6.1 Introduction

Mathematical methods used to solve equations or evaluate integrals or solve differential equations can be
classified broadly into two types.

1. Analytical Methods

2. Numerical Methods

6.1.1 Analytical Methods

Analytical methods are those which by an analysis of the equation obtain a solution directly as a readymade
formulae in terms of say, the coefficients present in the equations.

Example 1.
Solve a? + bx + ¢ analytically
v 2 R
Analytical solution: x = bt b - 4ac
2a
Example 2.
Evaluate f x° dx analytically
2 3P .3 _
Analytical solution: L “ady = [LJ = 2 -1 ZZ_
3 4 3 3
Example 3,
Solve the differential equation
dy N ”
Pl 2y =0 with initial condition y{0) = 3.
Analytical solution: f%f = f 2 dx
= logy = 2x
y = ce*
H0) = 3
=3 c =23

y = 3e%is the required analytical solution.

6.1.2 Numerical Methods

Those same problems could also be solved numerically as we shall see in this chapter.

In numerical solution, instead of directly writing the answer in terms of some formulae, we perform stepwise
calculations using some algorithms or numerical procedures (usually on a computer) and arrive at the same results.

The advantage of numerical methods is that usually these procedures work on a much wider range of
problems as compared to analytical solutions which work only on a limited class of problems.



[For example, there are no analytical solutions available for polynomials of degree 4 or more. Whereas
aumerical methods can be used to solve polynomial equations of any degree.

Also numerical solutions can be used on linear as well as nonlinear equations, whereas analytical solutions
Jsually fail-for nonlinear equations. '

With the advent of computers and huge computational (number crunching) power, numerical methods have ‘
argely replaced analytical methods of solution and have extended the power of mathematical methods to solving
a2 much wider class of practical problems which occur in simulation and modeling, than it was possible before
1sing analytical methods only.

Although Numerical Methods exist to solve so many types of commonly occurring mathematical problems,
ve shall focus on four problems in particular in this book, where numerical methods are successfully applied.

1. Solution of system of linear equations

2. Solution of algebraic and transcendental equations in single variable

3. Evaluation of definite integrals

4. Solution of ordinary differential equations

The advantage of numerical methods is its applicability to a wider class of mathematical problems, a
lisadvantage of numerical methods is that these methods introduce errors in varying degrees into the solution,

nereby making them approximate. These errors however, can be controlled and contained within some ordinary
dlerance local.

1.3 Errors in Numerical Methods

1. Round-off Error:tlt occurs due to limited storage space available inside computer for storing mantissa
part of a floating point number due to which these numbers are either chopped off or rounded after so
many significant digits.

2. Truncation Error: It occurs due to usage of fixed or limited number of terms of an infinite series to
approximate certain functions.

Examplei
Taylor's and Mclaurin's Series expansions of functions like €%, sinx, cosx efc., with limited number of
terms of the infinite series.

Although errors are introduced in Numerical Methods, they can be controlled and hence either reducedto
“bitrarily low values or managed to be within tolerable limits.

For example, round-off errors can be controlled by allocating larger storage space for mantissa by using
duble float, instead of float for example.

Truncation errors can be controlled by developing methods in which more terms of the Taylor's series are
sed.

For example, truncation error in Simpson’s rule of numerical integration is much less than trapezoidal rule for
ime problem, owing to the fact that Simpson’s rule is developed by taking more terms of Taylor's Series. The
der of a Numerical Method is a way of quantifying the extent of error, the higher the order, lesser the error. Some
imerical methods involve starting the procedure by assuming trial guess values for the solution and then refining
€ answer successively to greater and greater accuracy in each iteration. These types of numerical methods are
lled trial and error methods or iterative methods..

For example, the Gauss-Seidel method for solving system of linear equations is a trial and error (iterative)
athod. So is the bisection, regula-falsi, secant and Newton-Raphson methods used for root finding (solving
Jebraic and transcendental equations of the form f(x) = 0).



Quantifying Ervors in Numerical Methods: There are several measures to quantity the error which occurs in
numerical methods. :

Error = Exact Value — Approximate Value

i

Absolute Error | Exact Value — Approximate Value [

i

Relative Error = Exact — Approximate
Exact
Relative Error % = |E£Xact - Approximate 100
Exact

6.2 Numerical Solution of System of Linear Equations

Consider the following m first degree equations consisting of n unknowns x,, x, ...xn.,

Ay X+ Xyt o A X +a,,x, = b,
8oy Xy + 8py Xy F e + 8y Xt + a,,x, =D,
Ay Xy BppXo F o + 8%+ +a, x, . =b_

or in matrix notation, we have

811812 ........ am Xq D1
321 a22 ........ agn X0 _ b2
Z I I XETEINS - e NS [ AR I D 1o
= AX = B
—By-finding-a-solution-of the-above system-of equation-we mean-to-obtain-the-values of sy xy——x;suchthat—

they satisfy all the given equations simultaneously. The system of equations, given above is said to be homogenous
ifall b, (i = 1....m) vanish, otherwise it is called as non homogenous system. There are number of methods to solve
the above System of Linear Equations.

These are as follows:

Matrix Inversion Method

Cramer’'s Rule

Crout's and Dolittle’s Method (Triangularisation Methods)
Gauss-Elimination Method

Gauss-Jordan’s Method

Gauss-Seidel lterative Method

Jacobi lterative Method

N O WD

In this book, we shall focus on Triangularisation, Gauss-Elimination and Gauss-Seidel Methods only.

6.2.1 Method of Factorisation or Triangularisation Method (Dolittle’s Triangularisation Method)

This method is based on the fact that a square matrix A can be factorised into the form LU where L is unit
lower triangular and Uis a upper triangular, if all the principal minors of A are non singulari.e., it is a standard resut
of linear algebra that such a factorisation, when it exists, is unique.

We consider, for definiteness, the linear system

By xy + BipXy + Aygxg = by



dpq Xq + gy Xy + dpgXg
g Xy + dgp Xy + Agg3Xg

Which can be written in the form

AX
Let A
where L
and U
(i) becomes LUX
If we set UX
then (v) way be written as LY

which is equivalent to the systemy,=

LYy + Yo
CarYy + L3o¥o + Vs

.. (V)
(Vi)
. (i)

and can be solved for V1. Yo ¥4 by the forward substitution. Once, Yis known, the system (vi) become

UygXy + UypXy + UygXg
UppXy + UygXy

UgaXg

il

b,

B

LU

100

Ly 10

| l5q l3p 1
ruﬂ Ujp Uz
0 Uy Ung
0 0 ugg
B

Y

B

b,

b,

by

Y

Yo

Y3

which can be solved by backward substitution.

We shall now describe a scheme for computing the matrices L and U, and illustrate the procedure with a
matrix of order 3. From the relation (i), we obtain

10 0 Uy Uz Ug
by 10110 Uy Uy

Multiplying the vertices on the left and equating the corresponding elements of both sides we get

Uy

lyqUy,

or Ly,

8y @1 13
81 dyp dpg

d3 83p dag

Qyy, Uyp = 8yp, Uyg = dyg

21

0o
8gp = Apylyy
83
8y~ 4p1Us,
&4

G
Uy4



31U,

= 1
Lastly, 3y Uyg + Ly Upg + Uy,
= Ugg

order Uy, Uy, Uyg
then £,,, Uyy, U,y
lastly, 44, 455, Ugy

aplny = 8,

8gp = laUyy

%

U')g

s

8g3~ £34Usg~ Lypling
- the variables are solved in the following

Example:
Solve the equations
2x+3y+2z =9,
X+2y+32 =6
x+y+2z =8
by the factorisation method.
Solution
(2 3 1]
' A=123
31 2]
[1 0 0 [uyy uyy um] [2 3 1]
Ly P00 Uy Uy [ = [1T23
[131 I3 1J[o 0 u33J 131 2]

clearly U
also , 4,0y,
Coqlyp + Upy

= Uy
Co1lyg + Upg

from which we obtain Upg
gy Uy

= Uy
gy Upp+ lgp Uy

= Y3
Caq Upgt Lgp Upg + Uy

= gy
It follows that A

=2, Up=3 Uy=1
1, sothat £,, = 1/2

o
Z

= 24, U, = 1/2

3

= 5/2

3/2

PFW N

ey
o O

~J
—i

=

S oo™

Of\)l_.a. [O%]

5:\3!0’@_*

L.



and hence the given éystem of equations can be written as

(1001231
1 15 |* 9
5 1 00 = = ly| = |6
2 2 2 g
3 00 187
2.7 A ‘
L2 ]
(1001
Y4 9
oras 11Oy2=6
2
3 Y3 8
279
B

solving this system by forward substitution, we get

y,-=9,X21+y2 = 6

3
= =
Ve 2

3
Y1 Vatys = 8ory, =5

Hence the solution of the original system is given by

o o N
N jor
NS
i
o W ©

which when solved by back substitution process.

35 29 5
SRR T IR T I T
Note: The Crout's triangularisation method is very similar to Dolittle’'s method except that in Crout's method
4y 00 T U Uy
L=ty £, O |andU={0 1 Uspg
531 632 638 0 0 1

Also the order of solving the unknowns in Crout's method is column wise instead of row wise i.e., we solve
4y Loy g then uy,, Co90 L3 then uy,, Uy, and ¢

{33 There is no particular advantage of Crout's method over
ittle’s method and hence either method can be used for triangularisation.

2 Gauss Seidel Method
In the first equation of (ii), we substitute the first approximation

(0,0,

............ x,@) into right hand side and denote the result as x1(2).

In the second equation we substitute (x1<2> , x§>, ........... xﬁ,“ ) and denote the result as xg?> .



. o . 2 .
In the third approximation we substitute (x{?, x, X #1) and call the resultas A2 Inthis manner,

we complete the first stage of iteration and the entire process is repeated till the values of xy, x, ... x are obtained
to the accuracy required. It is clear therefore that this method uses an improved component as soon as itis
available and it is called the method of "Successive displacements” or “Gauss-Seidel method”.

Note: It can be shown that the Gauss-Seidel method converges twice as fast as the “Jacobi method”.

6.3 Numerical Solutions of Nonlinear Algebraic and Transcendental Equations
by Bisection, Regula-Falsi, Secant and Newton-Raphson Methods

In scientific and engineering work, a frequently occurring problem s to find the roots of equations of the form
fix) = O ()
If fx) is a quadratic, cubic or biquadratic expression then algebraic formula are available for expressing the roots
in terms of the coefficients. On the other hand when fx) is a polynomial of higher degree or on expression involving
transcendental functions e.g., 1 + cosx — 5x, x tan x - coshr, & - sinx etc. Algebraic methods are not available and
recourse mustbe taken to find the roots by approximate methods.

There are some numerical methods for the solutions of equations of the form (1), where fix) is algebraic or
transcendental or a combinations of both.

6.3.1 Roots of Algebraic Equations

Let px" + pj)gf” + pzr” +..+p,_ X+ p,bea rational integral function of x of n dimensions, and let us
denote it by f(x); then fx)= O is the general type of a rational integral equation of the n" degree.

Dividing throughout by p,, we see that without any loss of generality we may take
X4 pp 4+ X A X+ Py = 0
*faﬁhﬁyp&e#%aﬁenaIMt@g;aLequa:tiomtnﬁdegLee%ﬁ
1 Unless otherwise stated the coefficients p,, P,,...P, will always be supposed rational.
Any value of x which makes f(x) vanish is called aroot of the equation flx) = 0.
When fx) is divided by x — a without remainder, a is a root of the equation fx) = 0.

We shall assume that every equation of the form fix) = 0 has a root, real or imaginary.

S N

Every equation of the n" degree has nroots, and no more.

Proof: Denote the given equation by fix) = O, where

fx) = px" + ™+ PxTE 4D,
The equation f(x) = O has aroot, real or imaginary; let this be denoted by a;; then fx) is divisible by
x - a,, so that

) = (x—a;) 64(x)
where ¢,(x)is a rational integral function of N1 dimensions. Again, the equation ¢,(x) = O has a root,
real or imaginary; let this be denoted by a,; then ,(x) is divisible by x  a,, €0 that

(1)1(x) = (x— 32) (PZ(?\’) |

where ¢,(x) is a rational integral function of n—2 dimensions,
Thus ' fix) = /UO(X - 81) (x- 82) (3)2(1\) -
Proceeding in this way, we obtain,



Hence the equation f(x) = 0 has nroots, since fx) vanishes when x has any of the values ay, a,,...a,.

6. Also the equation cannot have more than n roots; for if x has any value different from any of the
quantities a,, a,, ay,-..a,,, all the factors on the right are different from zero, and therefore fix) cannot
vanish for that value of x. _

7. Inthe above investigation some of the quantities 8y, dy, &3,...8, may be equal; in this case, however,
we shall suppose that the equation has still n roots, although these are not all different.

8. Inan equation with real coefficients imaginary roots occur in pairs.

Suppose that fx) = O is an equation with real coefficients, and suppose that it has an imaginary root a + ib;
we shall show that a~ib is also a roots. The factor f(x) corresponding to these two roots is

(x-a-ib) (x—a+ib), or (x-a) + b2
Suppose that a = ib, ¢ = id, e = ig, ... are the imaginary roots of the equation f(x) = 0, and that fix) is
the product of the quadratic factors corresponding to these imaginary roots: then

fx) = {(x— @) + b2} {(x - €)2 + BY(x — &) + & ...

Now each of these factors is positive for every real value of x; hence ¢(x) is always positive for real
values of x.

9. We may show that in an equation with rational coefficients, surd roots enter in pairs; that is, ifa +Vb
is a root then a —/b is also a root,

Example: )

Solve the equation 6x% — 13x3 —~ 35x2 — x + 3 = 0, having given that one root is 2 -+/3 .

Solution:

Since 2-3 isa root, we know that 2+ /3 is also a root, and corresponding to this pair of roots we
have the quadratic factor x2 — 4x + 1.
Also 6x° + 13x3-35x2 - x + 3 = (x®~4x + 1) (6x2 + 11x + 3);
hence the other roots are obtained from
6x° + 11x + 3 = 0,
or Bx+1)(2x+3) =0

1
thus the roots are “5,—*%,24{'\/5,2 - \/5 =0

1o determine the nature of some of the roots of an equation it is not always necessary to solve it: for
ince, the truth of the following statements will be readily admitted.

1.

If the coefficients are all positive, the equation has no positive root; thus the equation x5+ x3 + 2y + 1 = 0
cannot have a positive root.

Ifthe coefficients of the even powers of v are all of one sign, and the coefficients of the odd powers are
all of the contrary sign, the equation has no negative roots; thus the equation
x4+ x° - 2x% + 3~ 3x2 + 7x — 5 = 0 cannot have a negative root

It the equation contains only even powers of x and the coefficients are all of the same sign, the
equation has no real root; thus the equation 2x8 + 3x* + x2 + 7 = 0 cannot have a real root.

If the equation contains only odd powers of x, and the coefficients are all of the same sign, the equation has
no real root except x = 0; thus the equation x® + 215 + 3x® + x = 0 has no real root exceptx = 0.



All the foregoing results are included in the theorem of the next article, which is known as Descartes’
Rule of Signs.

6.3.2 Descarte’s Rule of Signs

An equation f{x) = 0 cannot have more positive roots than there are changes of sign in f{x), and cannot have
more negative roots than there are changes of signin {-x).

i.e. number of real positive roots < number of sign changes in fix)

and number of real negative roots < number of sign changes in f{-x).

Example:
Consider the equation x° + 5x3 - x® + 7x + 2 = 0.

Solution:
Here there are two changes of sign, therefore there are at most two positive roots.
Again fl—x) = - x% + 5x® + x® - 7x + 2, and here there are three changes of sign, therefore the given
equation has at most three negative roots, and therefore it must have at least four imaginary roots, since

total number of roots is nine, it being a ninth degree polynomial.

6.3.3 Numerical Methods for Root Finding
W all study four numerical methods, all of which are iterative (trial and error methods) for root finding i.e.

[}
VYD Ol il oluuy v

o

solving f{x) = O.
1. Bisectiom Method
2. Regula-FalsiMethod
3. Secant Method
4.  Newton-Raphson Method

6.3.3.1 Bisection Method

This method is based on the intermediate value theorem which states that if a function f(x) is continuous
between a and b, and f(a) and f(b) are of opposite signs then there exists at least one root between a and b for
definiteness.

Let f{a) be negative, and f(b) be positive (see figure below). Then the root lies between aand b and letiis
approximate value be given by x, = (a + b)/2.

If fx,) = 0, we conclude that x, is a root of the equation f{x,) = 0, otherwise the root lies either x, and b of
between x, and a depending on whether fix,) is negative or positive. We designate this new interval as [a,, b;]
whose length is | b—al/2.

As before this is bisected at x, and the new interval will be exactly half the length of the previous one. We

repeat this process until the latest interval is as small as desired say €. It is clear that the interval width is
reduced by a factor of one-half at each step and at the end of the n'” step, the new interval will be [a, b,] of length

|- al/on.
109 (ib~alj
b-al © €

<e which gives on simplification Nz
2 0 P ' log, 2

We then have !

Inequality (i) gives the number of iterations required to achieve an accuracy €.



This method can be shown graphically as follows:

Y [b, F(b)]

X + X, Xp-1t X,

The iteration equation for bisection method is X, = or more generally, x

nel = 2
xample:
Find a real root of the equation fix)=x®-x-1=0.

olution:

Since f{1) is negative and 2) is positive, a root lies between 1 and 2 and therefore we take
x, = 3/2.

27 3 15

Then f(x,) = 533 which is positive. Hence the root lies between 1 and 1.5 and we obtain

x;=(1+1.5)/2=1.25we find fx,) = =19/64, which is negative. We therefore, conclude that the root lies
between 1.25 and 1.5. It follows that x, =(1.25+15)/2 = 1.375.

The procedure is repeated and the successive approximations are xg = 1.3125, x, = 1.34375,
x5 = 1.328125; etc.

2 Regula-Falsi Method

The method starts by taking two guess values x, and x, for the root, just like the bisection method, such
(xy) f(x,) < 0. The iteration formula for Regula-Falsi method is different from bisection method and it is

fi xo —foxy

T

/}7 X1
f—f

n n-1

or more generally X

1l

n+ 1

Graphically this can be shown as drawing a chord between
and (x,, f,) and seeing that the point of interaction of this
with x axis is x,, as shown in Figure.

Inthe nextiteration, the root is either between xgand.x, or
snx, andx,.

So x, replaces either x,, or x, depending on whether f(x,)
Oor f(x,) f(x, < 0).



If fxg) fxp) <O then x, replaced by x,, else x, replaced by x,. And the iteration is again continued and the
new value of x’, in indicated by x, is figure below.

This is illustrated graphically as follows:

The process is continued untitwe getas close tothe root as desired. Like
bisection method, Regula-Falsi method is 100% reliable and the root will always
be found, since always x, and x, are taken on either side of the root i.e. root is
kept trapped between x, andx, in both bisection as wellas Regula-Falsi methods.

Both Bisection and Regula-Falsi methods are (first order convergence
or linear convergent), as compared with secant and Newton-Raphson methods L
which have convergence rates of 1.62and 2 respectively i.e. Newton-Raphson
method is guadratic convergent.

6.3.3.3 Secant Method

The Secant method proceeds similarly to Regula-Falsi method in the sense that it also requires two starting
guess values, but the difference is that f(x,) f(x;) need not be negative i.e. atany stage of iteration we do not ensure
that the root is between x, and x,. However, Secant method uses the same iteration equation as Regula-Falsi
method.

fixg — Ipx
x, = TN
fi=1
%
fx, —F X
or more generally x4 = A rn
fn~fn—1

In Secant method, once the value of x, is obtained, to proceed to the next iteration, x, is always replaced by x,
and x, s always replaced-by-x,—Fhisisthe only and primary difference between Regula-Falsi and Secant rnethod.

Geometrically, both Regula-Falsi and Secant methods find x, by same way, that is by drawing the chord from (x,, f)to
(x,, f;) and intersection of this chord with x axis is x,. The advantage of the Secant method is that it is faster than both
the Bisection and Regula-Falsimethod as it has a convergence order of 1.62. However, the disadvantage is that, Secant
method is not 100% reliable, since the equation

hoeg —foxy
‘XZ DI e
fi—h
will fail if f, = f;, which may happen since no effortis made to keep f, and f;to be of opposite signs as it is
done in case of Regula-Falsi method, which uses the same iteration equation.
6.3.3.4 Newton-Raphson Method

This melhod is generally used to improve the result obtained by one of the previous method. Let x, be an
approximate root of flx) = 0 and letx, = xo + h be the correct root so that f(x,) = 0. Expanding flxy + h) by Taylor's
series we obtain

flx) = fxg)+ hflxy) + —f;— f'(xg) +... =0

Neglecting the second and higher order derivatives we have fixg) + hT(xg) =0

which gives h= -



A better approximation than x,is therefore given by x,, where

f(xg)
f '(Xo)

Xpep

X = Xg+h=xy~
Successive approximations are given by x,, Xg,

f(x,)
where : Xy, = Xy - f’(xn ]
n

which is Newton Raphson formula.
1 2 f”(i)
n+1 = 2 n f/(é)

So that the Newton Raphson process has a second order or
dratic convergence.

)

~<

Geometrically, in Newton-Raphson method a tangent to curve is
vn at point [x,, f(x,)] and the point of intersection of this tangent and
is is taken as x, which is the next value of the iterate ofcourse x,is
er to root than x,. It can be used for solving both algebraic and (
scendental equations and it can also be used when the roots are e—e
plex.

L .

i
N

=
-
&

The method converges rapidly to the root with a second order
vergence. The number of significant digits in root which are correct,
bles, after each iteration of N-R method.

Following is a list of Common Newton Raphson iterative problems alongwith the Newton-Raphson iteration
ation, for solving that problem.

1. Theinverse of b, is the root of the equation fx) = 1 b =0
X

lteration Equation: Xp = %, (2~ bx)

1
2. The inverse square root b, is the root of equation f{x) = ~ b =0
. X

l)cn (3 - bxﬁ)

lteration Equation: Xpq = 5

3. The p"root of a given number N, is root of equation fx) = xP - N=0

(p=1)x0 + N

lteration Equation: X, = 1
pxf”

Note: The order of Bisection, Regular Falsi and Secant Method and Newton Raphson Method are given

Sl No. Method Order
1. Bisection 1
2. Regula Falsi 1
3. Secant Method | 1.62
4, Newton Raphson 2




6.4 Numerical integration (Quadrature) by Trapezoidal and Simpson’s Rules

The general problem of numerical integration may be stated as follows. Given a set of data points (x,, ¥,),
(xy, ¥4) - (x,, v,). of afunction y = fx), where f(x) is not known explicitly it is required to compute the value of the
definite integral,

1= [ yax )

As inthe case of numerical differentiation, we replace f(x) by an interpolating polynomial ¢(x) and obtain on
integration an approximate value of the definite integral. Thus, different integration formulas can be obtained
depending upon the type of interpolation formula used.

Let the interval [a, b] be divided into n equal subintervals such that
a = xy <Xy <X, < ... <x, = b
Clearly, x

I
=
=}
+
3
=

n

1l
—
&y
<
Q
>

Hence, the integral becomes, 1

Approximating y by Newton's Forward Difference formula, we obtain,

xn ~1
1= ["lys +pAy, + ,O(p2 ) a2y, +

PE=VP=2) s\ g
O

Since x = x, + ph, dx = hdp and hence the above integral becomes

L2

’ - —1)(p-2
hfo [yo + PAY, +B(—%~2A2y0 +ﬂ'{2~——g§(p——)A3yo +] dp

which gives on simplification

- _ 2
J'x” ydx= nh y0+2AyO+mA2yO+n(n 2) Ayo+....
- dxg 2 12 24 -

This is known as General formula, we can obtain different integration formulas by putting n= 1, 2, 3,... etc.
We derive here a few of these formulae but it should be remarked that the Trapezoidal and Simpson's 1/3 rules
are found to give sufficient accuracy for use in practical problems.

The following table shows how Ay, Ay., A2y, are derived from (xg, ¥o), (xi, Vo), (x,, v,) ete.
0 B 0 0 Yo/ W Yy) Vo Vo

Xo | ¥
xO yO Ayo Agy
1 1 Ay1 0
X | Y2 '
Ay() =Yi-¥
AY1 = Yo=Y
and Ny, = Ay, AYy =Y, = 2¥; + ¥y

6.4.1 Trapezoidal Rule

Setting n=1in the general formula, all differences higher than the first will become zero and we obtain;

D)
e AFf



For the nextinterval [x,, x,], we deduce similarly

x h )
Lfydx = 5[}’1"*”)’2] ()]
and so on. For the last interval [x__,, x,], we have
*n h ‘
L,M ydx = "Z“[Yrm + Y] .. (i)

combining all these expressions, we obtain the rule

\ h
[ydx = J[Vo+ 201+ Vot ot Yot) + Y]

which is known as tyrapezoidai rule,

The geometrical significance of this rule is that the curve y = f{x) is replaced by nstraight lines joining the
0INts (xq, ¥o) and (xy, y,)i (x4, ¥4) @and (e, Yo)oos (x4, ¥,,9) @0d (X, ¥,).

The area bounded by the curve y = f(x), the ordinates x = x; and x = x, and the x-axis is then approximately
guivalent to the sum of the areas of n Trapeziums obtained.

Simple Trapezoidal Rule:

y=fx)

Xp=a h % =b

Shaded Area = Area of Trapezium = ff(x)(:/x
a

Compound Trapezoidal Rule {with 4 pts and 3 intervals):
¥

%

b
Shaded Area = Sum of Area of 3 trapezium = J f(x)dx

a

4.2 Simpson’s Rules

i4.2.1 Simpson's 1/3 Rule

This rule is obtained by putting n= 2 in general formula i.e., by replacing the curve by n/2 arcs of second
legree polynomials or parabolas. We have been,



X2
f ydx

*0

il

Zh{yo +AYq +—%A2y0}

h 1
= 5[% +(V1 = yo) + 5% -2y + yo)J

h
= g[)/o +4y,+ o]

x4
Similarly, f ydx

x2

h
g[}/z +4y; + J/4]

and finally f ydx
*n-2

Summing up we obtain,

i

h
§[Yn—2 + 4)/n-1 + yn]

o~

Xp h
fydx = g[J/o Y HYa t Vst V) 2Yo Yt Y)Y,

which is known as “Simpson’s 1/3 rule” or simply “Simpson’s rule”. It should be noted that this rule
requires the divisions of the whole range into an even number of subintervals of width A,

Simple Simpson’s Rule:

b
Shaded Area = ff(x)dx
a

Compound Simpson’s Rule: (7 points or 6 intervals)

Y N0 s
7 /- | ///’www—’ Eh
=\ =
/§\ le

I = Jrf(x)dx =1+ 1+ 1



6.4.2.2 Simpson's 3/8 Rule

Setting n = 3 in general formula we observe that all differences higher than the third will become zero and
we obtain,

7 3 3 1
fydx = 3h[yo+§AYo+ZA2yo+‘§ABYO:I

X0

3 3 1
= 3h[yo +;(}/1 “YO>+Z(Y2 -2y +Yo)+'8’()/3 -3y, + 3y, “Yo)]

' 3h
= —é—[yo +3Y1+ 3y, +y; |

i

_ % 3h
Similarly, [ v B LYat3Ya +3y5 + 4]
X3

and so on. Summing up all these, we obtain,

3h

f ydx = ~8—[<yo T3V 3o+ g) (Vs + 3y, +3Ye + v )+t Y3 ¥ Vnoo + Yoy +¥,]
,\'O

3h

Xfydx =3

,\'()

This rule called “Simpson's 3/8 rule”, is not so accurate as Simpson’s rule.

[Vo +3y:+3y, +2y5 + 3y, +3y, + 2V + 2V 5 +3Y, 5+ 3y, 4y, ]

Example:

Evaluate, 7 = f(jﬁ——dx correct to three decimal places using (i) Trapezoidal- rule and (ii) Simpson’s
X

rules (take h = 0.5) and check which rule is more accurate.
Solution:

We solve this question by both the Trapezoidal and Simpson’s rules with A = 0.5.
The value of x and y are tabulated below

X 0 0.5 [1.0
Yy =-— 10000 | 0.6667 | 0.5

(a) Trapezoidal rule gives:

I = -}[1 0000 + 2(0.6667) + 0.5] =0.7084

(b) Simpson’s rule gives:

%[1 0000 + 4(0.6667) + 0.5] = 0.6945.

Note that the exact answer for this problem by analytical integration method
1 ’ _
I= [——ds= [10ge (1+x)], = log,2 = 0.6931
o T+x

Clearly, Simpson's rule is closer to the answer and has less error compared to trapezoidal rule.



6.4.3 Truncation Error Formulae for Trapezoidal and Simpson’s Rule
Let h be the step size used in integration.
The truncation error formula for simple trapezoidal rule with 2 pts is given by

T = _________f//-
For composite trapezoidal rule with N, intervals.

h3
e = NI

The absolute T, bound for simple trapezoidal rule is given by

R,
—1~2—f (&)l

tTElbound = max

h3 ¥4
= Témaxf ) where, x, <& <x,
For Composite rule also similarly,
h3
| Telpoung = max|-=N, f"(i)’
12
h3
. = ﬁ/\/imaxf"(é)l where, x, &< x,
The truncation error for simple Simpson’s rule with 3 pts is given by
P
T o m_‘____flv
For composite Simpson's rule with N, intervals, the truncation efror bound is given by
h5 iv
7-E (max) = _§6f (E;) Nsi
where, N, is number of Simpson’s intervals.
Since, N, = Ny
2
R (N
The absolute truncation error bound for simple Simpson’s rule is given by,
h5 v
l 7_E\ bound max “56 f (é)
w :
= —§6max f’v(é)l where, x, <§<x,
The absolute truncation error bound for composite Simpson'’s rule with Nintervals is given by,
(N He (N, N
l TEI bound — l”axl"ﬁ(_é) f (E_w) = _9’6(”2-") max|f (&),
h5 a e lriv/u\l [ o x4
= —==N;max|I"(g) where, x, £E£X,

180



Inall these formulae, N, = (b~ a)/h (where aand b are the limits of integration) and N = Ny~ (where Ny is
the number of pts used in the integration). Since I¢for simple trapezoidal rule is proportional to P2, itis athird order
method. i.e. TE = O(h?). Since Te for simple Simpson’s rule is proportional to A%, it is a fifth order method. i.e.
TE = O(h).

important Note:

1. Trapezoidal rule gives exact results while integrating polynomials upto degree = 1,

2. Simpson’s rule gives exact results while integrating polynomials upto degree = 3.

6.5 Numerical Solution of Ordinary Differential Equations

6.5.1 Introduction

Analytical methods of solution are applicable only to a limited class of differential equations. Frequently
differential equations appearing in physical problems do not belong to any of these familiar types and one is
obliged to resort to numerical methods. These methods are of even greater importance when we realise that
computing machines are now available which reduce the time taken to do numerical computation considerably.

A number of numerical methods are available for the solution of first order differential equations of the form:

d .
FZ' = flx, y). given yx,) = y, . (0)
These methods yield solutions either as a power series in x from which the values of y can be found by
direct substitution, or as a set of values of x and y. The method of Picard and Taylor series belong to the former
class of solutions whereas those of Euler, Runge-Kutta, Milne, Adams-Bashforth etc. belong to the latter class. In
these later methods, the Values of y are calculated in short steps for equal intervals of x and are therefore, termed

as step-by-step methods.

Euler and Runge-Kutta methods are used for computing y over a limited range of x-values whereas Milne
and Adams-Bashforth method may be-applied for finding y over a wider range of x-values. These later methods
require starting values which are found by Picard’s or Taylor series or Runge-Kutta methods.

The initial condition in (i) is specified at the point x,. Such problems in which all the initial conditions are
given at the initial point only are called initial value problems. But there are problems where conditions are given at
two or more points. These are known as boundary value problems. In this chapter, we shall study three methods
common used for solution of first order differential equations, namely.

1. Euler's Method

2. Modified Euler's Method

3. Runge-Kutta Method of Fourth Order (Classical Runge-Kutta Method)

6.5.2 Euler’s Method

d
Consider the equation, F){ = fx, y) L ()
X
' . _ Y True value
giventhat y(x,) = y,. Its curve of solution through Alx,, v,) is Q ofy
shown in Fig. Now we have to find the ordinate of any other point Q P 1 Error
, Q 7 ™~ Approx.
on thIS curve, 1 ,,’/ value ny
. . . . - R
Let us divide LM into n sub-intervals each of width h at Ly, 0 !
L,, ... so that h is quiet small. In the interval LL,, we approximate P‘,«" R,
the curve by the tangent at P. If the ordinate through L, meets this P P R,
tangentin Py(x, + h, y,), then
7
y = L =LP+RP, ol o
- Lt L, M

+ PR1 tan
Yo and o xpth xy+2h xg+ nh



dy
+hf —
Yo (dxjp

Yot h f(xox yO)
Let P,Q, be the curve of solution of () through P, and let its tangent at P, meet the ordinate through L2 in
(xg + 2h, y,). Then repeating this process ntimes, we finally reach an approximation MP_ of MQ given by

Yooq * lag+(n=1hy, )

1i

P

In general we may write
Yivr = Vit N ix, )

This is Euler's method of finding an approximate solution of (i).

Obs. In Euler's method, we approximate the curve of solution by the tangent in each interval, i.e. by a
sequence of short lines. Unless h is small, the error is bound to be quiet significant. This sequence of lines may
also deviate considerably from the curve of solution. Hence there is a modification of this method which is given in
the next section, called modified Euler’s method, which is more accurate.

Example:
Using Euler's method, find an approximate value of y corresponding to x = 1, given that dy/dx = x + y
and y = 1whenx =0.

Solution:
We take n= 10 and h = 0.1 which is sufficiently small. The various calculations are arranged as follows:

Q

x y x+y =dy/dx | oldy+0.1{dy/dx) =new y
0.0 1.00 1.00 1.00+0.11.00) =1.10
0.1| 1.10 1.20 1.10+0.1(1.20) = 1.22
027 122 1742 T22+0. 1T 42y=1.36
0.3 136 1.66 1.36+0.11.66) = 1.53
0.4 153 1.93 1.53+0.1(1.93) = 1.72
05| 1.72 2.22 1.72+0.12.22)=1.94
06| 194 2.54 1.94+0.12.54)=2.19
0.7 219 2.89 2.19+0.12.89) - 2.48
0.8 248 3.89 2.48+0.13.89) = 2.81
0.9 28t 3.71 2.81+0.13.71 =3.1
1.0 13181

Thus the required approximate value of yis 3.18 atx = 1.0.

Obs. In this example, the true value of y from its exact solution at x = 1 is
y = 288 —x~1
v 2e'—1-1= 344
whereas by Euler's method y = 3.18. In the above solution, had we chosen n = 20, the accuracy would have
been considerably increased but at the expense of double the iabour of computation. Euler’s method is no
doubt very simple, but cannot be considered as one of the best.

Example:

Given g—}i = l/_”_’ﬁ with initial condition y = 1 atx = 0; find y for x = 0.1 by Euler's method.

ax yrx



Solution:

We divide the interval (0, 0.1} into five steps i.e. wetake n = 5, h = b ; 2. 9'—?50.02. The various
calculations are arranged as follows:
x y o |lx+y=adyldx| - old y + hdy/dx) = new y
0.00 | 1.0000 1.0000 1.0000+ 0.02(1.0000) = 1.0200
0.02 | 1.0200 0.9615 1.0200+0.200 + 0.02(9615) = 1.0392
0.04 | 1.0392 0.926 1.0392+0.02(926) = 1.0577
0.06 | 1.0577 0.893 1.0577 +0.02(893) = 1.0756
0.08 | 1.0756 0.862 1.0756+ 0.02(802) = 1.0928
0.10 1 1.0928 .
Hence the required approximate value of y = 1 .0928.
6.5.3 Modified Euler's Method
In Euler's method Vier = Yi+ hilx, y)
In Backward Euler's method v, = v, + hflx, 4, v..) . (1)

A numerical method where Y1 @ppears on LHS and RHS of the iterative equation is called an implicit
method. So Backward Euler’s method is an Implicit method, while Euler's method is explicitsince y, _, appears only
on left side of iterative equation.

In Backward Euley’'s method, we need to rearrange and solve (i) for v, before proceeding further.

Example:
Using Backward Euler's Method find an approximate value of y corresponding to x = 0.2, given that
dyldx=x +yand y=1whenx = 0, use step size h= 0.1.
yz‘+1 = yz +h f(xiﬂ’ yi+1>
-yi+1 = yi + h<xi+1 + yi+1)
Solution:

Vit hx

Solving for Yy We get, Vit o—

il

Now the calculations are shown below:

i| x ¥ Comments
0100 100 Initial condition given
h
1101 1122 y, =20t 0 1+01x01 .,
1—-h 1-01
L+ h . . .
5102|1289 yzzyi;r hxg :11221+(())11><02:1.2689

S0, the approximate value of yat x = 0.2 is 1.2689,

Notice that this same problem when solved by forward Euler’s method, gave a slightly different answer
for ywhich was y = 1.22 atx = 0.2,

The advantage of Backward Euler’s method is its stability. Backward Euler's method is more stable
compared to forward Euler's method.

Amethod is stable if the effect of any single fixed round off error is bounded, independent of the number
of mesh points.



6.5.4 Runge-Kutta Method

The Taylor's series method of solving differential equations numerically is restricted by the labour involved
in finding the higher order derivatives. However there is a class of methods known as Runge-Kutta methods which
do not require the calculations of higher order derivatives. These methods agree with Taylor's series solution upto
the terms in A", where r differs from method to method and is called the order of that method. Euler's method
Modified Euler’s method and Runge’s method are the Runge-Kutta methods of the first, second and third order
respectively.

The fourth-order Runge-Kutta method is most commonly used and is often referred to as ‘Runge-Kutta’
method’ or classical Runge-Kutta method.

Working rule for finding the increment k of y corresponding to an increment h of x by Runge-Kutta method

from
e fx, y), Hxg) =y, is as follows:
dx
Calculate successively
ky = hfixy, ¥,)
K 1 1
, = hf\xO +§h, Yo + §k1,
1 1
and K, = hftx, + h, Yy + K3)
Finally compute K = —;—(k1 + 2K, + 2Kk3 + Ky)

which gives the required approximate value y, = y, + k.
(Note that k is the weighted mean of k,, k,, k; and k,).

Obs. One of the advantages of these methods is that the operation is identical whether the differential
equation is linear or non-linear.

Exampile:
Apply Runge-Kutta fourth order method to find an approximate value of y when x = 0.2 given that
ayldx =x+yand y=1whenx = 0.
Solution:
Here, xo =0, y,=1, h= 0.2, fix, y5) = 1
: K, = hfxy ¥p) =02 x1=02
1

hf(xo + —;«h, Yo + §k1) =0.2x 0.1, 1.1) = 0.2400

it

k,

1 1
Ky = hz‘(x0 + —2—h, Vo + —2—k2J

= 0.2xf0.1,1.12) = 0.2440
and k, = hflxg+h, yo+ k3)
= 02x 0.2, 1.244) = 0.2888



Now, 7

1l

(ky + 2Ky + 2kg + Ky)
(0.2000 + 0.4800 +0.4880 + 0.2888)

% (1.4568) = 0.2428

D= O O] =

Yo+ k
1+0.2428 = 1.2428

Hence the required approximate value of yis 1.2428.

6.5.5 Stability Analysis

If the effect of round off error remains bounded as j — «, with a fixed step size, then the method is said to

be stable; otherwise unstable. Unstable methods will diverge away from solution and cause overflow error.

Using a general single step method equation

yj+ 1
Condition for absolute stability is
| E|

Using a test equation

IA

= FE£.y

1
Ly,

let us find the condition for stability for Euler's method.

Euler's method equationis v, |

Now, comparing with (i} we get

Condition for stability if | £] < 1

[1+hA]
T <t+hA

S0, condition for stability is

-2 <Ah

il

i

Y+ hf(x/., y/)
%+hkn
(1 +h7&)yj

1+hA



Q.1 A piecewise linear function f(x) is plotted using
thick solid lines in the figure below (the plot is

drawn to scale).

f(x)

1.0 /(2.05, 1.0)

(1.55, 0.5)

A0

(0.5, 0.5)
‘;1 1'3 . L i)
I T T T
xp 0.6} 1.55 %3 2.05
b c
(0.8, ~1.0)

If we use the Newton-Raphson method to find
the roots of f(x) = 0 using x0, x1 and x2
respectively as initial guesses, the roots obtained
would be '

(@)1.3, 0.6 and 0.6 respectively

(0)0.6, 0.6 and 1.3 respectively

(€)1.3, 1.3 and 0.6 respectively
(d)1.3,0.6.and 1.3 respectively -

[CS, GATE-2003, 2 marks]

Q.2 The accuracy of Simpson's rule quadrature for a
step size his
(@) O(h?) (b) O(H®)
(c) O(hY (d) O(h°)

- [ME, GATE-2003, 1 mark]

Statement for Linked Answer Questions 3 and 4.
Given a > 0, we wish to calculate the reciprocal value

1 by Newton-Raphson method for f(x) = 0.
a

Q.3 The Newton Raphson algorithm for the function

will be
1 a
(a) X1 = —Z"[Xk +gj
a
) x,, 1= (xk + Exfj

() x,, 4 =2, - ax?

a o
() xe g =X, - 5%k

[CE, GATE-2005, 2 marks]

Q.4

Q.5

Q.6

For a = 7 and starting with x, = 0.2, the first two
iterations will be
(a) 0.11,0.1299
(c) 0.12,0.1416

(b) 0.12,0.1392
(d) 0.13,0.1428

[CE, GATE-2005, 2 marks]

Starting fromx, = 1, one step of Newton-Raphson
method in solving the equation x* + 3x -7 = 0
gives the next value (x,) as
(@) x, =05 (b) x, = 1.406
() x,=15 (d) x, =2

[ME, GATE-2005, 2 marks]

Match List-I with List-ll and select the correct
answer using the codes given below the lists:
List-i

A. Newton-Raphson method

B. Rung-kutta method equations

C. Simpson’s Rule equations

D. Gauss elimination

List-Il

Solving nonlinear equations

Q.7

Solving simultaneous linear equations
Solving ordinary differential
Numerical integration
Interpolation

. Calculation of Eigenvalues
Codes: '

A

oo W

&

AA/-\A
228

TS IR, ¥
wwo = m
EEN NN
SN WwWwg

[EC, GATE-2005, 2 marks]

A 2" degree polynomial, f(x) has values of 1, 4
and 15atx =0, 1and 2, respectively. The integral

f(x)dxis to be estimated by applying the

O

{rapezoidal rule o this data. What is the error
(defined as “true value - approximate value”) in
the estimate?



Q.8

2.9

[CE, GATE-2006, 2 marks]

The differential equation (dy/dx) = 0.25 y2is to
be solved using the backward (implicit) Euler's
method with the boundary condition y= 1 atx =0
and with a step size of 1. What would be the
value of yatx = 1?7
(a) 1.33

(c) 2.00

(b) 1.67
(d) 2.33
[CE, GATE-2006, 1 mark]

Given that one root of the equation

x>~ 10x% + 31x-30 =0 is 5,
the other two roots are
(@ 2and 3
(c) 3and 4

(b) 2and 4
(d) -2 and -3
[CE, GATE-2007, 2 marks]

2.10 The following equation needs to be anericaHy

W11

solved using the Newton-Raphson method.

X +4-9=0
The iterative equation for this purpose is
(kindicates the iteration level)

2x2 +9
@) xp,q=—K
) k+,1 3x,‘f+4
(o) 3x% +4
x foveng
o 2x2+9

(©) x,, =X, — 3x%, + 4

) 4x2 43
B —
K+ 9)6/% o
[CE, GATE-2007, 2 marks]
The equation x®~x? + 4x - 4 = 0 is to be solved

using the Newton-Raphson method, If x = 2 is
taken as the initial approximation of the solution,

. then the next approximation using this method

will be
(b)

(d)
[EC, GATE-2007, 2 marks]

N Wl

Q.12 Consider the series Xy = o+

() 15

Q.13

Q.14

Q.15

Q.16

o9 0.5
2 8x, o=
obtained from the Newton-Raphson method. The
series converges to

(b) V3

(d) 1.4
[CS, GATE-2007, 2 marks]

(c) 1.6

A calculator has accuracy up to 8 digits after
2n

decimal place. The value of fsinx Ox when
0

evaluated using this calculator by trapezoidal
method with 8 equal intervals, to 5 significant

digits is
(a) 0.00000 (b) 1.0000
(b) 0.00500 (d) 0.00025

[ME, GATE-2007, 2 marks]

The differential equation (dx/dt) = [(1 - x)/t] is
discretised using Euler's numerical integration
method with a time step AT > 0. What is the
maximum permissible value of AT to ensure
stability of the solution of the corresponding
discrete time equation?
(@ 1 (b) 72
© 7 (d) 2t

[EE, GATE-2007, 2 marks]

Equation e~ 1 = 0is required to be solved using
Newton’s method with an initial guess x; = —~1.
Then, after one step of Newton's method, estimate
x, of the solution will be given by
(a) 0.71828 (b) 0.36784
(c) 0.20587 (d) 0.00000

[EE, GATE-2008, 2 marks]

The recursion relation to solve x = e~ using
Newton-Raphson method is

— —-X
(@) Theg= €70

(o) Tne1™ X = e

~Xp

(C) Xpe1 = (1 +xn)1+e~—xn

() x P ~e 1+ x,)— 1

/7+1:: —Xp
X, —€

[EC, GATE-2008, 2 marks]



0.17 The Newton-Raphson iterationx,,

Q.18

Q.19

Q.20

Q.21

Q.22

1 R
= e
can be used to compute the
(a) square of A (b) reciprocal of A
(c) squarerootof R (d) logarithm of R

[CS, GATE-2008, 2 marks]

The minimum number of equal length subintervals

needed to approximate fxe“' dx to an accuracy

of at least 1/3 x 107° usin1g the trapezoidal rule is
(a) 1000e (b) 1000
(c) 100e (dy 100

[CS, GATE-2008, 2 marks]

Letx2—117 = 0. The iterative steps for the solution
using Newton-Raphson’s method is given by

1 117

(a) X1 = —é Xk-i'—x—/;—

117
(0) Xy 1= X~ X,

X
(©) X\ =X~ #(7

1 117
(d) X o1 =X~ E(xk—i*-—;k—j

Q.23

Q.24

Angle (degree) |0 | 60 | 120 180 | 240 | 300 {360
Torque (N m) |0 |1066(-323| 0 |323|-865] O
(a) B42 (b) 993
(c) 1444 (d) 1986

[ME, GATE-2010, 2 marks]

Consider a differential equation E%Q—) -y(x)=

with the initial condition y(0) = 0. Using Euler's
first order method with a step size of 0.1, the
value of y(0.3) is
(a) 0.01

(c) 0.0631

(b) 0.031
(d) 0.1
[EC, GATE-2010, 2 marks]

The matrix [A]= E 1} is decomposed into a

roduct of a lower triangular matrix x[L] and an
upper triangular matrix [U]. The properly
decomposed [L]and [U] matrices respectively are

1 0 11
and

2 0 11

B

4 —_1_! LO 1_1

’U

[EE, GATE-2009, 2 marks]

Newton-Raphson method is used to compute a
root of the equation x2 — 13 = 0 with 3.5 as the
initial value. The approximation after one iteration
is

(a) 3.575
(c) 3.667

(b) 3677
(d) 3.607
[CS, GATE-2010, 1 mark]

The table below gives values of a function F(x)
obtained for values of x at intervals of 0.25.

x |0] 025 [05(075] 1.0
F(x)]1]0.9412]0.8064| 050

The value of the integral of the function between
the limits 0 to 1 using Simpson’s rule is
(a) 0.7854 (b) 2.3562
(c) 3.1416 (d) 7.5000
[CE, GATE-2010, 2 marks]

Torque exerted on a flywheel over a cycle is listed
in the table. Flywheel energy (in J per unit cycle)
using Simpson’s rule is

10 2 1
and

14 1 0 -1

2 0 105
and

4 -3 0 1

[EE, GATE-2011, 2 marks]

(d)

Q.25 The square root of a number Nis to be obtained

by applying the Newton Raphson iterations tothe
equation x2— N=0. Ifi denotes the iteration index,
the correct iterative scheme will be

@ x m-l(w'v]
1, +_,,,)
0
23]

CE, GATE-2011, 2 marks]

Xigt &

I\)

Xipg =

r\)[-—x

(d) X;41

f\)i—A



26

27

Roots of the algebraic equation
P+ x2+x+1=0are

(@) (+1, +j, =) (©) (+1,-1, +1)

(c) (0,0,0) (d) (=1, + )
[EE, GATE-2011, 1 marks]
Solution of the variables x, andx, for the following

equations is to be obtained by employing the
Newton-Raphson iterative method

equation (i) 10x, sinx, — 0.8 = 0

equation (ii) 10x4 —10x, cosx-0.6 =0

Assuming the initial values x, = 0.0 and x, = 1.0,
the Jacobian matrix is

10 -0.8] 10 0
@ |5 o] ® | o 10

[0 -08] g [0 o
© |10 -0 @ |40 —10

[EE, GATE-2011, 2 marks]
A numerical soiutic;n of the equation

f(x) = x+Jx=3=0 can be obtained using

Newton-Raphson method. If the starting value is
x = 2 for the iteration, the value of x that is to be
used in the next step is

(a) 0.306 (b) 0.739
(c) 1.694 (d) 2.306
[EC, GATE-2011, 2 marks]
The integral Laldx, when evaluated by using
X

Simpson's 1/3 rule on two equal subintervals each
of length 1, equals

{(a) 1.000 (b) 1.098
(c) 1.111 (d) 1.120

[ME, GATE-2011, 2 marks]
The bisection method is applied to compute a

zero of the function f(x) = x* = x* -~ x2 — 4 in the
interval [1, 9]. The method converges to a solution
after ____ iterations.
(a) 1 (b) 3
(c) 5 (d)y 7

[CS, GATE-2012, 2 marks]

Q.32 Theerrorin -q—f(x)

15
Ox
Q.31 The estimate of J. =~ Obtained using Simpson'’s
X

rute with three—pdint function evaluation exceeds
the exact value by
(a) 0.235

(c) 0.024

(b) 0.068
(d) 0.012
[CE, GATE-2012, 1 mark]

for a continuous function

x=xp

dx

estimated with h=0.03 using the central difference

_ f(xO‘{“h)"f(xO_h)
v oh

2% 1073, The values of xpand flx,) are 19.78 and
500.01, respectively. The corresponding error in
the central difference estimate for A= 0.02 is
approximately
(@) 1.3 x 104
(c) 45x 10

d
formula a;f(x) , I8

(b) 3.0 x 104
(d) 9.0 x 10-4
[CE, GATE-2012, 2 marks]

Q.33 When the Newton-Raphson method is appliedto

solve the equation f(x) = x® + 2x -1 = 0, the
solution at the end of the first iteration with the
initial guess value as x,=121is
(a) -0.82 (b) 0.49
(c) 0.705 (d) 1.69

[EE, GATE-2013, 2 Marks]

Q.34 The magnitude of the error (correct to two decimal

places) in the estimation of following integral using
simpson 1/3 rule. Take the step length as 1
4
f(x4+10)dx
0
[CE, GATE-2013, 2 Mark]

Q.35 Match the correct pairs

Numerical Integration  Order of Fitting
Scheme Polynomial

P. Simpson’s 3/8 Rule 1. First

Q. Trapezoidal Rule 2.5econd

R. Simpson's 1/3 Rule 3. Third

(@) P-2,Q-1,R-3 (b) P-3,Q-2, R-1

(c) P-1,Q-2,R-3 (d) P-3,Q-1,R-2

[ME, GATE-2013, 1 Mark]



Q.36 While numerically soMng the differential equation

%)i+ 2xy? =0, Y0) = 1 using Euler's predictor-
X

corrector (improved Euler-Cauchy) with a step size
of 0.2, the value of y after the first step is

(@) 1.00 (b) 1.03
(c) 0.97 (d) 0.96
[IN, GATE-2013 : 2 marks]
.37 Match the application to appropriate numerical
method.
Application

P1: Numerical integration

P2: Solution to a transcendental equation

P3: Solution to a system of linear equations

P4: Solution to a differential equation

M1: Newton-Raphson Method

M2: Runge-Kutta Method

M3: Simpson's 1/3-rule

M4 Gauss Elimination Method

(a) P1—M3, P2—M2, P3—M4, P4—M1

(b) P1—M3, P2—M1, P3—M4, P4—M2

(c) P1—M4, P2—M1, P3—M83, P4—M2

(d) P1—M2, P2—M1, P3—M3, P4—M4
[EC, GATE-2014 : 1 Mark]

Q.38 The real root of the equation 5x -2 cosx -1 =0

(up to two decimal accuracy) is .
[ME, GATE-2014 : 2 Marks]

Q.39 The function f(x) = & — 1 is to be solved using
Newton-Raphson method. if the initial value of x,
is taken as 1.0, then the absolute error observed
at 2nd iteration is .

[EE, GATE-2014 : 2 Marks]

Q.40 In the Newton-Raphson method, an initial guess
of x, = 2 is made and the sequence x,, x,, x,... IS
obtained for the function

0.75x% - 2x2—2x + 4 = 0
Consider the statements
0
(1

x5 =0

The method converges to a solution in a
finite number of iterations.

Which of the following is TRUE?

(a) Only | (b) Only I

(c) Bothtand Il (d) Neither | nor I

[CS, GATE-2014 (Set-2) : 2 Marks]

4
Q.41 The value of fln(x)dx calculated using the
25
Trapezoidal rule with five subintervals is ___.

[ME, GATE-2014 : 2 Marks]

3
Q.42 The definite integral fidx is evaluated using
X
1

trapezoidal rule with a step size of 1. The correct
answer is .
[ME, GATE-2014 : 1 Mark]

Q.43 Using the trapezoidal rule, and dividing the
interval of integration into three equal subintervals,

+1
the definite integral L]x[ dx is
[ME, GATE-2014 : 2 Marks]

Q.44 With respect to the numerical evaluation of the

b
definite integral K = fa x°dx , where a and bare

given, which of the following statements is/are

TRUE?

() The value of Kobtained using the trapezoidal
rule is always greater than or equal to the

,,,,,,, _ exactvalue ofthe definite integral.

(1) The value of Kobtained using the Simpson’s
rule is always equal to the exact value of the
definite integral

(@) 1only

(b) Both I and il

(b) Il only
(d) Neither | nor i
[CS, GATE-2014 : 2 Marks]

Q.45 Consider an ordinary differential equation

d ,
—d—§=4t+4. Ifx =x,att=0, the incrementinx

L

calculated using Runge-Kutta fourth order multi-
step method with a slep size of Al = 0.2 is
(@) 0.22 (b) 0.44
(c) 0.66 (d) 0.88
[ME, GATE-2014 : 2 Marks]

Q.46 Inthe LU decomposition of the matrix E ﬂ if

the diagonal elements of U are both 1, then the
lower diagonal entry /,, of L is :
‘ [CS, GATE-2015 : 1 Mark]



A7 If a continuous function f(x) does not have a root
in the interval [a, b], then which one of the
following statements is TRUE?

(@ flay-f(b)=0 (b) fa) - fib) <0
(c) flay- b)>0 (d) fa)/fib)<0
[EE, GATE-2015 : 1 Mark]

48 The quadratic equation x2 - 4x + 4 = 0 is to be
solved numerically, starting with the initial guess
xo = 3. The Newton-Raphson method is applied
once to get a new estimate and then the Secant
method is applied once using the initial guess
and this new estimate. The estimated value of
the root after the application of the Secant method
is :

[CE, GATE-2015 : 2 Marks]

49 In Newton-Raphson iterative method, the initial
guess value (x,,) is considered as zero while
finding the roots of the equation:

f(x) = =2 + 6x - 45° + 0.5x3. The correction, Ax,
to be added tox,, in the firstiteration is :
[CE, GATE-2015 : 1 Mark]

50 Newton-Raphson method is used to find the roots
of the equation, x> + 2x2 + 3x — 1 = 0. If the
initial guess is x, = 1, then the value of x after
2nd jteration is .

[ME, GATE-2015 : 2 Marks]

>1 The Newton-Raphson method is used to solve
the equation f(x) = x® — 5x? + 6x - 8 = 0. Taking
the initial guess as x = 5, the solution obtained at

the end of the first iteration is_____.
[EC, GATE-2015 : 2 Marks]

2 The secant method is used to find the root of an
equation f(x) = 0. It is started from two distinct
estimates x, and x, for the root. It is an iterative
procedure involving linear interpolation to a root.
The iteration stops if f(x ) is very small and then
x,, Is the solution. The procedure is given below.
Observe that there is an expression which is
missing and is marked by ? Which is the suitable
expression that is to be put in place of ? So that
it follows all steps of the secant method?

Secant
Initialize: X, Xp & N
// € = convergence indicator

fo= Kxp)
/I N = maximum number of iterations
i=0
while (i < Nand | £, | > €) do
i =i+ 1//update counter
x, = 7/ missing expression for
// intermediate value
x,=x// reset x,
xp, = x// reset x,
fp = fxp)il function value at new x,
end while
if [£] > ethen //loop is terminated with i = N
write “Non-convergence”

else

write “return x b

end if

(@x, - (f, - e ) iy (= x,)
(O, = (f, = f(x,)) fol (xp~x,)
(Chxy = (x,—x,) 1,/ (fo—1f(x,)
(A, = (x,—x,) 1,/ (f,—f(x,))

[CS, GATE-2015 : 2 Marks]

X B
The integral f xdx with x, > x, > 0is evaluated

X1

analytically as well as numerically using a single

application of the trapezoidal rule. If I'is the exact

value of the integral obtained analytically and J

is the” approximate value obtained using the

trapezoidal rule, which of the following statements

is correct about their relationship?

(@) J>1

by J<1

) J=1

(d) Insufficient data to determine the relationship
[CE, GATE-2015 : 1 Mark]

For step-size, Ax = 0.4, the value of following
integral using Simpson’s 1/3 rule is

0.8
J 0.2+ 25x ~200¢° + 675:° - 900x* + 400+
0

[CE, GATE-2015 : 2 Marks]

Q.55 Using a unit step size, the volume of integral

2 , :
L xInx dx by trapezoidal rule is

[ME, GATE-2015 : 1 Mark]



1
Q.56 Simpson's 3 rule is used to integrate the function

3 9 '
f(x) = gxz +— between x = 0 and x = 1 using
2

the least number of equal sub-intervals. The value
of the integral‘is .
[ME, GATE-2015 : 1 Mark]

Q.57 The values of function f(x) at &5 discrete points
are given below:

x [0101]02]03|04
f(x)| 0] 10| 40 | 90 | 160

Using Trapezoidal rule step size of 0.1, the

0.4
value of j f(x)dx is
0

[ME, GATE-2015 : 2 Marks]

Q.58 The velocity v(in kilometer/minute) of a motorbike
which starts from rest, is given at fixed intervals
of time t(in minutes) as follows:

tl214ke | 8110]12]14|16|18|20
vitol1s|o5|29(32j20|11| 56|20
The approximate distance (in kilometers) rounded
to two places of decimals covered in 20 minutes
using Simpson’s 1/39 rule is

Q.62 Newton-Raphson method is to be used to find
foot of equation 3x — €* + sinx = 0. If the initial
trail value of the roots is taken as 0.333, the next
approximation for the root would be .

[CE, GATE-2016 : 1 Mark]

Q.63 Numerical integration using trapezoidal rule gives
the best result for a single variable function, which
is
(a) linear
(c) logarithmic

(b) parabolic
(d) hyperbotic
[ME, GATE-2016 : 1 Mark]

Q.64 The error in numerically computing the integral

(sinx +cosx)dx using the trapezoidal rule with

O

three intevals of equal length between O and rtis

[ME, GATE-2016 : 2 Marks]

Q.65 The ordinary differential equation

%=—3x+2,withx(0):1

is to be solved using the forward Euler method.

[CS, GATE-2015 : 2 Marks]

Q.59 Gauss Seidel method is used to solve the
following equations (as per the given order):

Xy + 2x, + 3y =1,

2x, + 3x, + Xg = 1;

3x, + 2, + X3 = 1
Assuming initial guess as x; = x, = x5 = 0, the
value of x, after the first iteration is
[ME, GATE-2016 : 2 Marks]

Q.80 Solve the equation x = 10 cos(x) using the Newton-
Raphson method. The initial guess is

x= g— " The value of the predicted root after the

first iteration, up to second decimal, is .
[ME, GATE-2016 : 1 Mark]

Q.61 The root of the function f(x) = x® + x ~ 1 obtained
after first iteration on application of Newton Raphson
scheme using an initial guess of x, = 11is
(a) 0.682 (b) 0.686
(c) 0.750 (d) 1.000

[ME, GATE-2016 : 1 Mark]

The targesttime-step-that-canbe usee-to-solve
the equation without making the numerical solution
unstable is .

[EC, GATE-2016 : 2 Marks]

Q.66 Consider the first order initial value problem
v o=y+2r—x% y(0)=1(0sx<eo
with exact solution y(x) = x? + e*. Forx = 0.1, the
percentage difference between the exact solution
and the solution obtained using a single iteration
of the second-order Runge-Kutta method with
step-size h=0. 11is

[EC, GATE-2016 : 1 Mark]

Q.67 P(0, 3), Q(0.5, 4) and R(1, 5) are three points ON
the curve defined by f(x). Numerical integration
is carried out using both Trapezoidal rule and
Simpson’s rule within fimits x = 0 and x = 1 for
the curve. The difference between the two results
will be
(@ 0
(c) 0.5

(b) 0.25
(d) 1
[ME, GATE-2017 : 2 Marks]



Q.68 The following table lists an nt™ order polynomial
fx) = ax" + a,_x"'+ a;x + a, and the
forward difference evaluated at equally spaced
values of x. The order of the polynomial is

~0.4 | 1.7648 | —0.2965 | 0.089 | -0.03
~0.3 | 1.4683 | -0.2075 | 0.059 | ~0.0228
-0.2 | 1.2608 | -0.1485 | 0.0362 | —0.0156
-0.1 | 1.1123 | —0.1123 | 0.0206 | —0.0084
0| 1 |-00917 |0.0122 | —0.0012
0.1 ]0.9083 | -0.0795 | 0.011 | 0.006
0.2 | 0.8288 | —0.0685 | 0.017 | 0.0132

(@) 1 (b) 2

(c) 3 (d) 4

[IN, GATE-2017 : 2 Marks]

Q.69 Only one of the real roots of f(x) = 1% - x = 1
lies in the interval 1 <x <2 and bisection method
is used to find its value. For achieving an accuracy
of 0.001, the required minimum number of
iterations is . (Give the answer up to
two decimal places.)

'[EE, GATE-2017 : 2 Marks]

Q.70 Starting with x = 1, the solution of the equation
x3 + x = 1, after two iterations of Newton-Raphson’s
method (up to two decimal places) is

[EC, GATE-2017 : 2 Marks]

au
Q.71 Consider the equation i 3t +1 with u = 0

at t = 0. This is numerically solved by using the
forward Euler method with a step size. At = 2.
The absolute error in the solution in the end of
the first time step is :
2 Marks]

[CE, GATE-2017 :
EEEE Numerical Methods
1. (d 2. © 8 (© 4 (b 5.
10. (@) 11. (o) 12. (&) 13. (@ 14.
19. (@ 20. (d) 21. (@ 22. (b) 23.
28. () 29. (©) 30. (b 31. (d) 32
37. (b) 38. (0.54)39. (0.25)40. (a) 41.
46. (5) 47. (o) 48. (2.33)49. (0.33)50.
55. (0.69)56. (2) 57. (22) 58. (309)59.
64. (0.19)65. (0.66) 66. (0.06)67. (a) 68.
73. (259)74. (b) 75. (c) 76. (a)

Q.72 The quadratic equation 2x* - 3x + 3= 0 is to be
solved numerically starting with an initial guess
as x, = 2. The new estimate of x after the first
iteration using Newton-Raphson method is

[CE, GATE-2018 : 1 Mark]

Q.73 An explicit forward Euler method is used to
numerically integrate the differential equation

@

ar =7

using a time step of 0. 1. With the initial condition
0) = 1,the value of y(1) computed by this method
is correct to two decimal places).

[ME, GATE-2018 : 2 Marks]

N

Q.74 Consider p(s) = s* + a,5% + a,5 + a, with all real
coefficients. It is known that its derivative p’(s)

has no real roots. The number of real roots of p(s)

(b) 1
(d) 3
[EC, GATE-2018 : 1 Mark]

Q.75 What is the cube root of 1468 to 3 decimal
places?
(a) 11.340 (b) 11.353
(c) 11.365 (d) 11.382

[ESE Prelims-2018]
Q.76 Whatis the value of (1525)%2t0 2 decimal places?

(a) 4.33 (b) 4.36
(c) 4.38 (d) 4.30
[ESE Prelims-2018]
EEER
(c) 6. (c) 7. (a) 8. ) 9 (a)
(dy 15. (@ 16. (o) 17. (¢) 18. (a)
(b)y 24, (d) 25. (a) 26. (d) 27. (b)
(d)  33. (¢c) 34. (05) 35. (d) 36. (d)
(1.75) 42. (1.16)43. (1.11) 44. (c) 45. (d)
(0.3) 51. (429)52. (c,d) 63. (a) 54. (1.37)
(1.55) 60. (156)61. (c) 62. (0.36)63. (a)
(d) 69. (10) 70. (089 71. (8 72. (1)



(d)

Starting from x,, slope of line a

_1-05

0-05

y-intercept = 1
Egn.ofaisy=mx + ¢c=-Ix + 1
This line will cut x axis (i.e., y=0), at x = 1
Sincex =1is > than x'= 0.8, a perpendicular at
x = 1 will cut the line ¢ and not line b,
- rootwiltbe 1.3
Starting fromx,,
the perpendicular at x, is cutting line b and root
will be 0.6.
Starting from x,,,

I

1-05
Sl fline d= ————— =1
e otine A= 5 05155
Ennntinn nf Aie v . N R — 4fw _ 1 EEBN
‘_\A'U(ALIU|| A4 I W i R y = LA |-\J\)/
ie. y=x-105

This line will cut x gxis atx = 1.05
Since, x = 1.05is > than x = 0.8, the perpendicular
at x = 1.05 will cut the line cand not line b. The
root will be therefore equalto 1.3.
So starting from x,, x, and x, the roots will be

******** —respectively 1.8, 086 and .37

3.

(c)
To calculate —; using N-R method,

set up the equation as

1
X = —
a
i.e. 1 = &
1 X
= ——a=0
X
1
i.e flx) = — -a=0
X
Now f’(‘») = ”‘—19—
2
fly) = - —a
Xg
, 1
flx) = —g
For N-R method,
f(.xk

xk+1=xk_ ,{// \
AKX )

= X1 = X~

Simplifying which we get
Xy oq = 20— axf

(b)
For a = 7 the iteration equation,
becomes
Xy g = 2 Tx,?
with x, =02
Xy = 2xy~ 7x02
=2x0.2-7(0.2)?
=012
and X, = 2~ 7x12
=2x012-7(0.12)°
= (0.1392
(c)
From Newton- Raphson method
f(xg)

Given function is

Floe)=x3+3x—7
and fi(x) = 3%+ 3
Puting x5 =1,
fxg) = (1) = (1 +3x(1)-7=-3
flxg) = (1) =3x(1)2+3=6
Substituting x,, f(x,) and f(x,) values into (i) we

get,
Xy = 1—(Z§-Jx1 = 1.5
6
(a)
flx)=14,15
at x = 0, 1and 2 respectively
jfx)dx = 5! f + 26, + 1)
0
(3 point Trapezoidal Rule)
here h=1
ff 1+2x4+15)~12

Approxxmate value by Trapezoidal Rule = 12
Since f(x) is second degree polynomial, let
fx) = aj+ ax + a,x?



f(0) = 1
= at+0+0 =1
= a = 1
(1) = 4
= gta+a, =4
= T+a+a, =4
= a,+a, = 3

f2) = 15
= dy+2a,+4a, = 15
= 1+2a1+432:15

= 2a;+4a, = 14 . (i)
Solving (i) and (||)
a; = ~landa, =4
fx) = 1—x+ 4x2 10.
Now exact value of
2 2
ff(x)dx = f(‘l - x+4x°) dx
0 0
2
.. [.ﬁ ﬂiJ |22
2 3 5 3
Error = Exact ~ Approximate value
32 4
= — -12=-—
3 3
(c)
d
& 0.25y72 (y=Tatx=0)
dx
h=1
lterative equation for backward (implicit) Euler .
methods for above equation would be
Vs 1 = Vet D 4 Vi, o)
Ve o1 =Y+ hx 025V
= 0.250Yk1 = Y,y + ¥, = 0
putting k = 0in above equation
0.25hy 2~y + y, =0
since, Vo= Tand h=1 12
025y 2~y +1=0 '
T+ /1~ s
= - s
YT o0, 25
= yy=2

(a)
Since 5 is a root, f{x) is divisible by x - 5. Now
dividing f(x) by x - 5 we get

x- 5)x ~ 1037+ 31x~ 30 (¥ - 5x + 6
x3 — B5y?
—5x*+ 31x— 30
—5x? + 25x
6x ~ 30
6x - 30
0
¥ —10x% + 31x - 30 = 0
= (x-5)(x**-5x+6)=0
Roots of x? — 5x + 6 are 2 and 3.
. The other two roots are 2 and 3.

(a)
fx) =x3+4x -9 =0
F(x) = 3x2 + 4
N~R equation for iteration is,
f(x
Khow 1 = Xy M
F'(x,)
fxg) = xP+4x, -9
flx,) = 3x,f+ 4
(x,? + 4xk d 9)
Khow 1 =X ™ >
(Bxf +4)
_ (Bx) +4x) - (x¢ + 4x, - 9)
3x2 +4
2x) +9
X = e
41T 32 4 4
(b)
Here, Xo =2
fx) =x3-x2+ 4x — 4
Flx) = 3x - 2>c +4
fxy) = f(2) =
Flxy) = f(2) = 12
(s 4
= XTZXOWM/(YO/ —«2_..§_~.M
() 1273
(a)
X 9
Given, x = L4 =0,
X, > 8( 0.5

as n— e, when the series converges
Xn 41 = X, =0 = root of equation
o 9
[ —
2 8a
40° + 9
8ol




= 80 = 402 + 9
9
o _ 2
= o=
3
=—=15
“= 3
13. (a)
b= 27E—-O_ZE_
- 8 4
Yo = sin(0)=0
x| y=snx ¥ = sm(;‘j 0.70710
0 0
7 _ . ﬂ
4 | 070710 Yo = S| =
T . [ 3n
> 1 Yo = sm[-wJ =0.7010
STl g70710 Ve = SN(m=0
4 5
n 0 Yo = sm( j =-0.70710
57‘: A '/
T _0.70710 _ .
R 07070 L B
6m
—_— -1 ] T
4 Y, = sm(;) =-0.70710
ZE -~0.70710
4 }/8 = Sin[ \)
21 Q

14.

Trapezoidal rule

xg + nh

J‘ f(x

yo Vot 20+ Vo ot V)]

j’ sinx - dx =g- x[(0+0) + 2(0.70710+1+0.70710
0

+0-0.70710-0.70710)] =

(d)

Here, g 1zx
at T

Here, fix, y) = ;x

0.00000

Euler's Method Equation is

Xl+

= xj+1—x+h[

NS PR | B
For stability 1=} <1

1—x+hfxy/
1- x/j

h

= s [T

15.

16.

IR R

T
Since, h = AT here,
g1 AL oy
T
= AT < 2t
So, maximum permissible value of AT is 27,
(a)
Here flx) = e"—1
flx) = e
The newton Raphson iterative equation is
T )
Flx)
fix,) = e’ -1
f/ ; '[) — e\'lﬂ
e —1
xi + 1 xi - e.\'i
x, e —(e" - 1)
e xi 17 ‘.
g
ey -N+1
= —m—-—exi

Nowput i=20
eXO(XO"1)+1

.X'1 = -
&%
Put x, = -1 as given,
= [ (-2) + 1}/e”!
= (0.71828
(c)
The given equalion lo be solved is

x =67
Which can be rewritten as
fix) =x-e*=0
fix)=1+¢e~
The Newton-Raphson iterative formula is

Hx,)

X = X
n+ n
)
. - X
Here  flx,) = x,-¢e""
N . -X
flx,) = 1+e™™
.. The Newton-Raphson iterative formula is
X x,~€ "
=X, e e———
nET T g g
e—xnx + e—a\‘n e—-xn
= . = (1+xn) :
1+e ™ 1+e



17.

(c)
, 1 A
Tne1 = E(xn+;;j
at convergence
Xn+1 =Xy = 0
a= 3o+ 1]
.2 o
R o°+R
200 =0+ — =
o o
20° = 02 + R
= o =R
o= JR

* So, this iteration will compute the square roof of A,

Correct choiceiis (c).

(a)
Here, the function being integrated is

f(x) = xe*

flx) =xe"+ &= e (x + 1)

f(x) = xe" + €' + e = e(x + 2)
Since, both e* and x are increasing functions of
x, maximum value of /(&) in interval 1 < E<2,
occursaté = 2.
So,

max | /(€)] = €2 + 2) = 4¢?

Truncation Error for trapezoidal rule = TE (bound)

= fmax IR

12
where N is number of subintervals
N o= b-a
‘ h
W v | D@
7—e(bound) = -‘—é max | f (Fﬁ)’ h
= %(ma) max | f/(E)1<e<2
. H
= 3—2—(2» 1) (4€°) = ~3—92
Now putting
1
7:e(bound) = § X 10"6
We get
1
~§62 = *3" x 106
-6
= = E—QM
e
-3
= h = j_(.)._.

e

19,

20.

21.

22.

23.

Now, Number of Intervals = N.

1

(a)
f(xg)

x =Xy s =X e
K+ 1 K™ & K
F(x) 2xy

[, 17
= 2 K X
(d)

The equation is f(x) =x2~ 13 =0
Newton-Raphson iteration equation is

‘= _[MJ
0 Plx)

fxg) = x,2 =13

Fx,) = 2x,
e x5 ~13 ‘«f_g_“LTS
1 0 2x0 - 2x0
put xy = 3.5 (as given)
. 385°+13 3607
1T ok T

- The approximation after one interation = 3.607
(a)
I

i

—;-h(fo +4f, 4 26, + 4, + 1)

%XO.25(1+4X0.9412+2>< 0.8+4%x0.64+05)

= 0.7854
(b)

2n
Flywheel energy = j T(6)db . where T(6) is torque
0

1t

exerted.
The integral by using simpson’s rule is

h
I= 3 (f0+4f1+2f2+4f3+2f4+4f5+f6)
h = 60 degrees = },TE radians
I= —
3
(b)
dy
g Y Ex #0)=0
step size = h= 0.1
Euler’s first order formula is
yi+1 = yi+ hf(xi’ yz)
Yy = ot h«xov yg)

1 o« T 1 0+4x1066+ 2(-323)
37|+ 4(0) + 2(323) + 4(~355) + 0

]:993



Here, Xg =0, Yo = Yxg) = Oy =0 25. (a)

x,=xy+h=0+01=01 f(xi) X?"N}
X1 = Ty T AT T
f(x,y):g{—:y—%-x ) f(xi) L 2x;
b )
= Vi = Yo+ hlxg ¥o) ' == +N:1Li+ﬂ}
=0+0.1xTf(0,0) 2x; 2 X;
= O+O1 X(O“’rO):O 26. (d)
Now, %y =01,y =0 ~1is one of the roots since
x22X0+2h:O+2XO.1=O,2 (“1)3’*‘(—1)2'*‘(“1)‘!”1:0
= Yo = Yo+ iy yy) By polynomial division
=0+01xf(0.1,0) 5 2
= 0+0.1(0.1+0) =001 A x5
Now,  x,=02,y,=001 {x- (=1}
Xy =x,+3h=0+3x01=03 S+ +x+ 1=+ D+ 1)
= Yy = Yo + hf(xy, Vo) So roots are (-1, +f, ~f)

= 0.01+0.1xf(0.2,0.01) = 0.01
+0.1(0.2+0.01)=0.031
. atxy = 0.3, y, = 0.031.

27. (b)

(d)
Let us try Dolittle’s decomposition by putting The Jacobian matrix is
Iy="1and/,=1 ou ou
o 1 0 Uy Upp ox;  0xy [10x, COS x4 10sinxy
{4 _1:] = [21 110 Ugo E?_V_ ﬂ i 10)C2 Sin)ﬁ 2OX2 - 1OCOSX1
Uy = 2, Upp =1 dxy  Ox;
Ly Uy, =4 _ [10 Ol
— e +-6—16-
= Ly = —Z—= 2 -
28. (c
Lpy Uy + Upp = =1 (e) )
= 2x1+ Uy, = —1 X, = - ,x,,
= U22'= -3 ‘ f(xn)
So onc possible breakdown is x=2, fx)= 2+ 2.3=J2 1
L 3
= f/ X)) = +
4 -1 7|2 1j0 -3 (x) o
But this is not any of the choices given. 1
So let us do Crout’s decomposition, by putting Flxg) = 1+ 5\75
Uy =tand Uy, =1
f 2-
{2 1} [Zﬁ O}]t‘l U12} Then, X, = xo‘*f/(:f)) = 2 \/— 11
= 0 R
4 -1 Iy Ip 0 1 T 242
Ly = 2, 1yugp = 1 = x, = 1.694
1
- U12 = *?: = 05 29 (C)
lyy = 4, Ly Uy + lpg =~ x f(x)zl
X
= 4x +122 = —1 1 1
3 ;
N lyy = -3 I=[-dx 2 5
e 11 J2 07[1 0.5] " )
So, = L 3 2
’1_4 —1J 4 “3_) 0 1 ) __‘___A_S,




30.

31.

I= g(fo+47‘1+f2)
= —1—(1+4><1le: 1.111
3 2 3

(b)
If bisection method is applied to given problem
withx, = Tand x, = 9

After 1 iteration x, = 13;—-9— =5

Now since f(x,) f(x,) > 0, x, replaces X,
Now, x, = Tandx, =5
1+5 ~

and after 29 iteration Y= 5= 3

Now since f(x,) f(x,) > 0, x,replaces x; and x;, = 1
and x, = 3 and after 3rd iteration

1+ 3
Now flxy) = 1(2)

=24 -23-22_4=0
So the method converges exactly to the root in
3 iterations.

(d)

Exact value of

05 % = [log X]O'5

&

= log(1.5) -log(0.5) = 1.0986
Approximate value by Simpson's rule with 3pts is
I= -g-(f(o> +4f(1) +£(2))

m=ny=-1=3-1=2
(np{ is the number of pts and n, is the number of
intervals)

Here po bza_15-05 .
n; 2
. L] X f
The table is ]
0105 —
0.5
il10] 2
1
2115 -j——
15
050 1 1
= | —— 4+ 4 X1 — ] =1 1111
! 8(0.5 1.5) 1

So the estimate exceeds the exact value by
Approximate value - Exact value

32.

33.

34.

36.

= 1.1111 - 1.0986
= 0.012499 ~ 0.012

(d)
Errorin central difference formula is 0(H?)
This means,
error o< h?
Iferrorfor h=003is2x 103
then
Error for h=0.02 is approximately

(0.027
(0.03y

2x 1073 x ~ 9 x 1074

(c)
fx)=3x2+ 2
Flxy) = 3(1.2)2 + 2 = 6.32
flxg) = (1223 +2x 1.2-1=3.128
) f(xo) - 3.728
f(x1) = Xo—m = 12*5‘5-2——
= 0.705

Sol.

x| 0111213 4
y 10111126 | 91| 266
Using Simpson's Rule, the estimated value of

4
the integral J(x4 + 10) dx
0

= %[(10 +266)+2(26)+ 4(11+91) ] = 245.33

The exact value of integral

: 4 ’_)C5 )
f(\ +10)dx: ’—S——HOX}
0 L 0
45
= “5—+1OX4 = 244 8

. Magnitude of error = | exact value —estimated
value |
= [2448 - 245.33] = 053

(d)
dy 2
——4 2 =
dx Y 0
ay
dx —exy”

after one iteration

Vi = YO+h{*2xoyg]
=14+02[-2x0x12)=140= 1



Lol

i1

1 .
Yi= Yo +—2—><(O.2)[~2xoy§ =2x1 Y1)

1+01[(2x0x 19)~(2x0.2x 1)]
1+0.1[-0-0.4]=1-0.04=0.96

i

it

Sol.
flx) = 5x -2 cosx — 1
f{x) = 5+ 2 sinx
By Newton Raphson’s equation:
f(x,)
(x,)
Assumingx, =1 (1rad=57.32°)
5x1-2c0s(57.32°) -1

Tnet T An

= X, =1 : = 0.5632
5+ 2sin(57.32°)
Again,
5% 0.5632 ~2c0s(32.27°) - 1
= (0.5632 - .
5+ 2sin(32.27°)
=0.5425
v = 05495 5% 0.5425 - 2c0s(31.09°) -1
d 5+ 2sin(31.09°)
=0.5424
.. Real root, x = 0.54
3 Sol.
Given, f{x) = e*-1
of, fx,) = (" -1) and x =1
In Newton-Raphson method, we have:
flxk)
X = —
K+ 1 I:XK f/(xK)
f(xoq 4
Xy = | Xy == (1)
1 { - Fx)
Now, f(x)= e -1=¢'-1=(e-1)
and flx) = e
flxy) =€'=e
Putting the values, we get:
X, = 1—(6_1)}
e
- e"@”}e = 0.367
e
I f(x1):l .
Also, X = | Xy~ (D
2 )
Now, X, = —:;: e " and f(x,) = (ee*1 -1,
fx,) = e

40.

Puiting the values, we get;

~ = )
Xy = @m1 ”“@ 1)}

PR

=€ -

] 2037
Therefore, the absolute error observed at second
iteration = 0.06.

Absolute error at any iteration

}z 0.06

Exact value — Approximate value
Exact value

_| New value — Old value |
B New value |

2‘ 0.06-0.368 | _ 1 »ye

0.06

(a)

Compute x,, x,,...

T [ Fl)

using the iteration equation

- 0.75x8 - 2x8 — 2xg + 4
T 0| 205 —4x -2
= Xy = 2, xy= 0, x,= 2, x; = 0,..

—x;=0-is-correct-but-itconverges-inan-infinite —

steps (i.e. it doesn’t converge).

41. Sol.
2.5 2.8 3.1 34 3:7 4
0.1963 1.0296 1.1314 1.2237 1.3083 1.3863
Yo ¥ Y2 Y3 Ya Ys
' 4
[ = J. Ox
25
h
= 5[(yo+y5)+2()41 + Vot Yo+ V]
0.3
I = —E- [(0.9163 + 1.3863) + 2(1.0296
+ 1.1314 + 1.2237 + 1.3083)]
0.3
I= 7 x 11.6886 = 1.7533
42, Sol.
X 1 2 3

0.33
Yn Yo ¥ Yo




31 h
I= L ;dx = *2‘[(}/0 +Yo)+2y4]
o= 1[1+O.33—i~2><0.5] = —%9—?1:1.165
2 2
Sol.
h = b-a _1-(-1) :2:0.667
n; 3
x f(x) = |x|
-1 1
-0.333 0.333
+0.333 0.333
1 1
h
I= 5(f0+2f1+2f2+f3)
= Q%QZ(1+2><O.833+2><O.383+1)
= 111
(c)

b
While computing K = [,x°cle

a
Error = Exact value — Approximate value
For trapezoidal rule

/73
Error = —T—éf”({j,) X Ny

Since h and n, are always positive, sign of the
error is controled only by the sign of f(€).

Here f(x) = x2 80 f"(x) = 2 which is always positive.
So the sign of the error is always negative. i.e.
approximate value always greater than or equal
to the exact value of the integral.

So (1) is true.

Similarly for Simpson’s rule

h5
Error = —éaf””(é) X 1)

Since h and n, are always positive, sign of the
error is controled only by the sign of f(§).

Here flx) = x*so f(x) =0

So the error is always 0. i.e. approximate value
always equal to the exact value of the integral.
So (1) is true. :
Therefore both (1) and (I1) are correct.

(d)
dx

Att:O,x:xO

46.

47.

48.

lrrespeo‘tive‘ of values of x, Kt,, x,) depends on ¢
only. ’

K, = h (i, x,) = 0.2x x 4= 0.8
1 k
Kg = hf(fo'i‘gh,/\‘()'l‘*gij
— hf(0.4x+0.4)
= 0.2(4x0.1+4)=0.88
1 K,
/(3 = hf[i0+§h, X0+—-22—)

= 0.2f(0.1x, +0.44)

= 0.2(4x0.1+4)=0.88
k, = hi{ty +h, xq +k3)

= 0.2f(0.2, x, +0.88)

= 0.2(4x02+4)=0.96

1

ko= ol + 2k + 2K + k)

i

it

%(0‘8 +2x0.88+2x0.88+0.96)
0.88

1l

Sol.

Ly O[T Up _[2 2}
Loy Lpj|O 1] 149

This is crout’s LU decomposition, since diagonal
elements of U are 1. So we will setup the
equations for the elements of the matrix taken
column-wise, as follows

/—11:2’[-21:4
LigxUp=2
=5 U12=1,L21><U12+L22:9
= 4+ L,=9 ¢
= L22=5

(c)
Intermediate value theorem states that if a function
is continuous and f(a) - f(b) < O, then surely there
is a root in (a, b). The contrapositive of this
theorem is that if a function is continuous and
has norootin (a, b)thensurely f(a) - f(b) > 0. But
since itis given that there is no-root in the closed
interval [a ,b] it means f(a) - f(b) # 0.
Sosurely f(a) - f(b) > 0 which is choice (¢).
Sol.

flx) = x - 4x + 4

f(x) = 2x -4

Xg = 3



f(8)=1,1(3) =2 22
By Newton Rapshon method, =5- 377> 707097 =4.2903

f
X, = xp - f/((xQ_)j = 3~ ; = —g 52. {c&d) ¢ y
0 Secant method formula is x, = -0
(8) - 2100a-1 | =t i
2) " 4 T4 ie. x = e e
By secant method b=
%, = - 17 %0) flxe) Y= = ) T, = ()
2 F(x1) — f(x0) =x, — (x, —x) £/ (f, ~ f(x)
1 5 _ fbxa - faxb
= X3~ Ix= £ f
_ fTXO “fox«] _ Ar . 2 b a
B f,—1f - 1_1 - Both (¢) & (d) after simplification reduce to the
4 required formula. So both (¢) and (d) are correct.
7 v
= — 53. (a
3 (a)
49. Sol.
f(x) = -2 + 6x — 4x° + 0.5x3
f’( ) =6-8x + 1.5x°
=0
By Newton Raphson Method,
. _;th(x,-n,') _ __"_g
1T f’<x/n/') - 6
1
= 173 1 Exact value is computed by integration which
Ax = X=X = 3 —foHows—thee—exaectshapeof graph-—white—
50. Sol computing the area.
- ook Whereas, in Trapezoidal rule, the lines joining each
fx) = x° + 2x2 + 3x — 1 ) . . . "
) points are considered straight lines which is not
Flx) = 3" +4x + 3 the exact variation of graph all the time like as
X =1 ‘ shown in figure.
X f(\n) J>17
n+1 n f’(ln) OR
flxg) (5] i
X, = Xg— Al =05 Error = ———f”
=R TGy T [10] 12 ©)
) Here, f(x) = x?
.= 05- /(05 ]__OS_mﬁzﬂ #(x) = 2v
[7(05)] [5.15] (x) = 2 > 0
= 0.3043 Since f”(x) is positive, the error is negative.
51. Sol. Since error = ?x?ct; approximate.

flx) =x®~5x%+6x~8 _ . o ‘
and since error is negative inthis case J > /s true.

Xg =95
f'(x) = 3x*-10x + 6 54. Sol.
o= g% MO) x |0 ] 04 | 08
T fx) 7(5)
o f(x) [0.2 | 2.456 | 0.232
2
L5 5 -5x5%+6x5-8 a=0,b=08 Av=0.4

3%x5° -10x5+6



f(x) = 0.2 + 25x - 200x2 + 675x% ~ 900X
+ 400x5
By Simpson's 1/3 Rule

0.8
y = f f(x)dx
0

4
—[Vo+4y +y,]

i

3
Yo =y(0)=02
v, = y(0.4)=2.456
¥, = y(0.8)=0.232
y(n) = 9;(0.2+4><2.456+0A232)
= 1.367
Sol.
yO yn
x |1 2
f(x) | 0| 20n2)
[ = ﬁ[)/o +y/‘}
2 i

/= —;.[o+21772} = In2 = 0.693

Sol.
3 9
flx) = gx2 +Z
x 10105 1

fx) 18195 2.4

1 h
= fof(x) = g[yo+4)/1+)/2]

= %[1.8+4(1,95)+ 24] =2

ff(x)dx = g[}/o+2[Y1+YQ+Y3]+Y4]

= 92'—1[O+2[1O+4O+90]+16O]
= 22

Sol.

Given that the motorbike starts from rest.
Att=0 v=0

So the table now becomes

{12746 ]8[10{12114{16]18120

vi10 118125129132 120(11i5 1210

h = Table spacing = 2 minutes

59.

60.

61.

Sothe distance (in kilometers) covered in 20 minutes
using Simpson’s rule

20
- fvdt
0

_2

8(O+4><1O+2><18~1*4><25+...+O)
= 309.33

Sol.
The equations are
Xy + 20+ 3x;=5 .(38)
2xy + 30, + xy =1 (2)
3xy+ 26, +x5=3 A1)

By poveting we can write
3x, + 20 +x,=3
2xy + 3x, +xg =1

3~ 2xy, ~ X,

g T (1)

1-2x — x
X, = —-~31—~3 .(2)

X, +2r2+3x3:5
- S =Xy —2x,
3 3
Putx,=0 x;=0inequation (Nx, =1
Putx, =1 x;=0in equation (3) x, =-0.333
Putx; =1 x,=-0.333in equation (8)xy =1.555
xy = 1.555

.(3)

Sol.
fx) =x-10 cos x f(E]
4
10
= - —= = —6.286
4 2
7(x) = 1+ 10 sin x f’[%)
10
= 1+ —= =807
J2
Y 1{_(—6.286
BT TGy T a Teor
n 6.286
= Z+W = 1.5639
(c)

fx) = x® + x~ 1
(=1+1-1=1



62.

63.

64.

f(x) = 3x% + 1

f(y=3+1=4
H(x)
X, = Xg—
Y Pl
= 1-~% =1-0.25=0.750
Sol.
According to Newton-Raphson Method:
f(Xn)
X = Xy~
Mt T N XN
f(x) = 3x — € + sinx
f(x) =3 — & + cosx
f(0.333)
X, = Xo——ramane
= 1= 070,333
, 0333 |
_ 01333_3>\O,33%3£ +sin0.333
3-6"" +c0s0.333
X, = 0.36
(a)

Trapezoidal ryle gives the best result in single
variable function when the function is linear

(degree 1).
Sol.
0 T 2n T
i 3 | 3
fx)| 1 ]1.366|0.366 | ~1
Yol N Yo | Y3
By Trapezoidal

s

[ (sin x + cos x)dx

0

/3
= (1 (1) + 201306 + 0.366))
%(1732) = 11812

n n/2
'((Sinx + COoSx)dx = j (sinx + cos x)dx
0 0

s

+ f (sinx + cosx)dx
nl2

n
/2

/2
0

=[(O+1)~(—1+D)]+[(1+O)—(O+1)]
=1+ 1+1-1=2

Error = Exact value — approx value

=(~cosx+sinx)|; ~ +(-cosx +sin x)|

65.

66.

67.

Sol.

d
Yl _3yr2 y(0)=1
dx

If | 1 —3h| < 1, then solution of differential equalion
is stable.

-1<1-3h<1

-2<-3h<0 -

fx, y) = vy + 2x — x2

xg=05Yy=1 ch =01

K, = hf(xy, Vo)
=01(1+2x0-0?) =01

ky = Df(y + N, Vo + K))
= 0.1((y, + Ky) + 20xg + h) = (xy + h)2)
Z 0.4((1 +0.1) + 2(0.1) - (0.1)?)
= 0.129

1
¥i=Yo +—2"(k1 +Ks)

[

‘1+—;—(O.1+ 0.129) =1.1145

Exact solution
yix)=x2+ e =(0.1)%+ e’ =1.1152
Error = 1.1152 - 1.1145 = 0.00069
% error = 0.06%

(a) 0 |os |1
By Trapezoidal rule ST 7 5
1
h
ff(x)dx = '2*[()/0 +Y2) + 2V4
0
- 923+ 5) + 2(4)
By Simpson rule
1
!
[ fx)ah = Sllyo + y2) + 4yl
0



38.

(d)

In the following table by calculating A*f we get
7.2 x 1073 for all the differences. Which is constant
for all values. Therefore the order of the polynomial
is 4.

Sol.
fx) = x8 — x ~1
=1 b=2 e =001= 1073
The minimum number of iterations by Bisection
method is given by
jo-2|
2/7
2-1
2[)
d .1
on  10°
2" > 10°
2" > 1000

<€

< 1073

n
p, > [n1000

/n1000
In2
n> 9.96

(1) =4
By Newton-Raphson method,
;)
X. = X oy
i+ 7 f’(xi)
For x, = 1,
SR .1 s
(xg) 4
For x, = 0.75,
e flx) ~ H0.75)
20 ) T F(0.78)

L5 0171875

= 0.686
2.6875

i

Sol.

au
2 ar
i 3t + 1

72.

73.

fF(u t) =32 + 1

Uy =0
th=0
Al =2

By Euler's method

U = Uy + hf (uyty) =10+ h
:u0+h(3t§+1) =0+ 2
= 0+2(3(0)° +1) =2
=2

After first iteration v = 2 when t = 2
W
o= (3 + 1) at

. 2
Jou = [ (3% + ot

0

£ ’
= [ 3—+t

e

=8+ 2 =10

Absolute error = Exact value — approx value
=10 -2
=8

(1)

Given  f(x) = 2x° - 3x + 3, x,=2

flx) = 4x -3
By Newton-Rapshon

X

1

2(2f° -3(2)+3

flx) 4(2)-3
_o-2.
5
Sol.

Yi= Yo+ hlty, v,)
= VYo + hyo
=1+0.1(1)

yy=11

)/2 = }/1 + hf(tp y1>
=Yy + h-y1
=11+0.1(1.1)

Y, = 1.21

Vg = Yo+ hf<t2‘y2)



74.

75.

=Y, th-y,
=121+0.1x1.21
¥y = 1.331
Vo= Ys+ h 1y vs)
=Ygt Ny
= 1.331 + 0.1 x 1.331
y, = 1.4641
Vo= Yyt h [l )
=Y, +h-y,
= 1.4641 + 0.1 x (1.4641)
= 1.61051
Yo = Vo + 1 s V)
=Yg+ oy
= 1.61051 + 0.1 x 1.61051
Ve = 1.771561
Yo=Y+ ho L Ye)
Vo + hx Yy
1771561 + 0.1 x 1.771561
1.9487
Vg = Yy + hI(t,, vy)
=Y, +h-y;
= 1.9487 + 0.1 x (1.9487)
Vo= 214357
Yo=Yg+ h- Tl Ye)
=Yg+ Yy
= 2.14357 + 0.1 x 2.14357
Yy = 2.3579
Vio= Yo+ h- Tty Vo) = Vg + - ¥y
= 2.3579 + 0.1 x (2.3579)
Vio = 2.5937

i

it

i

(b) :
If p(s) has “r’ real roots, then p’(s) will have atleast
“r— 1" real roots.

(c)
Let x° = 1468

flx) = x® ~ 1468 = 0
By Newton Raphson method

f(x,) x2 - 1468
X = X, — = X, =
n+1 n f/(x”) n 3),’,27
2x2 + 1468

Sx,f

76.

11

i

Start with x,

x, = A0 +1468 ”3”2468 = 11377
: 31
. - 2(11.377)% + 12468 _ 11.365
3(11.377)
(a)
Method-1:
x = (1525)02
x = (1525)15
x° = 1525
By substitution,
(4.33)° = 1522.08
(4.36)° = 1575.55
(4.38)° = 1612.02
(4.30)° = 1470.08

. x = 4.33 is the nearest value.
Method-2: (Newton Raphson method)

x = (1525)02
x° = 1525
f(x) = x5 - 1525 = O
f(x) = 5x*
o)
Xno 1™ *n ™ f,(xn)
S k= 4x§+1525
5x,
Case-1:  x, =4
f(4)
ry = 4- g = 4391

Note: This cannot be solutiod ;fii\s it is not correct
upto 2 decimals. )

f(4.391

x2 = (4391) - f—'(_ll_g—g% = 4333
f(4.333

xy = (4.333) “F(( . 333?) = 4.331

Note: This is the correct solution upto 2 decimals.



