DIGITAL CIRCUITS TEST 3

Number of Questions: 25

Directions for questions 1 to 25: Select the correct alternative from the given choices.

- 1. Assume the propagation delay time of 2 input gates as EXOR-20ns, AND 10ns, OR-10ns, the propagation delay time for sum and carry output of a full adder circuit are respectively, when all the data inputs are applied simultaneously?
 - (A) 30ns, 20ns (B) 40ns, 30ns
 - (C) 40ns, 20ns (D) 20ns, 20ns
- 2. The minimized POS expression of the function $f(A, B, C, D) = AB + A\overline{C} + C + AD + A\overline{B}C + ABC$
 - (A) $A + \overline{C}$ (B) $\overline{A} + \overline{B}$ (C) AC (D) A + C
- **3.** The signed two's complement representation of $(-783)_{10}$ is (in HEX)?
 - (A) 830FH (B) 04F1H
 - (C) FCF1H (D) F3F1H
- 4. The two numbers represented in signed 2's complement form are P = 11011101 and Q = 11100101, if Q is subtracted from P, the value obtained in signed 2's complement form is?

(A)	11110111	(B)	11000010
(C)	11111000	(D)	00000111

- 5. The subtraction of a binary number *B* from another binary number *A*, done by adding the 2's complement of *B* to *A*, results in a binary number without carry, this implies that the result is
 - (A) negative and is in normal form
 - (B) positive and is in normal form
 - (C) negative and is in 2's complement form
 - (D) positive and is in 2's complement form
- 6. $f(a, b, c) = ab + b^{1}c$ in the canonical POS form is represented as
 - (A) $(a+b+c)(a+b+c^1)(a+b^1+c)(a^1+b^1+c)$
 - (B) $(a+b^1+c)(a+b^1+c^1)(a+b+c)(a^1+b+c)$
 - (C) $(a+b+c)(a^1+b^1+c)(a+b^1+c)$
 - (D) $(a^1 + b + c)(a^1 + b^1 + c)(a + b + c)(a + b^1 + c)$
- 7. The Essential prime Implicants of the function

 $f(A, B, C, D) = \overline{A}C + ABD + \overline{A}B + \overline{B}\overline{D} + \overline{A}\overline{B}\overline{C}D$ are

- (A) $BD, \overline{B}, \overline{D}, \overline{A}$ (B) $\overline{A}C, \overline{B}, \overline{D}, B$ (C) $BD, \overline{A}C, \overline{B}$ (D) $\overline{A}, \overline{B}, \overline{B}, \overline{D}, C$
- (C) BD, AC, B (D) A B, B D, C
- 8. A combinational circuit has 3 inputs *x*, *y*, *z* and three outputs *A*, *B*, *C*. When the binary input is 4, 5, 6 and 7, the binary output is 2 less than the binary input. When the binary input is 0, 1, 2 and 3, the output is 4 more than the binary input the Boolean expression for output *A* and *C* respectively are?

(A)	$x^1 y, z$	(B)	$x + y^1, z^1$
(C)	<i>x</i> , <i>z</i>	(D)	$x^{1} + y, z$

9. In the above problem statement, how many number of *NOR* are gates required implement output *B*.

(A)	3	(B)	4
(C)	5	(D)	6

10. A combinational circuit takes 2 inputs and output is the 2's complement of input binary number. Consider the inputs as a and b and output as *x* and *y*, the equations of *x* and *y* respectively?

(A)
$$a \odot b, b$$
 (B) $a^{1} b, a \odot b$
(C) $a^{1} b, ab^{1}$ (D) $a \Sigma b, b$

11. If $X_3 X_2 X_1 X_0$ are the inputs are $Y_3 Y_2 Y_1 Y_0$ are the outputs for the following *PROM* circuit, then the output is?

- (A) 2's complement of input
- (B) 8's complement of input
- (C) 9's complement of input
- (D) 10's complement of input
- **12.** To construct a 5 to 32 line decoder, how many number of 3 to 8 line decoders and 2 to 4 line decoders are required respectively without using any extra hardware?

(A)	3, 2	(B)	4, 1
(C)	2,4	(D)	2, 2

- **13.** Parity is a common error detection mechanism that is often used in data reception or retrieval systems. Consider a parity encoder that is used for data transmission or storage. If a word contains an even number of 1's, the parity bit is 0. If the word has odd number of 1's the parity bit is 1. If the data is *w*, *x*, *y*, *z* then the min terms for parity bit is?
 - (A) $\Sigma m(1, 2, 4, 7, 8, 11, 13, 14)$
 - (B) $\Sigma m(0, 3, 5, 6, 9, 10, 12, 15)$
 - (C) $\sum m(0, 1, 3, 5, 8, 10, 13, 15)$
 - (D) $\sum m(1, 3, 5, 7, 9, 11, 13, 15)$

Time: 60 min.

- 14. Consider the Boolean functions $f_1(A, B, C, D) = AC + BD$ $f_2(A, B, C, D) = \sum (4, 5, 6, 7, 10, 11, 14, 15)$ Then find $f_1 + f_2$ in minimized *POS* form (A) $(\overline{A} + B)(B + D)(\overline{A} + \overline{B} + C)$
 - (B) $(A+B)(B+C)(\overline{A}+C+D)$
 - (C) $\left(A + \overline{B}\right) \left(B + D\right) \left(\overline{A} + C + D\right)$
 - (D) $(A+D)(B+C)(\overline{A}+B+C)$
- **15.** The Boolean function $f(a, b, c) = a^1 b + b^1 c + ac^1$ has to be implemented by the following 2×1 multiplexer then the gate 1 and gate 2 are respectively?

16. Consider the NMOS circuit here, find the output

17. If the Boolean function f(a, b, c, d) = a + b + c + d has to be implemented with only 2 input *NAND* gates, then how many *NAND* gates are required?

18. Which of the following multiplexer implements 2 input

- (A) Q, R
 (B) P, R
 (C) P, S
 (D) R, S
- 19. The output of the following Demultiplexer circuit is

- **20.** For a 4 bit magnitude comparator with two inputs each of 4 bit $A(a_3, a_2, a_1, a_0)$ and $B(b_3, b_2, b_1, b_0)$, the Boolean equation for A < B is?
 - (A) $a_3^1 b_3 + a_2^1 b_2 + a_1^1 b_1 + a_0^1 b_0$
 - (B) $a_3 b_3^1 + (a_3 \oplus b_3) a_2 b_2^1 + (a_3 \oplus b_3) (a_2 \oplus b_3)$ $a_2 b_1^1 + (a_3 \oplus b_3) (a_2 \oplus b_2) (a_1 \oplus b_1) a_0 b_0^1$
 - (C) $a_3^1 b_3 + (a_3 \odot b_3) a_2^1 b_2 + (a_3 \odot b_3) (a_2 \odot b_2)$ $a_1^1 b_1 + (a_3 \odot b_3) (a_2 \odot b_2) (a_1 \odot b_1) a_0^1 b_0$
 - (D) $a_3^1 b_3 + (a_3 \oplus b_3) a_2^1 b_2 + (a_3 \oplus b_3) a_1^1 b_1 + (a_3 \oplus b_3)(a_2 \oplus b_2)(a_1 \oplus b_1) a_0^1 b_0$
- **21.** For an open collector *TTL* gate has the specifications $V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}, I_{OH} = 250 \text{ } \mu\text{A}, I_{OL} = 16 \text{ } \text{mA},$ $I_{IH} = 40 \text{ } \mu\text{A}, I_{IL} = -1.6 \text{ } \text{mA}$ Find the fan out for *TTL* gate specified (A) 6 (B) 8
 - (C) 10 (D) 16
- **22.** An 8 × 1 multiplexer has inputs *A*, *B*, *C* connected to the selection inputs S_2 , S_1 and S_0 respectively. The data inputs I_0 through I_7 are as follows. $I_1 = I_2 = 0$; $I_3 = I_5 = I_7 = 1$; $I_0 = I_4 = D$; and $I_6 = D^1$ then the Boolean function that the multiplexer implements is?
 - (A) $AB + BC + A\overline{C}D + \overline{B}\overline{C}D$
 - (B) $AC + BD + A\overline{B}D + B\overline{C}\overline{D}$
 - (C) $\overline{BCD} + AB\overline{D} + BC + AC$

(D)
$$A\overline{B}D + \overline{B}\overline{C}D + A\overline{C} + BC$$

3.196 | Digital Circuits Test 3

In the above PLA implementation the Boolean functions

- (B) $f_1 = f_3$ (D) $f_1 \neq f_2 \neq f_3$ (A) $f_1 = f_2$ (C) $f_2 = f_3$
- 24. When a logic gate is driving another logic gate, the condition which must be satisfied for proper operation is

 - (A) $V_{OH} > V_{IH}$ and $V_{OL} > V_{IL}$ (B) $V_{OH} < V_{IH}$ and $V_{OL} > V_{IL}$ (C) $V_{OH} > V_{IH}$ and $V_{OL} < V_{IL}$ (D) $V_{OH} < V_{IH}$ and $V_{OL} < V_{IL}$
- 25. The minimized POS expression for k-map shown is

(A)
$$\overline{A} + \overline{B}$$
 (B) $\overline{A} B$
(C) $(\overline{A} + \overline{B})(\overline{A} + B)(A + B)$ (D) $\overline{A}(A + B)$

	Answer Keys								
1. B	2. D	3. C	4. C	5. C	6. B	7. A	8. D	9. C	10. D
11. C	12. B	13. A	14. B	15. A	16. D	17. D	18. D	19. B	20. C
21. A	22. C	23. C	24. C	25. B					

HINTS AND EXPLANATIONS

1. Sum = $a \oplus b \oplus c$ Carry = ab + bc + ac

20 + 20 = 40 ns

- 10 + 10 + 10 = 30 ns Two level exor gate for sum So 20 + 20 = 40 ns Carry will be implemented with 2 input gates in 3 levels, so 10 + 10 + 10 = 30 ns Choice (B)
- **2.** $f = AB + A\overline{C} + C + AD + A\overline{B}C + ABC$ =AB+A+C+AD+AC= A(B + 1 + D + C) + C = A + CChoice (D)
- **3.** 783 = 512 + 256 + 8 + 4 + 2 + 1 = 1100001111 $+783 = 0000\ 0011\ 0000\ 1111\ (add\ 0's\ to\ MSB)$ $-783 = 1111 \ 1100 \ 1111 \ 0001 \ (2's \text{ complement of})$ +783)
 - In $HEX \Rightarrow FCF1$ Choice (C)
- **4.** *P* = 11011101 00100011 (by taking 2's complement) P = -35Q = 1110010100011011 (By taking 2's complement) Q = -27

 $P - Q = -35 - (-27) = -8 = 1111 \ 1000$ (in signed 2's complement form)

- (or) $P = 1101 \ 1101$ $Q = 1110\ 0101$ (direct subtraction) 1111 1000 Choice (C)
- 5. A B has to be performed So the 2's complement of *B* (which is $2^n - B$, n = no. of bits in B) is added to ASo result is $A + 2^n - B$; and there is no carry $A + 2^{n} - B = 2^{n} - (A - B)$ So the result is negative and it is in 2's complement form. Choice (C)
- 6. $f(a, b, c) = ab + b^{1}.c$ $= (ab + b^{1})(ab + c) [x + yz = (x + y)(x + z)]$ $= (a + b^{1})(a + c)(b + c)$ $= (a + b^{1} + c.c^{1})(a + b.b^{1} + c)(a.a^{1} + b + c)$ $= (a + b^{1} + c)(a + b^{1} + c^{1})(a + b + c)(a + b^{1} + c)$ $(a+b+c)(a^{1}+b+c)$ $= (a + b^{1} + c)(a + b^{1} + c^{1})(a + b + c)(a^{1} + b + c)$ Choice (B)

7.
$$f(A, B, C, D) = \overline{A}C + ABD + \overline{A}B + \overline{B}\overline{D} + \overline{A}\overline{B}\overline{C}D$$

Product term	Equivalent	Min terms		
Āc	0X1X	0010, 0011, 0110, 0111		
ABD	11 <i>X</i> 1	1101, 1111		
\overline{AB}	01 <i>XX</i>	0100, 0101, 0110, 0111		
$\overline{B}\overline{D}$	X0X0	0000, 0010, 1000, 1010		
$\overline{A}\overline{B}\overline{C}D$	0001	0001		

$$f(A, B, C, D) = \sum m(0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 15)$$

$$f(A, B, C, D) = \overline{A} + BD + \overline{B}\overline{D}$$

Essential prime implicants are \overline{A} , BD, $\overline{B}\overline{D}$

Choice (A)

8. The truth table is

$$A(x, y, z) = \sum m(0, 1, 2, 3, 6, 7)$$

$$B(x, y, z) = \sum m(2, 3, 4, 5)$$

$$C(x, y, z) = \sum m(1, 3, 5, 7)$$

The k map for A

The k map for C

9. $B(x, y, z) = \sum m(2, 3, 4, 5)$

2 input *XOR* required 5 *NOR* gates. Choice (C)

10. *a*, *b* are inputs of 2's complementer, and *x*, *y* are the outputs.

So truth table is

Choice (D)

11. From the circuit diagram, we can write truth table

	X ₃	X ₂	X ₁	X _0	Y ₃	Y ₂	Y ₁	Y ₀
	0	0	0	0	1	0	0	1
	0	0	0	1	1	0	0	0
	0	0	1	0	0	1	1	1
	0	0	1	1	0	1	1	0
	0	0	1	1	0	1	1	0
	0	1	0	0	0	1	0	1
12.	Choice (C Choice						oice (C)	
	So 4, 3 to 8 line decoder and 1, 2 to 4 line decoder. So 4, 3 to 8 line decoder and 1, 2 to 4 line decoder (or 5 to 32 line decoder will have 32 output lines So 8, 2 to 4 line Decoders are required, to select one these 8, one 3 to 8 line Decoder is required. 8, 2 to 4 Decoders, and 1, 3 to 8 Decoder. Choice (oder (or) et one of oice (B)
13.	For ever	ո ուլակ	per of	l's nari	tv hit i	s 0		

- 13. For even number of 1's parity bit is 0. So even parity, Even parity can be implemented by *XOR* gate *XOR* of even 1's given output 0. *XOR* of add 1's gives output 1. So parity bit $P = w \oplus x \oplus y \oplus z$ $P = \sum m(0001, 0010, 0100, 0111, 1000, 1011, 1101, 1110)$ $= \sum m(1, 2, 4, 7, 8, 11, 13, 14)$ Choice (A)
- $-\sum_{i=1}^{n} (1, 2, 4, 7, 8, 11, 13, 14)$ **14.** $f_1(A, B, C, D) = AC + BD$
 - $= AC(B + \overline{B}) (C + \overline{C}) + (A + \overline{A}) (C + \overline{C})BD$ $= \Sigma m(5, 7, 10, 11, 13, 14, 15)$ $= \Pi M(0, 1, 2, 3, 4, 6, 8, 9, 12)$ $f_2 = \Sigma m(4, 5, 6, 7, 10, 11, 14, 15)$ $= \Pi M(0, 1, 2, 3, 8, 9, 12, 13)$ $f_1 + f_2 = \Pi M(0, 1, 2, 3, 8, 9, 12)$ [common max terms of f_1 and f_2]

3.198 | Digital Circuits Test 3

 $f_{1} + f_{2} = (A + B) (B + C) (\overline{A} + C + D)$ Choice (B) **15.** Given $f(a, b, c) = a^{1}b + b^{1}c + ac^{1}$ $= a^{1}b + (a + a^{1})b^{1}c + ac^{1}$ $= a^{1}b + a^{1}b^{1}c + ab^{1}c + ac^{1}$ $= a^{1}[b + b^{1}c] + a[b^{1}c + c^{1}]$ $= a^{1}[b + c] + a[b^{1} + c^{1}]$

By comparing this equation with output of 2×1 multiplexer

$$Y = I_0 \overline{S} + I_1 S = I_0 \overline{a} + I_1 a = [b+c]a^1 + [bc]a$$

Gate 1 is OR gate, gate 2 is NAND gate. Choice (A)

16. For NMOS, when transistors are in series AND operation, transistors are in parallel OR operation overall output is in complement form.

$$V_{out} = AB + C$$
 Choice (D)

17.

Each 2 input OR gate required 3 – 2input NAND gates

So total 9 NAND gates are required. Choice (D)

- **18.** For multiplexer P, $Y = I_0 \overline{S} + I_1 S = a^1 b^1 + 0.b$ For mux, $Q Y = a^1 b^1 + b^1.b = a^1 b^1$ For mux, R, $Y = b^1.b^1 + a^1.b = a^1 + b^1 = (ab)^1$ For mux, S, $Y = 1.a^1 + b^1.a = a^1 + b^1 = (ab)^1$ So, R, S implement NAND gate P, Q implements *NOR* gate. Choice (D)
- **19.** The demultiplexer output $Y_0 = I \overline{S_2} \overline{S_1} \overline{S_0}$

$$\begin{split} Y_1 &= I \overline{S_2} \overline{S_1} S_0 \\ Y_2 &= I \overline{S_2} S_1 \overline{S_0} \\ Y_3 &= I S_2 \overline{S_1} \overline{S_0} \dots \text{Etc} \\ f(a, b, c, d) &= Y_0 + Y_1 + Y_6 + Y_7 \\ &= ab^1 c^1 d^1 + ab^1 c^1 d + abcd^1 + abcd \\ &= ab^1 c^1 + abc = a[b \odot c] \end{split}$$
 Choice (B)

20. If $A(a_3 a_2 a_1 a_0)$ and $B(b_3 b_2 b_1 b_0)$ are the two inputs the A < B is possible only when the bits in A are 0 and the bits in B are 1. So we can check *MSB* by using $a_3^1b_3$, if the *MSB* bits are equal, then we check next bits $(a_3 \odot b_3) a_2^1 b_2$ and if the higher order bits are equal then we move to next bits so $(A < B) = a_3^1 b_3 + (a_3 \odot b_3) a_2^1 b_2 + a_3 \cos b_3$

$$(a_3 \odot b_3) (a_2 \odot b_2) a_1^1 b_1 + (a_3 \odot b_3)(a_2 \odot b_2)(a_1 \odot b_1) a_0^1 b_0.$$
 Choice (C)

21. Fan out (logic 1) =
$$n_1 = \frac{I_{OH}}{I_{IH}}$$

= $\frac{250\mu A}{40\mu A} = 6.25$

Fanout (logic 0) $n_0 = \frac{I_{OL}}{I_{IL}} = \frac{16 \, mA}{1.6 \, mA} = 10$

The overall fanout = $\min(n_1, n_0) = 6$ Choice (A)

22. For
$$8 \times 1$$
 multiplexer output

$$Y = I_0 \overline{S_2} \overline{S_1} \overline{S_0} + I_1 \overline{S_2} \overline{S_1} S_0 + I_2 \overline{S_2} S_1 \overline{S_0} + I_3 \overline{S_2} S_1 S_0 + I_4 S_2 \overline{S_1} \overline{S_0} + I_5 S_2 \overline{S_1} S_0 + I_6 S_2 S_1 \overline{S_0} + I_7 S_2 S_1 S_0$$

$$= \overline{A} \overline{B} \overline{C} D + 0 + 0 + \overline{A} BC + A\overline{B} \overline{C} D + A \overline{B} C + AB\overline{C} \overline{D} + ABC$$

$$= \sum m(1, 6, 7, 9, 10, 11, 12, 14, 15)$$

$$Y = \overline{BC}D + AB\overline{D} + BC + AC$$
 Choice (C)

- **23.** The product terms are xz^1 , x^1y , yz^1 , y^1z , xy^1 So $f_1 = xz^1 + x^1y + yz^1 = xz^1 + x^1y$ [consensus theorem] $= \sum m(2, 3, 4, 6)$ $f_2 = xz^1 + x^1y + y^1z = \sum m(1, 2, 3, 4, 5, 6)$ $f_3 = x^1y + yz^1 + y^1z + xyI = \sum m(1, 2, 3, 4, 5, 6)$ So $f_2 = f_3$ Choice (C)
- **24.** Choice (C)
- **25.** Two octates present so minimized expression is \overline{A} . B

Choice (B)