 2 3 32 (2 15)
27

x x +    (4) � �
2

27
2 5

3 3x x( )

 (4) If 2( ) 3f x x x= − , then the points at which ( ) '( )f x f x=  are
  (1) both positive integers (2) both negative integers
  (3) both irrational  (4) one rational and another irrational

 (5) If 1 ,  then dzy
a z dy

=
−

 is 

  (1) 2( )a z−   (2) 2( )z a− −   (3) 2( )z a+  ` (4) 2( )z a− +  

 (6) If 2cos(sin ),  then  at 
2

dyy x x
dx

π= =  is

  (1) - 2 (2) 2 (3) 2
2
π−   (4) 0

 (7) If  and (0) '(0) 1,  then (2)y mx c f f f= + = =  is
  (1) 1 (2) 2 (3) 3 (4) - 3

 (8) If  1( ) tan ,  then '(1)f x x x f−=  is 

  (1) 1
4
π+   (2) 1

2 4
π+   (3) 1

2 4
π−   (4) 2

 (9) 5log( )x xd e
dx

+  is

  (1) 4. ( 5)xe x x +   (2) . ( 5)xe x x +   (3) 5xe
x

+   (4) e
x

x -
5

 (10) If the derivative of 3( 5) xax e−  at 0x =  is - 13, then the value of a is 

  (1) 8 (2) - 2 (3) 5 (4) 2
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 (11) 
2

2 2

1 2,  then  is
1 1

t t dyx y
t t dx

−= =
+ +

 

  (1) y
x

−   (2) y
x

  (3) x
y

−   (4) x
y

 

 (12) If 
2

2sin  and cos ,  then  isd yx a y b
dx

θ θ= =  

  (1) 2
2 seca

b
θ   (2) 2secb

a
θ−   (3) 3

2 secb
a

θ−   (4) 
2

3
2 secb

a
θ−  

 (13) The differential coefficient of 10log x   with respect to log 10x  is

  (1) 1 (2) 2
10(log )x−   (3) 2(log 10)x  ` (4) 

2

100
x  

 (14) If ( ) 2,  then '( ( )) at 4 isf x x f f x x= + =  

  (1) 8 (2) 1 (3) 4 (4) 5

 (15) If 
2

2

(1 ) ,  then x dyy
x dx
−=  is

  (1) 2 3

2 2
x x

+   (2) 2 3

2 2
x x

− +   (3) 2 3

2 2
x x

− −  (4) 3 2

2 2
x x

− +  

 (16) If 81,  then  at 9dppv v
dv

= =  is 

  (1) 1 (2) - 1 (3) 2 (4) -2

 (17) If 2

5 if  1
( ) 4 9 if 1 2

3 4 if  2

x x
f x x x

x x

− ≤
= − < <
 + ≥

 , then the right hand derivative of f(x) at x = 2 is

  (1) 0 (2) 2 (3) 3 (4) 4

 (18) It is given that '( )f a  exists, then ( ) ( )lim
x a

xf a af x
x a→

−
−

 is 

  (1) ( ) '( )f a af a−   (2) '( )f a   (3) '( )f a−   (4) ( ) '( )f a af a+  

 (19) If 
1, when  2

( )
2 1 when 2
x x

f x
x x
+ <

=  − ≥
 , then '(2)f  is

  (1) 0 (2) 1 (3) 2 (4) does not exist

 (20) If 2

0

( ) 5( ) ( 2 3) ( ) and (0) 5 and lim =4, then '(0) is
x

f xg x x x f x f g
x→

−= + + =  

  (1) 20 (2) 14 (3) 18 (4) 12
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 (21) If 
2, 1 3

( ) 5 3 ,
8 3

x x
f x x

x x

+ − < <
= =
 − >

  then at 3,    '( ) isx f x=  

  (1) 1 (2) - 1 (3) 0 (4) does not exist

 (22) The derivative of ( ) | |  at 3f x x x x= = −  is
  (1) 6 (2) - 6 (3) does not exist (4) 0

 (23) If 
2 , for

( ) ,
3 2 for

a x a x a
f x

x a x a
− − < <

=  − ≥
 then which one of the following is true?

  (1) f(x) is not differentiable at x = a (2) f(x) is discontinuous at x = a

  (3) f(x) is continuous for all x in    (4) f(x) is differentiable for all x a≥  

 (24) If 

2 , 1 1
( ) 1 , elsewhere

| |

ax b x
f x

x

 − − < <
= 


 is differentiable at x = 1, then

  (1) 1 3,
2 2

a b −= =   (2) 1 3,
2 2

a b−= =   (3) 1 3,
2 2

a b= − = −   (4) 1 3,
2 2

a b= =  

 (25) The number of points in   in which the function ( ) | 1| | 3 | sin  f x x x x= − + − +  is not 
differentiable, is

  (1) 3 (2) 2 (3) 1 (4) 4

 

SUMMARY  
  In this chapter we have acquired the knowledge of

 • Derivative as a rate of change. If ( )y f x=  then the derivative of y with respect to x 

at 0x  is  
0

lim
x∆ →

0 0( ) ( )f x x f x
x

+ ∆ −
∆

, provided the limit exists, where existence means 

f x f x x f x
x

f x x f x
xx x

'( ) lim
( ) ( )

lim
( ) ( )

0
0

0 0

0

0 0�

� � � �
�

� � �
�

�
� � �
�

�
� �

ff x'( )
0

�  

  is a unique real number.

 • Derivative of 
0

0

0
0 0

0

( ) ( )( ) at  is '( ) lim .
x x

x x

f x f xdyy f x x x f x
dx x x→

=

− = = = =  − 
 • Geometrical meaning of the derivative of ( )y f x=  is the slope of the tangent to the 

curve ( ) at ( , ( )).y f x x f x=

 • Physical meaning of the derivative of ( )s f t=  with respect to t is the rate of change 
of displacement, that is velocity. The second derivative is acceleration and the third 
derivative is jerk.

 • Discontinuity of 0( ) at y f x x x= =  implies non-differentiability of 0( ) at f x x x= .
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 • Non-existence of the derivative of 0( ) at y f x x x= =  implies that the graph of ( )y f x=  

fails to admit tangent at 0 0( , ( )).x f x  

 • Geometrically, if the graph of ( )y f x=  admits cups ( ∨ ) or caps ( ∧ ) at 0x x=  then 

derivative at 0x x=  does not exist.
 • Derivative should be understood as a process not as a set of rules.
 • Diff erentiability implies continuity, but the converse is not true.
 • The sum, diff erence, product and composite of diff erentiable function is diff erentiable, 

and the quotient of two diff erentiable function is diff erentiable wherever it is defi ned.

  (i) ( ( ) ( )) ( ) ( )d d df x g x f x g x
dx dx dx

± = ±  

  (ii) ( ( ) ( )) ( ) ( )d dg dff x g x f x g x
dx dx dx

= +  

  (iii) (( )( )) ( ( )) ( )d fog x f g x g x
dx

′ ′=  

  (iv) 2

( ) ( ) ( ) ( ) '( ) , where ( ) 0
( ) ( )

d f x g x f x f x g x g x
dx g x g x

′  −= ≠ 
 

.

ICT CORNER 10(a)

Step1 Step2

Expected Outcome

Differential Calculus

Step 1
 Open the Browser type the URL Link given below (or) Scan the QR Code.
  GeoGebra Workbook called “Derivatives” will appear. In that there are several worksheets related 

to your lesson.

Step 2
  Select the work sheet “Tracing the derivative of a function”. You can enter any function in f(x) box. 

You can see the function in blue colour and derivative in orange colour. Click play trace button to 
get animation of the locus of derivative(x, slope at x)

  Observe the trace and fi nd that derivative is the path of slope at each point on f(x).

Browse in the link:
Derivatives: https://ggbm.at/fk3w5g8y
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Differential Calculus

Expected Outcome

Step 1
 Open the Browser type the URL Link given below (or) Scan the QR Code.
  GeoGebra Workbook called “Derivatives” will appear. In that there are several 

worksheets related to your lesson. 
Step 2
  Select the work sheet “Derivatives in graph”. Some basic functions and their 

derivatives are given one under another
  You can change “a” value by moving the slider and observe the changes in 

each function and its derivatives.

Browse in the link:
Derivatives: https://ggbm.at/fk3w5g8y

ICT CORNER 10(b)

Step1 Step2
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Integral
      Calculus11Chapter

It is worth noting that the notation facilitates discovery. 
This, in most wonderful way, reduces the minds labour.

- Gottfried Wilhelm Leibnitz

           

11.1 Introduction

    Gottfried Wilhelm Leibnitz  (1646-1716) and 
Sir Isaac Newton (1643-1727) independently 
discovered calculus in the mid-17th century. Leibnitz, 
a German philosopher, mathematician, and political 
adviser, importantly both as a metaphysician and as 
a logician, was a distinguished independent inventor 
of the Diff erential and Integral Calculus.   Sir Isaac 
Newton had created an expression for the area under a 
curve by considering a momentary increase at a point. 

In eff ect, the fundamental theorem of calculus was built 
into his calculations. His work and discoveries were not limited to mathematics; he also developed 
theories in optics and gravitation.
 One cannot imagine a world without diff erentiation and integration. In this century, we witnessed 
remarkable scientifi c advancement owing to the ingenious application of these two basic components 
of Mathematics. Calculus serve as unavoidable tool for fi nding solutions to the variety of problems 
that arise in physics, astronomy, engineering, chemistry, geology, biology, and social sciences.

 Calculus deals principally with two geometric problems.
 (i) The problem of fi nding SLOPE of the tangent line to the curve, is studied by the limiting 

process known as diff erentiation and
 (ii) Problem of fi nding the AREA of a region under a curve is studied by another limiting process 

called Integration. 
 In chapters 9 and 10, we have studied the diff erential calculus. In this chapter let us study some 
fundamentals of integration.
 Consider some simple situations illustrated below.
Situation 1
 The shortest distance between two points A and B in a plane is the line segment joining the straight 
line A and B. Suppose it is required to fi nd the line connecting two points A and B that do not lie 
on a vertical line such that a moving particle slides down on this line from A to B in the shortest 
time (minimum time). Most of us believe that the shortest distance path in Fig. 11.1(a) will take the 
shortest time.

Newton Leibnitz
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183 Integral Calculus

 Certainly this route is not the shortest time route joining the points A and B, because the velocity 
of the motion in the straight line (Fig. 11.1(a)) will be comparatively slow; whereas it take a curve 
that is steeper near A (Fig. 11.1(b)), even though the path becomes longer, a considerable portion of 
the distance will be covered at a greater speed. The solution to this problem is solved by Integral 
calculus. This is called Brachistochrone problem which initiates the study of calculus of variation 
using integral tool.  
Situation 2 
 In elementary geometry we have learnt to evaluate the measure of the following regular shape of 
the figures given below by using known formulae. 

Fig. 11.2 (a)

How can the measure of the following figures given by functions be calculated?

Fig. 11.2 (b)

 Though the problems look so difficult, integral calculus solves it without any difficulties.
Situation 3
       At a particular moment, a student needs to stop his speedy bike 
to avoid a collision with the barrier ahead at a distance 40 metres 
away from him. Immediately he slows (acceleration) down the bike 
applying brake at a rate of 28 meter/second . If the bike is moving 
at a speed of 24m/s, when the brakes are applied, will it stop before 
collision?
 Also look at the following problems that occur naturally in our 
life.

The shortest distance 
path between A and B

Fig. 11.1 (a)

The shortest time 
route between A and B

Fig. 11.1 (b)

f

g

f f

f

Length of
the curve Area Surface Area Volume

Fig. 11.3

A

B

A

B

Perimeter
2(l+b)

Area
(1/2)bh

l

b

b

h

Surface Area
rlπ

l

r

Volume
3(4 / 3) rπ

r
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 ♦  What speed has to be applied to fire a satellite upward so that it never returns to the earth?

 ♦  What is the radius of the smallest circular disk that can cover every isosceles triangle of given 
perimeter P?

 ♦  What volume of material is removed from a solid sphere of radius 2r if a hole of radius r is 
drilled through the centre?

 ♦  If a strain of bacteria grows at a rate proportional to the amount present and if the population 
doubles in one hour, how much will it increase at the end of two hours?

Integration will answer for all the above problems.

11.2 Newton-Leibnitz Integral
 Integral calculus is mainly divided into indefinite integrals and definite integrals. In this chapter, 
we study indefinite integration, the process of obtaining a function from its derivative.

 We are already familiar with inverse operations. ( , ), ( , ), ( ) ,� � � � � �n n  are some pairs of inverse 

operations. Similarly differentiation and integrations )( ,d ∫  are also inverse operations. In this section 
we develop the inverse operation of differentiation called ‘antidifferentiation’.

Definition 11.1
 A function ( )F x is called an antiderivative (Newton-Leibnitz integral or primitive) of a 
function ( )f x on an interval I if

  ( ) ( )F x f x′ = , for every value of x  in I

Fig. 11.4

Learning Objectives

On completion of this chapter, the students are expected to

• understand the definition of an indefinite integral as a result of reversing the process of  
differentiation

• find the indefinite integrals of sums, differences and constant multiples of certain elementary 
functions.

• use the appropriate techniques to find the indefinite integrals of composite functions.

• apply integration to find the function, when the rate of change of function is given.
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Illustration 11.1

 If 2 5( )F x x= +  then 

    ( ) 2F x x′ = .                                                              

   Thus if ( )f x is defined by

     ( ) 2 ,f x x=  then

 we say that ( )f x is the derivative of  ( )F x  and that ( )F x  is  
an antiderivative of ( )f x

Consider the following table

( )F x ( ) ( )F x f x′ = Antiderivative  of ( ) 2f x x=

2( )P x x= + 0
2 2( )Q x x= +
2 1( )H x x= −

 ( ) 2P x x′ =

 ( ) 2Q x x′ =       ( ) 2f x x=

 ( ) 2H x x′ =
  2( ) ?F x x= +

 We can see that the derivative of ( )F x , ( )P x , ( )Q x and ( )H x is ( )f x , but in reverse the 
antiderivatives of ( ) 2f x x=  is not unique. That is the antiderivatives of ( )f x is a family of infinitely 
many functions. 
Theorem 11.1
 If ( )F x  is a particular antiderivative of a function ( )f x on an interval I, then every 
antiderivative of ( )f x on I is given by

f x dx F x c( ) ( )� ��
 where c is called an arbitrary constant, and all antiderivatives of ( )f x on I can be obtained 
by assigning particular value to c.
 The function f(x) is called Integrand.
 The variable x in dx is called variable of integration or integrator.
 The process of finding the integral is called integration or antidifferentiation (Newton-Leibnitz 
integral).
 The peculiar integral sign ∫ originates in an elongated S (like Σ ) which stands for sum.
 Often in applications involving differentiation it is desired to find a particular integral antiderivative 
that satisfies certain conditions called initial condition or boundary conditions.

 For instance, if an equation involving dy
dx

 is given as well as the initial condition that 

1 1when ,y y x x= = then after the set of all antiderivatives is found, if andx y are replaced by  

1 1andx y , a particular value of the arbitrary constant is determined. With this value of c a particular 
antiderivative is obtained.   

Illustration 11.2
 Suppose we wish to find the particular antiderivative satisfying the equation

    2dy x
dx

=

Fig. 11.5

( )
2

5

F
x

x=
+

2

( )
P

x
x=

( )
2

2

Q x
x=
+

 

2 1

( )
H

x
x=
−

x

y

�

�
�

�
�
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 and the initial condition that 10 when 2.y x= =  
 From the given equation 

2dy x
dx

=

  2y x dx= ∫
  

2y x c= +  
 We substitute 10 when 2y x= = , in the above equation 

   210 2 6c c= + ⇒ =
 When this value c =6 is substituted we obtain

   2 6y x= +
    which gives the particular antiderivative desired.

11.3 Basic Rules of Integration
Standard results: 
 Since integration is the reverse process of differentiation, the basic integration formulae given 
below can be derived directly from their corresponding derivative formulae from earlier chapter.

Derivatives Antiderivatives

( ) 0,d c
dx

=    where c  is a constant 0dx c=∫ , where c  is a constant

( ) ,d kx k
dx

=  where k  is a constant k dx kx c= +∫  where c  is a constant

1

1

n
nd x x

dx n

+ 
= + 

1

, 1
1

n
n xx dx c n

n

+

= + ≠ −
+∫

 
(Power rule)

1(log )d x
dx x

 =   

1 logdx x c
x

= +∫

( )cos sind x x
dx

− =
sin cosx dx x c= − +∫

( )sin cosd x x
dx

=
cos sinx dx x c= +∫  

( ) 2tan secd x x
dx

=
2sec tanx dx x c= +∫
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( ) 2cot cosecd x x
dx

− =
2cosec cotx dx x c= − +∫

( )sec sec tand x x x
dx

= sec tan secx x dx x c= +∫  

d
dx

x x x�� � �cosec cosec cot cosec cot cosecx x dx x c= − +∫  

( )x xd e e
dx

=
x xe dx e c= +∫

 

log

x
xd a a

dx a
 

= 
  log

x
x aa dx c

a
= +∫  

( )1

2

1sin
1

d x
dx x

− =
−

1

2

1 sin
1

dx x c
x

−= +
−∫  

( )1
2

1tan
1

d x
dx x

− =
+

1
2

1 tan
1

dx x c
x

−= +
+∫  

Example 11.1

 Integrate the following with respect to x.

  (i) 10 x  (ii) 10

1
x

 (iii) x  (iv) 1
x

 

Solution

  (i) We know that  nx dx∫  = x
n

c n
n�

�
� � �

1

1
1, .

   Putting 10,  we getn =  

    10x dx∫  = 
10 1 11

10 1 11
x xc c

+

+ = +
+

   (ii) 
10 1

10
10 9

1 1
10 1 9
xdx x dx c c

x x

− +
−= = + = − +

− +∫ ∫

   (iii) 

1 311 32 2
2 22

1 3 31
2 2

x xxdx x dx c c x c
+

= = + = + = +
+

∫ ∫  

  (iv)  

1 11 2
21 21 1

2

xdx x dx x c
x

− +
−

= = = +
− +

∫ ∫  
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Example 11.2
 Integrate the following with respect to x.

  (i) 2

1
cos x

           (ii)  cot
sin

x
x

              (iii)  2

sin
cos

x
x

          (iv) 
2

1
1 x−

  

Solution

   (i) 2
2

1 sec tan
cos

dx x dx x c
x

= = +∫ ∫  

   (ii) 
cot cosec cot cosec
sin

x dx x x dx x c
x

= = − +∫ ∫

   (iii) 2

sin sin 1. tan sec sec
cos cos cos

x xdx dx x x dx x c
x x x

= = = +∫ ∫ ∫

   (iv)     1

2

1  = sin
1

dx x c
x

− +
−∫

Example 11.3
 Integrate the following with respect to x:

  (i) 1
xe−             (ii) 

2

3

x
x

 (iii) 3

1
x

 (iv)  2

1
1 x+

Solution

  (i) 1   x x
x dx e dx e c

e− = = +∫ ∫   (ii) 
2

3

1 logx dx dx x c
x x

= = +∫ ∫

  (iii) 
3 1

3
3 2

1 1
3 1 2

xdx x dx c c
x x

− +
−= = + = − +

− +∫ ∫  (iv) 1
2

1 tan
1

dx x c
x

−= +
+∫

EXERCISE 11.1
Integrate the following with respect to x:

 (1) (i)  11x  (ii) 7

1  
x

 (iii) 3 4x  (iv) ( )x5

1

8

 (2) (i) 2

1
sin x  (ii) tan

cos
x
x

 (iii) 2

cos
sin

x
x  (iv) 1

2
cos x

 (3) (i) 312  (ii) 
24

25

x
x

 (iii)  xe

 (4) (i) 2 1(1 )x −+   (ii) ( )
1

2 21 x
−

−

11.4 Integrals of the Form ( )f ax b dx+∫   
 We know that

 
10 10

9 9( ) ( )( ) ( )
10 10

d x a x ax a x a dx c
dx

 − −= − ⇒ − = + 
 

∫

 [sin( )] cos( ) cos( ) sin( )d x k x k x k dx x k c
dx

+ = + ⇒ + = + +∫   
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 It is clear that whenever a constant is added or subtracted with the independent variable x, the 
fundamental formulae remain the same.
 But

   
d
dx l

elx m1
( )

��
��

�
��

 = e e dx
l
e clx m lx m lx m� � �� � ��

1 ( )

   
d
dx a

ax b1
sin( )]��

��
�
��

 = cos( ) cos( ) sin( )ax b ax b dx
a

ax b c� � � � � ��
1

 Here, if any constant is multiplied with the independent variable x, then the same fundamental 
formula can be used after dividing it by the coefficient of x

That is,  if    then  f x dx g x c f ax b dx
a
g ax b c( ) ( ) , ( ) ( )� � � � � ��

1

��
 The above formula can also be derived by using substitution method, which will be studied later.

Example 11.4
 Evaluate the following with respect to x:

  (i) ( )64 5x dx+∫  (ii) ( )15 2x dx−∫  (iii) 
( )4

1
3 7

dx
x +∫

Solution

  (i) ( ) ( ) ( )6 1 7
6 4 5 4 514 5

4 6 1 28
x x

x dx c
++ +

+ = = +
+∫

  (ii) ( ) ( ) ( )
( )

( )
1 311 2 2

2
15 2 15 2115 2 15 2

2 1 2 1 3
x x

x dx x dx c
+− − − = − = = − + − + ∫ ∫

  (iii) 
( )

( ) ( )
( )

4 1
4

4 3

3 71 1 13 7
3 4 13 7 9 3 7

x
dx x dx c

x x

− +
− +

= + = = − +
− ++ +∫ ∫

Example 11.5
 Integrate the following with respect to x:

  (i) sin(2   4) x +  (ii) 2sec (3 4 ) x+  (iii) cosec( )cot( )ax b ax b+ +
Solution

  (i) sin( ) cos( ) cos( )2 4
1

2
2 4

1

2
2 4x dx x c x c  � � �

�
�

�
�
� � �� � � � � � ��

  (ii) 2 1sec (3 4 ) tan(3 4 )
4

x dx x c+ = + +∫
  (iii) ( )1 1cosec( )cot( ) cosec( ) cosec( )ax b ax b dx ax b c ax b c

a a
 + + = − + + = − + +  ∫

Example 11.6  
 Integrate the following with respect to x:

  (i) 3xe  (ii) 5 4  xe −  (iii) 1
(3 2)x −

 (iv) 1  
(5 4 )x−

Solution

  (i) 3 31
3

x xe dx e c= +∫  (ii) 
5 4  

5 4   =
4

x
x ee dx c

−
− − +∫
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  (iii) 1 1 log (3 2)
(3 2) 3

dx x c
x

= − +
−∫  (iv) 1 1 log (5 4 )

(5 4 ) 4
dx x c

x
= − − +

−∫
Example 11.7

 Integrate the following with respect to x:

 (i) 
( )2
1

1 2x+
 (ii) 

( )2

1

1 9x−
 (iii) 

2

1
1 25x−

Solution

  (i) 
( )

( )1
2

1 1 tan 2
21 2

dx x c
x

−= +
+∫  (ii) 

( )
( )1

2

1 1 sin 9
91 9

dx x c
x

−= +
−

∫

  (iii) 
( )

( )1

2 2

1 1 1 sin 5
51 25 1 5

dx dx x c
x x

−= = +
− −

∫ ∫

EXERCISE 11.2
Integrate the following functions with respect to x:

 (1) (i) 6( 5)x +  (ii) 4

1
(2 3 )x−

 (iii) 3 2x +  

 (2) (i) sin 3x (ii) cos( )5 11− x  (iii) cosec
2

5 7( )x −

 (3) (i) e x3 6−   (ii) 8 7 xe −   (iii) 1
6 4x−

 (4) (i) 2sec
5
x   (ii) cosec(5x + 3) cot(5x + 3) (iii) 30 2 15 2 15sec( ) tan( )− −x x

 (5) (i) 
( )2

1

1 4x−
 (ii) 

2

1
1 81x−

 (iii) 2

1
1 36x+

11.5 Properties of Integrals
 (1) If k is any constant, then kf x dx k f x dx( ) ( )� ��
 (2) ( ( ) ( )) ( ) ( )f x f x dx f x dx f x dx

1 2 1 2
� � � ���    

Note 11.1

 The above two properties can be combined  and extended as

 1 1 2 2 3 3( ( ) ( ) ( ) ( ))n nk f x k f x k f x k f x dx± ± ± ±∫   

   = 1 1 2 2 3 3( ) ( ) ( ) ( ) .n nk f x dx k f x dx k f x dx k f x dx± ± ± ±∫ ∫ ∫ ∫  

 That is, the integration of the linear combination of a finite number of functions is equal to the 
linear combination of their integrals

Example 11.8 
 Integrate the following with respect to x:

  (i) 45x   (ii) 2 7 25 4x
x x

− + +  (iii) 2 22cos 4sin 5sec cosecx x x x− + +  
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Solution 

 (i) 45x dx∫  = 
4 1 5

4 55 5 5 .
4 1 5
x xx dx x c

+

∫ = = = +
+

 (ii) 2 7 25 4x dx
x x

 − + +  ∫  = 2 1 15 4 7 2x dx dx dx dx
x x

− + +∫ ∫ ∫ ∫  

  = 

1 12 1 2
5 4 7 log 2 12 1 1

2

x xx x c
− ++

− + + +
+ − +

 

  = 35 4 7 log 4
3

x x x x c− + + +  

 (iii) 2 2(2cos 4sin 5sec cosec )x x x x dx∫ − + +  

  = 2 22 cos 4 sin 5 sec cosecx dx x dx x dx x dx∫ − ∫ + ∫ + ∫  

  = 2sin 4cos 5 tan cotx x x x c+ + − +  

Example 11.9
 Evaluate the following integrals:

 (i)  3

12
(4 5)x −

 + 6
3 2x +

+ 4 316 xe +   (ii) 15 8cot(4 2)cosec(4 2)
5 4

x x
x

− + +
−

Solution

  (i) 4 3
3

12 6 16
(4 5) 3 2

xe dx
x x

+ 
+ + − + ∫

    = 4 3
3

1 112 6 16
(4 5) 3 2

xdx dx e dx
x x

++ +
− +∫ ∫ ∫

    = 4 3
2

1 1 1 112 6 log 3 2 16
4 2(4 5) 3 4

xx e c
x

+      − + + + +      −      

    = 4 3
2

3 2 log 3 2 4 .
2(4 5)

xx e c
x

+− + + + +
−

  (ii) 15 8cot(4 2)cosec(4 2)
5 4

x x dx
x

 − + + − ∫

    = 115 8 cot(4 2)cosec(4 2)
5 4

dx x x dx
x

− + +
−∫ ∫

    = 1 115 (2 5 4) 8 ( cosec(4 2)
5 4

x x c   − − − + +      

    = 6 5 4 2cosec(4 2) .x x c− + + +
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EXERCISE 11.3
Integrate the following with respect to x: 

 (1) 5 2
4

5( 4) cosec (3 1)
(2 5 )

x x
x

+ + − −
−

 (2) 3 6 244cos(5 2 ) 9
6 4

xx e
x

−− + +
−

 

 (3) 2sec 18cos 2 10sec(5 3) tan(5 3)
5
x x x x+ + + +  (4) 

( )
22 2

8 27 15
1 251 91 4 xxx

+ −
+−−

 (5)  2 2

6 12
1 (3 2) 1 (3 4 )x x

−
+ + − −

  (6) 
1

3 3
4

7

7 9

5
3

cos
x

x
e
x

��
�
�

�
�
� � �

�
�

 

11.6 Simple applications
 So far in this section we have been using x as the variable of integration. In the case of applications, 
it is often convenient to use a different variable. For instance in the equation of motion the independent 
variable is time and the variable of integration is t.
 In this section we discuss how integration is used to find the position and velocity of an object, 
given its acceleration and similar types of problems. Mathematically, this means that, starting with 
the derivative of a function, we must find the original function. Many common word which indicate 
derivative such as rate, growth, decay, marginal, change, varies, increase, decrease etc.  

Example 11.10 

 If 2( ) 3 4 5 and (1) 3,f x x x f′ = − + =  then find ( )f x .

Solution 

 Given that     ( ) 2( ) ( ) 3 4 5df x f x x x
dx

′ = = − +

 Integrating on both sides with respect to x, we get
          � � � ��� f x dx x x dx( ) ( )3 4 5

2

                         3 2( ) 2 5f x x x x c= − + +

 To determine the constant of integration c, we have to apply the given information (1) 3f =

                           3 2(1) 3 3 (1) 2(1) 5(1) 1f c c= ⇒ = − + + ⇒ = −

      Thus             3 2( ) 2 5 1f x x x x= − + − .

Example 11.11
 A train started from Madurai Junction towards Coimbatore at 3pm (time t = 0) with velocity 

( ) 20 50v t t= +  kilometre per hour, where t is measured in hours. Find the distance covered by 
the train at 5pm.

Solution

 In calculus terminology, velocity  = dsv
dt

 is rate of change of position with time, where s is 

the distance.The velocity of the train is given by
   ( ) 20 50v t t= +
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          Therefore, 20 50ds t
dt

= +

 To find the distance function s one has  to integrate the derivative function.                              

                  That is,  ( )20 50s t dt= +∫
                                             210 50s t t c= + +

 The distance covered by the train is zero when time is zero. Let us use this initial condition
0 at 0s t= =  to determine the value c of the constant of integration.  

       210 50 0s t t c c⇒ = + + ⇒ =

 Therefore,           210 50s t t= +
 The distance covered by the train in 2 hours (5pm-3pm) is given by substituting 
  2t =  in the above equation, we get

   210(2) 50(2) 140s = + = km.

Example 11.12
The rate of change of weight of person w in kg with respect to their height h in centimetres is 

given approximately by 5 24.364 10dw h
dh

−= × . Find weight as a function of height. Also find the 

weight of a person whose height is 150 cm. 

Solution
The rate of change of weight with respect to height is

   
5 24.364 10dw h

dh
−= ×

   
5 24.364 10w h dh−= ×∫

   

3
54.364 10

3
hw c−  

= × + 
 

 

One can obviously understand that the weight of a person is zero when height is zero.
Let us find the value c of the constant of integration by substituting the initial condition 0,w =
at 0h = , in the above equation 

   w
3

54.364 10 0
3
h c c−  

= × + ⇒ = 
 

  The required relation between weight and height of a person is

 

3
54.364 10

3
hw −  

= ×  
 

    When the height h =150cm,

 

3
5 1504.364 10

3
w −  

= ×  
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 When the height h = 150cm, the weight is 49w kg= (approximately)
 Therefore, the weight of the person whose height 150cm is 49 kg.

Example 11.13

 A tree is growing so that, after t - years its height is increasing at a rate of  18
t

cm per year. 

Assume that when t = 0, the height is 5 cm.

 (i) Find the height of the tree after 4 years.

 (ii) After how many years will the height be 149 cm?
Solution
 The rate of change of height h with respect to time t is the derivative of h with respect to t.

   Therefore, dh
dt

 = 
18

18

1

2

t
t�
�

  So, to get a general expression for the height, integrating the above equation with 
respect to t. 

   h = 18 18 2

1

2

1

2t dt t c
�

� � �( ) � �36 t c

 Given that when t = 0, the height h = 5 cm.

   5 = 0 5� � �c c

     h = 36 5t + .

 (i) To find the height of the tree after 4 years.

  When  t = 4 years,

  h = 36 5 36 4 5 77t h� � � � �

  The height of the tree after 4 years is 77 cm

(ii)  When  h = 149cm

   h = 36 5 149 36 5t t� � � �

   t  = 
149 5

36
4 16

�
� � �t

   Thus after 16 years the height of the tree will be 149 cm.

Example 11.14
 At a particular moment, a student needs to stop his speedy 
bike to avoid a collision with the barrier ahead at a distance 
40 metres away from him. Immediately he slows (retardation) 
the bike under braking at a rate of 28 metre/second . If the bike 
is moving at a speed of 24m/s, when the brakes are applied, 
would it stop before collision?

Solution
 Let a be the acceleration, v  be the velocity of the car, and s be the distance.
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Stated in calculus terminology, velocity,  = dsv
dt

, is the rate of change of position with time,                               

and acceleration, dva
dt

= , is rate of change of velocity with time.

       The acceleration to be negative because if you take the direction of movement to be positive, 
then for a bike that is slowing down, its acceleration vector will be oriented in the opposite 
direction of its motion (retardation).

 Given that the retardation of the car is 28 meter/second . 

   Therefore,  a = 
dv
dt

� �8
2

 meter/second .  

   Therefore,   v = a dt dt t c� � � � ��� 8 8
1

   v = � �8
1

t c .

 When the brakes are applied,
   t =  0,  and  v  = 24m/s. 
   So,  24 = � � � �8 0 24

1 1
( ) c c

   Therefore,   v = � �8 24t .

   That is,  ds
dt

 = � �8 24t .

 It is required to find the distance, not the velocity, so need more integration in order. 

   s = v dt t dt� � ��� ( )8 24

   s = � � �4 24
2

2
t t c

 To determine 2c , the stopping distance s is measured from where, and when, the brakes are 
applied so that at 0,  0t s= = . 

    s = � � � � � � � � � �4 24 0 4 0 24 0 0
2

2

2

2 2
t t c c c( ) ( )

   s = � �4 24
2t t

The stopping distance s  could be evaluated if we knew the braking time. The time can be 
determined from the speed statement. 

The bike stops when 0v = ,   8 24v t⇒ = − +    0 8 24t⇒ = − +  3.t⇒ =
 When 3t = , we get

   s = 2 24 24 4(3) 24(3)t t s− + ⇒ = − +

   s = 36 metres
       The bike stops at a distance 4 metres to the barrier.

EXERCISE 11.4

 (1) If ( ) 4 5 and (2) 1,f x x f′ = − =  find ( ).f x

 (2) If 2( ) 9 6 and (0) 3,f x x x f′ = − = −  find ( ).f x

 (3) If ( ) 12 6 and (1) 30,f x x f′′ = − = (1) 5f ′ =  find ( ).f x
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 (4) A ball is thrown vertically upward from the ground with an initial velocity of 39.2 m/sec. If 
the only force considered is that attributed to the acceleration due to gravity, find

  (i) how long will it take for the ball to strike the ground?

  (ii) the speed with which will it strike the ground? and

  (iii) how high the ball will rise?

 (5) A wound is healing in such a way that t days since Sunday the area of the wound has been 

decreasing at a rate of 2

3
( 2)t

−
+

 cm
2 per day. If on Monday the area of the wound was 22cm  

  (i) What was the area of the wound on Sunday?

  (ii) What is the anticipated area of the wound on Thursday if it continues to heal at the same 
rate?

11.7 Methods of Integration
 Integration is not as easy as differentiation. This is first due to its nature. Finding a derivative of 
a given function is facilitated by the fact that the differentiation itself has a constructive character. A 
derivative is simply defined as

                                             ( )
0

( )
lim
x

f x x f x
x∆ →

+ ∆ −
∆

 Suppose we are asked to find the derivative of log x, we know in all details how to proceed in order 
to obtain the result.

 When we are asked to find the integral of log x, we have no constructive method to find integral or 
even how to start.

 In the case of differentiation we use the laws of differentiation of several functions in order to find 
derivatives of their various combinations, like their sum, product, quotient, composition of functions 
etc.

 There are very few such rules available in the theory of integration and their application is rather 
restricted. But the significance of these methods of integration is very great.

 In every case one must learn to select the most appropriate method and use it in the most convenient 
form. This skill can only be acquired after long practice.

 Already we have seen two important properties of integration. The following are the four important 
methods of integrations.

 (1) Integration by decomposition into sum or difference.

 (2) Integration by substitution.

 (3) Integration by parts

 (4) Integration by successive reduction.

 Here we discuss only the first three methods of integration and the other will be studied in higher 
classes.
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11.7.1 Decomposition method
 Sometimes it is very difficult to integrate the given function directly. But it can be integrated after 
decomposing it into a sum or difference of number of functions whose integrals are already known.

    For example ( )231 ,x−  
2

3

1x x
x

− + , cos5 sin 3x x , 3cos ,x  
2 1x

x

e
e

− ,  do not have direct formulae 

to integrate. But these functions can be decomposed into a sum or difference of functions, whose 
individual integrals are known. In most of the cases the given integrand will be any one of the 
algebraic, trigonometric or exponential forms, and sometimes combinations of these functions.

Example 11.15 
 Integrate the following with respect to x:

 (i) ( )231  x−          (ii)
2

3

1x x
x

− +  

Solution

  (i) ( )231 x dx−∫  = 3 6(1 2 )x x dx− +∫
    = dx x dx x dx� � ��� 2

3 6

    = 
4 7

.
2 7
x xx c− + +

  (ii) 
x x
x

dx
2

3

1� �
�  = 

2

3 3 3

1( )x x dx
x x x

− +∫

    = 2 3

1 1 1 .dx dx dx
x x x

− +∫ ∫ ∫

   
2

3

1x x dx
x

− +
∫  = 2

1 1log .
2

x c
x x

+ − +

Example 11.16
 Integrate the following with respect to x:

  (i) cos5 sin 3x x        (ii) 3cos .x

Solution

  (i)  cos5 sin 3x x dx∫  = 1 2cos5 sin 3
2

x x dx∫

    = ( )1 sin8 sin 2
2

x x dx−∫

   cos5 sin 3x x dx∫  = 1 cos8 cos 2 .
2 8 2

x x c − + +          

  (ii) 3cos x dx∫  = ( )1 3cos cos3
4

x x dx+∫

    = 1 sin 33sin
4 3

xx c + +  
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Example 11.17
 Integrate the following with respect to x:

  (i) 
2 1x

x

e
e

−             (ii) ( )3 2 1 .x xe e −

Solution

  (i) 
2 1x

x

e dx
e

−
∫  = 

2 1x

x x

e dx
e e

 
− 

 
∫

    = ( ) .x x x xe e dx e e c− −− = + +∫

  (ii) ( )3 2 1x xe e dx−∫  = ( )
5 3

5 3 .
5 3

x x
x x e ee e dx c− = − +∫

        

Example 11.18

 Evaluate : 2 2
1 .

sin cos
dx

x x∫
Solution 

            2 2
1

sin cos
dx

x x∫  = 
2 2

2 2
sin cos
sin cos

x x dx
x x
+

∫  

    = 2 2
1 1

cos sin
dx dx

x x
+∫ ∫

    = 2 2sec cosecxdx xdx+∫ ∫  

    = tan cot .x x c− +  

Example 11.19

 Evaluate : sin .
1 sin

x dx
x+∫

Solution
   sin

1 sin
x dx

x+∫  = 
sin 1 sin

1 sin 1 sin
x x dx

x x
−  

  + −  ∫  

    = 
2 2 2

2 2 2 2
sin sin sin sin sin sin

1 sin cos cos cos
x x x x x xdx dx dx dx

x x x x
− −= = −

−∫ ∫ ∫ ∫  

    = 2tan sec tanx xdx xdx−∫ ∫  

    = 2tan sec (sec 1)x xdx x dx− −∫ ∫
    = sec tan .x x x c− + +  

Example 11.20

 Evaluate : 1 cos 2 .x dx+∫
Solution 

   1 cos 2x dx+∫  = 22cos 2 cos 2 sinx dx xdx x c= = +∫ ∫  
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Example 11.21

 Evaluate :  
2

3

( 1) .x dx
x x

−
+∫

Solution 

   
2

3

( 1)x dx
x x

−
+∫  = 

2

2

1 2
( 1)

x xdx
x x

+ −
+∫  

    = 
2

2 2

( 1) 2
( 1) ( 1)
x x dx

x x x x
 + − + + 

∫  

    = 2

1 12
1

dx dx
x x

−
+∫ ∫  

    = 1log | | 2 tan .x x c−− +  

Example 11.22

 Evaluate :  2(tan cot ) .x x dx+∫
Solution

   2(tan cot )x x dx+∫  = 2 2[tan 2 tan cot cot ]x x x x dx+ +∫  

    = 2 2[(sec 1) 2 (cosec 1)]x x dx− + + −∫  

    = 2 2(sec cosec )x x dx+∫  

    = tan ( cot )x x c+ − +  
    = tan cot .x x c− +  

Example 11.23

 Evaluate :  1 cos .
1 cos

x dx
x

−
+∫

Solution 

   1 cos
1 cos

x dx
x

−
+∫  = 

2

2

2

2sin
2 tan

22cos
2

x
xdx dxx =∫ ∫  

    = 2
tan

2sec 1 12
2

x
x dx x c − = − +  ∫

    = 2 tan .
2
x x c− +  

Example 11.24

 Evaluate :  1 sin 2 .x dx+∫
Solution 

   1 sin 2x dx+∫  = 2 2(cos sin ) (2sin cos )x x x x dx+ +∫  
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    = 2(cos sin ) (cos sin )x x dx x x dx+ = +∫ ∫  

    = sin cosx x c− +  

Example 11.25

  
Evaluate :  

3 2 .
1

x dx
x

+
−∫

Solution
   

3 2
1

x dx
x

+
−∫  = 

3 31 3 1 3
1 1 1

x xdx dx
x x x

 − + −= + − − − 
∫ ∫  

    = 
2( 1)( 1) 3
1 1

x x x dx
x x

 − + + + − − 
∫  

    = 2 31
1

x x dx
x

 + + + − ∫  

    = 
3 2

3log | ( 1) | .
3 2
x x x x c+ + + − +  

Example 11.26

 Evaluate :  (i) x xa e dx∫         (ii) log 2 .x xe e dx∫
Solution

 (i)  x xa e dx∫  = ( )( )
log( )

x
x aeae dx c

ae
= +∫  

 (ii)  log 2x xe e dx∫  = log 2 2
x x x xe e dx e dx=∫ ∫  

    =  ( )
( )

log( )
.2

2

2
e dx e

e
cx

x

� ��

Example 11.27

 Evaluate :  ( 3) 2 .x x dx− +∫
Solution

   ( 3) 2x x dx− +∫  = ( 2 5) 2x x dx+ − +∫  

    = ( 2) 2 5 2x x dx x dx+ + − +∫ ∫  

    = 
3 1
2 2( 2) 5 ( 2)x dx x dx+ − +∫ ∫  

    = 

5 3
2 2( 2) ( 2)55 3

2 2

x x c+ +− +  

    = 
5 3
2 22 10( 2) ( 2) .

5 3
x x c+ − + +  
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Example 11.28

 
Evaluate : 

 

1

1x x
dx

� �� .

Solution

   1
1x x

dx
� ��  =  

1
1

1
1x x

x x
x x

dx
� �

� �
� �

�

�
�

�

�
��

    = ( ) ( )22

1

1

x x dx
x x

+ −

+ −
∫  

    = ( )1 1
1

x x dx x x dx
x x

+ − = + −
+ −∫ ∫  

    = 
1 1
2 21 ( 1)x dx xdx x dx x dx+ − = + −∫ ∫ ∫ ∫  

    = 

3 3
2 2( 1)

3 3
2 2

x x c+ − +  

    = 
3 3
2 22 ( 1) .

3
x x c

 
+ − + 

 
 

11.7.2 Decomposition by Partial Fractions
One of the important methods to evaluate integration is partial fractions. If the 

integrand is in the form of an algebraic fraction and the integral cannot be evaluated by simple 
methods, then the fraction need to be expressed in partial fractions before integration takes 

place. We will assume that we have a rational function p x
q x

q x( )

( )
, ( ) �� �0 in which degree of  

p (x) < degree of q (x). If this is not the case, we can always perform long division.

Example 11.29

  Evaluate :  (i)  2

3 7
3 2

x dx
x x

+
− +∫  (ii)  2

3 .
( 2) ( 1)

x dx
x x

+
+ +∫

Solution

 (i)   2

3 7
3 2

x dx
x x

+
− +∫  = 13 10

2 1
dx dx

x x
−

− −∫ ∫    

                                  = 13log 2 10log 1x x c− − − +

 (ii)  2

3
( 2) ( 1)

x dx
x x

+
+ +∫  = 2

2 1 2
2 ( 2) 1

dx dx dx
x x x
− − +
+ + +∫ ∫ ∫

    = 2

1 1 12 2
2 ( 2) 1

dx dx dx
x x x

− − +
+ + +∫ ∫ ∫

    = 22 log 2 ( 2) 2 log 1x x dx x c−− + − + + + +∫
    = 

12log 2 2log | 1| .
2

x x c
x

− + + + + +
+

Resolving into

partial fractions

�
�
�

Resolving into

partial fractions

�
�
�
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EXERCISE 11.5
Integrate the following functions with respect to x :

 (1)  
3 2

2

4 33 24 33 2 2x x3 2x x3 24 3x x4 3x
x

3 2+ −3 24 3+ −4 33 24 33 2+ −3 24 33 2x x+ −x x3 2x x3 2+ −3 2x x3 24 3x x4 3+ −4 3x x4 33 24 33 2x x3 24 33 2+ −3 24 33 2x x3 24 33 2 +
  (2) 

2
  

2
 

2
1 1

    x x 
 
  
 
 x x x x + + + 
 
 + 
   x x              (3) (2 5)(36 4 )x x5x x5)(3x x)(36 4x x6 4− +5− +5)(3− +)(36 4− +6 4x x− +x x5x x5− +5x x5)(3x x)(3− +)(3x x)(36 4x x6 4− +6 4x x6 4

 (4) 2 2cot t2 2t t2 2an2 2an2 2x xt tx xt tanx xant t+t t2 2t t2 2+2 2t t2 2t tx xt t+t tx xt t  (5) 
cos 2 cos 2

cos cos
x

s cxs c
α

α
−

s c−s c
  (6) 2 2

cos 2
sin c2 2n c2 2os2 2os2 2

x
x xn cx xn cosx xos

 (7) 
2

3 4cos
sin

x
x

3 4+3 4  (8) 
2sin

1 cos
x

x1 c+1 c
 (9)  

 (10)   cos3x cos2x (11) sin
2
5x  (12) 

1 41 4�1 4co1 4co1 4s1 4s1 4

cot tan

x
x xt tx xt t�t t�x x�t t� anx xan

 (13) logx alox alogx ag xe eloe eloge egx ae ex alox aloe elox alogx age egx ag  (14) (3 4) 3 7x xx x4)x x4) 3 7x x3 7+ ++ ++ +4)+ +4) 3 7+ +3 7x x+ +x xx x+ +x xx x+ +x x4)x x4)+ +4)x x4) 3 7x x3 7+ +3 7x x3 7 (15) 
1 18 41 18 41 1

2

x x8 4x x8 4
x

+ −1 1+ −1 11 18 41 1+ −1 18 41 1x x+ −x x1 1x x1 1+ −1 1x x1 11 18 41 1x x1 18 41 1+ −1 18 41 1x x1 18 41 18 4+8 48 4x x8 4+8 4x x8 41 18 41 1x x1 18 41 1+ −1 18 41 1x x1 18 41 1+1 18 41 1x x1 18 41 1+ −1 18 41 1x x1 18 41 1

 (16) 
1

3 43 4x x3 4x x3 43 4x x3 4+ −3 4+ −3 4x x+ −x x3 4x x3 4+ −3 4x x3 43 4−3 4
 (17) 

1
( 2)( 3)

x
x x( 2x x( 2)(x x)(

+
+ +( 2+ +( 2)(+ +)(x x+ +x x( 2x x( 2+ +( 2x x( 2)(x x)(+ +)(x x)(

 (18) 2

1
( 1)( 2)x x( 1x x( 1)(x x)(− +( 1− +( 1)(− +)(x x− +x x( 1x x( 1− +( 1x x( 1)(x x)(− +)(x x)(

 (19) 2

3 9
( 1)( 2)( 12( 12 )

3 9x3 9
x x( 1x x( 1)(x x)( ( 1x( 1

3 9−3 9
− +( 1− +( 1)(− +)(x x− +x x( 1x x( 1− +( 1x x( 1)(x x)(− +)(x x)( ( 1+( 1

 (20)  x
x x

3

1 2x x1 2x x( )x x( )x x1 2( )1 2x x1 2x x( )x x1 2x x( )x x( )x x1 2( )1 2x x1 2x x( )x x1 2x xx x1 2x x− −x x1 2x xx x( )x x− −x x( )x xx x1 2x x( )x x1 2x x− −x x1 2x x( )x x1 2x x1 2( )1 2− −1 2( )1 2x x1 2x x( )x x1 2x x− −x x1 2x x( )x x1 2x x

11.7.3 Method of substitution or change of variable
 The method of substitution in integration is similar to fi nding the derivative of function of 
function in diff erentiation. By using a suitable substitution, the variable of integration is changed to 
new variable of integration which will be integrated in an easy manner.

 We know that, if u is a function of x then .du u
dx

′=

 Hence we can write ( )x f u d( )u d( ) uu duu d∫ ∫( )∫ ∫( )f u∫ ∫f u( )f u( )∫ ∫( )f u( )u d∫ ∫u dx f∫ ∫x fu dx fu d∫ ∫u dx fu d′∫ ∫′u d′u d∫ ∫u d′u dx f=x f∫ ∫x f=x f

 Thus, ( ) ,  where ( )x f u d( )u d( )u d( )u d( ) u uwhere u uwhere u u,  u u,  where u uwhere u du uu d g x( )g x( )= =( )= =( )x f= =x f u d= =u d( )u d( )= =( )u d( ) u u= =u uwhere u uwhere = =where u uwhere u du uu d= =u du uu d∫ ∫[ (∫ ∫[ ( )]∫ ∫)] ( )∫ ∫( )f g∫ ∫f g[ (f g[ (∫ ∫[ (f g[ (x g∫ ∫x g)]x g)]∫ ∫)]x g)] x d∫ ∫x d( )x d( )∫ ∫( )x d( ) x f∫ ∫x fx dx fx d∫ ∫x dx fx d′∫ ∫′ x f= =x f∫ ∫x f= =x f
 The success of the above method depends on the selection of suitable substitution 
 either x = φ(u) or u = g(x(x( ).

Note 11.2
 The substitution for the variable of integration is in trigonometric function, use a rough 
diagram to fi nd the re -substitution value for it. Suppose the variable of integration x  is substituted 
as tanx θ= . After integration suppose the solution is sec cosecθ θ+

For example, if x � tan ,�  then from 
the fi gure

cosec� �
��

�
��

�

�
��

1
2x

x
,

sec� �
��

�
��

�

�
��

1

1

2x

 Then sec� �� � � �
��

�
��

�

�
��cosec 1

1

1

2

2

x x .

1

x

21 x+

θ
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Example 11.30 
 Evaluate the following integrals :

  (i)  2 1
2x x dx��  (ii) 

2−∫ xe x dx         (iii) sin
1 cos

x dx
x+∫   

  (iv) 2

1
1

dx
x+∫  (v) ( )8x a x dx−∫

Solution

 (i) 2 1
2x x dx��

                                 Putting   1 2
2� � �x u x dx du,   then  

   2 1
2x x dx��  = ∫ u du

    = 

3
1 3 32

22 2 22 2 (1 )3 3 3
2

uu du c u c x c= + = + = + +∫ .

 (ii) 
2xe xdx−∫

                    Putting x u x dx du2
2= =  then  

 Therefore,   e x dxx��
2

 = 
2

u due−∫  

    = 
21 1 1 1( ) .

2 2 2 2
u u u xe du e c e c e c− − − −= − + = − + = − +∫

 (iii) sin
1 cos

x dx
x+∫

                      Putting  1� � � �cos , sinx u x dx du  then  

   Therefore,
sin

cos

x
x
dx

1��  = 
�

� � � � � � ��
du
u

u c x clog | | log | cos | .1     

 (iv) 2

1
1

dx
x+∫

                   Putting  x u dx u du= =tan , sec  then  
2

   2

1
1

dx
x+∫  = 

2 2

2 2

sec sec
1 tan sec

u udu du du u c
u u

= = = +
+∫ ∫ ∫

   2

1
1

dx
x+∫  = 1tan .x c− +  

        (v) ( )8x a x dx−∫
    Putting , thenu a x du dx= − = −

           ( )8x a x dx−∫  
= ( )8x a x dx−∫

    
� �� �� � �� �� a u u du8

    ( )( )8 9a u u du= − +∫
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    9 8u du a u du= −∫ ∫

    
10 9

10 9
u ua c= − +

        ( )8x a x dx−∫   � �
�

�
�

( ) ( )
.

a x a a x c
10 9

10 9

11.7.4 Important Results 

 (1)  ( )
( )

f x dx
f x
′

∫  = log | ( ) |f x c+  

 (2)  ( )[ ( )]nf x f x dx′∫  = 
1[ ( )] ,    1

1

nf x c n
n

+

+ ≠ −
+

Proof 

 (1)  Let I = ( )
( )

f x dx
f x
′

∫
                              Putting  f x u f x dx du( ) ( )� � �  then  

   Thus,   I = log | |du u c
u

= +∫  

   Therefore,
�

�
f x
f x

dx( )

( )
  = log | ( ) | .f x c+  

 (2)  Let  I = ( )[ ( )]nf x f x dx′∫  

                              Putting  f x u f x dx du( ) ( )� � �  then  

                                            Thus,  I u du u
n

cn
n

� �
�

�
�

�
1

1

      
Therefore, � �

�
��

�

f x f x dx f x
n

cn
n

( )[ ( )]
[ ( )]

.

1

1

Example 11.31
 Integrate the following with respect to x.
  (i) tan∫ x dx   (ii) cot∫ x dx   (iii) cosec ∫ x dx  (iv) sec∫ x dx  

Solution 

 (i)                             Let I x dx x
x
dx� � � �tan

sin

cos

                 Putting  cos sinx u x dx du� � �  then,  

                               
Thus,  I

u
du u c x c x c� � � � � � � � � ��

1
log | | log | cos | log | sec | .

 (ii)                            Let  I x dx x
x
dx� � � �cot

cos

sin

                 Putting  sin cosx u x dx du= =  then,  

                         
Thus,  I

u
du u c x c� � � � ��

1
log | | log | sin | .
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205 Integral Calculus

 (iii)  Let   I = cosec xdx∫  = cosec (cosec cot )
cosec cot

x x x dx
x x

∫ −
−

 

    = 
2cosec cosec cot  

cosec cot
x x x dx

x x
−

−∫  

 Putting   cosec   then  cosec cosecx x u x x x dx du� � � �cot , ( cot )
2

   Thus,  I = 
1 log | | log | cosec cot | .du u c x x c
u

= + = − +∫  

 (iv)  Let  I = 
2sec (sec tan ) sec sec tansec

sec tan sec tan
x x x x x xxdx dx dx

x x x x
+ +∫ = =

+ +∫ ∫
     Putting sec tan , (sec sec tan )x x u x x x dx du� � � �  then  

2

   Thus,  I = 1 log log sec tandu u c x x c
u

= + = + +∫
   Therefore,   � � � �sec log sec tan .xdx x x c
 

Thus the following are the important standard results.

(1)  tan x dx∫  = log sec x c+  
 

(2)  cot x dx∫  = log sin x c+

(3)          cosecx dx∫  = log cosec cotx x c− +  

(4)  sec x dx∫  = log sec tanx x c+ +  

Example 11.32    
 Integrate the following with respect to x.

  (i) 2

2 4
4 6

x dx
x x

+
+ +∫   (ii) 

1

x

x

e dx
e −∫   (iii) 1

log
dx

x x∫   

 (iv) sin cos
sin cos

x x dx
x x

+
−∫   (v) 2

cos 2
(sin cos )

x dx
x x+∫    

Solution

 (i)  Let  I = 2

2 4
4 6

x dx
x x

+
+ +∫

                      Putting  x x u x dx du2
4 6 2 4� � � � �, ( )  then 

                                          Thus,  I du
u

u c x x c� � � � � � �� log log
2

4 6

   Therefore,  2 4

4 6
2

x
x x

dx�
� ��  = 2log 4 6 .x x c+ + +  
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 (ii)  Let  I = .
1

x

x

e dx
e −∫

                                 Putting  e u e dx dux x� � �1 ,   then  

   Thus,   I = log log 1xdu u c e c
u

= + = − +∫

   Therefore,  e
e

dx
x

x �� 1
 = log( 1) .xe c− +

 (iii)  Let I = 
1 .

log
dx

x x∫

                                  Putting log ,x u
x
dx du= = then 

1

                                          Thus, I du
u

u c x c� � � � �� log log log

   Therefore,  
1

x x
dx

log
ò  = log | log | .x c+

 (iv)  Let  I = sin cos .
sin cos

x x dx
x x

+
−∫

                       Putting sin cos , (cos sin )x x u x x dx du� � � �  then  

   Thus,  I = log log sin cosdu u c x x c
u

= + = − +∫  

   Therefore, 
sin cos

sin cos

x x
x x

dx�
��  = log | sin cos |x x c− +

 (v)  Let I = 2

cos 2
(sin cos )

x dx
x x+∫  = cos 2 .

1 sin 2
x dx

x+∫  

                         Putting 1 2 2 2+ = =sin , cosx u x dx du  then  

   Thus, I = 1 1log log 1 sin 2 .
2 2 2
du u c x c
u

= + = + +∫  

EXERCISE 11.6
Integrate the following with respect to x 

 (1) 
21

x
x+

 (2) 
2

61
x

x+
  (3) 

x x

x x

e e
e e

−

−

−
+

  (4) 
9

10

10 10 log 10
10

x
e

x

x
x

+
+

 

 (5) sin x
x

  (6) cot
log(sin )

x
x

 (7) cosec

log tan
2

x
x 

  

 (8) 2 2 2

sin 2
sin
x

a b x+

 (9) 
1

2

sin
1

x
x

−

−
 (10)  

1
x

x+
 (11) 1

log log(log )x x x
 (12) 1 xx e

αα βαβ − −

       (13) tan secx x  (14)  17(1 )x x−  (15) 5 3sin cosx x    (16) cos
cos( )

x
x a−
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11.7.5 Integration by parts
 Integration by parts method is generally used to find the integral when the integrand is a product 
of two different types of functions or a single logarithmic function or a single inverse trigonometric 
function or a function which is not integrable directly. From the formula for derivative of product of 
two functions we obtain this useful method of integration.
 If u and v are two differentiable functions then we have

                                    d uv vdu udv( ) � �

                                      udv d uv vdu� �( )

  Integrating

                                     
udv d uv vdu� ��� �( )

                                     
udv uv vdu� �� �

 udv∫  in terms of another integral vdu∫  and does not give a final expression for the integral 

udv∫ . It only partially solves the problem of integrating the product u dv . Hence the term ‘Partial 

Integration’ has been used in many European countries. The term “Integration by Parts” is used in 
many other countries as well as in our own.
 The success of this method depends on the proper choice of u
 (i) If integrand contains any non integrable functions directly from the formula, like logx,  

tan
−1 x etc., we have to take these non integrable functions as u and other as dv.

 (ii) If the integrand contains both the integrable function, and one of these is xn (where n is a 
positive integer) then take u = xn.

 (iii) For other cases the choice of u is ours.

Example 11.33
 Evaluate  the following integrals

 (i)   xxe dx∫   (ii) cosx x dx∫   (iii) log x dx∫   (iv) 1sin x dx−∫
Solution

 (i)  Let  I = .xxe dx∫
  Since x is an algebraic function and ex is an exponential function,
   so take   u = x then du = dx            

   dv = x xe dx v e⇒ =  
  Applying Integration by parts, we get

   udv∫  = uv vdu− ∫
   xxe dx⇒ ∫  = x xxe e dx− ∫
   That is,  xxe dx∫  = .x xxe e c− +  

 (ii)  Let  I = cosx x dx∫
  Since x is an algebraic function and cos x is a trigonometric function,
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   so take  u = x then du = dx  
   dv = cos sinxdx v x⇒ =  
  Applying Integration by parts, we get

   udv∫  = uv vdu− ∫
   cosx xdx⇒ ∫  = sin sinx x x dx− ∫
   cosx xdx⇒ ∫  = sin cosx x x c+ +  

 (iii)  Let  I = log x dx∫

   Take  u = log x then  1du dx
x

=  
   dv = dx ⇒ v = x
  Applying Integration by parts, we get

   udv∫  = uv vdu− ∫

   ⇒ log x dx∫  = 1logx x x dx
x

− ∫  

   ⇒ log x dx∫  = logx x x c− +

 (iv)  Let  I = 1sin x dx−∫  

   u = 1sin ( ),x dv dx− =  

   Then  du = 
2

1 ,
1

v x
x

=
−

   1sin xdx−∫  = 1

2
sin

1
xx x dx

x
− −

−∫

   1sin xdx−∫  = 1 21sin , where 1
2

dtx x t x
t

− + = −∫
    = 1sinx x t c− + +

    = 1 2sin 1x x x c− + − +

Example 11.34

  Evaluate :  1
2

2tan
1

x dx
x

−  
 − ∫

 Solution  

   Let  I = 1
2

2tan
1

x dx
x

−  
 − ∫  

   Putting x = 2tan secdx dθ θ θ⇒ =  

  Therefore, I = 1 2
2

2 tantan sec
1 tan

dθ θ θ
θ

−  
 − ∫  
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     = 1 2tan (tan 2 )sec dθ θ θ−∫   

     = 2
2� � �sec d�  

     =  2
2

( )(sec )� � �d�
 Applying integration by parts 

     I = 2 tan tan dθ θ θ θ − ∫   

    = 2( tan log sec ) cθ θ θ− +  

   tan
�

�
�
�
�

�
�
�� 1

2

2

1

x
x

dx  = 2 2 1
1 2x x x ctan log | |
� � � �

11.7.6 Bernoulli’s formula for Integration by Parts 
 If u and v are functions of x,  then the Bernoulli’s rule is  

 1 2udv uv u v u v′ ′′= − + −∫ 

 where , , ,...u u u′ ′′ ′′′ are successive derivatives of u and

 v v v v, , , ,
1 2 3

  are successive integrals of dv
 Bernoulli’s formula is advantageously applied when nu x= ( n is a positive integer) 
 For the following problems we have to apply the integration by parts two or more times to find the 
solution. In this case Bernoulli’s formula helps to find the solution easily.

Example 11.35
Integrate the following with respect to x.

  (i) 2 5xx e          (ii) 3 cosx x              (iii)  3 xx e−

Solution

 (i) 2 5 .∫ xx e dx   

  Applying Bernoulli’s formula

  1 2udv uv u v u v′ ′′= − + −∫ 

         x e dx x e x e ex
x x x

2 5 2

5 5

2

5

3
5

2
5

2
5

0� � � ��
�
�

�

�
� �

�

�
�

�

�
� �

�

�
�

�

�
� �( ) ( ) ( )

ee c
x5

4
5

0 0
�

�
�

�

�
� � � � �

                         
2 5 5 52 2 .
5 25 125

= − + +
x x xx e xe e c

 (ii) 3 cos .∫ x x dx

              Applying Bernoulli’s formula

             1 2udv uv u v u v′ ′′= − + −∫  

       
( )( ) ( )( )

( )( ) ( )( )

3 3 2cos sin 3 cos

6 sin 6 cos

x x dx x x x x

x x x c

= − −

+ − − +
∫

                          3 2sin 3 cos 6 sin 6cos .x x x x x x x c= + − − +

3

2
1

2

3

cos
, sin

3 , cos
6 , sin
6, cos

dv x dx
u x v x
u x v x
u x v x
u v x

=
= =
′ = = −
′′ = = −
′′′ = =

x

21 x+

2

tan

sec 1

x

x

θ

θ

=

= +

1
θ

dv e dx

u x v e

u x v e

u v e

u v e

x

x

x

x

x

�

� �

� � �

�� � �

��� � �

5

2

5

1

5

2

2

5

3

3

5

4

5

2
5

2
5

0
5
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 (iii) 3 .−∫ xx e dx
  Applying Bernoulli’s formula

             1 2udv uv u v u v′ ′′= − + −∫ 

           
( )( ) ( )( )

( )( ) ( )( )
3 3 23

6 6

x x x

x x

x e dx x e x e

x e e c

− − −

− −

= − −

+ − − +
∫

   = − − − − +− − − −x e x e xe e cx x x x3 2
3 6 6 .        

EXERCISE 11.7
 Integrate the following with respect to x:
 (1) (i) 39 xxe   (ii) sin 3x x   (iii) 525 xxe−   (iv) sec tanx x x   

 (2) (i) logx x    (ii) 27 2 3xx e  (iii) x2 cosx (iv) 3 sinx x  

  (3) (i) 
x x

x
sin

−

−

1

2
1

 (ii) 
25 xx e  (iii) 1

2

8tan
1 16

x
x

−  
 − 

   (iv) 1
2

2sin
1

x
x

−  
 + 

11.7.8 Integrals of the form (i) sinaxe bxdx∫   (ii) ∫ cosaxe bxdx  

 The following examples illustrate that there are some integrals whose integration continues 

forever. Whenever we integrate function of the form cos  or sin ,ax axe bx e bx  we have to apply the 
Integration by Parts rule twice to get the similar integral on both sides to solve.
Result 11.1

 (i)  sin∫ axe bx dx  = 2 2 [ sin cos ]
axe a bx b bx c

a b
− +

+

 (ii) cos∫ axe bx dx  = 2 2 [ cos sin ]
axe a bx b bx c

a b
+ +

+
Proof : (i)
   Let  I = sinaxe bx dx∫
   Take  u = sin ; cosbx du b bx dx=

   dv = ; ,
ax

ax ee v
a

=

  Applying Integration by parts, we get

   I = sin cos
ax axe ebx b bx dx
a a

− ∫

   I = sin cos
ax

axe bbx e bx dx
a a

− ∫
   Take  u = cos ; sin ,bx du b bx dx= −  

   dv = ; ,
ax

ax ee v
a

=  

  Again applying integration by parts, we get

   I = sin cos sin
ax ax axe b e ebx bx b bx dx
a a a a

 
− + 

 
∫  

3

2
1

2

3

,
3 ,
6 ,
6,

x

x

x

x

x

dv e dx
u x v e
u x v e
u x v e
u v e

−

−

−

−

−

=
= = −
′ = = +
′′ = = −
′′′ = =
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   I = 
2

2sin cos sin
ax ax

axe b e bbx bx e bx dx
a a a a

− − ∫  

   I = 
2

2 2sin cos
ax

axe b bbx e bx I
a a a

− −  

   
2

21 b I
a

 
+ 

 
 = 2

sin cosax axae bx be bx
a
−

   
2 2

2

a b I
a

 +
 
 

 = 2

[ sin cos ]axe a bx b bx
a

−

    Therefore,  I = 2 2 [ sin cos ]
axe a bx b bx c

a b
− +

+

 Therefore, sin∫ axe bx dx  = 2 2 [ sin cos ]
axe a bx b bx c

a b
− +

+

 Similarly,  cos∫ axe bx dx  = 2 2 [ cos sin ]
axe a bx b bx c

a b
+ +

+

   sin∫ axe bx dx  = 2 2 [ sin cos ]
axe a bx b bx c

a b
− +

+

   cos∫ axe bx dx  = 2 2 [ cos sin ]
axe a bx b bx c

a b
+ +

+
 

Caution
 In applying integration by parts to specific integrals, the pair of choice for u and dv once initially 
assumed should be maintained for the successive integrals on the right hand side. (See the above two 
examples).  The pair of choice should not be interchanged.

Examples 11.36

 Evaluate the following integrals 

   (i) 3 cos 2xe x dx∫         (ii) 5 sin 3  xe x dx−∫

 (i) 3 cos 2xe x dx∫
 Using the formula

            cosaxe bx dx∫  = 2 2 [ cos sin ]
axe a bx b bx c

a b
+ +

+
  

  
  For 3 and 2a b= = , we get

              3 cos 2xe x dx∫  = ( )
3

2 2 3cos 2 2sin 2
3 2

xe x x c
 

+ + + 

    = ( )
3

3cos 2 2sin 2 .
13

 
+ + 

 

xe x x c

Unit11.indd   211 10-08-2018   18:41:53



212XI - Mathematics

     (ii) 5 sin 3  xe x dx−∫
     
  Using the formula  

      sinaxe bx dx∫  = 2 2 [ sin cos ]
axe a bx b bx c

a b
− +

+

  for  5, 3a b= − = , we get

     5 sin 3  xe x dx−∫  = 
( )

( )
5

2 2
5sin 3 3cos3

5 3

xe x x c
− 

− − +  − + 

     5 sin 3  xe x dx−∫  = ( )
5

5sin 3 3cos3 .
34

− 
− + + 

 

xe x x c

EXERCISE 11.8
Integrate the following with respect to x 

 (1) (i) cosaxe bx  (ii) 2 sinxe x  (iii) cos 2xe x−  

 (2) (i) 3 sin 2xe x−   (ii) 4 sin 2xe x−   (iii)  e xx−3
cos  

Result 11.2
   [ ( ) ( )]xe f x f x dx′+∫  =  ( )xe f x c+  
Proof 

   Let  I = [ ( ) ( )]xe f x f x dx′+∫
    = ( ) ( )x xe f x dx e f x dx′+∫ ∫  
   Take u =  f x du f x dx( ); ( ) ,� � in the first integral

   dv = ;x xe v e= ,

   That is,  I = ( ) ( ) ( )x x xe f x e f x dx e f x dx c′ ′− + +∫ ∫  

   Therefore,   I = ( ) .+xe f x c  

Examples 11.37
 Evaluate the following integrals

 (i) 2

1 1xe dx
x x

 −  ∫     (ii) (sin cos )xe x x dx+∫  (iii) 
2

2

1
1

x xe dx
x

− 
 + ∫

  
Solution

 (i)  Let  I = 2

1 1xe dx
x x

 −  ∫

   Take   f(x) = 2

1 1,  then ( )f x
x x

−′ =  
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  This is of the form [ ( ) ( )]xe f x f x dx′+∫  

   2

1 1xe dx
x x

 −  ∫  = 
1 .+xe c
x

 

 (ii)  Let  I = (sin cos )xe x x dx+∫
   Take  f(x) = sin ,  then ( ) cosx f x x′ =  

  This is of the form [ ( ) ( )]xe f x f x dx′+∫
   (sin cos )xe x x dx+∫  = sin .+xe x c

       (iii) 
2

2

1
1

x xe dx
x

− 
 + ∫

 Let I = ( )
( )

2

22

1

1
x x

e dx
x

−

+
∫

  = 
( )

( )
2

22

1 2

1
x

x x
e dx

x

+ −

+
∫

    = ( ) ( )22 2

1 2
1 1

x xe dx
x x

 
 −
 + + 

∫

   ( )If f x  = ( ) ( )
( )22 2

1 2, then
1 1

xf x
x x

′ = −
+ +

( ) ( )( ) ( )Using x xe f x f x dx e f x c′+ = +∫

   
2

2

1
1

x xe dx
x

− 
 + ∫  = e

x
x

x
dx e

x
cx x1

1

2

1

1

1
2 2

2 2�� �
�

�� �
�

�

�
�

�

�

�
�

�
�� �

�� .

EXERCISE 11.9
Integrate the following with respect to x:

 (1) (tan logsec )xe x x+  (2) 2
1

2
x xe

x
− 

  
        (3) sec (1 tan )xe x x+

 (4) 2 sin 2
1 cos 2

x xe
x

+ 
 + 

   (5) 
1

2
tan

2

1
1

x x xe
x

−  + +
 +   

(6) 
log

( log )

x
x1

2+

11.7.9 Integration of Rational Algebraic Functions
 In this section we are going to discuss how to integrate the rational algebraic functions whose 
numerator and denominator contains some positive integral powers of x with constant coefficients.
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Type I 

 Integrals of the form 2 2 2 2 2 2 2
,  ,  ,  dx dx dx dx

a x x a a x x a2± − ± −∫ ∫ ∫ ∫  

 (i)  2 2

dx
a x−∫  = 1

2a
a x
a x

clog
�
�

�

 (ii)  2 2

dx
x a−∫  = 1

2a
x a
x a

clog
�
�

�

 (iii)  2 2

dx
a x+∫  = 11 tan x c

a a
−   +  

 (iv)  
2 2

dx
a x−∫  = 1sin x c

a
−   +  

 (v)  
2 2

dx
x a−∫  = 2 2log x x a c+ − +

 (vi)  
2 2

dx
x a+∫  = 2 2log x x a c+ + +

Proof 

 (i)  Let   I = 2 2 .
−∫
dx

a x

    = 
( )( )

dx
a x a x− +∫

    = 1 1 1
2

dx
a a x a x

 + + − ∫   
Resolving into 
partial fractions





 

    = 
1

2
log log

a
a x a x c  + − − +  

    = 1 log
2

a x c
a a x

+ +
−

 

   
dx

a x2 2��  = 1 log
2

a x c
a a x

+ +
−

 (ii)  Let   I = 2 2 .
−∫
dx

x a

    = 
( )( )

dx
x a x a− +∫  

    = 1 1 1
2

dx
a x a x a

 − − + ∫   
Resolving into 
partial fractions
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    = 
1 [log log ]

2
x a x a c

a
− − + +  

    = 1 log
2

x a c
a x a

− +
+

 

   Therefore 2 2

dx
x a−∫  = 1 log

2
x a c

a x a
− +
+

 (iii)  Let  I = 2 2 .
+∫
dx

a x

   Putting  x = a
x
a

tan tan� �� � �1

   dx = 2seca θ  

   I = 
2 2 2

2 2 2 2 2 2 2

sec sec sec 1
tan (1 tan ) sec

a a ad d d d
a a a a a

θ θ θθ θ θ θ
θ θ θ

= = =
+ +∫ ∫ ∫ ∫

    = 11 1 tan xc c
a a a

θ −  + = +    

Therefore,  
dx

a x2 2��  = 11 tan x c
a a

−   +  

 (iv)  Let  I = 
2 2

.
−∫

dx
a x

   Putting x = 1sin sin xa
a

θ θ −  ⇒ =   
 

   dx = cosa θ

   I = 
2 2 2 2 2

cos cos cos
cossin (1 sin )

a a ad d d d
aa a a

θ θ θθ θ θ θ
θθ θ

= = =
− −∫ ∫ ∫ ∫

    = 1sin xc c
a

θ −  + = +  
 

Therefore, dx
a x2 2�

�  = 1sin x c
a

−   +  
 

 (v)    Let  I = 
2 2

dx
x a−∫

   Putting x  = 1sec sec xa
a

θ θ −  ⇒ =   
   dx = sec tana dθ θ θ  

   I = 
2 2 2 2 2

sec tan sec tan sec tan sec
tansec (sec 1)

a a ad d d d
aa a a

θ θ θ θ θ θθ θ θ θ θ
θθ θ

= = =
− −∫ ∫ ∫ ∫

    = log | sec tan |� �� �c
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  = log
x
a

x a
a

c�
�

�
2 2

  = 2 2log logx x a a c+ − − +

  = 2 2
1 1log  where logx x a c c c a+ − + = −  

 Therefore, 
dx
x a2 2�

�  = 2 2
1log x x a c+ − +

 (vi) Let  I = 
2 2

dx
a x+∫

 Putting  x = a 1tan tan x
a

θ θ −  ⇒ =   
 

 dx = 2seca dθ θ

 I = 
2 2

2 2 2 2 2

sec sec
tan (tan 1)
a ad d

a a a
θ θθ θ

θ θ
=

+ +∫ ∫

  = 
2sec sec

sec
a d d
a

θ θ θ θ
θ

=∫ ∫

  = log | sec tan |� �� �c

  = log
x
a

x
a

c+ + +
2

2
1

  = 2 2log logx x a a c+ + − +

  = 2 2
1 1log  where logx x a c c c a+ + + = −

        dx
a x2 2�

�  = 2 2
1log x x a c+ + +  

Remark:  Remember the following useful substitution of the given integral as a functions of 
a x a x x a2 2 2 2 2 2� � �, . and 

Given Substitution

a x2 2− x = a sinq

a x2 2+ x = a tanq

x a2 2− x = a secq

2 2

tan x a
a

θ −
=

sec x
a

θ =

x

a

2 2x a−

θ

2 2

sec a x
a

θ +
=

tan x
a

θ =

2 2a x+
x

a
θ
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Examples 11.38
 Evaluate the following integrals

  (i) 2
1

( 2) 1
dx

x − +∫   (ii) 
2

2 5+∫
x dx

x   (iii) 
2

1
1 4

dx
x+∫       (iv) 

2

1
4 25

dx
x −∫  

Solution

 (i)  Let  I = 2 2 2

1 1
( 2) 1 ( 2) 1

dx dx
x x

=
− + − +∫ ∫

   Putting  x - 2 = t   ⇒  dx = dt

   Thus, I = 1 1
2 2

1 tan ( ) tan ( 2)
1

dt t c x c
t

− −= + = − +
+∫  

 (ii)  Let  I = 
2

2 5
x dx

x +∫

    = 
2

2 2 2

5 5 5 51
5 5 5

x dx dx dx dx
x x x
+ −  = − = − + + + ∫ ∫ ∫ ∫

    = 
( )22

15
5

x dx
x

−
+

∫  

    = 115 tan
5 5

xx c−  − +  
 

     I = 15 tan
5

xx c−  − +  
 

 (iii)  Let  I = 
2 2

1 1
1 4 1 (2 )

dx dx
x x

=
+ +∫ ∫  

   Putting  2x = t  ⇒ 2 dx = dt   ⇒   dx = 1
2

dt  

   Thus,  I = 
2 2

1 1
2 1

dt
t+∫  

     I = 2 21 1log 1 log 2 (2 ) 1
2 2

t t c x x c+ + + = + + +  

     I = 21 log 2 4 1
2

x x c+ + +

 (iv)  Let  I = 
2 2

1 1
4 25 (2 ) 25

dx dx
x x

=
− −∫ ∫

   Putting  2x = t ⇒ 2 dx = dt  ⇒ dx = 1
2

dt  
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   Thus,  I = 
2 2

1 1
2 5

dt
t −∫  

    = 2 21 log 5
2

t t c+ − +  

    I = 21 log 2 4 25
2

x x c+ − +  

Type II 

 Integrals of the form 2 2
 and dx dx

ax bx c ax bx c+ + + +∫ ∫  

 First we express 2ax bx c+ +  as sum or difference of two square terms that is, any one of the 
forms to Type I. The following rule is used to express the expression  2ax bx c+ +  as a sum or 
difference of two square terms.

 (1) Make the coefficient of 2x  as unity.
 (2) Completing the square by adding and subtracting the square of half of the coefficient of x.

   That is,  2ax bx c+ +  = 2 b ca x x
a a

 + +  
 

    = 
2 2

2

4
2 4
b ac ba x
a a

 − + +     
 

Examples 11.39
 Evaluate the following integrals

 (i) 1

2 5
2x x

dx
� ��  (ii) 

2

1
12 11

dx
x x+ +∫  (iii) 

2

1
12 4

dx
x x+ −∫

Solution

 (i)  2

1
2 5

dx
x x− +∫  = 2 2

1
2(1) (1) 4

dx
x x− + +∫  

    = 2 2

1
( 1) 2

dx
x − +∫  

   2

1
2 5

dx
x x− +∫  = 11 1tan

2 2
x c− −  +  

 
     

 (ii) 
2

1
12 11

dx
x x+ +∫  = 

2

1
( 6) 25

dx
x + −∫  

    = 
2 2

1
( 6) 5

dx
x + −∫  

    = 2 2log | 6 ( 6) 5 |x x c+ + + − +  

Unit11.indd   218 10-08-2018   18:42:06



219 Integral Calculus

   Therefore,  
2

1
12 11

dx
x x+ +∫  = 2log | 6 12 11 |x x x c+ + + + +  

 (iii) 
2

1
12 4

dx
x x+ −∫  

2

1
12 ( 4 )

dx
x x

=
− −∫

              
{ }2

1

12 ( 2) 4
dx

x
=

− − −
∫

    
2 2

1
4 ( 2)

dx
x

=
− −∫

    1 ( 2)sin
4

x c− − = +  

EXERCISE 11.10
Find the integrals of the following :

 (1)   (i) 2

1
4 x−

 (ii) 2

1
25 4x−

 (iii) 2

1
9 4x −

       (2) (i) 2

1
6 7x x− −

 (ii) 2

1
( 1) 25x + −

 (iii)
2

1
4 2x x+ +

 (3)  (i) 
2

1  
(2 ) 1x+ −

 (ii) 
2

1
4 5x x− +

 (iii)
2

1 
9 8x x+ −

 

Type III 

 Integrals of the form 2 2
 and px q px qdx dx

ax bx c ax bx c
+ +

+ + + +∫ ∫
 To evaluate the above integrals, first we write

   px q+  = 2( )dA ax bx c B
dx

+ + +

   px q+  = (2 )A ax b B+ +  
 Calculate the values of A and B, by equating the coefficients of like powers of x on both sides
 (i) The given first integral can be written as

   2

px q dx
ax bx c

+
+ +∫  = 2

(2 )A ax b B dx
ax bx c

+ +
+ +∫  

    = 2 2

2 1ax bA dx B dx
ax bx c ax bx c

+ +
+ + + +∫ ∫  

  (The first integral is of the form ( ) )
( )

f x dx
f x
′

∫  

    = 2
2

1log | |A ax bx c B dx
ax bx c

+ + +
+ +∫  

  The second term on the right hand side can be evaluated using the previous types.
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 (ii) The given second integral can be written as

   
2

px q dx
ax bx c

+
+ +∫  = 

2

(2 )A ax b B dx
ax bx c

+ +
+ +∫

    = 
2 2

2 1ax bA dx B dx
ax bx c ax bx c

+ +
+ + + +∫ ∫  

  (The first integral is of the form ( )[ ( )] )nf x f x dx′∫  

    = ( )2

2

12A ax bx c B dx
ax bx c

+ + +
+ +∫

  The second term on the right hand side can be evaluated using the previous types.

Examples 11.40
 Evaluate the following integrals

 (i) 2
3 5

4 7
x dx

x x
+

+ +∫   (ii) 2
1

3 1
x dx

x x
+

− +∫    (iii) 
2

2 3
1

x dx
x x

+
+ +∫      (iv) 

2

5 7
3 2

x dx
x x

−
− −∫  

Solution

 (i)  Let  I = 2
3 5

4 7
x dx

x x
+

+ +∫

   3x + 5 = A 2( 4 7)d x x B
dx

+ + +

   3x + 5 = (2 4)A x B+ +
 Comparing the coefficients of like terms, we get

   2A = 3 ⇒ A =  3 ;4 5 1
2

A B B+ = ⇒ = −  

   I = 2

3 (2 4) 1
2

4 7

x
dx

x x

+ −

+ +∫  

   I = 3

2

2 4

4 7

1

4 7
2 2

x
x x

dx
x x

dx�
� �

�
� ���  

    = 
( )

2
22

3 1log 4 7
2 ( 2) 3

x x dx
x

+ + −
+ +

∫  

    = 2 13 1 2log 4 7 tan
2 3 3

xx x c− + + + − +  
 

 (ii)  Let  I = 2
1

3 1
x dx

x x
+

− +∫

   x + 1 = 2( 3 1)dA x x B
dx

− + +  
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   x + 1 = (2 3)A x B− +
  Comparing the coefficients of like terms, we get

   2A = 1 ⇒ 
1 5; 3 1
2 2

A A B B= − + = ⇒ =  

   I = 2

1 5(2 3)
2 2

3 1

x
dx

x x

− +

− +∫  

   I = 2 2

1 2 3 5 1
2 3 1 2 3 1

x dx dx
x x x x

− +
− + − +∫ ∫  

    = 2
22

1 5 1log 3 1
2 2 3 5

2 2

x x dx

x

− + +
  − −      

∫  

    = 2

3 5
1 5 1 2 2log 3 1 log
2 2 3 552

2 22

x
x x c

x

− −
− + + +

 
− + 

 

 

    = 21 5 2 3 5log 3 1 log
2 2 2 3 5

xx x c
x

− −− + + +
− +

 

 (iii)  Let  I = 
2

2 3
1

x dx
x x

+
+ +∫

   2x + 3 = 2( 1)dA x x B
dx

+ + +  

   2x + 3 = A(2x + 1) + B
  Comparing the coefficients of like terms, we get
   2A = 2 ⇒ A = 1;   A + B = 3  ⇒  B = 2

   I = (2 1) 2
1

x dx
x x2

+ +
+ +∫  

   I = 
2 2

2 1 12
1 1

x dx dx
x x x x

+ +
+ + + +∫ ∫  

    = 2

22

12 1 2
1 3
2 2

x x dx

x

+ + +
  + +      

∫  
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    = 
22

2 1 1 32 1 2log
2 2 2

x x x x c
  + + + + + + + +       

 

   Therefore,   I = 2 212 1 2log 1
2

x x x x x c+ + + + + + + +  

 (iv)  
2

5 7
3 2

x dx
x x

−
− −∫

   5 7x −  = 2(3 2)dA x x B
dx

− − +  

   5x - 7 = (3 2 )A x B− +  
  Comparing the coefficients of like terms, we get

   2A−  = 5 15 ;3 7
2 2

A A B B⇒ = − + = − ⇒ =  

   I = 
2

5 1(3 2 )
2 2

3 2

x
dx

x x

− − +

− +∫  

   I = 
2 2

5 3 2 1 1
2 23 2 3 2

x dx dx
x x x x

−− +
− + − +∫ ∫

    = 2

2 2

5 1 12 3 2
2 2 17 3

2 2

x x dx

x

 − − + +      − −     

∫  

    = 2 1

3
1 25 3 2 sin
2 17

2

x
x x c−

 
− 

 − − + + +
 
  

 

   Thus,   I = 2 11 2 35 3 2 sin
2 17

xx x c− − − − + + +  

EXERCISE 11.11
Integrate the following with respect to x :

 (1) (i) 
2 3

4 12
2

x
x x

�
� �

 (ii) 
5 2

2 2
2

x
x x
�

� �
 (iii) 

3 1

2 2 3
2

x
x x

�
� �

       (2) (i) 2 1

9 4
2

x
x x
�

� �
 (ii) 

x
x
�

�

2

1
2

 (iii) 2 3

4 1
2

x
x x

+

+ +
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Type IV 

 Integrals of the form 2 2 2 2,a x dx x a dx± −∫ ∫  
Result 11.3 

 (1) 
2

2 2 2 2 1sin
2 2
x a xa x dx a x c

a
−  − = − + +  ∫

 (2) 
2

2 2 2 2 2 2log
2 2
x ax a dx x a x x a c− = − − + − +∫  

 (3) 
2

2 2 2 2 2 2log
2 2
x ax a dx x a x x a c+ = + + + + +∫  

Proof :

 (1)  Let   I = 2 2a x dx−∫
   Take  u = 2 2

2 2

2 then 
2

xa x du dx
a x
−− =

−
 

   dv = dx v x⇒ =
  Applying Integration by parts, we get

   udv∫  = uv vdu− ∫
   ⇒  I = 

2
2 2

2 2

xx a x dx
a x
−− −

−∫  

    = 
2 2 2

2 2

2 2

a x ax a x dx
a x
− −− −

−∫

    = 
2 2 2

2 2

2 2 2 2

( )a x ax a x dx
a x a x

 − −− − + 
− − 

∫

    = 
2

2 2 2 2

2 2

ax a x a x dx dx
a x

− − − +
−∫ ∫  

    = 2 2 2

2 2

1x a x I a dx
a x

− − +
−∫

   2I = 2 2 2 1sin xx a x a
a

−  − +   
 

   Therefore,   I = 
2

2 2 1sin
2 2
x a xa x c

a
−  − + +  

 

 Similarly we can prove other two results.

Note 11.3
 The above problems can also be solved by substituting x a� sin�

Examples 11.41
 Evaluate the following :

 (i) 4
2�� x dx   (ii)   25 9

2x dx��  (iii) 2 1x x dx+ +∫   (iv) ( 3)(5 )x x dx− −∫  
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Solution

 (i)  Let  I = 24 x dx−

    = 2 22 x dx−∫

    = 
2

2 2 122 sin
2 2 2
x xx c−  − + +  

   Therefore, I = 2 14 2sin
2 2
x xx c−  − + +  

 (ii)  Let  I = 225 9x dx−∫
    = 2 2(5 ) 3x dx−∫  

    = 
2

2 2 2 21 5 3(5 ) 3 log 5 (5 ) 3
5 2 2

x x x x c
 

− − + − + 
 

 

   Therefore,  I = 2 21 5 925 9 log 5 25 9
5 2 2

x x x x c − − + − +  
 

 (iii) Let  I = 2 1x x dx+ +∫

   = 
221 3

2 2
x dx

  + +        
∫  

   =  
x

x x x
�

��
�
�

�
�
� �

�

�
��

�

�
�� �

�

�
�

�

�
�

� � ��
�
�

�
�
�

1

2

2

1

2

3

2

3

2

2

1

2

1

2

2
2

2

2

log ��
�

�
��

�

�
��

�

�

�
�
�

�

�

�
�
�
�

3

2

2

c

  Therefore,   I = 2 22 1 3 11 log 1
4 8 2

x x x x x x c+ + + + + + + + +  

 (iv)  Let  I = ( 3)(5 )x x dx− −∫
    = 28 15x x dx− −∫
    = 2 21 ( 4)x dx− −∫

    = 2 2 14 1 41 ( 4) sin
2 2 1

x xx c−− − − − + +    

   Therefore,   I = 2 14 18 15 sin ( 4)
2 2

x x x x c−− − − + − +  
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EXERCISE 11.12
Integrate the following functions with respect to x :

 (1) (i)  2 2 10x x+ +      (ii)  x x2
2 3− −  (iii) ( )( )6 4x x− −   

        (2) (i) 29 (2 5)x− +     (ii) 281 (2 1)x+ +    (iii) 2( 1) 4x + −

EXERCISE 11.13
Choose the correct or the most suitable answer from given four alternatives. 

 (1)  If ( ) ( ) ,  then ( ) ( )f x dx g x c f x g x dx′= + ∫∫
  (1) 2( ( ))f x dx∫   (2) ( ) ( )f x g x dx∫   (3) ( ) ( )f x g x dx′∫   (4) 2( ( ))g x dx∫  

 (2) If 
3

3

1

2

1x
x

x
dx k c� �� ( ) , then the value of k is

  (1) log 3 (2)  − log3  (3) −
1

3log
 (4) 

1

3log

 (3) If 
2 2

( ) ( 1)x xf x e dx x e c′ = − +∫ , then f(x) is

  (1) 
2

32
2
xx x c− + +  (2) 

3
23 4

2
x x x c+ + +    (3) 3 24 6x x x c+ + +    (4) 

2

3

3

2x x x c� � �

 (4) The gradient (slope) of a curve at any point (x, y) is 
2

2

4x
x
−  . If the curve passes through the 

point (2, 7), then the equation of the curve is

  (1) 4 3y x
x

= + +   (2) 4 4y x
x

= + +  (3) 2 3 4y x x= + +   (4) 2 3 6y x x= − +  

 (5) 2

(1 )
cos ( )

x

x

e x dx
xe
+

∫  is

  (1) cot( )xxe c+   (2) sec( )xxe c+   (3) tan( )xxe c+   (4) cos( )xxe c+  

 (6)  
tan

sin

x
x
dx

2
 isò

  (1) tan x c+   (2) 2 tan x c+   (3) 1 tan
2

x c+   (4) 1 tan
4

x c+  

 (7) 3sin xdx∫  is

  (1) 3 cos3cos
4 12

xx c− − +   (2) 3 cos3cos
4 12

xx c+ +

  (3) 3 cos3cos
4 12

xx c− + +   (4) 3 sin 3sin
4 12

xx c− − +  

 (8) 
6log 5log

4log 3log

x x

x x

e e dx
e e

−
−∫  is

  (1) x c+   (2) 
3

3
x c+   (3) 3

3 c
x

+   (4) 2

1 c
x

+  
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 (9) sec
cos 2

x dx
x∫  is

  (1) 1tan (sin )x c− +   (2) 12sin (tan )x c− +     (3) 1tan (cos )x c− +    (4) 1sin (tan )x c− +

 (10) 1 1 cos 2tan
1 cos 2

x dx
x

− −
+∫  is

  (1) 2x c+   (2) 22x c+   (3) 
2

2
x c+   (4) 

2

2
x c− +  

 (11) 3 52 x dx+∫  is

  (1) 3 2

2

3 5
( )

log

x

c
+

+  (2) 
2

2 3 5

3 5x

x
c

+

+
+

log( )
 (3) 

2

2 3

3 5x

c
+

+
log

 (4) 
2

3 2

3 5x

c
+

+
log

 (12) 
8 8

2 2

sin cos
1 2sin cos

x x dx
x x

−
−∫  is

  (1) 1 sin 2
2

x c+   (2)  � �
1

2
2sin x c  (3) 1 cos 2

2
x c+   (4) 1 cos 2

2
x c− +  

 (13) 
2 1 1

2

( tan tan 1)
1

xe x x x dx
x

− −+ +
+∫  is

  (1) 1tan ( 1)xe x c− + +  (2) 1tan ( )xe c− +   (3) 
1 2(tan )

2
x xe c

−

+   (4) 1tanxe x c− +  

 (14) 
2 2

2
2

cos cosec
1

x x xdx
x
+

+∫  is

  (1) 1cot sinx x c−+ +    (2) 1cot tanx x c−− + +  

  (3) 1tan cotx x c−− + +  (4) 1cot tanx x c−− − +

 (15) 2 cosx x dx∫  is

  (1) 2 sin 2 cos 2sinx x x x x c+ − +   (2) 2 sin 2 cos 2sinx x x x x c− − +

  (3) 2 sin 2 cos 2sinx x x x x c− + + +  (4) 2 sin 2 cos 2sinx x x x x c− − + +

 (16) 1  
1

x dx
x

−
+∫  is

  (1) 2 11 sinx x c−− + +   (2) 1 2sin 1x x c− − − +

  (3) 2 2log | 1 | 1x x x c+ − − − +   (4) 2 21 log | 1 |x x x c− + + − +

 (17) dx
ex ��

1
 is

  (1)  log | | log | |e e cx x� � �1  (2) log | | log | |e e cx x� � �1

  (3) log | | log | |e e cx x� � �1  (4) log | | log | |e e cx x� � �1
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 (18) 4 cosxe x dx−∫  is

  (1)
4

[4cos sin ]
17

xe x x c
−

− +   (2) 
4

[ 4cos sin ]
17

xe x x c
−

− + +

  (3) 
4

[4cos sin ]
17

xe x x c
−

+ +  (4) 
4

[ 4cos sin ]
17

xe x x c
−

− − +

 (19) 
sec

tan

2

2
1

x
x

dx
��

  (1) 2
1

1
log

tan

tan

�
�

�
x
x

c   (2) log
tan

tan

1

1

�
�

�
x
x

c

  (3) 
1

2

1

1
log

tan

tan

x
x

c�
�

�   (4) 
1

2

1

1
log

tan

tan

x
x

c�
�

�

 (20)  e x dxx�� 7
5sin is

  (1) 
7

[ 7sin 5 5cos5 ]
74

xe x x c
−

− − +   (2) 
7

[7sin 5 5cos5 ]
74

xe x x c
−

+ +

  (3) 
7

[7sin 5 5cos5 ]
74

xe x x c
−

− +  (4) 
7

[ 7sin 5 5cos5 ]
74

xe x x c
−

− + +

 (21) 2 2
x

x e dx∫  is

  (1) 2 2 2 24 8
x x x

x e xe e c− − +  (2) 2 2 2 22 8 16
x x x

x e xe e c− − +

  (3) 2 2 2 22 8 16
x x x

x e xe e c− + +  (4) 
2 2 2

2

2 4 8

x x x

e xe ex c− + +

 (22) 
2

2
1

x dx
x
+

−∫  is

  (1) 2 21 2 log | 1 |x x x c− − + − +   (2)  1 2sin 2 log | 1 |x x x c− − + − +

  (3) 2 12 log | 1 | sinx x x c−+ − − +  (4) 2 21 2 log | 1 |x x x c− + + − +

 (23) 
2

1
(log ) 5

dx
x x −∫  is

  (1) 2log | 5 |x x c+ − +   (2) log | log log 5 |x x c+ − +  

  (3) 2log | log (log ) 5 |x x c+ − +   (4) 2log | log (log ) 5 |x x c− − +

 (24) sin xdx∫  is

  (1) ( )2 cos sinx x x c− + +  (2) ( )2 cos sinx x x c− − +  

  (3) ( )2 sin cosx x x c− − +  (4) ( )2 sin cosx x x c− + +

 (25) e dxxò is

  (1) 2 (1 )xx e c− +    (2) 2 ( 1)xx e c− +  

  (3) 2 (1 )xe x c− +   (4) 2 ( 1)xe x c− +
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SUMMARY
Derivatives Antiderivatives

( ) 0,d c
dx

=    where c  is a constant 0dx c=∫ , where c  is a constant

( ) ,d kx k
dx

=  where k  is a constant k dx kx c= +∫  where c  is a constant

1

1

n
nd x x

dx n

+ 
= + 

1

, 1     (Power rule)
1

n
n xx dx c n

n

+

= + ≠ −
+∫                              

1logd x
dx x

 =   
1 logdx x c
x

= +∫

( )cos sind x x
dx

− = sin cosx dx x c= − +∫

( )sin cosd x x
dx

= cos sinx dx x c= +∫  

( ) 2tan secd x x
dx

= 2sec tanx dx x c= +∫

( ) 2cot cosecd x x
dx

− = 2cosec cotx dx x c= − +∫

( )sec sec tand x x x
dx

= sec tan secx x dx x c= +∫  

( )cosec cosec cotd x x x
dx

− = cosec cot cosecx x dx x c= − +∫  

( )x xd e e
dx

= x xe dx e c= +∫  

log

x
xd a a

dx a
 

= 
  log

x
x aa dx c

a
= +∫

 

( )1

2

1sin
1

d x
dx x

− =
−

1

2

1 sin
1

dx x c
x

−= +
−∫

 

( )1
2

1tan
1

d x
dx x

− =
+

1
2

1 tan
1

dx x c
x

−= +
+∫  
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(1) If k is any constant, then ( ) ( )kf x dx k f x dx=∫ ∫
(2) 1 2( ( ) ( ) )f x f x dx±∫  = 1 2( ) ( )f x dx f x dx±∫ ∫

If      then  f x dx g x c f ax b dx
a
g ax b c( ) ( ) , ( ) ( )� �� � � � � �

1

(1)  tan x dx∫  = log sec x c+   
(2)  cot x dx∫  = log sin x c+

(3)          cosecx dx∫  = log cosec cotx x c− +  
(4)  sec x dx∫  = log sec tanx x c+ +  

  Bernoulli’s formula for integration by Parts: 
 If u and v are functions of x, then the Bernoulli’s rule is  
 1 2 ...udv uv u v u v′ ′′= − + +∫
 where , , ,...u u u′ ′′ ′′′ are successive derivatives of u and
 1 2 2, , , ,...,v v v v are successive integrals of dv

  sinaxe bxdx∫  = 2 2 [ sin cos ]
axe a bx b bx c

a b
− +

+

cosaxe bxdx∫  = e
a b

a bx b bx c
ax

2 2+
+ +[ cos sin ]

  

dx
a x2 2�� =

1

2a
a x
a x

clog
�
�

�
�
�

�
�
� �

dx
a x2 2�

� = sin
� �
�
�

�
�
� �

1 x
a

c

dx
x a2 2�� =

1

2a
x a
x a

clog
�
�

�
�
�

�
�
� �

dx
a x2 2�� =

1 1

a
x
a

ctan
� �
�
�

�
�
� �

dx
x a2 2�

� = log x x a c� � �2 2

dx
x a2 2�

� = log x x a c+ + +2 2

a x dx x a x a x
a

c2 2 2 2

2

1

2 2
� � � � �

�
�

�
�
� �

�� sin

x a dx x x a a x x a c2 2 2 2

2

2 2

2 2
� � � � � � �� log

x a dx x x a a x x a c2 2 2 2

2

2 2

2 2
� � � � � � �� log

Unit11.indd   229 10-08-2018   18:42:38



230XI - Mathematics

Integral Calculus

Expected Outcome

Step 1
  Open the Browser type the URL Link given below (or) Scan the QR Code.
  GeoGebra Workbook called “XI standard Integration” will appear. In that 

there are several worksheets related to your lesson. 
Step 2
  Select the work sheet “Simple Integration”. You can enter any function in 

the f(x)box. Graph of f(x) appear on left side and the Integrated function will 
appear on right side. (Note: for x5 enter x^5) Move the slider “integration 
constant” to change the constant value in integration.

Browse in the link:
XI standard Integration: https://ggbm.at/c63hdegc

ICT CORNER 11(a)

Step1 Step2
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Integral Calculus

Expected Outcome

Step 1
 Open the Browser type the URL Link given below (or) Scan the QR Code.
  GeoGebra Workbook called “XI standard Integration” will appear. In that 

there are several worksheets related to your lesson. 
Step 2
  Select the work sheet “Algebraic type-1”. The graph of the function given on 

left side and the Integration of the function appear on right side. Click on both 
to see the graph. You can move the slider “a” to change the value. Algebraic 
types are grouped as 4 types open other three Algebraic types and observe.

Browse in the link:
XI standard Integration: https://ggbm.at/c63hdegc

ICT CORNER 11(b)

Step1 Step2
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Introduction to 
  Probability Theory12Chapter

The most important questions of life are, indeed, for the most part, 
really only problems of probability

Pierre - Simon Laplace

12.1 Introduction
 A gambler’s dispute in 1654 led to the creation of a mathematical 
theory of probability by two famous French mathematicians, Blaise 
Pascal and Pierre de Fermat. The fundamental principles of probability 
theory were formulated by Pascal and Fermat for the first time. After an 
extensive research, Laplace published his monumental work in 1812, 
and laid the foundation to Probability theory. In statistics, the Bayesian 
interpretation of probability was developed mainly by Laplace.

 The topic of probability is seen in many facets of the modern world. 
From its origin as a method of studying games, probability has involved 
in a powerful and widely applicable branch of mathematics. The uses of 
probability range from the determination of life insurance premium, to the 

prediction of election outcomes, the description of the behaviour of molecules in a gas. Its utility is 
one good reason why the study of probability has found in the way into a school textbook.  
The interpretation of the word ‘probability’ involves synonyms such as chance, possible, probably, 
likely, odds, uncertainty, prevalence, risk, expectancy etc.

 Our entire world is filled with uncertainty. We make decisions affected by uncertainty virtually 
every day. In order to measure uncertainty, we turn to a branch of mathematics called theory of 
probability. Probability is a measure of the likeliness that an event will occur. 

12.2 Basic definitions
 Before we study the theory of probability, let us recollect the definition of certain terms already 
studied in earlier classes, which are frequently used.

Laplace
1749-1827

Learning Objectives

On completion of this chapter, the students are expected to

• understand the classical theory of probability and axiomatic approach to probability.

• understand mutually exclusive, mutually inclusive and exhaustive events.

• understand the concepts of conditional probability and independent events.

• apply Bayes’ theorem.

• apply probability theory in day-to-day life.
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233 Introduction to Probability Theory

Definition 12.1 
 An experiment is defined as a process for which its result is well defined.

Definition 12.2
 Deterministic experiment is an experiment whose outcomes can be predicted with certain, 
under ideal conditions.

Definition 12.3
 A random experiment (or non-deterministic) is an experiment 
 (i) whose all possible outcomes are known in advance,
 (ii) whose each outcome is not possible to predict in advance, and
 (iii) can be repeated under identical conditions.
 A die is ‘rolled’,  a fair coin is ‘tossed’ are examples for random experiments.

Definition 12.4
 A simple event (or elementary event or sample point) is the most basic possible outcome of 
a random experiment and it cannot be decomposed further.

Definition 12.5
 A sample space is the set of all possible outcomes of a random experiment. Each point in 
sample space is an elementary event.

Illustration 12.1

 (1) (i)  If a die is rolled, then the sample space { }1, 2, 3, 4, 5, 6S =

 (ii) A coin is tossed, then the sample space { },S H T=  
 (2) (i) Suppose we toss a coin until a head is obtained. One cannot say in advance how many 

tosses will be required, and so the sample space.
    { }, , , ,...S H TH TTH TTTH=  is an infinite set.
  (ii) The sample space associated with the number of passengers waiting to buy train tickets 

in counters is  S= 0,1,2,...� � .
 (3) (i) If the experiment consists of choosing a number randomly between 0 and 1,  then the 

sample space is S = { x: 0< x <1}.
  (ii) The sample space for the life length (t in hours) of a tube light is      

S = { t: 0 < t<1000}.

EXPERIMENT

Deterministic ExperimentDeterministic Experiment Random Experiment

(Genetic determination) (Hitting the target)
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 From (2) and (3), one need to distinguish between two types of infinite sets, where one type is 
significantly ‘larger’ than the other. In particular, S in (2) is called countably infinite, while the S in 
(3) is called uncountably infinite. The fact that one can list the elements of a countably infinite set 
means that the set can be put in one-to-one correspondence with natural numbers . On the other 
hand, you cannot list the elements in uncountable set.
 From the above example, one can understand that the sample space may consist of countable or 
uncountable number of elementary events.

12.3 Finite sample space
 In this section we restrict our sample spaces that have at most a finite number of points.
Types of events 
 Let us now define some of the important types of events, which are used frequently in this 
chapter.
 •  Sure event or certain event • Impossible event
 •  Complementary event • Mutually exclusive events
 •  Mutually inclusive event • Exhaustive events
 •  Equally likely events • Independent events (defined after learning the concepts of 

probability)

Definition 12.6 
 When the sample space is finite, any subset of the sample space is an  event. That is, all 
elements of the power set ( )S of the sample space are defined as events. An event is a collection 
of sample points or elementary events. 
 The sample space S is called sure event or certain event. The null set ∅ in S is called an 
impossible event.

Definition 12.7
 For every event A, there corresponds another event A is called the complementary event to 
A. It is also called the event ‘not A’.

Illustration 12.2
 Suppose a sample space S is given by S = {1,2,3,4}.

 Let the set of all possible subsets of S (the power set of S) be ( )S . 
, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, 

          {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2

( ) 

3 4

=

, , }

 {
}

S ∅

Number of sample points
or elementary events in a sample space

Countable number of
sample points

Uncountable number of sample points

Finite number of sample points Countably Infinite number of sample points
{ , , , ,...}S H TH TTH TTTH={1,2,3,4,5,6}S =

{ : 0 1}S x x= < <
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 (i) All the elements of ( )S  are events.
 (ii) ∅ is an impossible event.
 (iii) {1},{2},{3},{4} are the simple events or elementary events.
 (iv) {1, 2, 3, 4}is a sure event or certain event.

Definition 12.8
 Two events cannot occur simultaneously are mutually exclusive events. 1 2 3, , ,..., kA A A A  are 
mutually exclusive or disjoint events means that, i jA A∩ = ∅ , for .i j≠

Definition 12.9
 Two events are mutually inclusive when they can both occur simultaneously.
 1 2 3, , ,..., kA A A A  are mutually inclusive means that, i jA A∩ ≠ ∅ , for i j≠  

Illustration 12.3
 When we roll a die, the sample space S = {1,2,3,4,5,6}.
 (i) Since{1, 3} {2, 4, 5, 6}= ,∩ ∅  t he events {1,3}and{2, 4,5,6}are mutually exclusive events.
 (ii) The events {1,6,},{2,3,5} are mutually exclusive.
 (iii) The events {2,3,5},{5,6} are mutually inclusive, since { }{2, 3, 5} {5, 6}= 5∩ ≠ ∅
Definition 12.10

 1 2 3, , ,..., kA A A A  are called exhaustive events if, 1 2 3 kA A A A S∪ ∪ ∪ ∪ =  

Definition 12.11
 1 2 3, , ,..., kA A A A  are called mutually exclusive and exhaustive events if, 
 (i) i jA A∩ ≠ ∅ , for i j≠    (ii) 1 2 3 kA A A A S∪ ∪ ∪ ∪ =  

Illustration 12.4
 When a die is rolled, sample space S = {1,2,3,4,5,6}. 
 Some of the events are {2,3},{1,3,5},{4,6},{6} and{1,5}.
 (i) Since { }{2, 3} {1, 3, 5} {4, 6} = 1, 2, 3, 4, 5, 6∪ ∪  = S (sample space), the events 

{2,3},{1,3,5},{4,6} are exhaustive events.
 (ii) Similarly {2,3},{4,6}and{1,5} are also exhaustive events.
 (iii) {1,3,5},{4,6},{6} and{1,5} are not exhaustive events. 
  (Since {1, 3, 5} {4, 6} {6} {1, 5} S∪ ∪ ∪ ≠ )
 (iv) {2,3},{4,6},and{1,5} are mutually exclusive and exhaustive events, since

  { , } { , } , { , } { , } ,{ , } { , }2 3 4 6 2 3 1 5 4 6 1 5� �� � �� � ��   and {2, 3}  {4, 6}  {1, 5} = S∪ ∪

Types of events associated with sample space are easy to visualize in terms of Venn diagrams, 
as illustrated below.

Definition 12.12
 The events having the same chance of occurrences are called equally likely events. 

S
A B A B

B

A

S S

A and B are 
Mutually exclusive

A and B are 
Mutually inclusive

A and B are 
Mutually exclusive

and exhaustive

A and B are 
Mutually inclusive

and exhaustive

A

B

S
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Example for equally likely events:  Suppose a fair die is rolled.

Example for not equally likely events: A colour die is shown in figure is rolled.

 Similarly, suppose if we toss a coin, the events of getting a head or a tail are equally likely.
Methods to find sample space
Illustration 12.5
 Two coins are tossed, the sample space is 
 (i) { , } { , } {( , ), ( , ), ( , ), ( , )} orS H T H T H H H T T H T T= × =  { , , , }HH HT TH TT  
 (ii) If a coin is tossed and a die is rolled simultaneously, then the sample space is
  { , } {1,2,3,4,5,6}S H T= ×  = { 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6}H H H H H H T T T T T T  or
  {( ,1), ( , 2), ( ,3), ( , 4), ( ,5), ( ,6), ( ,1), ( , 2), ( ,3), ( , 4), ( ,5), ( ,6)}.S H H H H H H T T T T T T=  

 Also one can interchange the order of outcomes of coin and die.  The following table gives the 
sample spaces for some random experiments.

Random 
Experiment

Total 
Number of 
Outcomes

Sample space

Tossing a fair coin 12 2= { ,  }H T
Tossing two coins 22 4= { ,  ,  ,  }HH HT TH TT
Tossing three coins 32 8= { ,  ,  ,  ,  ,  ,  ,  }HHH HHT HTH THH HTT THT TTH TTT
Rolling fair die 16 6= {1, 2,3, 4, 5,6}

Rolling
Two dice
            or 
single die two times.

26 36=

Drawing a card 
from a pack of  52 
playing cards

152 52=

Heart        ♥ A 2  3  4  5  6  7  8  9  10  J  Q  K   Red in colour
Diamond  ♦ A 2  3  4  5  6  7  8  9  10  J Q  K    Red in colour
Spade       ♠ A 2  3  4  5  6  7  8  9  10  J Q  K    Black in colour
Club         ♣ A 2  3  4  5  6  7  8  9  10 J Q  K     Black in colour

(1,1) ,(1,2), (1,3), (1,4), (1,5), (1,6), 

(2,1), (2,2), (2,3), (2,4), (2,5), (2,6), 

(3,1), (3,2), (3,3), (3,4), (3,5), (3,6), 

(4,1), (4,2), (4,3), (4,4), (4,5), (4,6), 

(5,1), (5,2), (5,3), (5,4), (5,

{

5), (5,6), 

 (6,1), (6,2),(6,3), (6,4), (6,5), (6,6)}

5 1

4
1 3 6 4

5

2
Number on the face 1 2 3 4 5 6
Chance of occurrence 1 1 1 1 1 1

Colour on the face 
Chance of occurrence 1 1 1 2 1
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Notations
 Let A and B be two events.
 (i)   A B∪ stands for the occurrence of A or B or both.
 (ii)  A B∩ stands for the simultaneous occurrence of
  A and B. A B∩ can also be written as AB

 (iii)  or  or cA A A′ stands for non-occurrence of A

 (iv) ( )A B∩ stands for the occurrence of only A. 

12.4 Probability
12.4.1 Classical definition (A priori) of probability 
(Bernoulli’s principle of equally likely)
 Earlier classes we have studied the frequency (A posteriori) 
definition of probability and the problems were solved. Now 
let us learn the fundamentals of the axiomatic approach to 
probability theory. 
 The basic assumption of underlying the classical theory is that the outcomes of a random 
experiment are equally likely.  If there are n exhaustive, mutually exclusive and equally likely 
outcomes of an experiment and m of them are favorable to an event A, then the mathematical 

probability of A is defined as the ratio m
n

. In other words, ( ) .mP A
n

=   

Definition 12.13
 Let S be the sample space associated with a random experiment and A be an event. Let n(S) 
and n(A) be the number of elements of S and A respectively. Then the probability of the event A 
is defined as

( ) Number of cases favourable to ( )  
( ) Exhaustive number of cases in

 
 

n A AP A
n S S

= =

Every probabilistic model involves an underlying process is shown in the following figure.

 The classical definition of probability is limited in its application only to situations where there are 
a finite number of possible outcomes. It mainly considered discrete events and its methods were mainly 
combinatorial. This renders it inapplicable to some important random experiments, such as ‘tossing a coin 
until a head appears’ which give rise to the possibility of infinite set of outcomes. Another limitation of the 
classical definition was the condition that each possible outcome is ‘equally likely’. 

Random
experiment

Ev
en

t A

Ev
en

t B

Ev
en

t C

P(A)
P(B)

P(C)

Pr
ob

ab
ili

ty

Event A

Event B Ev
en

t C

Event EEvve tn AAAA

Event e tE nv t BBB Ev
en

t 
vEEvEEv
e

tnen
CCCC

Sample space S Collection of subsets

Priori : Knowledge which 
precedes from theoretical 
deduction or making              
assumption. Not from                   
experience or observation

Posteriori :
Knowledge which 

precedes from 
experience or 
observation.
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 These types of limitations in the classical definition of probability led to the evolution of the 
modern definition of probability which is based on the concept of sets. It is known an axiomatic 
approach.
 The foundations of the Modern  Probability theory were laid by Andrey 
Nikolayevich Kolmogorov, a Russian mathematician who combined the notion 
of sample space introduced by Richard von Mises, and measure theory and 
presented his axiomatic system for probability theory in 1933. We introduce the 
axiomatic approach proposed by A.N. Kolmogorov. Based on this, it is possible to 
construct a logically perfect structure of the modern theory of probability theory. 
The classical theory of probability is a particular case of axiomatic probability. 
The axioms are a set of rules, which can be used to prove theorems of probability.

12.4.2 Axiomatic approach to Probability
Axioms of probability
 Let  S  be a finite sample space, let  ( )S  be the class of events, and let  P  be a real valued 
function   defined on ( )S  Then P A( ) is called probability function of the event A , when the 
following axioms are hold:

1[P ]  For any event  ,A   ( ) 0P A ≥  (Non-negativity axiom)              
2[P ]  For any two mutually exclusive events 

  (  )  ( )  ( )P A B P A P B∪ = +   (Additivity axiom)
3[P ]  For the certain event  ( )  1P S =  (Normalization axiom)

Note 12.1
 (i) 0 ( ) 1P A≤ ≤

 (ii) If 1 2 3, , ,..., nA A A A  are mutually exclusive events in a sample space S, then

  1 2 3 1 2 3( ) ( ) ( ) ( ) ( )n nP A A A A P A P A P A P A∪ ∪ ∪ ∪ = + + + + 

Theorems on finite probability spaces (without proof)
 When the outcomes are equally likely Theorem 12.1 is applicable, else Theorem 12.2 is applicable.
Theorem 12.1 

 Let  S be a sample space and, for any subset A of S,  let   ( )( ) .
( )

n AP A
n S

=
 
Then   P(A) satisfies axioms 

of probability  1 2[P ],[P ],  and 3[P ] .
Theorem12.2
 Let S be a finite sample space say   { }1 2 3, , ,..., .nS a a a a=  A finite probability space is obtained 
by assigning to each point  ia  in  S  a real number ,ip  is called the probability of ai , satisfying the 
following properties:
 (i) Each 0ip ≥ .    (ii)   The sum of the pi  is 1, that is,  1 2 3 1 1ip p p p p= + + + + =∑  .

If the probability   ( ),P A  of an event  1[P ]  is defined as the sum of the probabilities of the points in A , 
then the function  ( )P A  satisfies the axioms of probability  1 2[P ],[P ],  and 3[P ] . 
 Note: Sometimes the points in a finite sample space   and their assigned probabilities are given 
in the form of a table as follows:

A.N. Kolmogorov

Outcome

Probability

1 2 3 na a a a…

1 2 3 nP P P P…
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239 Introduction to Probability Theory

 Here is an illustration of how to construct a probability law starting from some common sense 
assumptions about a model. 

Illustration 12.6 

 (1) Let { }.3,2,1=S  Suppose ( )S is the power set of ,S  and  
( )( ) .
( )

n AP A
n S

=
 
 

                 Then { }( ) { }( )1 11 , 2 ,
3 3

P P= = and  { }( ) 13 ,
3

P =
 

  
satisfies axioms of probability  1 2[P ],[P ], and 3[P ] .

 
Here all the outcomes are equally likely.

 (2)  Let { }1,2,3 .S = Suppose ( )S is the power set of S , 
  If the probability ( ),P A  of an event 1[P ]  of S is defined as the sum of the probabilities of the 

points in A ,  

    then { }( ) { }( ) { }( )1 1 11 , 2 , 3 ,
2 4 4

P P P= = =
 

satisfy the axioms of probability 1 2[P ],[P ],  and 3[P ] . 

 (3) Let { }3,2,1=S  and ( )S  is the power set of S .  If the probability   ( ),P A  of an event  1[P ]  of 
S is defined as the sum of the probabilities of the points in A ,  

    then { }( ) { }( ) { }( )1 11 0, 2 , and 3 1 ,
2 2

P P P= = = −
 

  
satisfy the above axioms 1 2[P ],[P ],  and 3[P ] . 

  In (2) and (3), the outcomes are not equally likely.

Note 12.2
 Irrational numbers also can act as probabilities.

Example 12.1
 If an experiment has exactly the three possible mutually exclusive outcomes A, B, and C, 
check in each case whether the assignment of probability is permissible.

 (i) 4 1 2( )    ,           ( )    ,            ( )   .
7 7 7

P A P B P C= = =

 (ii) 2 1 3( )   ,           ( )   ,              ( )  .
5 5 5

P A P B P C= = =

 (iii) ( )  0.3 ,    ( )  0.9 ,      ( )   0.2.P A P B P C= = = −

 (iv) P A P B P C( ) , ( ) , ( ) .       � � � �
1

3
1

1

3
0 

 (v) ( )  0.421 ,    ( )  0.527          ( )  0.042.P A P B P C= = =

Classroom Activity: Each student to flip a coin10 times,      

Calculate:   
Number times heads occ

10
urp =

Find the cumulative ratio of heads to tosses. As number of tosses increases
1
2

p →
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Solution
 Since the experiment has exactly the three possible mutually exclusive outcomes A, B 
and C, they must be exhaustive events.

   S A B C⇒ = ∪ ∪
 Therefore, by axioms of probability 

 ( ) 0,    ( ) 0,    ( ) 0P A P B P C≥ ≥ ≥ and

 ( ) ( ) ( ) ( )P A B C P A P B P C∪ ∪ = + + � � � �P S 1

 (i) Given that 4 1 2( )   0 ,        ( )   0 ,   and      ( )   0
7 7 7

P A P B P C= ≥ = ≥ = ≥

  
Also ( )P S  = 4 1 2( )  ( )  ( )         = 1

7 7 7
P A P B P C+ + = + +

  Therefore the assignment of probability is permissible.

 (ii) Given that 2 1 3( )   0,        ( )   0 ,   and        ( )   0
5 5 5

P A P B P C= ≥ = ≥ = ≥

  
But ( )P S  = 2 1 3 6( )  ( )  ( )           1

5 5 5 5
P A P B P C+ + = + + = >

  Therefore the assignment is not permissible.

 (iii) Since ( )  0.2P C = −  is negative, the assignment is not permissible.
 (iv) The assignment is permissible because
  P A P B P C( ) , ( ) , ( )     1    � � � � � � �

1

3
0

1

3
0 0 0and

  ( )P S  = P A P B P C( ) ( ) ( ) .� � � � � � �
1

3
1

1

3
0 1

 (v) Even though ( )  0.421 0 , ( )  0.527 0,   and ( )  0.042 0P A P B P C= ≥ = ≥ = ≥ , 
the sum of the probability

  ( )P S  = ( ) ( ) ( ) 0.421 0.527 0.042 0.990 1P A P B P C+ + = + + = < .
  Therefore, the assignment is not permissible.

Example 12.2
 An integer is chosen at random from the first ten positive integers. Find the probability 
that it is (i) an even number (ii) multiple of three.

Solution
 The sample space is

  { }1, 2, 3, 4, 5, 6, 7, 8, 9, 10S =  ,  n S( ) =10

 Let A be the event of choosing an even number and 
  B be the event of choosing an integer multiple of three.

  {2, 4, 6, 8, 10}, ( ) 5,A n A= =

  {3, 6, 9}, ( ) 3B n B= =

S

A

B
C
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241 Introduction to Probability Theory

   P (choosing an even integer) = P A
n A
n S

( )
( )

( )
.= = =

5

10

1

2

   P (choosing an integer multiple of three) = P B
n B
n S

( )
( )

( )
.= =

3

10

Example 12.3
  Three coins are tossed simultaneously, what is the probability of getting (i) exactly one head 
(ii) at least one head (iii) at most one head?

Solution:
  Notice that three coins are tossed simultaneously = one coin is tossed three times.

  The sample space { { {, } , } , }H T H T H TS × ×=  
   S = { , , , , , , , }, ( )HHH HHT HTH THH HTT THT TTH TTT n S = 8

  Let A be the event of getting one head, B be the event of getting at least one head and C be 
the event of getting at most one head.

   A = { , , }; ( )HTT THT TTH n A = 3

   B = { , , , , , , }; ( )HTT THT TTH HHT HTH THH HHH n B = 7

   C = { , , , }; ( )TTT HTT THT TTH n C = 4 .
Therefore the required probabilities are 

 (i)  P(A) = ( )
( )

3
8

n A
n S

=

 (ii)  P(B) = ( )
( )

7
8

n B
n S

=

 (iii)  P(C) = 
( )
( )

4 1 .
8 2

n C
n S

= =

Note 12.3
 When the number of elements in sample space is considerably 
small we can solve by finger-counting the elements in the events. But 
when the number of elements is too large to count then combinatorics 
helps us to solve the problems.
 For the following problem, combinatorics is used to find the 
number of elements in the sample space and the events. 

Example 12.4
 Suppose ten coins are tossed. Find the probability to get (i) exactly two heads (ii) at most 
two heads (iii) at least two heads 

Solution
       Ten coins are tossed simultaneously one time = one coin is tossed 10 times

 Let S the sample space,                     10 times

              That is    { } { } { } { }, , , ,S H T H T H T H T= × × × ×
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 Let A be the event of getting exactly two heads, 
  B be the event of getting at most two heads, and 

  C be the event of getting at least two heads.

 When ten coins are tossed, the number of elements in sample space is 102 2 1024n = =

  ( ) 1024n S =

  
10

2( ) 45n A C= =

  
10 10 10

0 1 2( ) 1 10 45 56n B C C C= + + = + + =

  
10 10 10 10

2 3 4 10( )n C C C C C= + + + +

           10 10
0 1( ) ( ) 1024 11 1013n S C C= − + = − =

 The required probabilities are

 (i) ( ) 45( )
( ) 1024

n AP A
n S

= =

 (ii) 
( ) 56 7( )
( ) 1024 128

n BP B
n S

= = =

 (iii) ( ) 1013( ) .
( ) 1024

n CP C
n S

= =

Example 12.5
 Suppose a fair die is rolled. Find the probability of getting 
 (i) an even number      (ii) multiple of three.

Solution
 Let S  be the sample space, 
  A be the event of getting an even number, 

  B be the event of getting multiple of three.

 Therefore, 

 S  = {1, 2, 3, 4, 5, 6}.  ( ) 6n S⇒ =

 A  = {2, 4, 6}   ( ) 3n A⇒ =

  B = {3, 6} ( ) 2n B⇒ =

 The required probabilities are

 (i)   P (getting an even number) = ( ) 3 1( )
( ) 6 2

n AP A
n S

= = =

 (ii) P (getting multiple of three) = ( ) 2 1( ) .
( ) 6 3

n BP B
n S

= = =
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Example 12.6
 When a pair of fair dice is rolled, what are the probabilities of getting the sum  
        (i) 7 (ii) 7 or 9 (iii) 7 or 12?

Solution 

 The sample space  {1, 2, 3, 4, 5, 6} {1, 2, 3, 4, 5, 6}S = ×

   

  = {(1,1), (1,2), (1,3), (1,4), (1,5), , 
(2,1), (2,2), (2,3), (2,4), , (2,6), 
(3,1), (3,2), (3,3), , (3,5), , 
(4,1), (4,2), 

(3,6)
(4,, (4,4), , (4,6), 

(5,1

(1,6)

), 

(2,5)
(3,4)

(4,3)
( , (5,3),5  

5)
(2) ), 5,4

S

, (5,5), (5,6), 
 , (6,2), , (6,4), (6,5(6 ),(6,3) (61  , ) ,6)}

 Number of possible outcomes = 26 36 ( )n S= =  
 Let A be the event of getting sum 7, B be the event of getting the sum 9 and C be the 
event of getting sum 12. Then

 

{(1,6), (2,5), (3, 4), (4,3), (5, 2), (6,1)} ( ) 6
{(3,6), (4,5), (5, 4), (6,3)} ( ) 4
{(6,6)}                            ( ) 1

A n A
B n B
C n C

= ⇒ =
= ⇒ =
= ⇒ =

 (i)  P (getting sum 7) = P(A)

    = ( ) 6 1    
( ) 36 6

n A
n S

= =  

 (ii)  P (getting sum 7 or 9) = (   )  (  )P A or B P A B= ∪

    = ( )  ( )P A P B+

  (Since A and B are mutually exclusive that is, A B� �� )

    = ( ) ( ) 6 4 5 +   +    
( ) ( ) 36 36 18

n A n B
n S n S

= =

 (iii)  P (getting sum 7 or 12) = (   )    (  )P A or C P A C= ∪

    = ( )  ( )    (since  and  are mutually exclusive)P A P C A C+

    = 
( ) ( ) 6 1 7 + .
( ) ( ) 36 36 36

n A n C
n S n S

= + =

Example 12.7
Three candidates X, Y, and Z are going to play in a chess competition to win 
FIDE (World Chess Federation) cup this year. X is thrice as likely to win as Y 
and Y is twice as likely as to win Z. Find the respective probability of X, Y and 
Z to win the cup.

Solution
 Let A, B, C be the event of winning FIDE cup respectively by X, Y, and Z this year.

BA
S

C

(1, 6), (2, 5), 
(3, 4), (4, 3), 
(5, 2), (6, 1)

(3, 6), (4, 5), 

(5, 4), (6, 3)

(6, 6)
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 Given that X is thrice as likely to win as Y.
          A : B  : :  3 : 1. (1)   
 Y is twice as likely as to win Z
          B : C : :  2 : 1 (2)
 From (1) and (2)  
    A : B : C : :  6 : 2 : 1
 A = 6k,   B =2k,   C = k, where k is proportional constant.

 Probability to win the cup by X is      6 2( ) =
9 3

kP A
k

=

 Probability to win the cup by Y is       2 2( ) =
9 9

kP B
k

=  and 

 Probability to win the cup by Z is       1( ) = .
9 9
kP C
k

=                                                                                                   

Example 12.8
 Three letters are written to three different persons and addresses on 
three envelopes are also written. Without looking at the addresses, what 
is the probability that (i) exactly one letter goes to the right envelopes  
(ii) none of the letters go into the right envelopes?

Solution 
 Let A, B, and C  denote the envelopes and 1, 2, and 3 denote the 
corresponding letters.
 The  different  combination  of  letters  put  
into  the  envelopes  are  shown in the table.
 Let ci denote the outcomes of the events. 
 Let X be the event of putting the letters into 
the exactly only one right envelopes.                
 Let Y be the event of putting none of the 
letters into the right envelope.

 S= 1 2 3, 4 5 6{ ,  ,  ,  ,  }, ( ) 6c c c c c c n S =  

 

X c c c n X
Y c c n Y

P X P Y

= =
= =

= = = =

{ , , }, ( )

{ , } ( )

( ) ( ) .

2 3 6

4 5

3

2

3

6

1

2

2

6

1

3

Example 12.9

 Let the matrix
1

x y
M

z
 

=  
 

. If , andx y z are chosen at random from the set { }1, 2,3 ,

and repetition is allowed ( ). ., ,i e x y z= =  what is the probability that the given matrix M  is a 
singular matrix?

1
A gambler's dispute in 1654 led to the 
creation of a mathematical theory of 
probability by two famous French 
mathematicians, Blaise Pascal and 
Pierre de Fermat. The fundamental 
principles of probability theory were 
formulated by Pascal and Fermat for the 
first time. After an extensive research, 
Laplace published his monumental 
work in 1812, and laid foundation to 
Probability theory. In statistics, the 
Bayesian interpretation of probability 
was developed mainly by Laplace. A 
gambler's dispute in 1654 led to the 
creation of a mathematical theory of 
probability by two famous French 
mathematicians, Blaise Pascal and 
Pierre de Fermat. The fundamental 
principles of probability theory were 

2
Three candidates X, Y, and Z are going to 
play in a chess competition to win FIDE 
(World Chess Federation) cup this year. 
X is thrice as likely to win as Y and Y is 
twice as likely as to win Z. Find the 
respective probability to win the 
cup.Three candidates X, Y, and Z are 
going to play in a chess competition to 
win FIDE (World Chess Federation) cup 
this year. X is thrice as likely to win as Y 
and Y is twice as likely as to win Z. Find 
the respective probability to win the 
cup.Three candidates X, Y, and Z are 
going to play in a chess competition to 
win FIDE (World Chess Federation) cup 
this year. X is thrice as likely to win as Y 
and Y is twice as likely as to win Z. Find 
the respective probability to win the 
cup.this year. X is thrice as likely to win 

3
Cup this year. X is thrice as likely to win 
as Y and Y is twice as likely as to win Z. 
Find the respective probability to win the 
cup.Three candidates X, Y, and Z are 
going to play in a chess competition to win 
FIDE (World Chess Federation) cup this 
year. X is thrice as likely to win as Y and Y 
is twice as likely as to win Z. Find the 
respective probability to win the 
cup.Three candidates X, Y, and Z are 
going to play in a chess competition to win 
FIDE (World Chess Federation) cup this 
year. X is thrice as likely to win as Y and Y 
is twice as likely as to win Z. Find the 
respective probability to win the cup.this 
year. X is thrice as likely to win as Y and Y 
is twic
Three candidates X, Y, and Z are going to 
play in a chess competition to win FIDE 

A 
B 

C 

1 1 2 2 3 3

2 3 1 3 1 2

3 2 3 1 2 1

A

B

C

En
ve

lo
pe

Outcomes

6c
5c4c3c2c1c
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Solution

 If the given matrix M  is singular, then

                                                   0.
1

x y
z

=

               That is, 0.x yz− =  

 Hence the possible ways of selecting ( ), ,x y z are

 ( ) ( ) ( ) ( ) ( ){ }1,1,1 , 2,1,2 , 2,2,1 , 3,1,3 , 3,3,1 ( )A say=

 The number of favourable cases      ( ) 5n A =

 The total number of cases are        3( ) 3 27n S = =

 The probability of the given matrix is a singular matrix is

    

( ) 5 .
( ) 27

n Ap
n S

= =

Example 12.10

 For a sports meet, a winners’ stand comprising of three wooden 
blocks is in the form as shown in figure. There are six different colours 
available to choose from and three of the wooden blocks is to be painted 
such that no two of them has the same colour. Find the probability that the 
smallest block is to be painted in red, where red is one of the six colours.

Solution
  Let S be the sample space and A be the event that the smallest block is to be painted in 
red.

( )n S = 36 6 5 4 120P = × × =  

( )n A = 5 4 20× =  
( ) 20 1( ) .
( ) 120 6

n AP A
n S

= = =

12.4.3 ODDS
 The word odds is frequently used in probability and statistics. Odds relate the chances in favour 
of an event A to the chances against it. Suppose a represents the number of ways that an event can 
occur and b represents the number of ways that the event can fail to occur.
 The odds of an event A are a : b in favour of an event and  

                                                ( )  aP A
a b

=
+

.

 

1
2

3

n(S) 6 5 4
n(A) 5 4 Red

6 6 3
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 Further, it may be noted that the odds are a : b in favour of an event is the same as to say that the 
odds are b : a against the event.

 If the probability of an event is p , then the odds in favour of its occurrence are p  to ( )1 p−  and 

the odds against its occurrence are ( )1 p− to p .

Illustration 12.7
 (i) Suppose a die is rolled.
  Let S be the sample space and A be the event of getting 5.

  ( ) 6n S = ,   ( ) 1n A =  and ( ) 5n A = .
  It can also be interpreted as

  Odds in favour of A is 1: 5  or 
1

5
,     odds against A is 5 :1or  5

1
,

  and     ( ) 1 1( )
( ) ( ) 5 1 6

n AP A
n A n A

= = =
+ +

 ( ) 
( )

n A
n S

= .

 (ii) Suppose B is an event such that odds in favour of B is 3:5, then 3( )
8

P B =

 (iii) Suppose C is an event such that odds against C is 4:11, then 
11( ) .
15

P C =

Example 12.11
 A man has 2 ten rupee notes, 4 hundred rupee notes and 6 five hundred rupee notes in his 
pocket. If 2 notes are taken at random, what are the odds in favour of both notes being of 
hundred rupee denomination and also its probability?

Solution
Let S be the sample space and A be the event of taking 2 hundred rupee note.

Therefore, 2( ) 12 66n S c= = ,   2( ) 4 6n A c= =   and  ( ) 66 6 60n A = − =
Therefore, odds in favour of A is 6: 60

That is, odds in favour of A is 1: 10,   and   
1( ) .

11
P A =

EXERCISE 12.1
 (1) An  experiment has the  four possible   mutually exclusive and exhaustive outcomes A, B, 

C, and D. Check whether the following assignments of probability are permissible.
  (i) P(A) = 0.15, P(B) = 0.30,  P(C) = 0.43, P(D)= 0.12
  (ii) P(A) = 0.22,  P(B) = 0.38,  P(C) = 0. 16,     P (D) = 0.34

  (iii) P(A) = 2
5

 ,   P(B) = 3
5

,    P(C) = 1
5

− ,       P(D) = 1
5

 (2) If two coins are tossed simultaneously, then find the probability of getting 
  (i) one head and one tail (ii) at most two tails 
 (3) Five mangoes and 4 apples are in a box. If two fruits are chosen at random, find the 

probability that (i) one is a mango and the other is an apple (ii) both are of the same 
variety.
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  (4) What  is  the  chance  that  (i)  non-leap  year  (ii)  leap  year  should  have  fifty three 
Sundays?

 (5) Eight coins are tossed once, find the probability of getting
  (i) exactly two tails  (ii) at least two tails        (iii) at most two tails
 (6) An integer is chosen at random from the first 100 positive integers.  What is the probability 

that the integer chosen is a prime or multiple of 8?
 (7) A bag contains 7 red and 4 black balls, 3 balls are drawn at random.
  Find the probability that (i) all are red (ii) one red and 2 black.
 (8) A single card is drawn from a pack of 52 cards. What is the probability that
    (i) the card is an ace or a king          (ii) the card will be 6 or smaller
   (iii) the card is either a queen or 9?  
 (9) A cricket club has 16 members, of whom only 5 can bowl. What is the probability that in a 

team   of 11 members at least 3 bowlers are selected?
 (10)  (i) The odds that the event A occurs is 5 to 7, find P(A).

    (ii) Suppose P(B) = 2

5
. Express the odds that the event B occurs. 

12.5 Some basic Theorems on Probability 
 The problems solved in the last sections are related to mutually exclusive events.  So we 
have used the formula   (   )  (  )P A or B P A B= ∪ = ( )  ( )P A P B+ . But when the events are mutually 
inclusive, the additivity axioms counts ( )A B∩  twice. We have a separate formula for the events 
when they are mutually inclusive. 
 In the development of probability theory, all the results are derived directly or indirectly 
using only the axioms of probability. Here we derive some of the basic important theorems on 
probability.    
Theorem 12.3  
 The probability of the impossible event is zero. That is,

   ( ) 0P ∅ =  
Proof  
 Impossible event contains no sample point.
   Therefore,  S ��  = S
   P S( )��  = P(S)

   P S P( ) ( )� �  = P S S( ) (since  and  are mutually exclusive)∅

   P( )∅  = 0

Example 12.12

 Find the probability of getting the number 7, when a usual die is rolled.
Solution

 The event of getting 7 is an impossible event.    Thereforee, gettingP 7 0� � �     
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Theorem 12.4   

 If A  is the complementary event of A, then

   ( ) 1 ( )P A P A= −  

Proof  

 Let S be a sample space, we have

   A A∪  = S

   ( )P A A∪  = P(S)

                        P(A) + P ( )A  = P(S)  (since A and A  are mutually exclusive)
                                  = 1

                                    ( )P A  = ( )1 P A−  or ( ) ( )1P A P A= −

Example 12.13
 Nine coins are tossed once, find the probability to get at least two heads.

Solution
       Let S be the sample space and A  be the event of getting at least two heads. 

 Therefore, the event A  denotes, getting at most one head. 

  9( ) 2 512n S = = ,    0 1( ) 9 9 1 9 10n A C C= + = + =

( ) 10 5
512 256

P A = =

( ) ( )1P A P A= − = 5 2511
256 256

− =

Theorem 12.5 
 If A  and B  are any two events and B  is the complementary events of B , then

   ( ) ( ) ( )P A B P A P A B∩ = − ∩  
Proof  
 Clearly from the figure,

   ( ) ( )A B A B∩ ∪ ∩   = A

   ( ) ( )P A B A B ∩ ∪ ∩   = P(A)

   ( ) ( )P A B P A B∩ + ∩  = P(A)

  (since ( ) and ( ) are mutually exclusive)A B A B∩ ∩  

   ( )P A B∩  = ( ) ( )P A P A B− ∩  

 

S

A B

A B∩A B∩

A
S

A

It is easier to calculate 
1

0
9 r

r
C

=
∑

than 
9

2
9 r

r
C

=
∑
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Theorem 12.6 (Addition theorem on probability) 
 If A  and B  are any two events, then

   ( ) ( ) ( ) ( )P A B P A P B P A B∪ = + − ∩  
Proof 
 From the diagram,
   A B∪  = ( )A B B∩ ∪

   ( )P A B∪  = ( )P A B B ∩ ∪ 

    = P A B P B A B B( ) ( ) ( ( )� � � since   and  are mutually exclusive)

    = [ ( ) ( )] ( )P A P A B P B− ∩ +   

 Therefore,  P A B( )∪  = ( ) ( ) ( )P A P B P A B+ − ∩  

Note 12.4
  The above theorem can be extended to any 3 events.
  (i) ( )P A B C∪ ∪  ={ ( ) ( ) ( )}P A P B P C+ +

         { ( ) ( ) ( )} ( )}P A B P B C P C A P A B C− ∩ + ∩ + ∩ + ∩ ∩  

  (ii)
_______________

( ) 1 ( ) 1 ( )P A B C P A B C P A B C∪ ∪ = − ∪ ∪ = − ∩ ∩

Example 12.14
 Given that P(A) = 0.52,  P(B) = 0.43, and ( )P A B∩  = 0.24, find 

 (i) ( )P A B∩   (ii) ( )P A B∪    (iii) ( )P A B∩   (iv) ( ).P A B∪  

Solution 

 (i)  ( )P A B∩  = ( ) ( )P A P A B− ∩

    = 0.52 0.24 0.28− =

   ( )P A B∩  = 0.28.

 (ii)  ( )P A B∪  = ( ) ( ) ( )P A P B P A B+ − ∩

    = 0.52 0.43 0.24+ −

   ( )P A B∪  = 0.71.

 (iii)  ( )P A B∩  = ( )      (By de Morgan's law)P A B∪  

                      = 1 ( )P A B− ∪

    = 1 0.71 0.29.− =

 (iv)  ( )P A B∪  = ( )        (By de Morgan's law)P A B∩

    = 1 ( ) 1 0.24P A B− ∩ = −

    = 0.76.

S

A

BA B∩
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Example 12.15
 The probability that a girl, preparing for competitive examination will get a State 
Government service is 0.12, the probability that she will get a Central Government job is 0.25, 
and the probability that she will get both is 0.07. Find the probability that (i) she will get 
atleast one of the two jobs (ii) she will get only one of the two jobs.

Solution 
 Let I be the event of getting State Government service and C be the event of getting 
Central Government job.

 Given that P(I) = 0.12,   P(C) = 0.25,  and  ( ) 0.07P I C∩ =  
 (i)  P (at least one of the two jobs) = (  or ) ( )P I C P I C= ∪

    = ( ) ( ) ( )P I P C P I C+ − ∩
    = 0.12  0.25  0.07+ − = 0.30
    (ii)  P(only one of the two jobs) =  P[only I or only C].

    = ( ) ( C)P I C P I∩ + ∩
              = { ( ) ( )} { ( ) ( )}P I P I C P C P I C− ∩ + − ∩  
    = {0.12 0.07}  {0.25  0.07}− + −
    =  0.23.

EXERCISE 12.2 

 (1) 3 1If  and  are mutually exclusive events  ( ) and ( )
8 8

A B P A P B= = , then

  find (i) (  )P A  (ii) ( )P A B∪  (iii) ( )P A B∩  (iv) ( )P A B∪

 (2) If  and  are two events associated with a random  experiment  for whichA B

  ( )  0.35,  (   )  0.85,  and (  and )  0.15.P A P A or B P A B= = =

  Find (i) (only )P B           (ii) ( )P B  (iii) (only )P A

 (3) A die is thrown twice. Let A be the event, ‘First die shows 5’ and B be the event, ‘second 
die shows 5’. Find P A B( )∪ .

 (4) The probability of an event A occurring is 0.5 and B occurring is 0.3. If A  and  B  are  
mutually  exclusive  events,  then  find  the  probability  of 

  (i)  P( A B )∪  (ii) ( )P A B∩  (iii) ( )P A B .∩

 (5) A town has 2 fire engines operating independently. The probability that  a fire engine is 
available when needed is 0.96.

  (i) What is the probability that a fire engine is available when needed? 

  (ii) What is the probability that neither is available when needed?

 (6) The probability that a new railway bridge will get an award for its design is 0.48, the 
probability that it will get an award for the efficient use of materials is 0.36, and that it will 
get both awards is 0.2. What is the probability, that (i) it will get at least one of the two 
awards ( ii) it will get only one of the awards.

S
I

I C∩ I C∩

C

I C∩I C∩

Only I Only C
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12.6 Conditional Probability 
Illustration 12.8
 Consider the following example to understand the concept of conditional probability.
 Suppose a fair die is rolled once, then the sample space is S = {1, 2, 3, 4, 5, 6}. Now we ask 
two questions
 Q1:  What  is  the  probability  o f  getting  an odd number  which  is greater than 2?
 Q2:   If the die shows an odd number, then what is the probability that it is greater than 2?
Case 1 
 The event of getting an odd number which is greater than 2 is {3, 5}.
 Let P1 be the probability of getting an odd number which is  greater than 2

 1 
({3,5}) 2 1 .

({1,  2,  3, 4,  5,  6}) 6 3
nP

n
= = =  

Case 2 
 ‘If the die shows an odd number’ means we restrict our sample space S to a subset containing 
only odd number.
 That is, S1 = {1, 3, 5}. Then our interest is to find the probability of the event getting 
an odd number greater than 2. Let it be P2  

 2 
({3,5}) 2

({ 1, 3,  5}) 3
nP

n
= =  

 In the above two cases the favourable events are the same, but the number of exhaustive 
outcomes are different. In case 2, we observe that we have first imposed a condition on sample 
space, then asked to find the probability.  This type of probability is called conditional probability. 

      This can be written by using sample space  as

                        
P

n
n

n
n

2

3 5

1 2 3 4 5 6

1 3 5

1 2 3 4 5 6

2

6

3

6

= =

({ , })

({ , , , , , })

({ , , })

({ , , , , , })

==
2

3

Important note: Sample space is same for probability and conditional probability.

Definition 12.14 
 The conditional probability of an event B,   assuming   that   the   event   A   has   already   
happened   is   denoted   by ( )P B A   and is defined as

  ( )( / ) ,   provided  ( ) 0
( )

P A BP B A P A
P A

∩= ≠  

 Similarly,

  ( )( / ) ,     provided ( ) 0
( )

P A BP A B P B
P B

∩= ≠  

Example 12.16
 If P A P B P A B( ) . , ( ) . , ( ) .� � � �0 6 0 5 0 2       and   

 Find   (i)  ( / )P A B   (ii) ( / )P A B   (iii) ( / ).P A B  

 1 2
 3 4
 5 6

 1 2
 3 4
 5 6
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Solution 
 Given that  P(A) = P A P B P A B( ) . , ( ) . , ( ) .� � � �0 6 0 5 0 2       and   

 (i)  ( / )P A B  = 
( )

( )
 

P A B
P B

∩
= 0.2 2

0.5 5
=

 (ii)  ( / )P A B  = 
( )

( )
P A B

P B

∩

    = 
( ) ( )

( )
P B P A B

P B
− ∩

 

    = 0.5 0.2 0.3 3 .
0.5 0.5 5

− = =  

 (iii)  ( / )P A B  = 
( )

( )
P A B

P B

∩
  

    =  
( ) ( )

( )1
P A P A B

P B
− ∩
−

 

    =  0.6 0.2 0.4 4 .
1 0.5 0.5 5

− = =
−

 

Note 12.5

  1P A B P A B+ =( / ) ( / )  

Example 12.17

 A die is rolled. If it shows an odd number, then find the probability of getting 5.

Solution
 Sample space S = {1, 2, 3, 4, 5, 6}.
 Let A be the event of die shows an odd number.
 Let B be the event of getting 5.

 Then, A={1, 3, 5}, B={5}, and A B∩ = {5}.

 Therefore, 3( )
6

P A =  and P A B( )� �
1

6

  (getting5 / die shows an odd number)P  ( / )P B A=

    = ( )
( )

 
P A B

P A
∩

 =

1

6

3

6

                                        
1( / ) .
3

P B A =
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 Rewriting the definition of conditional probability, we get the ‘Multiplication theorem 
on probability’.

Theorem 12.7
 (Multiplication theorem on probability) 
 The probability of the simultaneous happening of two events A and B is given by

( ) ( / ) ( )
                   or

( ) ( / ) ( )

P A B P A B P B

P A B P B A P A

∩ =

∩ = 

12.6.1 Independent Events
 Events are said to be independent  if occurrence or non-occurrence  of any  one  of  the  event  
does  not  affect  the  probability   of  occurrence   or non-occurrence of the other events. 

Definition 12.15
 Two events A and B are said to be independent if and only if

( ) ( ) ( )P A B P A P B∩ = ⋅

Note 12.6 
(1) This definition is exactly equivalent to 

   ( / )P A B  = ( ) if ( ) 0P A P B >  
   ( / )P B A  = ( ) if ( ) 0P B P A >

(2) 1 2 3The events ,  , , ... ,  are mutually independent ifnA A A A  

         1 2 3 1 2(       )  ( )  ( )   ( ).n nP A A A A P A P A P A∩ ∩ ∩ ∩ = ⋅ ⋅ ⋅ 

Theorem 12.8
  If  and  are independent then A B

 (i)  and  are  independent.A B

 (ii)  and  are independent.A B

 (iii)  and  are also independent.A B
Proof

 (i) To prove  and  are  independent:A B
  Since A and B are independent 
   ( )P A B∩  = ( )  ( )P A PB⋅  

 To prove  and  are independent, we have to proveA B  

   (    )P A B∩  = ( )  ( )P A P B⋅ .
 By de Morgan’s law

   (  )P A B∩   = ( )P A B∪

    = ( )1 P A B− ∪
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    = { }1 ( ) ( ) ( )P A P B P A B− + − ∩

    = ( )1 ( ) ( ) ( ) P A P B P A P B− − + ⋅

    = ( )( )1 ( ) 1 ( )P A P B− −

    = ( )  ( )P A P B⋅

  Thus  and  are independentA B .
Similarly one can prove (ii) and (iii).

Example 12.18
 Two cards are drawn from a pack of 52 cards in succession. Find the probability that 
both are Jack when the first drawn card is    (i) replaced   (ii) not replaced

Solution
 Let A be the event of drawing a Jack in the first draw,

       B be the event of drawing a Jack in the second draw.

  Case (i)
 Card is replaced
   ( )n A  = 4 (Jack)
   ( )n B  = 4 (Jack)
   and   ( )n S  = 52 (Total)

 Clearly the event A will not affect the probability of the occurrence of event B and 
therefore A and B are independent.

   ( )P A B∩  = ( ) . ( )P A P B

   ( )P A  = 4
52

 , ( )P B = 4
52

   ( )P A B∩  = ( )  ( )P A P B  

    = 4 4  .  
52 52

 

    = 1
169

 .

  Case (ii) 

 Card is not replaced

 In the first draw, there are 4 Jacks and 52 cards in total. Since the Jack, drawn  at  the  
first  draw  is  not  replaced,  in  the  second  draw  there  are  only 3 Jacks and 51 cards in total. 
Therefore the first event A affects the probability of the occurrence of the second event B.

 Thus A and B are not independent. That is, they are dependent events.

   Therefore, ( )P A B∩  = P(A) . P(B/A)

   P(A) = 4
52
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   P(B/A) = 
3

51

   ( )P A B∩  = P(A) . P(B/A)

    = 4 3.
52 51

    = 1
221

 .

Example 12.19
 A coin is tossed twice. Events E and F are defined as follows 
 E= Head on first toss, F = Head on second toss. Find

 (i) ( ) P E F∪  (ii) ( / )P E F  

 (iii) ( / )P E F  . (iv)  Are the events E and F independent?

Solution 

 The sample space is             { } { }, ,S H T H T= ×

   S = {( ,  ), ( ,  ),  ( ,  ),  ( ,  )}H H H T T H T T

   and E = {( ,  ),  ( , )}H H H T  

   F = {( ,  ),  ( ,  )}H H T H  

   E F∪  = {( ,  ), ( ,  ),  ( ,  )}H H H T T H  

   E F∩  = {( ,  )}H H  

 (i)  ( ) P E F∪  = ( )  ( )  (   )P E P F P E F+ − ∩    or ( )
( )

n E F
n S

 ∪= 
 

    = 2 2 1
4 4 4

+ −  = 3
4

 .

 (ii)  ( / )P E F  = ( ) 
( ) 

P E F
P F

∩ = 
( / )

( / )

1 4

2 4

1

2
=

 (iii)  ( / )P E F  = ( ) 
( ) 

P E F
P F

∩

    = 
( ) ( )

( )
P F P E F

P F
− ∩

    =  ( / ) ( / )

( / )

2 4 1 4

2 4

−

    = 1  
2

 (iv) Are the events E and F independent?
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  We have ( )  P E F∩  = 1
4

 

   P(E) = 2
4

,    P(F) = 2
4

   P(E) P(F) = 2 2 1.
4 4 4

=

   ⇒  ( )  P E F∩  = P(E) . P(F)

 Therefore andE F  are independent events.

Note 12.7
 Independent events is a property of probability but mutual exclusiveness is a set-theoretic 
property. Therefore independent events can be identified by their probabilities and mutually 
exclusive events can be identified by their events.
Theorem 12.9
 Suppose A and B are two events, such that P(A) ≠ 0, P(B) ≠ 0.
 (1) If A and B are mutually exclusive, they cannot be independent.
 (2) If A and B are independent they cannot be mutually exclusive. (Without proof)

Example 12.20
 If A and B are two independent events such that
 P(A) = 0.4 and P A B( )∪ = 0.9. Find P(B).

Solution 
   ( )P A B∪  = ( ) ( ) ( )P A P B P A B+ − ∩

   ( )P A B∪  = ( ) ( ) ( ). ( )       (since  and  are independent)P A P B P A P B A B+ −

                      That is,  0.9  = 0.4  ( )  (0.4) ( )P B P B+ −

   0.9 0.4−  = (1 0.4) ( )P B−

   Therefore, ( )P B  = 5

6
.

Example 12.21
 An anti-aircraft gun can take a maximum of four shots 
at an enemy plane moving away from it. The probability of 
hitting the plane in the first, second, third, and fourth shot are 
respectively 0.2, 0.4, 0.2 and 0.1. Find the probability that the 
gun hits the plane. 

Solution 

 Let 1 2 3 4, , andH H H H  be the events of hitting the plane 
by the anti-aircraft gun in the first second, third and fourth shot respectively.
 Let H  be the event that anti-aircraft gun hits the plane. Therefore H is the event that the 
plane is not shot down. Given that 

  1( ) 0.2P H =      1 1( ) 1 ( ) 0.8P H P H⇒ = − =                                               
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  2( ) 0.4P H =      2 2( ) 1 ( ) 0.6P H P H⇒ = − =  

  3( ) 0.2P H =      3 3( ) 1 ( ) 0.8P H P H⇒ = − =

  4( ) 0.1P H =      4 4( ) 1 ( ) 0.9P H P H⇒ = − =

 The probability that the gun hits the plane is 

  ( ) 1 ( )P H P H= − = 
__________________________

1 2 3 41 ( )P H H H H− ∪ ∪ ∪      

 
__ __ __ __

2 41 31 P H H H H = − ∩ ∩ ∩  
    

 1 2 3 41 ( ) ( ) ( ) ( )P H P H P H P H= −

 ( )( )( )( )1 0.8 0.6 0.8 0.9= − 1 0.3456= −      

 ( ) 0.6544P H =

Example 12.22
 X speaks truth in 70 percent of cases, and Y in 90 percent of cases. What is the probability 
that they likely to contradict each other in stating the same fact?

Solution 
 Let  be the event of  speaks the truth,  be the event of  speaks the truthA X B Y  
 A∴  is the event of X not speaking the truth and B  is the event of Y not speaking
 the truth.
 Let C be the event that they will contradict each other.
 Given that 

 P(A) = 0.70      (  )  1  ( )  0.30P A P A⇒ = − =  

 P(B) = 0.90      (  )  1  ( )  0.10P B P B⇒ = − =  
C = (A speaks truth and B does not speak truth or B speaks truth 
and A  does not speak truth)

 C = [( )  ( )]      (see figure)A B A B∩ ∪ ∩  

 since and  are mutually exclusively,( ) ( )A B A B∩ ∩   

   P(C) = ( ) ( )P A B P A B∩ + ∩

    = ( ) ( )  ( ) ( ) P A P B P A P B+
 (Since ,  are independent event, ,  are  also independent events)A B A B  

    = (0.70)  (0.10) + (0.30) (0.90) 

    = 0.070 + 0.270 =0.34

   P(C) = 0.34.

S

Only A

A

Only B

I C∩ I C∩

B

A B∩A B∩
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Example 12.23
A main road in a City has 4 crossroads with traffic lights. Each traffic light opens or closes the 
traffic with the probability of 0.4 and 0.6 respectively. Determine the probability of
(i)  a car crossing the first crossroad without stopping     
(ii) a car crossing first two crossroads without stopping    
(iii) a car crossing all the crossroads,  stopping at third cross.
(iv) a car crossing all the crossroads, stopping at exactly one cross.

Solution:

 Let iA be the event that the traffic light opens at i th cross, for i= 1, 2, 3, 4.

 Let iB be the event that the traffic light closes at i th cross, for i= 1, 2, 3, 4.
 The traffic lights are all independent.

 Therefore iA and iB are all independent events, for i= 1, 2, 3, 4.
  Given that

( ) 0.4, 1, 2, 3, 4iP A i= =

( ) 0.6, 1, 2, 3, 4iP B i= =
 (i) Probability of car crossing the first crossroad without stopping,  

1( ) 0.4.P A =
 (ii) Probability of car crossing first two crossroads without stopping,

     ( )( )1 2 1 2( ) ( ) 0.4 0.4 0.16P A A P A A∩ = = =
 (iii) Probability of car crossing all the crossroads, stopping at third cross 

  ( )( )( )( )1 2 3 4 1 2 3 4( ) ( ) 0.4 0.4 0.6 0.4 0.0384P A A B A P A A B A∩ ∩ ∩ = = =
 (iv) Probability of car crossing all the crossroads, stopping at exactly one of the crossroads is

      1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4( )P B A A A A B A A A A B A A A A B∪ ∪ ∪   

      1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4( ) ( ) ( ) ( )P B A A A P A B A A P A A B A P A A A B= + + +

      ( )( )( )( ) ( )4 0.4 0.4 0.6 0.4 4 0.0384 0.1536= = =

EXERCISE 12.3
 (1) Can two events be mutually exclusive and independent simultaneously?

 (2) If  and  are two events such that   (  ) = 0.7,  (   ) = 0.2,A B P A B P A B∪ ∩

  and P(B) = 0.5, then show that A and B are independent.
 (3) If  A  and  B  are  two  independent  events  such  that  P A B( )∪ =  0.6, P(A) = 0.2, find P(B).
 (4) If P(A) =0.5, P(B) =0.8  and P(B/A) = 0.8, find P(A / B) and  P A B( )∪ .

 (5) If for two events A B P A P B A B S and   and  , ( ) , ( )� � � �
3

4

2

5
 (sample space), find the 

conditional probability P(A / B).             
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   (6) A problem in Mathematics  is given to three students whose chances of solving it are   
1

3

1

4

1

5
, , and (i) What is the probability that the problem is solved? (ii) What is the probability 

that exactly one of them will solve it?
 (7) The probability that a car being filled with petrol will also need an oil change is 0.30; the 

probability that it needs a new oil filter is 0.40; and the probability that both the oil and filter 
need changing is 0.15.

  (i) If the oil had to be changed, what is the probability that a new oil filter is needed?
  (ii) If a new oil filter is needed, what is the probability that the oil has to be changed?
 (8) One bag contains 5 white and 3 black balls. Another bag contains 4 white and 6    black   

balls. If one ball is drawn from each bag, find the probability that (i) both are white (ii) both 
are black (iii) one white and one black

  (9) Two thirds of students in a class are boys and rest girls. It is known that the probability 
of a girl getting a first grade is 0.85 and that of boys is 0.70. Find the probability that a 
student chosen at random will get first grade marks.

 (10) Given P(A) = 0.4 and P A B( )∪ = 0.7.  Find P(B) if 
  (i) A and B are mutually exclusive (ii) A and B are independent events  
  (iii) P(A / B) = 0.4        (iv) P(B / A) = 0.5
 (11) A year is selected at random. What is the probability that
  (i) it contains 53 Sundays (ii) it is a leap year which contains 53 Sundays
 (12) Suppose the chances of hitting a target by a person X is 3 times in 4 shots, by Y is 4 times in 

5 shots, and by Z is 2 times in 3 shots. They fire simultaneously exactly one time. What is the 
probability that the target is damaged by exactly 2 hits?

12.7 Total Probability of an event
Theorem 12.10 (Total Probability of an event)

         If 1 2 3,  , , ...,  nA A A A are mutually exclusive and exhaustive events and B is any event in S 
then P(B) is called the total probability of event B and

      1 1 2 2
1

( )  ( ). ( / ) ( ). ( / ) ( ). ( / ) ( ). ( / )
n

n n i i
i

P B P A P B A P A P B A P A P B A P A P B A
=

= + + + = ∑

Proof
 Since B is any event in S, from the figure shown here

 ( ) ( ) ( ) ( )1 2 3 .nB A B A B A B A B= ∩ ∪ ∩ ∪ ∩ ∪ ∩

 Since 1 2 3,  , ...  nA A A A are mutually exclusive,      

( ) ( ) ( ) ( )1 2 3, , , , nA B A B A B A B∩ ∩ ∩ ∩ are also mutually 

exclusive.
Therefore     

( ) ( ) ( ) ( )1 2 3( ) nP B P A B A B A B A B= ∩ ∪ ∩ ∪ ∩ ∪ ∪ ∩  

        ( )P B  ( ) ( ) ( ) ( )1 2 3 nP A B P A B P A B P A B= ∩ + ∩ + ∩ + + ∩                 

1 1 2 2( )  ( ). ( / ) ( ). ( / ) ( ). ( / )n nP B P A P B A P A P B A P A P B A= + + +

1
( ). ( / )

n

i i
i

P A P B A
=

= ∑
 The following problems are solved using the law of total probability of an event.

1A

nA

3A2A
.
.
.

1A B∩

nA
B∩

2
A

B
∩

3
A

B∩

iA
iA

B∩

...

B
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Example 12.24
 Urn-I contains 8 red and 4 blue balls and urn-II contains 5 red and 10 blue balls. One   
urn is chosen at random and two balls are drawn from it. Find the probability that both balls 
are red.

Solution 
 Let A1 be the event of selecting urn-I 
and A

2 be the event of selecting urn-II.

  Let B be the event of selecting 2 red 
balls.
 We have to find the total probability of 
event B .  That is, P(B). 
Clearly A A

1 2
 and A

1 are mutually exclusive 
and exhaustive events.

 We have 

  1( )P A  = 1
2

2

81 14, ( / )
2 12 33

c
P B A

c
= =      

      2( )P A  = 2
2

2

5c1 2,   ( / ) = 
2 15c 21

P B A =  
 We know

  P(B) = 1 1 2 2( ) . ( / ) ( ) . ( / ) P A P B A P A P B A+

  P(B) = 1 14 1 2 20. . .
2 33 2 21 77

+ =

Example 12.25
 A factory has two machines I and II. Machine-I produces 40% of items of the output 
and Machine-II produces 60% of the items. Further 4% of items produced by Machine-I are 
defective and 5% produced by Machine-II are defective.  If  an  item  is  drawn  at  random,  
find  the  probability  that  it  is  a defective item.

Solution 
 Let A

1 be the event that the items are produced by Machine-I, 
A

2 be the event that items are produced by Machine-II. Let B be 
the event of drawing a defective item.

 We have to find the total probability of  event B .  That is,  P(B).
 Clearly A A

1 2
 and  are mutually exclusive and exhaustive events.

   Therefore,  P(B) = 1 1 2 2( ) . ( / ) ( ) . ( / ) P A P B A P A P B A+

 We have  1( )P A  = 10.40, ( / ) 0.04P B A =

   2( )P A  = 20.60,    ( / ) =0.05P B A

   P(B) = 1 1 2 2( ) . ( / ) ( ) . ( / ) P A P B A P A P B A+

    = ( )( ) ( )( )0.40 0.04 0.60 0.05+
    = 0.046. 

Red
balls

Blue
balls Total

Urn-I

Urn-II

Total

8

5

13

4

10

14

12

15

27

B

S

2A B∩

1A B∩

2A

1A

B

S

2A B∩

1A B∩

2A

1A
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12.8 Bayes’ Theorem 
 Thomas Bayes was an English statistician, philosopher and Presbyterian minister who 
is known for formulating a specific case of a theorem. Bayesian methods stem from the 
principle of linking prior (before conducting experiment) 
probability and conditional probability (likelihood) to 
posterior (after conducting experiment) probability via 
Bayes’ rule. Bayesian probability is the name given to 
several related interpretations of probability as an amount 

of epistemic confidence – the strength of beliefs, hypotheses etc., rather 
than a frequency. 

Theorem 12.11 (Bayes’ Theorem) 

 If  1 2 3,  , , ...,  nA A A A  are mutually exclusive and exhaustive events such that           
 P(Ai) > 0,    i  = 1,2,3,….n  and B is any event in which P(B) > 0,  then

 
1 1 2 2

( ) ( / )( / )    
( ) ( / ) ( ) ( / )  ( ) ( / )

i i
i

n n

P A P B AP A B
P A P B A P A P B A P A P B A

=
+ + +

 

Proof
 By the law of total probability of B we have 
  P B P A P B A P A P B A P A P B An n( ) ( ) ( / ) ( ) ( / ) ( ) ( / )� � � � � � �

1 1 2 2


 and by multiplication theorem ( )iP A B∩ = ( ) ( )i iP B A P A
By the definition of conditional probability,

 ( / )iP A B  = 
( )

( )
iP A B

P B
∩

 ( / )iP A B  = 
P B A P A

P A P B A P A P B A P A P B A
i i

n n

� � � �
� � � � � �( ) ( / ) ( ) ( / ) ( ) ( / )

1 1 2 2


 (using formulae)

 The above formula gives the relationship between P A Bi( / ) and ( / )iP B A
Example 12.26
 A factory has two machines I and II. Machine I produces 40% of items of the output 
and Machine II produces 60% of the items. Further 4% of items produced by Machine I are 
defective and 5% produced by Machine II are defective.  An item is drawn at random. If the 
drawn item is defective, find the probability that it was produced by Machine II.  
(See the previous example, compare the questions).

Solution 
 Let A1 be the event that the items are produced by 
Machine-I,  A2  be the event that items are produced by 
Machine-II. Let B be the event of drawing a defective item. 
Now   we   are   asked   to   find   the conditional probability 

2( ).P A B  Since 1 2,  A A are mutually exclusive and exhaustive 
events, by Bayes’ theorem,

   2( / )P A B  = 2 2

1 1 2 2

( ) ( / )
( ) ( / ) ( ) ( / )

P A P B A
P A P B A P A P B A+

 

1702-1761

1702-1761
1A

nA

3A2A
.
.
.

1A B∩

nA
B∩

2
A

B
∩

3
A

B∩

iA
iA

B∩

...

B

B

S

2A B∩

1A B∩

2A

1A
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 We have,

   1( )P A   = 10.40, ( / ) 0.04P B A =

   2( )P A  = 20.60,    ( / ) = 0.05P B A  

   2( / )P A B  = 2 2

1 1 2 2

( ) ( / )
( ) ( / ) ( ) ( / )

P A P B A
P A P B A P A P B A+

 

   2( / )P A B  = ( )( )
( )( ) ( )( )

0.60 0.05 15  .
0.40 0.04 0.60 0.05 23

=
+

 

Example 12.27
 A construction company employs 2 executive engineers. Engineer-1 does the work for 60% of 
jobs of the company. Engineer-2 does the work for 40% of jobs of the company. It is known from 
the past experience that the probability of an error when engineer-1 does the work is 0.03, whereas 
the probability of an error in the work of engineer-2 is 0.04. Suppose a serious error occurs in the 
work, which engineer would you guess did the work?
Solution 
 Let A1 and A

2 be the events of job done by engineer-1 and 
engineer-2 of the company respectively. Let B be the event that the 
error occurs in the work.
 We have to find the conditional probability 

1 2( / ) and ( / )P A B P A B to compare their errors in their work.
 From the given information, we have
  1( )P A  = 10.60, ( / ) 0.03P B A =
  2( )P A = 20.40,    ( / ) = 0.04P B A  
 1 2andA A  are mutually exclusive and exhaustive events.  
 Applying Bayes’ theorem,

   1( / )P A B  = 1 1

1 1 2 2

( ) ( / )
( ) ( / ) ( ) ( / )

P A P B A
P A P B A P A P B A+

    = ( )( )
( )( ) ( )( )

0.60 0.03
0.60 0.03 0.40 0.04+

 

                                          1( / )P A B  = 9
17

.

   2( / )P A B  = 2 2

1 1 2 2

( ) ( / )
( ) ( / ) ( ) ( / )

P A P B A
P A P B A P A P B A+

 

   2( / )P A B  = ( )( )
( )( ) ( )( )

0.40 0.04
0.60 0.03 0.40 0.04+

 

                              2( / )P A B  = 
8 .

17

 Since 1 2>( / ) ( / )P A B P A B , the chance of error done by engineer-1 is greater than the chance 
of error done by engineer-2. Therefore one may guess that the serious error would have been be 
done by engineer-1.

B

S

2A B∩

1A B∩

2A

1A
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Example 12.28
 The chances of X, Y and Z becoming managers of a certain company are 4 : 2 : 3. The 
probabilities that bonus scheme will be introduced if X, Y and Z become managers are 0.3, 
0.5 and 0.4 respectively.  If the bonus scheme has been introduced, what is the probability 
that Z was appointed as the manager?

Solution 
 Let A1, A2 and A

3 be the events of X, Y and Z becoming managers 
of the company respectively. Let B be the event that the bonus scheme 
will be introduced.

 We have to find the conditional probability P A B( / ).
3

 Since 1 2,A A and 3A  are mutually exclusive and exhaustive events, 
applying Bayes’ theorem

   3( / ) P A B  = 3 3

1 1 2 2 3 3

( ) ( / )
( ) ( / ) ( ) ( / ) ( ) ( / )

P A P B A
P A P B A P A P B A P A P B A+ +

 
 We have

   1( )P A  = 1
4 , ( / ) 0.3
9

P B A =

   2( )P A  = 2
2 ,   ( / ) = 0.5
9

P B A  

   3( )P A  = 3
3 ,   ( / ) = 0.4
9

P B A  

   3( / )P A B  = 3 3

1 1 2 2 3 3

( ) ( / )
( ) ( / ) ( ) ( / ) ( ) ( / )

P A P B A
P A P B A P A P B A P A P B A+ +

 

   3( / )P A B   = 
( )

( ) ( )

3  0.4
9

4 2 30.3  0.5  (0.4)
9 9 9

 
  

   + +      

 

    = 12 6 .
34 17

=  

Example 12.29
 A consulting firm rents car from three agencies such that 50% from agency L, 30% from 
agency M and 20% from agency N. If 90% of the cars from L, 70% of cars from M and 60% 
of the cars from N are in good conditions (i) what is the probability that the firm will get 
a car in good condition?  (ii) if a car is in good condition, what is probability that it has 
come from agency N?

Solution 
 Let A A A

1 2 3
, , and  be the events that the cars are rented from 

the agencies X, Y and Z respectively.
 Let G be the event of getting a car in good condition.

 We have to find

 (i) the total probability of event G  that is, P(G)

S

B

1A

3A
2A

1A B∩
2A

B∩

3A B∩

S

G

3A

1A

2A

3A
B∩

2A
B∩

1A
B∩
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 (ii) find the conditional probability A
3 given G that is, 3( / )P A G

 We have 

   1( )P A  = 10.50, ( / ) 0.90P G A =

   2( )P A  = 20.30,    ( / ) = 0.70P G A  

   3( )P A  = 30.20,    ( / ) = 0.60.P G A  

 (i) Since 1 2 3,  and A A A  are mutually exclusive and exhaustive events and G is an event in S, 
then the total probability of event G is P(G).

        ( )P G  = 1 1 2 2 3 3( ) ( / ) ( ) ( / ) ( ) ( / ) P A P G A P A P G A P A P G A+ +

   P(G) = ( )( ) ( )( ) ( ) ( )0.50 0.90 0.30 0.70 + 0.20  0.60+

   P(G) =  0.78.

 (ii) The conditional probability 3A  given G is 3( / )P A G
  By Bayes’ theorem,

  3( / )P A G  = 3 3

1 1 2 2 3 3

( ) ( / )
( ) ( / ) ( ) ( / ) ( ) ( / )

P A P G A
P A P G A P A P G A P A P G A+ +

 

   3( / )P A G   = ( )( )
( )( ) ( )( ) ( ) ( )

0.20 0.60
0.50 0.90 0.30 0.70 + 0.20  0.60+

 

    =  
2

13
.

EXERCISE 12.4 
 (1) A factory has two Machines-I and II. Machine-I produces 60% of items and  

Machine-II produces 40% of the items of the total output. Further 2% of the items produced 
by Machine-I are defective whereas 4% produced by Machine-II are defective. If an item 
is drawn at random what is the probability that it is defective?

 (2) There are two identical urns containing respectively 6 black and 4  red balls, 2 black and 2 
red balls. An urn is chosen at random and a ball is drawn from it.   (i) find the probability 
that the ball is black (ii) if the ball is black, what is the probability that it is from the first 
urn?

 (3) A firm manufactures PVC pipes in three plants viz, X, Y and Z. The daily production 
volumes from the three firms X, Y and Z are respectively 2000 units, 3000 units and 5000 
units. It is known from the past experience that  3% of the output from plant X, 4% from 
plant Y and 2% from plant Z are defective. A pipe is selected at random from a day’s total 
production, 

   (i) find the probability that the selected pipe is a defective one.
  (ii) if the selected pipe is a defective, then what is the probability that it was produced by 

plant Y ?
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 (4) The chances of A, B and C becoming manager of a certain company are 5 : 3 : 2. The 
probabilities that the office canteen will be improved i f  A, B, and C become managers 
are 0.4, 0.5 and 0.3 respectively.  If the office canteen has been improved, what is the 
probability that B was appointed as the manager?

 (5) An advertising executive is studying television viewing habits of married men and women 
during prime time hours. Based on the past viewing records he has determined that during 
prime time wives are watching television 60% of the time. It has also been determined 
that when the wife is watching television, 40% of the time the husband is also watching. 
When the wife is not watching the television, 30% of the time the husband is watching the 
television. Find the probability that (i) the husband is watching the television during the 
prime time of television (ii) if the husband is watching the television, the 
wife is also watching the television.

EXERCISE 12.5
Choose the correct or most suitable answer from the given four alternatives 

 (1) Four persons are selected at random from a group of 3 men, 2 women and 4 children. The 
probability that exactly two of them are children is 

   (1) 3

4
 (2)      10

23
 (3)    1

2
 (4)   10

21
 (2) A number is  selected  from the set  { }1,2,3,..., 20 . The probability that the   selected number 

is divisible   by 3 or 4 is

  (1)  2
5

 (2)   1
8

 (3)   1
2

 (4)      2
3

 (3) A, B, and C try to hit a target simultaneously but independently. Their respective probabilities 

of hitting the target are 3 1 5, ,
4 2 8

. The probability that the target is hit by A or B but not by C is

  (1) 21
64

 (2)   7
32

 (3)   9
64

 (4)   7
8

 (4)   If A and B are any two events, then the probability that exactly one of them occur is

  (1) ( ) ( )P A B P A B∪ + ∪  (2) ( ) ( )P A B P A B∩ + ∩

  (3) P( A ) P( B ) P( A B )+ − ∩  (4) ( ) ( ) 2 ( )P A P B P A B+ + ∩  

 (5)   Let A and B be two events such that ( ) 1
6

P A B∪ = ,    ( ) 1
4

P A B∩ =   and ( ) 1
4

P A = . Then 

the events A and B are
  (1) Equally likely but not independent (2) Independent but not equally likely
  (3) Independent and equally likely (4) Mutually inclusive and dependent
 (6) Two items are chosen from a lot containing twelve items of which four are defective, then the 

probability that at least one of the item is defective

  (1) 19
33

 (2)   17
33

 (3)  23
33

 (4)     13
33
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 (7) A man has 3 fifty rupee notes, 4 hundred rupees notes and 6 five hundred rupees notes in his 
pocket. If 2 notes are taken at random, what are the odds in favour of both notes being of 
hundred rupee denomination?

  (1) 1:12 (2)   12:1 (3)   13:1 (4)   1:13
 (8) A letter is taken at random from the letters of the word ‘ASSISTANT’ and another letter is 

taken at random from the letters of the word ‘STATISTICS’. The probability that the selected 
letters are the same is

             (1)  7
45

 (2)  17
90

 (3) 29
90

 (4)    19
90

  

 (9)  A matrix is chosen at random from a set of all matrices of order 2, with elements 0 or 1 only. 
The probability that the determinant of the matrix chosen is non zero will be

   (1) 3
16

 (2) 3
8

 (3) 1
4

 (4) 5
8

 (10)  A bag contains 5 white and 3 black balls. Five balls are drawn successively without replacement. 
The probability that they are   alternately of different colours is

  (1) 
3

14
 (2) 5

14
 (3) 1

14
 (4) 9

14

 (11)  If A and B are two events such that A B⊂ and P B( ) ,¹ 0 then which of the following is 

correct?

  (1) P A B P A
P B

( / )
( )

( )
=   (2) P A B P A( / ) ( )<

  (3) P A B P A( / ) ( )≥   (4) P A B P B( / ) ( )>

 (12) A bag contains 6 green, 2 white, and 7 black balls. If two balls are drawn simultaneously, 
then the probability that both are different colours is

            (1) 68
105

 (2) 71
105

 (3) 64
105

 (4) 73
105

 (13) If X and Y be two events such that ( ) ( )1 1 1/ , /   and  ( )
2 3 6

P X Y P Y X P X Y= = ∩ = , then 
P X Y( )∪  is

  (1) 
1

3
  (2) 

2

5
  (3) 

1

6
   (4) 

2

3
  

 (14) An urn contains 5 red and 5 black balls. A ball is drawn at random, its colour is noted and is 
returned to the urn. Moreover, 2 additional balls of the colour drawn are put in the urn and 
then a ball is drawn at random. The probability that the second ball drawn is red will be

  (1) 5
12

 (2) 1
2

 (3) 7
12

 (4) 1
4

 (15) A number x is chosen at random from the first 100 natural numbers. Let A be the event of 

numbers which satisfies ( 10)( 50) 0
30

x x
x

− − ≥
−

, then ( )P A   is

  (1) 0.20 (2) 0.51 (3) 0.71 (4) 0.70
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 (16)  If two events A and B are independent such that ( ) 0.35P A =   and ( ) 0.6P A B∪ = ,  
then ( )P B  is

  (1) 5
13

 (2)      1
13

 (3)    4
13

 (4)   7
13

 (17)  If two events A and B are such that 3( )
10

P A =   and 1( )
2

P A B∩ =  , then ( )P A B∩  is

  (1) 1
2

 (2)      1
3

 (3)  
1

4
   (4)   1

5
 (18) If A and B are two events such that ( )üüüüP A P B= =  and ( )/ 0.6P B A = , then

( )P A B∩  is
              (1) 0.96   (2) 0.24 (3) 0.56 (4) 0.66
 (19) There are three events A, B and C of which one and only one can happen. If the odds are 7 to 

4 against A and 5 to 3 against B, then odds against C is
             (1) 23: 65         (2) 65: 23  (3) 23: 88 (4)     88: 23

 (20)  If a and b are chosen randomly from the set { }1,2,3,4 with replacement, then the probability 
of the real roots of the equation 2 0x ax b+ + = is

  (1) 3
16

 (2)   5
16

 (3)  7
16

 (4)     11
16

 (21) It is given that the events A and B are such that ( )1 1( ) , /
4 2

P A P A B= =  and 

( ) 2/ .  Then ( ) is
3

P B A P B=

  (1) 1

6
 (2) 1

3
  (3)  2

3
 (4) 1

2
 

 (22) In a certain college 4% of the boys and 1% of the girls are taller than 1.8 meter. Further 60% 
of the students are girls. If a student is selected at random and is taller than 1.8 meters, then 
the probability that the student is a girl is

  (1) 2
11

  (2) 3
11

  (3) 5
11

  (4) 7
11

 

 (23) Ten coins are tossed. The probability of getting at least 8 heads is

  (1) 
7

64
 (2) 

7

32
 (3) 7

16
 (4) 7

128

 (24) The probability of two events A and B are 0.3 and 0.6 respectively. The probability that both 
A and B occur simultaneously is 0.18. The probability that neither A nor B occurs is

   (1) 0.1 (2) 0.72 (3) 0.42  (4) 0.28
 (25) If m is a number such that m ≤  5, then the probability that quadratic equation 

22 2 1 0x mx m+ + + =  has real roots is

  (1) 1
5

  (2) 2
5

  (3)  
3

5
 (4) 4

5
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SUMMARY
 Let S be the sample space associated with a random experiment and A be an event.       

 ( ) Number of cases favourable to 
( )  

( ) Exhaustive Number of cases in 
 n A A
P A

n S S
= =  

Axioms of probability
 Given a finite sample space S and an event A in S, we define P(A), the probability of A, 
satisfies the following three axioms.

  (1) ( ) 0P A ≥               
        (2)  If A and B are mutually exclusive events, then

  (  )  ( )  ( )P A B P A P B∪ = +

 (3) ( )  1P S =

 The probability of the impossible event is zero. That is  ( ) 0P ∅ =  

 If A  and B  are any two events and B  is the complementary events of B , then

   ( ) ( ) ( )P A B P A P A B∩ = − ∩  
 If A  and B  are any two events, then 

                           ( ) ( ) ( ) ( )P A B P A P B P A B∪ = + − ∩  
 The conditional probability of an event B,   assuming   that   the   event   A   has   already   

happened   is   denoted   by ( )P B A   and is defined as

                                    ( )
( / )    provided  ( ) 0

( )

P A B
P B A P A

P A

∩
= ≠   

                             ( )
( / )      provided ( ) 0

( )

P A B
P A B P B

P B

∩
= ≠  

 The probability of the simultaneous happening of two events A and B is given by

                                    or( ) ( / ) ( )     ( ) ( / ) ( )P A B P A B P B P A B P B A P A∩ = ∩ =
 Two events A and B are said to be independent if and only if

                  ( ) ( ) . ( )P A B P A P B∩ =

 If 1 2 3,  , , ...  nA A A A are mutually exclusive and exhaustive events and B is any event in S 
then P(B) is called t he  total  probabi l i ty  of event B and

                      
1 1 2 2

1

( )  ( ). ( / ) ( ). ( / ) ( ). ( / ) ( ). ( / )
n

n n i i
i

P B P A P B A P A P B A P A P B A P A P B A
=

= + + + = ∑

 If  1 2 3,  , , ...  nA A A A  are mutually exclusive and exhaustive events such that P(Ai) > 0,   
i=1 ,2 ,3 ,….n  and B is any event in with   P(B) > 0,  then

      
1 1 2 2

( ) ( / )( / )    
( ) ( / ) ( ) ( / ) ...  ( ) ( / )

i i
i

n n

P A P B AP A B
P A P B A P A P B A P A P B A

=
+ + +
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269 Introduction to Probability Theory

Probability

Expected Outcome

Step 1
 Open the Browser type the URL Link given below (or) Scan the QR Code.
  GeoGebra Workbook called “XI standard Probability” will appear. In that 

there are several worksheets related to your lesson. 
Step 2
  Select the work sheet “Sets and Probability”. You can change the question 

by clicking “New Problem”. Work out the probabilities and to check your 
answer, click on the respective check boxes to see the answer.

Browse in the link:
XI standard Probability: https://ggbm.at/zbpcj934

ICT CORNER 12(a)

Step1 Step2
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Introduction to Probability Theory

Expected Outcome

Step 1
  Open the Browser type the URL Link given below (or) Scan the QR Code.
  GeoGebra Workbook called “XI standard Probability” will appear. In that 

there are several worksheets related to your lesson.  
Step 2
  Select the work sheet “Bayes Theorem”. An example is given. Work out the 

probabilities step by step as given.
 To check your answer, click on the respective check boxes to see the answer.

Browse in the link:
XI standard Probability: https://ggbm.at/zbpcj934

ICT CORNER 12(b)

Step1 Step2

Unit12.indd   270 10-08-2018   18:31:07



271 Answers

ANSWERS
Exercise 7.1

 (1) (i)  
1 9 251
0 4 162

 
 
 

  (ii) 
1 5 9 13

1 2 2 6 10
4

5 1 3 7

 
 
 
  

   (2) 12, 3, ,1
2

π± − −   

 (3) 5 (4) 
15 10 8 12 2 161 1,

10 5 5 8 4 133 3
A B

− − − −   
= =   − −   

 

 (5) 4 1 4
0 1

a
A  

=  
 

  (6) (ii) 2 ,
3

n nπα π= ± ∈   (7) 1x =

 (9) 2k =   (12) I−   (14) 
1 2
2 0

A
− 

=  
 

  (16) 3 4×

 (18) 
1 3
2 12
5 0

A
 
 =  
 − 

 (19) 2, 1x y= − = −  (20) (i) x = 3

1

3    (ii) p q r� � � � �2 0 3, ,  

 (21) 
0 1 2
1 0 1
2 1 0

A
− − 

 = − 
  

 ,  skew-symmetric        (24) Pack I - ` 280, Pack II - ` 440, Pack III - ` 730

Exercise 7.2

 (10) 0 (13) 0 (15) (i) 0   (ii) 0 (16) 4 
 (17) 81−   (18) 0 (19) 49

8
b =

  (21) 7 

Exercise 7.3

 (3) 0 (multiplicity 2), ( )x x a b c= = − + +   (5) 0(multiplicity 2), 12x x= = −  

Exercise 7.4

 (1) 2.5 sq.units  (2) 1,7k = −  (3) (i) singular   (ii) non-singular   (iii) singular 

 (4) (i) 6
7

a = −   (ii) 49
8

b =   (5) 1
2

  (6) 6

Exercise 7.5

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)
2 1 2 2 2 2 4 4 2 4 2 4 3 2 4

(16) (17) (18) (19) (20) (21) (22) (23) (24) (25)
3 3 4 1 3 2 3 3 1 2

Exercise 8.1
 (7) Other sides  and other diagonal



  

 

b a a a b b a− − − −, , 2
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Exercise 8.2

 (1) (i)  Not direction cosines   (ii) direction cosines     (iii) Not direction cosines

 (2) (i) 1 2 3, ,
14 14 14

 
  

  (ii) 3 1 3, ,
19 19 19

− 
  

  (iii) (0, 0, 1)

 (3) (i) 3 4 8, , , (3, 4,8)
79 79 79

−  −  
 (ii) 3 1 1, , , (3,1,1)

11 11 11
 
  

  (iii) (0, 1, 0) and (0, 1, 0) (iv) 5 3 48, ,  and (5, 3 48)
2338 2338 2338

− −  − −  
 

  (v) 3 4 3, ,  and (3,4, 3)
34 34 34

−  −  
 (vi) 1 1,0,  and  (1,0, 1)

2 2
−  −  

 

 (4) 1 1 2, ,
6 6 6

− 
  

 , 2 1 1 1 2 1, ,  and , ,
6 6 6 6 6 6

− −   
      

 

 (5) 1
2

a = ±         (6) 1, 2, 1a b c= − = = − , or 1, 2, 1a b c= = − =  (8) 2
3

λ =   

 (11) (i) 2 1 641, , ,
41 41 41

− 
  

  (ii) 15 27 131123, , ,
1123 1123 1123
− 

  
 

 (12) 44 218 110+ +   (13) 1 ˆˆ ˆ(17 3 10 )
398

i j k− −  

 (14) yes  (16) 1
3

m = ±  

Exercise 8.3

 (1) (i) 9  (ii) 4 (2) (i) 5
2

λ =     (ii) 2λ =   (3) 
4
πθ =    

 (4) (i) 1 9cos
49

θ − − =   
  (ii) 2

3
πθ =   (5) 2

3
πθ =   (8) 55−  

 (11) 5 2   (12) 51
7

  (13) 5 (14) 42−  

Exercise 8.4

 (1) 507   (3) 10 3 ˆˆ ˆ(5 3 )
35

i j k± − +    (4) 
ˆˆ ˆ( 2 2 )

3
i j k+ −±   

 (5) 8 3  sq. units (6) 1 93
2

 sq. units   (10) 
3
π  

Exercise 8.5
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)
3 3 4 2 2 3 4 4 2 3 2 1 1 1 3

(16) (17) (18) (19) (20) (21) (22) (23) (24) (25)
4 1 4 4 1 3 2 4 3 2
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Exercise 9.1

 (1) 0.3   (2) 0.25 (3) 0.288 (4) 0.25−   
 (5) 1 (6) 0 (7) 1 (8) 3
 (9) 2 (10) 3 (11) does not exist (12) does not exist
 (13) 0 (14) 1 (15) does not exist

 (16) except at x
0

4=  (17) except at x
0
� �  (19) (8 ) (8 ) 25f f− += =  

 (20) No (21) f ( )2  cannot be concluded    (22) 6, 6                 (23) does not exist

Exercise 9.2

 (1) 32 (2) m
n

   (3) 108 (4) 1
2 x

  

 (5) 1
6

  (6) 1
4

−   (7) 3 (8) 4 

 (9) 1
2

  (10) 1
4

−   (11) 33 4
4

−   (12) 0

 (13)  f x x( ) ��� � as  (limit does not exist)0  (14) 1
4

  (15) 1
4a a b−

 

Exercise 9.3

 (1) (i) f x f x( ) , ( )� �� � � � � �� � �� �
2 2 2 2 as  as   

  (ii) f x f x� � � �
2 2 2 2

�
�
�

�
�
� �� � �

�
�

�
�
� � �� �

� �

 as  as ,   

 (2) f x f x( ) , ( )3 3 3 3��� � �� �� �
 as  as  (3) f x x( ) �� �� as 

 (4) 0 (5) f x x( ) �� �� as  (6) 1−   (7) 1
4

 

 (8) (i) 1
6

    (ii) 9
25

    (iii) 1  (9) 1
α

  (10) 30

Exercise 9.4
 (1) 7e   (2) 

1
3e   (3) 1 (4) 8

1
e

  (5) 3e  

 (6) 1
8

  (7) α
β

     (8) 2
5

 (9) 
1

0

if

  if

 as 0 if  

m n
m n

f m n

�
�

�� � �

�

�
�

�
�

( )� �

 (10) 2cos a   (11) b
a

   (12) 2
3

  (13) 1
2

  (14) 2

 (15) 2log
3

  (16) log9  (17) 1
2

  (18) log3 1−   (19) a

 (20) 3
2

−   (21) 2e   (22) 1
4 2

   (23) 1 (24) 2e

   (25) 2 (26) log a
b

  (27) 1
2

   (28) 1
2
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 Exercise 9.5
 (2) (i) continuous for all x ∈   (ii) continuous in   

  (iii) continuous for all (2 1) ,
2

x n n zπ∈ − + ∈   (iv) continuous for all x ∈  

  (v) continuous for (0, )∞   (vi) continuous for all {0}x ∈ −  

  (vii) continuous for all { 4}x ∈ − −   (viii) continuous for all x ∈  

  (ix) continuous for all { 1}x ∈ − −   (x) continuous for all ,
2

nx n zπ∈ − ∈  
 (3) (i) not continuous at 3x =   (ii) continuous for all x ∈  

  (iii) continuous for all x ∈  (iv) continuous for all 0,
2

x π ∈  
 

 (4) (i) continuous at  x
0

1=  (ii) not continuous at 0 3x =  
 (5) continuous for all x ∈  (6) 4α =           (8)  6 
 (9) (i) not continuous at 1x =  (ii) not continuous at 0x =  

 (10) continuous at 0,1,3x =  

 (11) (i) removable discontinuity at 

2 2 8 if 22, ( ) 2
6 if 2

x x xx g x x
x

 − − ≠ −= − = +
− = −

 

  (ii) removable discontinuity at 

3 64 if 44, ( ) 4
48 if 4

x xx g x x
x

 + ≠ −= − = +
 = −

 

  (iii) removable discontinuity at 

3 if 9
99, ( )

1 if 9
6

x x
xx g x

x

 − ≠ −= = 
 =

 

 (12) 2−    (13) (0) 0f =   (14) 2(1)
3

f =  
Exercise 9.6

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)
2 3 4 1 1 4 2 2 2 3 4 3 4 3 1

(16) (17) (18) (19) (20) (21) (22) (23) (24) (25)
1 1 1 4 2 2 2 2 2 4

Exercise 10.1

 (1) (i) 0 (ii) 4−  (iii) 2x−

 (2) (i) � � � � �� �f f( ) , ( )1 1 1 1, not differentiable      (ii) � � �� � �f x x( )   as  1 , not differentiable

  (iii) � � � �� �f f( ) , ( )1 1 1 2 , not differentiable

 (3)  (i) differentiable   (ii) not differentiable

  (iii) not differentiable   (iv) not differentiable

 (5) at  and  are cuspsx x� � �1 8

  at 4x =  it is not continuous,  at  tangent is perpendicularx =11,
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 (6) does not exist 

 (7) (i) not differentiable at ,x n n zπ= ∈  (ii) not differentiable at (2 1) ,
2

x n n zπ= + ∈

Exercise 10.2

 (1)  1 3cos x−  (2) cos sinx x−  (3) cos sinx x x+  

 (4) 2sin 2secx x− −   (5) 2 33 cos sint t t t−   (6) 24sec tan sect t t+  

 (7) (cos sin )xe x x+  (8)  
2

2

sec tanx x x
x

−   (9)  1
1 cos x+

  

 (10) 2

(1 )cos (1 )sin
(sin cos )

x x x x
x x

− + +
+

  (11)  cos sinx x+  (12) 3

cos 2sinx x x
x
−   

 (13) tan sec cos sinθ θ θ θ+ +   (14) 
2

3

(1 cos )
sin

x
x

+−   (15) cos 2 sin cosx x x x+   

 (16) 1 logxe x
x

−  −  
  (17) 

2
3 2 53( 5) log(1 ) 2 log(1 )

1
x xe x x x x

x
−  +− + + + + + + 

 (18) cos
180 180

xπ π   (19) 
10log e
x   

Exercise 10.3

 (1)  2 45(2 4)( 4 6)x x x+ + +   (2) 23sec 3x   (3) 2sec sin(tan )x x−  

 (4) 
2

2 3 3(1 )x x
−

+   (5) 1
2

xe
x

  (6) cos( )x xe e  

 (7) 2 3 67(3 4)( 4 )x x x+ +   (8) 
1
2

2

3 1 11
2

t
t t

   − +      
  (9) 

2
2 31 sec (1 tan )

3
t t

−
+  

 (10) 2 3 33 sin( )x a x− +    (11) my−   (12) 20sec5 tan 5x x   

 (13) 
3

2
2 4

8(2 5) [2 15 5]
(8 5)

x x x
x

− + −
−

  (14)  
8 14

3 2

3

2

2

3

x x

x

+

+( )

 (15) 
2 2[1 2 ]xe x− −   

 (16) 
2

3 5
3 34 4

3

2( 1) ( 1)

t

t t
−

+ −
  (17) 

14 3
2(7 3 ) 7 3

x
x x
−

− −
  (18) 2sin sec (cos )x x−  

 (19) 2sin (1 sec )x x+   (20) 

1

2

5 (log5)x

x

−

  (21) 
2sec

1 2 tan
x

x+
 

 (22) 3sin cos (sin cos )x x x x−  (23) −k kx kxsin sin( cos )2   (24) 2 56sin 2 (1 cos )x x− +    

 (25) 
3 4

2

3 2
(1 )

x x

x

e e
e

+
+

  (26) 2 1

4

x

x x x

+

+
 (27) cos [cos sin ]x xe x x x−   
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 (28) 
4 2 1

8

x x x x

x x x x x x

+ + +

+ + +
   (29) 

( ) ( )2cos tan sin sec sin cos

2 sin

x x x

x
          (30) 2

2
1 x

−
+

  

Exercise 10.4

 (1)  x x
x

x xxcos cos
sin log��

�
�

�
�
�  (2)  x x

x
x

x
xx xlog log

(log )
log

log(log )
2 1�
�
�

�
�
� � �

�

�
�

�

�
�

 (3) (2 1)
(1 2 )

y x
x y

−
+

  (4) 
( log )
( log )

y x y y
x y x x

−
−   (5)  (cos )

log(cos )
tan log

logx x
x

x xx ��
��

�
��

 (6) 
2

2

b x
a y

−   (7)  x x y y
x y x y

2 2

2 2

� �

� �
 (8) 

2 2

2 2

1 sec ( ) sec ( )
sec ( ) sec ( )

x y x y
x y x y

− + − −
+ − −

 

 (10) 1
2

  (11) 2

6
1 9x+

  (12) 1 (13) tan t−  

 (14) tan t   (15) 
2 1
2

t
t
−   (16) 2

2
1 x+

  (17) 2

3
1 x−   

 (18) 1 (19) cos x2  (20) 2 (21) 
1

2

 (22) −1 (23) 3
2 2(1 )

x

x−
  

Exercise 10.5

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)
2 4 3 3 1 4 3 2 1 4 3 3 2 2 4

(16) (17) (18) (19) (20) (21) (22) (23) (24) (25)
2 3 1 4 2 4 1 1 3 2

Exercise 11.1

 (1) (i) 
12

12
x c+   (ii) 6

1
6

c
x

− +   (iii) 
7
33

7
x c+   (iv) 

13
88

13
x c+  

 (2) (i) cot x c− +   (ii) sec x c+   (iii) cosecx c− +   (iv) tan x c+  

 (3) (i) 312 x c+   (ii) log | |x c+   (iii) xe c+  

 (4) (i) 1tan x c− +   (ii) 1sin x c− +   
Exercise 11.2

 (1) (i) 
7( 5)

7
x c+ +   (ii) 3

1
9(2 3 )

c
x

+
−

  (iii) 
3
22 (3 2)

9
x c+ +  

 (2) (i) cos3
3

x c− +   (ii) sin(5 11 )
11

x c− +−   (iii) cot(5 7)
5
x c−− +  

 (3) (i) 3 61
3

xe c− +   (ii) 
8 7

7

xe c
−

− +   (iii) 1 log | 6 4 |
4

x c− − +  
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 (4) (i) 5 tan
5
x c+   (ii) 1 cosec(5 3)

5
x c− + +   (iii) 1 sec(2 15 )

15
x c− − +  

 (5) (i) 11 sin (4 )
4

x c− +   (ii) 11 sin (9 )
9

x c− +   (iii) 11 tan (6 )
6

x c− +  

Exercise 11.3

 (1) 
6

3

( 4) 1 cot(3 1)
6 3(2 5 ) 3

x x c
x

+ −+ + +
−

  (2) 3 62sin(5 2 ) 3 6log | 6 4 |xx e x c−− − + − − +  

 (3) 5 tan 9sin 2 2sec(5 3)
5
x x x c+ + + +   (4) 1 1 12sin (4 ) 9sin (3 ) 3 tan (5 )x x x c− − −+ − +  

 (5) 1 12 tan (3 2) 3sin (3 4 )x x c− −+ + − +   (6)  sin log | |
x x e c

x

3
4 7 9 5 5

3

��
�
�

�
�
� � � � �

�

Exercise 11.4 

 (1) 22 5 3x x− +   (2) 3 23( 1)x x− −   (3) 3 22 3 5 26x x x− + +  
 (4)  (i) 8 seconds (ii) 39.2 m/sec (iii) 78.4 m/sec
 (5) (i) 2.5 sq.cm (ii) 1.5 sq.cm 

Exercise 11.5

 (1) 
2 24 3log | |

2
x x x c

x
+ − − +   (2) 

2

log | | 2
2
x x x c+ + +    (3) 

3
28 26 180

3
x x x c+ − +  

 (4) tan cot 2x x x c− − +   (5) 2[sin cos ]x x cα+ +  (6) 2cosec2x c− +  

 (7) 3cot 4cosecx x c− − +   (8) sinx x c− +   (9) sin 32 sin
3

x x c + +  
 

 (10) 1 sin 5 sin
2 5

x x c + +  
  (11) 1 sin10

2 10
xx c − +  

  (12) 1 cos 4
8

x c− +  

 (13) ( )
log( )

xae c
ae

+   (14) 
5 3
2 22 2(3 7) (3 7)

15 3
x x c+ − + +

 (15) 
2 2 2 32 2

log 2 3log 2

x x

c
+ −

− +   (16) 
3 3
2 22 [( 3) ( 4) ]

21
x x c+ + − +  

 (17) 2 log | 3 | log | 2 |x x c+ − + +   (18) 1 1 1log | 1| log | 2 |
9 9 3( 2)

x x c
x

− − + + +
+

 (19)  12log 3tan
1

x x c
x

−+ + +
−

 (20) 
2

3 log | 1| 8log | 2 |
2
x x x x c+ − − + − +  

Exercise 11.6

 (1) 21 x c+ +   (2) 1 31 tan ( )
3

x c− +   (3) log | |x xe e c−+ +  

 (4) 10log |10 |x x c+ +   (5) 2cos x c− +   (6) log | log(sin ) |x c+
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 (7) log log tan
2
x c  +  

  (8) 2 2 2
2

1 log | sin |a b x c
b

+ +  (9) 
1 2(sin )

2
x c

−

+  

 (10) 2(1 ) 4(1 ) 2 log |1 |x x x c+ − + + + +   (11) log | log(log ) |x c+  

 (12)  � ��e cx� �

 (13) 2 sec x c+  (14) 
19 18(1 ) (1 )

19 18
x x c− −− +  

 (15) 
6 8sin sin

6 8
x x c− +   (16) ( ) cos sin log | sec( ) |x a a a x a c− − − +  

Exercise 11.7

 (1) (i) 3 [3 1]xe x c− +  (ii) cos3 sin 3
3 9

x x x c− + +   

  (iii) 5 [5 1]xe x c−− + +  (iv) sec log | sec tan |x x x x c− + +  

 (2) (i)  
2 2log | |

2 4
x x x c− +  (ii) 3 2[9 6 2]xe x x c− + +  

  (iii) 2 sin 2 cos 2sinx x x x x c+ − +   (iv) 3 2cos 3 sin 6 cos 6sinx x x x x x x c− + + − +  

 (3) (i) 1 2sin 1x x x c−− − + +  (ii) 
2 4 21 [ 2 2]

2
xe x x c− + +

  (iii) 1 21 4 tan 4 log | 1 16 |
2

x x x c− − + +    (iv) 1 22 tan log 1x x x c− − + +  

Exercise 11.8

 (1) (i) 2 2 [ cos sin ]
axe a bx b bx c

a b
+ +

+
   (ii) 

2

[2sin cos ]
5

xe x x c− +  

  (iii) [2sin 2 cos 2 ]
5

xe x x c
−

− +   

 (2) (i) 
3

[3sin 2 2cos 2 ]
13

xe x x c
−

− + +   (ii) 
4

[2sin 2 cos 2 ]
10

xe x x c
−

− + +

  (iii) 
3

[sin 3cos ]
10

xe x x c
−

− +  

Exercise 11.9

 (1) log | sec |xe x c+   (2) 
2

xe c
x

+   (3) secxe x c+  

 (4) tanxe x c+   (5) 
1tan xxe c

−

+   (6) 
1 log | |

x c
x

+
+
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Exercise 11.10

 (1) (i) 1 2log
4 2

x c
x

+ +
−

  (ii) 1 5 2log
20 5 2

x c
x

+ +
−

  (iii) 1 3 2log
12 3 2

x c
x

− +
+

 (2) (i) 1 2 3log
2 2 2 3

x c
x

− + +
+ −

   (ii) 1 4log
10 6

x c
x

− +
+

 (iii) 2log 2 4 2x x x c+ + + + +  

 (3) (i) 2log 2 ( 2) 1x x c+ + + − +     (ii) 2log 2 4 5x x x c− + − + +   (iii)  1 4sin
5

x c− −  +  
  

Exercise 11.11

 (1) (i) log  | | logx x x
x

c2
4 12

7

8

2

6
� � �

�
�

�  (ii) 2 15 log | 2 2 | 7 tan ( 1)
2

x x x c−+ + − + +  

  (iii) 2 13 5 2 1log | 2 2 3 | tan
4 2 5

xx x c− − − + + +  
 

 (2) (i) 5 2

13
2 9 4

1 2
sin

� �
� � � �

x x x c   (ii) 2 21 2 log | 1 |x x x c− + + − +  

  (iii) 2 22 4 1 log | 2 4 1 |x x x x x c+ + − + + + + +  

Exercise 11.12

 (1) (i) 2 21 92 10 log | 1 2 10 |
2 2

x x x x x x c+ + + + + + + + +

  (ii) 2 21 2 3 2log | 1 2 3 |
2

x x x x x x c− − − − − + − − +

  (iii) 2 15 110 24 sin ( 5)
2 2

x x x x c−− − − + − +  

 (2) (i) 2 11 2 5(2 5) 9 (2 5) 9sin
4 3

xx x c− +  + − + + +    

   (ii) 2 21 (2 1) 81 (2 1) 81 log 2 1 81 (2 1)
4

x x x x c + + + + + + + + +  

  (iii) 2 21 ( 1) 4 2log 1 ( 1) 4
2

x x x x c+ + − + + + + − +

Exercise 11.13

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)
1 3 4 1 3 1 3 2 4 3 4 2 4 4 1

(16) (17) (18) (19) (20) (21) (22) (23) (24) (25)
2 3 2 4 1 3 4 3 1 4
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Exercise 12.1

 (1) (i)  permissible (ii) not permissible (iii) not permissible

 (2) (i) 1
2

   (ii)  1  (3) (i)  5
9

   (ii)  4
9

      (4) (i) 1
7

 (ii)  2
7

     (5) (i) 7

64
 (ii) 

247
256

 (iii) 
37
256

 

 (6)  37

100
 (7) (i) 7

33
    (ii) 14

55
   (8) (i) 2

13
   (ii) 5

13
 (iii) 2

13

 (9) 627
728

  (10) (i)  5
12

  (ii)  2 to 3

Exercise 12.2

 (1) (i)  5
8

   (ii) 1
2

    (iii)) 1
8

   (iv) 1 (2) (i) 0.50    (ii) 0.35     (iii) 0.20

 (3) 11
36

  (4) (i) 0.8   (ii) 0.5  (iii) 0.3

 (5) (i) 0.9984    (ii) 0.0016 (6) (i) 0.64    (ii)  0.44

Exercise 12.3

 (1) No (3) 0.5 (4) (i) 0.5  (ii) 0.9

 (5) 3
8

  (6) (i) 3
5

  (ii) 13
30

  (7) (i) 0.5   (ii) 0.375

 (8) (i) 1
4

   (ii) 9
40

    (iii) 21
40

  (9) 0.75

 (10) (i) 0.3 (ii) 0.5   (iii) 0.5   (iv) 0.5 (11) (i) 5
28

  (ii) 1
14

  (12) 13
30

 

Exercise 12.4

 (1) 0.028 (2) (i) 11
20

   (ii) 6
11

  (3) (i) 7
250

    (ii) 3
7

  

 (4) 15
41

            (5) (i) 9
25

 (ii) 2
3

 

Exercise 12.5

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

4 3 1 2 2 1 1 4 2 3 3 1 4 2 3

(16) (17) (18) (19) (20) (21) (22) (23) (24) (25)

1 4 3 2 3 2 2 4 4 3
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CHAPTER 7   
MATRICES and  DETERMINANTS
matrix 

order 

row matrix  

column matrix  

zero matrix  

null matrix  

square matrix  

diagonal matrix  

unit matrix  

triangular matrix   

upper triangular 
matrix

   


lower triangular 
matrix

   


principal diagonal   

scalar matrix  

conformable 

commutative 
property

 

associative 
property

 

identity property  

inverse property  

distributive 
property

 

symmetric 

skew-symmetric  

determinant 

singular matrix   

non-singular 
matrix

  


CHAPTER 8 
VECTOR ALGEBRA-I

vector 

initial point  

terminal point  

support of the 
vector

 

free vector  

localised vector  

co-initial vectors   


co-terminal 
vectors

  


collinear vectors   


parallel vectors  

coplanar vectors   

equal vectors  

zero vector  

unit vector  

like vectors   

unlike vectors   


scalar 
multiplication

 

position vector  

section formula  

resolution of 
vector

 
 

direction cosines  

direction ratios  

scalar product  

vector product  

CHAPTER 9 
LIMITS AND CONTINUITY

calculus  

limit 

one sided limit  

left hand limit  

right hand limit  

infinite limit  

limit at infinity  


vertical asymptote  
 


GLOSSARY
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horizontal 
asymptote

 
 


Sandwich theorem  


continuity  

discontinuity  


removable 
discontinuity

  


jump discontinuity  


CHAPTER 10 
DIFFERENTIAL CALCULUS -

DIFFERENTIABILITY AND 
METHODS OF DIFFERENTIATION

analytic equation  

derivative 

velocity 

acceleration 

jerk 

tangency  


difference quotient  


secant line 

tangent line 

slope of the curve  

rectilinear motion 

position function 

differentiable  / 


differentiation 

left hand derivative  

right hand 
derivative

 

non-
differentiability

 


quotient rule  

chain rule  

composite 
functions rule

  


function of a 
function rule

  

intermediate 
argument

 

implicit 
differentiation

  


explicit 
differentiation

  


parametric 
differentiation

  


higher order 
derivative

 


CHAPTER 11
INTEGRAL CALCULUS

integrand  

integrator  

anti-derivative  


indefinite integral  
 


CHAPTER 12 INTRODUCTION TO 
PROBABILITY THEORY

experiment 

deterministic 
experiment

 


random 
experiment

 


event 

sure event or 
certain event  

impossible event  

exhaustive event  


sample space 

mutually exclusive 
events

 
 


equally likely 
events

 


conditional 
probability

 


independent 
events  

Glossery.indd   282 10-08-2018   18:31:38



283 GLOSSARY

BOOKS FOR REFERENCE

 (1) Elements of Linear Algebra– P.M.Cohn , Springer

 (2) Theory and Problems of Matrices – Frank Ayres, Schaum’s Outline series

 (3) Topics in Algebra, I.N. Herstein, Vikas Publishing Company.

 (4) Vector Algebra, Schaum’s Outline series.

 (5) Differential and Integral Calculus, N. Piskunov, Mir Publsihers, Moscow.

 (6) Elementary Treatise on the Calculus, George A. Gibson, Macmillan & Co. New 

York.

 (7) Elementary Calculus, Vol. I, V.I. Smirnov, Addison – Wesley Publish Company, 

Inc.

 (8) Calculus (Volume 1 and II), Tom. M. Apostol, John Wiley Publications.

 (9) Calculus and Analytical Geometry,

  George B.Thomas and Ross L. Finney (Ninth edition) Addison-Wesley.

 (10) Calculus Early Transcendentals – George B.Thomas JR., Joel Hass, Christopher 

Heil, Maurice D.Weir, Pearson

 (11) Advanced Engineering Mathematics- Erwin Kreyszig – Wiley India(P) Ltd.

 (12) Calculus, Robert T.Smith, Roland B.Minton, McGraw Hill Education(India)

Private Limited.

 (13) Mathematical Analysis, S.C. Malik, Wiley Eastern Ltd.

 (14) Methods of Real Analysis, Richard R. Goldberg, Oxford and IBH Publishing 

Company, New Delhi.

 (15) Theory and Problems of Probability, Random Variables and Random Processes, 

Hwei P. Hsu, Schaum’s Outline series

 (16) Mathematical Statistics, John E. Freund and Ronald D. Walpole, Prentice Hall of 

India.

 (17) Mathematical Statistics, Saxena and Kapoor

Glossery.indd   283 10-08-2018   18:31:38



Mathematics – Volume 2  
Text Book Development Team - HSc - Class 11

This book has been printed on 80 G.S.M.  
Elegant Maplitho paper.
Printed by offset at:

Art and Design Team

Illustration, Layout & Typist 
1. S. Manoharan, 
V.V. Graphics, 
Palavanthangal, 
Chennai - 114

In-House  QC   
Manohar Radhakrishnan 
Gopu Rasuvel, 
Jerald Wilson

Wrapper Design 
Kathir Arumugam

Coordination 
Ramesh Munisamy

Domain Experts
Dr. S. Ponnusamy 
Professor,  
Indian Institute of Technology, Chennai

Dr. K. Srinivasan, 
Associate Professor & Head (Rtd), 
Department of Mathematics, 
Presidency College (Autonomous), Chennai 

Dr. E. Chandrasekaran, 
Professor in Mathematics, 
Vel Tech Rangarajan Dr. Sagunthala  
R&D Institute of Science and Technology  
(Deemed to be University), Avadi, Chennai

Dr. C.Selvaraj 
Associate Professor of Mathematics 
Presidency college, Chennai 

Dr. Felbin C. Kennedy 
Associate Professor & Head, 
Department of Mathematics 
Stella Maris College, Chennai 

Dr. G. Palani, 
Assistant Professor, 
Dr. Ambedkar Govt. Arts College, 
Vyasarpadi, Chennai. 

Content Experts
Dr. R. Vembu, 
Associate Professor, 
SBK College, Aruppukkottai 

Dr. D. J. Prabhakaran 
Assistant Professor, 
Dept of Mathematics 
MIT Campus 
AnnaUniversity, Chennai.

Reviewers
Dr. V. Thangaraj 
Former Director of RIASM 
University of Madras

Dr. M. Chandrasekar 
Professor and Head 
Department of Mathematics 
Anna University

Dr. K. C. Sivakumar 
Professor  Department of Mathematics 
IIT Madras, Chennai

Dr. L. Jones Tarcius Doss 
Professor Department of Mathematics 
Anna University, Chennai 

Dr. J. R. V.  Edward 
Principal Incharge 
Department of Mathematics 
SCOTT Christian College, 
Nagercoil, Kaniyakumari Dt

Dr. R. Roopkumar 
Associate Professor 
Dept. of Mathematics 
Central University of Tamilnadu 
Thiruvarur. 

Academic Coordinator
B. Tamilselvi, 
Deputy Director, SCERT,  
Chennai

Authors
Dr. R. Swamynathan 
Principal, Vidhya Giri Higher Secondary 
School,  
Puduvayal Karaikudi

S. Paneerselvam 
PGT,(Rtd), GHSS, GKM Colony,  
Chennai 

M. Madhivanan 
Headmaster Govt, Model Hr Sec School , 
Karimangalam,  
Dharmapuri 

N. Kalaiselvam, 
PGT, Chennai Girls HSS, 
Nungambakkam, Chennai 

A. Balamurugan, 
PGT, Adhiyaman GBHSS,  
Dharmapuri 

C. S. Veeraragavan, 
PGT, Sri Krishnaa Matric. Hr. Sec. School,  
TVS Nagar, Coimbatore 

R. M. Meenakshi 
PGT Anna Adarsh MHSS Annanagar ,  
Chennai

Coordinator
K.P. Sujatha, 
B.T Assistant,  
GGHSS, K.V. kuppam, Vellore-Dt

Content Readers
Dr. M. Alphonse, 
Headmaster (Retd), 
GHSS, Sadurangapattinam, 
Kanchipuram Dt

G. Rajendiran, 
Headmaster (Retd) 
Thanthai Periyar GHSS, Puzhithivakkam, 
Kanchipuram Dt

ICT Coordinator
D. Vasu Raj 
B.T. Asst (Retd),  
Kosappur, Puzhal Block, Tiruvallur Dt

QR Code Management Team 
R. Jaganathan,  
Pums, Ganesapuram- Polur

N. Jagan, Gbhss, 
Uthiramerur, Kancheepuram

J. F. Paul Edwin Roy, 
Pums, Rakkipatti, Salem

Glossary.indt   284 11-08-2018   13:53:37


	11th Std Maths - Introduction Pages
	Unit7
	Unit8
	Unit9
	Unit10
	Unit11
	Unit12
	Answers
	Glossery

