

Set Theory

Introduction

A set is well defined class or collection of objects.

A set is often described in the following two ways.

(1) **Roster method or Listing method :** In this method a set is described by listing elements, separated by commas, within braces $\{\}$. The set of vowels of English alphabet may be described as $\{a, e, i, o, u\}$.

(2) **Set-builder method or Rule method :** In this method, a set is described by a characterizing property P(x) of its elements x. In such a case the set is described by $\{x : P(x) \text{ holds}\}$ or $\{x \mid P(x) \text{ holds}\}$, which is read as 'the set of all x such that P(x) holds'. The symbol '|' or ':' is read as 'such that'.

The set $A = \{0, 1, 4, 9, 16,\}$ can be written as $A = \{x^2 \mid x \in Z\}$.

□ Symbols

Symbol	Meaning
\Rightarrow	Implies
e	Belongs to
$A \subset B$	A is a subset of B
⇔	Implies and is implied by
¢	Does not belong to
<i>s.t.</i> (: or)	Such that
\forall	For every
Е	There exists
iff	If and only if
&	And
$a \mid b$	a is a divisor of b
Ν	Set of natural numbers
I or Z	Set of integers
R	Set of real numbers
С	Set of complex numbers
Q	Set of rational numbers

Types of sets

(1) **Null set or Empty set :** The set which contains no element at all is called the null set. This set is sometimes also called the 'empty set' or the 'void set'. It is denoted by the symbol ϕ or {}.

(2) **Singleton set :** A set consisting of a single element is called a singleton set. The set {5} is a singleton set.

(3) **Finite set :** A set is called a finite set if it is either void set or its elements can be listed (counted, labelled) by natural number 1, 2, 3, ... and the process of listing terminates at a certain natural number n (say).

Cardinal number of a finite set : The number n in the above definition is called the cardinal number or order of a finite set A and is denoted by n(A) or O(A).

(4) **Infinite set :** A set whose elements cannot be listed by the natural numbers 1, 2, 3, ..., n, for any natural number n is called an infinite set.

(5) **Equivalent set :** Two finite sets A and B are equivalent if their cardinal numbers are same *i.e.* n(A) = n(B).

Example : $A = \{1, 3, 5, 7\}$; $B = \{10, 12, 14, 16\}$ are

equivalent sets, [:: O(A) = O(B) = 4].

(6) **Equal set :** Two sets *A* and *B* are said to be equal *iff* every element of *A* is an element of *B* and also every element of *B* is an element of *A*. Symbolically, A = B if $x \in A \Leftrightarrow x \in B$.

Example : If $A = \{2, 3, 5, 6\}$ and $B = \{6, 5, 3, 2\}$. Then A = B, because each element of A is an element of B and vice-versa.

(7) **Universal set :** A set that contains all sets in a given context is called the universal set.

It should be noted that universal set is not unique. It may differ in problem to problem.

(8) **Power set :** If *S* is any set, then the family of all the subsets of *S* is called the power set of *S*.

The power set of *S* is denoted by P(S). Symbolically, $P(S) = \{T : T \subseteq S\}$. Obviously ϕ and *S* are both elements of P(S).

Example: Let $S = \{a, b, c\}$, then $P(S) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$.

Power set of a given set is always non-empty.

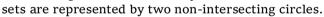
(9) **Subsets (Set inclusion) :** Let *A* and *B* be two sets. If every element of *A* is an element of *B*, then *A* is called a subset of *B*.

If *A* is subset of *B*, we write $A \subseteq B$, which is read as "*A* is a subset of *B*" or "*A* is contained in *B*".

Thus, $A \subseteq B \Rightarrow a \in A \Rightarrow a \in B$.

Proper and improper subsets : If A is a subset of B and $A \neq B$, then A is a proper subset of B. We write this as $A \subset B$.

The null set ϕ is subset of every set and every set is subset of itself, *i.e.*, $\phi \subset A$ and $A \subseteq A$ for every set A. They are called improper subsets of A. Thus every non-empty set has two improper subsets. It should be noted that ϕ has only one subset ϕ which is improper.


All other subsets of *A* are called its proper subsets. Thus, if $A \subset B$, $A \neq B$, $A \neq \phi$, then *A* is said to be proper subset of *B*.

Example: Let $A = \{1, 2\}$. Then A has $\phi; \{1\}, \{2\}, \{1, 2\}$ as its subsets out of which ϕ and $\{1, 2\}$ are improper and $\{1\}$ and $\{2\}$ are proper subsets.

Venn-Euler diagrams

The combination of rectangles and circles are called *Venn-Euler diagrams* or simply **Venn-diagrams**.

If A and B are not equal but they have some common elements, then to represent A and B we draw two intersecting circles. Two disjoints

Operations on sets

(1) **Union of sets :** Let *A* and *B* be two sets. The union

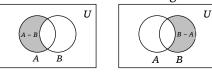
of *A* and *B* is the set of all elements which are in set *A* or in *B*. We denote the union of *A* and *B* by $A \cup B$, which is usually read as "*A* union *B*".

U

Symbolically, $A \cup B = \{x : x \in A \text{ or } x \in B\}.$

(2) **Intersection of sets :** Let *A* and *B* be two sets. The intersection of *A* and *B* is the set of II

all those elements that belong to both *A* and *B*.


The intersection of A and B is denoted by $A \cap B$ (read as "A intersection B").

Thus, $A \cap B = \{x : x \in A \text{ and } x \in B\}.$

(3) **Disjoint sets :** Two sets *A* and *B* are said to be disjoint, if $A \cap B = \phi$. If $A \cap B \neq \phi$, then *A* and *B* are said to be non-intersecting or non-overlapping sets.

Example : Sets {1, 2}; {3, 4} are disjoint sets.

(4) **Difference of sets :** Let A and B be two sets. The difference of A and B written as A - B, is the set of all those elements of A which do not belong to B.

Thus, $A - B = \{x : x \in A \text{ and } x \notin B\}$

Similarly, the difference B - A is the set of all those elements of B that do not belong to A *i.e.*, $B - A = \{x \in B : x \notin A\}$.

Example: Consider the sets $A = \{1, 2, 3\}$ and $B = \{3, 4, 5\}$, then $A - B = \{1, 2\}; B - A = \{4, 5\}$.

(5) **Symmetric difference of two sets** : Let *A* and *B* be two sets. The symmetric difference of sets *A* and *B* is the set $(A-B)\cup(B-A)$ and is denoted by $A\Delta B$. Thus, $A\Delta B = (A-B)\cup(B-A) = \{x : x \notin A \cap B\}$.

(6) **Complement of a set :** Let *U* be the universal set and let *A* be a set such that $A \subset U$. Then, the complement of *A* with respect to *U* is denoted by *A'* or A^c or C(A) or U - A and is defined the set of all those elements of *U* which are not in *A*.

Thus, $A' = \{x \in U : x \notin A\}$. Clearly, $x \in A' \Leftrightarrow x \notin A$ **Example :** Consider $U = \{1, 2, \dots, 10\}$

and $A = \{1, 3, 5, 7, 9\}$.

Then $A' = \{2, 4, 6, 8, 10\}$

Some important results on number of elements in sets

If A, B and C are finite sets and U be the finite universal set, then (1) $n(A \cup B) = n(A) + n(B) - n(A \cap B)$

(2) $n(A \cup B) = n(A) + n(B) \Leftrightarrow A, B$ are disjoint non-void sets.

(3) $n(A - B) = n(A) - n(A \cap B)$ i.e., $n(A - B) + n(A \cap B) = n(A)$

(4) $n(A \triangle B) =$ Number of elements which belong to exactly one of A or $B = n((A - B) \cup (B - A)) = n(A - B) + n(B - A)$

[:: (A - B) and (B - A) are disjoint]

U

 $= n(A) - n(A \cap B) + n(B) - n(A \cap B) = n(A) + n(B) - 2n(A \cap B)$

(5) $n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(A \cap C) + n(A \cap B \cap C)$

(6) *n* (Number of elements in exactly two of the sets A, B, C) = $n(A \cap B) + n(B \cap C) + n(C \cap A) - 3n(A \cap B \cap C)$

(7) n(Number of elements in exactly one of the sets A, B, C) = n(A) + n(B) + n(C)

$$-2n(A \cap B) - 2n(B \cap C) - 2n(A \cap C) + 3n(A \cap B \cap C)$$

(8)
$$n(A' \cup B') = n(A \cap B)' = n(U) - n(A \cap B)$$

$$(9) \ n(A' \cap B') = n(A \cup B)' = n(U) - n(A \cup B)$$

Laws of algebra of sets

(1) **Idempotent laws:** For any set *A*, we have

- (i) $A \cup A = A$ (ii) $A \cap A = A$
- (2) Identity laws: For any set A, we have

(i) $A \cup \phi = A$ (ii) $A \cap U = A$

i.e., ϕ and U are identity elements for union and intersection respectively.

(3) **Commutative laws:** For any two sets *A* and *B*, we have

(i) $A \cup B = B \cup A$ (ii) $A \cap B = B \cap A$

(iii) $A\Delta B = B\Delta A$

i.e., union, intersection and symmetric difference of two sets are commutative.

(iv) $A - B \neq B - A$ (v) $A \times B \neq B \times A$

 $\it i.e.,$ difference and cartesian product of two sets are not commutative

(4) **Associative laws:** If *A*, *B* and *C* are any three sets, then

(i) $(A \cup B) \cup C = A \cup (B \cup C)$ (ii) $A \cap (B \cap C) = (A \cap B) \cap C$

(iii) $(A\Delta B)\Delta C = A\Delta(B\Delta C)$

i.e., union, intersection and symmetric difference of two sets are associative.

(iv) $(A-B)-C \neq A-(B-C)$ (v) $(A \times B) \times C \neq A \times (B \times C)$

i.e., difference and cartesian product of two sets are not associative.

(5) **Distributive law:** If *A*, *B* and *C* are any three sets, then

(i) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

(ii) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

i.e., union and intersection are distributive over intersection and union respectively.

(iii) $A \times (B \cap C) = (A \times B) \cap (A \times C)$

(iv) $A \times (B \cup C) = (A \times B) \cup (A \times C)$

(v) $A \times (B - C) = (A \times B) - (A \times C)$

(6) **De-Morgan's law :** If *A*, *B* and *C* are any three sets, then

(i) $(A \cup B)' = A' \cap B'$ (ii) $(A \cap B)' = A' \cup B'$ (iii) $A - (B \cap C) = (A - B) \cup (A - C)$ (iv) $A - (B \cup C) = (A - B) \cap (A - C)$ (7) If A and B are any two sets, then (i) $A - B = A \cap B'$ (ii) $B - A = B \cap A'$ (iii) $A - B = A \Leftrightarrow A \cap B = \phi$ (iv) $(A - B) \cup B = A \cup B$ (v) $(A - B) \cap B = \phi$ (vi) $A \subseteq B \Leftrightarrow B' \subseteq A'$ (vii) $(A - B) \cup (B - A) = (A \cup B) - (A \cap B)$ (8) If A, B and C are any three sets, then (i) $A \cap (B - C) = (A \cap B) - (A \cap C)$ (ii) $A \cap (B \Delta C) = (A \cap B) \Delta (A \cap C)$

Cartesian product of sets

Cartesian product of sets : Let *A* and *B* be any two non-empty sets. The set of all ordered pairs (a, b) such that $a \in A$ and $b \in B$ is called the cartesian product of the sets *A* and *B* and is denoted by $A \times B$.

Thus, $A \times B = [(a, b) : a \in A$ and $b \in B]$ If $A = \phi$ or $B = \phi$, then we define $A \times B = \phi$. *Example*: Let $A = \{a, b, c\}$ and $B = \{p, q\}$. Then $A \times B = \{(a, p), (a, q), (b, p), (b, q), (c, p), (c, q)\}$ Also $B \times A = \{(p, a), (p, b), (p, c), (q, a), (q, b), (q, c)\}$ **Important theorems on cartesian product of sets:** Theorem 1: For any three sets A, B, C(i) $A \times (B \cup C) = (A \times B) \cup (A \times C)$ (ii) $A \times (B \cap C) = (A \times B) \cap (A \times C)$ Theorem 2: For any three sets A, B, C $A \times (B - C) = (A \times B) - (A \times C)$

Theorem 3 : If *A* and *B* are any two non-empty sets, then

 $A \times B = B \times A \Leftrightarrow A = B$

Theorem 4 : If $A \subseteq B$, then $A \times A \subseteq (A \times B) \cap (B \times A)$ **Theorem 5 :** If $A \subseteq B$, then $A \times C \subseteq B \times C$ for any set *C*. **Theorem 6 :** If $A \subseteq B$ and $C \subseteq D$, then $A \times C \subseteq B \times D$ **Theorem 7 :** For any sets *A*, *B*, *C*, *D* ($A \times B$) \cap ($C \times D$) = ($A \cap C$) \times ($B \cap D$) **Theorem 8 :** For any three sets *A*, *B*, *C* (i) $A \times (B' \cup C')' = (A \times B) \cap (A \times C)$ (ii) $A \times (B' \cap C')' = (A \times B) \cup (A \times C)$

Relations

Definition

Let A and B be two non-empty sets, then every subset of $A \times B$ defines a relation from A to B and every relation from A to B is a subset of $A \times B$.

Let $R \subseteq A \times B$ and $(a, b) \in R$. Then we say that a is related to b by the relation R and write it as aRb. If $(a,b) \in R$, we write it as aRb.

(1) **Total number of relations :** Let *A* and *B* be two non-empty finite sets consisting of *m* and *n* elements respectively. Then $A \times B$ consists of *mn* ordered pairs. So, total number of subset of $A \times B$ is 2^{mn} . Since each subset of $A \times B$ defines relation from *A* to *B*, so total number of relations from *A* to *B* is 2^{mn} . Among these 2^{mn} relations the void relation ϕ and the universal relation $A \times B$ are trivial relations from *A* to *B*.

(2) **Domain and range of a relation :** Let R be a relation from a set A to a set B. Then the set of all first components or coordinates of the ordered pairs belonging to R is called the domain of R, while the set of all second components or coordinates of the ordered pairs in R is called the range of R.

Thus, Dom $(R) = \{a : (a, b) \in R\}$ and Range $(R) = \{b : (a, b) \in R\}.$

Inverse relation

Let *A*, *B* be two sets and let *R* be a relation from a set *A* to a set *B*. Then the inverse of *R*, denoted by R^{-1} , is a relation from *B* to *A* and is defined by $R^{-1} = \{(b, a) : (a, b) \in R\}$

Clearly $(a, b) \in R \Leftrightarrow (b, a) \in R^{-1}$. Also, Dom (R) =Range (R^{-1}) and Range (R) = Dom (R^{-1})

Example : Let $A = \{a, b, c\}, B = \{1, 2, 3\}$ and $R = \{(a, 1), (a, 3), (b, 3), (c, 3)\}.$

Then, (i) $R^{-1} = \{(1, a), (3, a), (3, b), (3, c)\}$ (ii) Dom (R) = $\{a, b, c\}$ = Range (R^{-1}) (iii) Range (R) = $\{1, 3\}$ = Dom (R^{-1})

(iii) Range
$$(R) = \{1, 3\} = DOM (R)$$

Types of relations

(1) **Reflexive relation :** A relation *R* on a set *A* is said to be reflexive if every element of *A* is related to itself.

Thus, *R* is reflexive \Leftrightarrow (*a*, *a*) \in *R* for all *a* \in *A*.

Example: Let $A = \{1, 2, 3\}$ and $R = \{(1, 1); (1, 3)\}$

Then *R* is not reflexive since $3 \in A$ but $(3, 3) \notin R$

A reflexive relation on *A* is not necessarily the identity relation on *A*.

The universal relation on a non-void set *A* is reflexive.

(2) **Symmetric relation :** A relation *R* on a set *A* is said to be a symmetric relation *iff* $(a, b) \in R \Rightarrow (b, a) \in R$ for all $a, b \in A$

i.e., $aRb \Rightarrow bRa$ for all $a, b \in A$.

it should be noted that *R* is symmetric iff $R^{-1} = R$

The identity and the universal relations on a non-void set are symmetric relations.

A reflexive relation on a set *A* is not necessarily symmetric.

(3) **Anti-symmetric relation :** Let *A* be any set. A relation *R* on set *A* is said to be an anti-symmetric relation *iff* $(a, b) \in R$ and $(b, a) \in R \Rightarrow a = b$ for all $a, b \in A$.

Thus, if $a \neq b$ then a may be related to *b* or *b* may be related to *a*, but never both.

(4) **Transitive relation :** Let *A* be any set. A relation *R* on set *A* is said to be a transitive relation *iff*

 $(a, b) \in R$ and $(b, c) \in R \Rightarrow (a, c) \in R$ for all $a, b, c \in A$ *i.e.*, aRb and $bRc \Rightarrow aRc$ for all $a, b, c \in A$.

Transitivity fails only when there exists a, b, c such that a R b, b R c but a R c.

Example : Consider the set $A = \{1, 2, 3\}$ and the relations

 $R_1 = \{(1, 2), (1, 3)\}; R_2 = \{(1, 2)\}; R_3 = \{(1, 1)\};$

 $R_4 = \{(1, 2), (2, 1), (1, 1)\}$

Then R_1 , R_2 , R_3 are transitive while R_4 is not transitive since in R_4 , $(2, 1) \in R_4$; $(1, 2) \in R_4$ but $(2, 2) \notin R_4$.

The identity and the universal relations on a non-void sets are transitive.

(5) **Identity relation :** Let *A* be a set. Then the relation $I_A = \{(a, a) : a \in A\}$ on *A* is called the identity relation on *A*.

In other words, a relation I_A on A is called the identity relation if every element of A is related to itself only. Every identity relation will be reflexive, symmetric and transitive.

Example : On the set = $\{1, 2, 3\}$, $R = \{(1, 1), (2, 2), (3, 3)\}$ is the identity relation on A.

It is interesting to note that every identity relation is reflexive but every reflexive relation need not be an identity relation.

(6) **Equivalence relation :** A relation *R* on a set *A* is said to be an equivalence relation on *A iff*

(i) It is reflexive *i.e.* $(a, a) \in R$ for all $a \in A$

(ii) It is symmetric *i.e.* $(a, b) \in R \Rightarrow (b, a) \in R$, for all $a, b \in A$

(iii) It is transitive *i.e.* $(a, b) \in R$ and $(b, c) \in R \Rightarrow (a, c) \in R$ for all $a, b, c \in A$.

Congruence modulo (m) : Let *m* be an arbitrary but fixed integer. Two integers *a* and *b* are said to be congruence modulo *m* if a-b is divisible by *m* and we write $a \equiv b \pmod{m}$.

Thus $a \equiv b \pmod{m} \Leftrightarrow a-b$ is divisible by m. For example, $18 \equiv 3 \pmod{5}$ because 18 - 3 = 15 which is divisible by 5. Similarly, $3 \equiv 13 \pmod{2}$ because 3 - 13 = -10 which is divisible by 2. But $25 \neq 2 \pmod{4}$ because 4 is not a divisor of 25 - 3 = 22.

The relation "Congruence modulo m" is an equivalence relation.

Equivalence classes of an equivalence relation

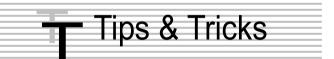
Let *R* be equivalence relation in $A(\neq \phi)$. Let $a \in A$. Then the equivalence class of *a*, denoted by [a] or $\{\overline{a}\}$ is defined as the set of all those points of *A* which are related to *a* under the relation *R*. Thus $[a] = \{x \in A : x R a\}$.

It is easy to see that

- (1) $b \in [a] \Rightarrow a \in [b]$
- (2) $b \in [a] \Rightarrow [a] = [b]$

(3) Two equivalence classes are either disjoint or identical.

Composition of relations


Let *R* and *S* be two relations from sets *A* to *B* and *B* to *C* respectively. Then we can define a relation *SoR* from *A* to *C* such that $(a, c) \in SoR \Leftrightarrow \exists b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$.

This relation is called the composition of *R* and *S*.

For example, if $A = \{1, 2, 3\}$, $B = \{a, b, c, d\}$, $C=\{p, q, r, s\}$ be three sets such that $R = \{(1, a), (2, b), (1, c), (2, d)\}$ is a relation from *A* to *B* and *S* = $\{(a, s), (b, r), (c, r)\}$ is a relation from *B* to *C*. Then *SoR* is a relation from *A* to *C* given by *SoR* = $\{(1, s), (2, r), (1, r)\}$

In this case *RoS* does not exist.

In general $RoS \neq SoR$. Also $(SoR)^{-1} = R^{-1}oS^{-1}$.

✓ Equal sets are always equivalent but equivalent sets may need not be equal set.

 \measuredangle If *A* has *n* elements, then *P*(*A*) has 2^n elements.

 \mathbf{k} The total number of subset of a finite set containing *n* elements is 2^n .

$$\mathbf{z}$$
 If A_1, A_2, \dots, A_n is a finite family of sets, then

their union is denoted by
$$\bigcup_{i=1}^{i} A_i$$
 or

 $A_1 \cup A_2 \cup A_3 \dots \dots \cup A_n$

 $\boldsymbol{\mathscr{L}}$ If $A_1, A_2, A_3, \dots, A_n$ is a finite family of sets, then

or

their intersection is denoted by $\bigcap_{i=1}^{n} A_i$

 $A_1 \cap A_2 \cap A_3 \cap \dots \cap \cap A_n$.

 \mathbf{z} R - Q is the set of all irrational numbers.

 $\boldsymbol{\mathscr{L}}$ Let *A* and *B* two non-empty sets having *n* elements in common, then $A \times B$ and $B \times A$ have n^2

-		110	100	£1
		- 20	225	۰.
æ	88	5.00	188	

ele	ements in common.	7.	If A and B are any two sets, then $A \cup (A \cap B)$ is equivalent to the set of
ø	The identity relation on a set A is an a	anti-	to [Karnataka CET 1996]
syı	mmetric relation.		(a) <i>A</i> (b) <i>B</i>
	The universal relation on a set A containin		(c) A^c (d) B^c
	ast two elements is not anti-symmetric, because b are in A, then a is related to b and b is rel		If A and B are two given sets, then $A \cap (A \cap B)^{\prime}$
	a under the universal relation will imply that a		equal to [AMU 1998; Kurukshetra CEE 19
	t a \neq b.		(a) A (b) B
ള	The set $\{(a, a): a \in A\} = D$ is called the diag	onal	(c) ϕ (d) $A \cap B^c$
	e of $A \times A$. Then "the relation R in A		If the sets A and B are defined as
an	tisymmetric iff $R \cap R^{-1} \subseteq D$ ".		$A = \{(x, y) : y = \frac{1}{x}, 0 \neq x \in R\}$
ø	The relation 'is congruent to' on the set T o	f all	$\begin{array}{c} x = \{(x, y) : y = -, 0 \neq x \in R\} \\ x \end{array}$
	triangles in a plane is a transitive relation.		$B = \{(x, y) : y = -x, x \in R\}$, then
ø	If R and S are two equivalence relations on a	a set	(a) $A \cap B = A$ (b) $A \cap B = B$
4,	then $R \cap S$ is also an equivalence relation on	А.	(c) $A \cap B = \phi$ (d) None of these
	The union of two equivalence relations on a		b. Let $A = [x : x \in R, x < 1]; B = [x : x \in R, x-1 \ge 1]$
	not necessarily an equivalence relation on the s		$A \cup B = R - D$, then the set <i>D</i> is
	The inverse of an equivalence relation is	an	(a) $[x:1 < x \le 2]$ (b) $[x:1 \le x < 2]$
=q	uivalence relation.		(c) $[x:1 \le x \le 2]$ (d) None of these
=		11.	
	Grdinary Thinking		$A = \{(x,y) : y = e^x, x \in R\}; B = \{(x,y) : y = x, x \in R\}, t$
			33333 [UPSEAT 1994, 99, 2002]
_	Set i Objective Question	ons	(a) $B \subseteq A$ (b) $A \subseteq B$
	The set of intelligent students in a class is	[AMU	(c) $A \cap B = \phi$ (d) $A \cup B = A$
	1998]	12.	2. If $X = \{4^n - 3n - 1 : n \in N\}$ and $Y = \{9(n-1) : n \in N\}$, t
	(a) A null set		$X \cup Y$ is equal to [Karnataka CET 1997]
	(b) A singleton set		(a) X (b) Y
	(c) A finite set(d) Not a well defined collection		(c) <i>N</i> (d) None of these
	Which of the following is the empty set	13.	3. Let $n(U) = 700, n(A) = 200, n(B) = 300$ and $n(A \cap B) = 100$
•	[Karnataka C	ET 1990]	then $n(A^c \cap B^c) =$ [Kurukshetra CEE 199
	(a) { $x : x$ is a real number and $x^2 - 1 = 0$ }		(a) 400 (b) 600
			(c) 300 (d) 200
	(b) { $x : x$ is a real number and $x^2 + 1 = 0$ }	14.	
	(c) { <i>x</i> : <i>x</i> is a real number and $x^2 - 9 = 0$ }		family buy newspaper A, 20% buy newspaper B
	(d) { $x : x \text{ is a real number and } x^2 = x + 2$ }		10% families buy newspaper <i>C</i> , 5% families bu and <i>B</i> , 3% buy <i>B</i> and <i>C</i> and 4% buy <i>A</i> and <i>C</i> . If
•	The set $A = \{x : x \in R, x^2 = 16 \text{ and } 2x = 6\}$ equa	lls	families buy all the three newspapers, then num
	[Karnataka C		of families which buy A only is [Roorkee 1997]
	(a) ϕ (b) {14, 3, 4}		(a) 3100 (b) 3300
	(c) {3} (d) {4}		(c) 2900 (d) 1400
,	If a set A has n elements, then the total nu	mber of 15.	
	subsets of A is[Roorkee 1991; Karnataka CE		50 percent travels by bus and 10 percent travels both car and bus. Then persons travelling by car
	2000]		bus is [Kerala (Engg.) 2002]
	(a) n (b) n^2		(a) 80 percent (b) 40 percent
	(c) 2^n (d) $2n$		(c) 60 percent (d) 70 percent
	The number of proper subsets of the set {1, 2		
	_	EE 2000]	studying different subjects are 23 in Mathemat
	(a) 8 (b) 7		24 in Physics, 19 in Chemistry, 12 in Mathema and Physics, 9 in Mathematics and Chemistry, 7
	(c) 6 (d) 5 Given the sets $A_{1}(1,2,2) = B_{1}(2,4)$, $G_{2}(4,5)$	6) there	Physics and Chemistry and 4 in all the th
•	Given the sets $A = \{1, 2, 3\}, B = \{3, 4\}, C = \{4, 5, 4\}$		subjects. The number of students who have ta
	$A \cup (B \cap C)$ is [MNR 1988; Kurukshetra CEE	1996]	exactly one subject is [UPSEAT 1990]
	(a) $\{3\}$ (b) $\{1, 2, 3, 4\}$		

(c) {1, 2, 4, 5}

(d) {1, 2, 3, 4, 5, 6}

	(a)	6	(b) 9
	(c)	7	(d) All of these
17.	If A, B and C are any th	'	
	equal to		[Pb. CET 2001]
	(a) $(A \times B) \cup (A \times C)$	(b)	$(A \cup B) \times (A \cup C)$
	(c) $(A \times B) \cap (A \times C)$	(d)	None of these
18.	· · · ·	ree	sets, then $A - (B \cup C)$ is
	equal to		
	(a) $(A - B) \cup (A - C)$ (c) $(A - B) \cup C$		
10	If A, B and C are non-em		$(A - B) \cap C$ sets then $(A - B) \mapsto (B - B)$
19.			U 1992, 1998; DCE 1998]
	-		$A - (A \cap B)$
	(c) $(A \cup B)$ – $(A \cap B)$	(d)	$(A \cap B) \cup (A \cup B)$
20.	If $A = \{2, 4, 5\}, B = \{7, 8, 9\},\$	the	en $n(A \times B)$ is equal to
	(a) 6	(b)	9
	(c) 3	(d)	
21.	If the set A has p eleme	ents	, B has q elements, then
		in A	× B is [Karnataka CET
	1999] (a) $p + q$	(b)	p + q + 1
			p^2
22.	(c) pq If $A = \{a, b\}, B = \{a, d\}, C = 1$	• •	1
22.			
	$\{(a,c),(a,d),(a,e),(b,c),(b,d),(a,e),(b,c),(b,d),(a,e),(b,c),(b,d),(a,e),(b,c),(b,d),(a,e),(b,c),(b,d),(c,e),(c,$		· •
	(a) $A \cap (B \cup C)$	-	AMU 1999; Him. CET 2002] $A \cup (B \cap C)$
	(a) $A \mapsto (B \cup C)$ (c) $A \times (B \cup C)$		$A \mathrel{\bigcirc} (B \mathrel{\cap} C)$
23.			f a set A, then $R \times (P^c \cup$
-51	$Q^{c})^{c} =$		[Karnataka CET 1993]
_3.			[Karnataka CET 1993]
_3.	$Q^{c})^{c} =$ (a) $(R \times P) \cap (R \times Q)$ (c) $(R \times P) \cup (R \times Q)$	(b) (d)	[Karnataka CET 1993] $(R \times Q) \cap (R \times P)$ None of these
24.	$Q^{c})^{c} =$ (a) $(R \times P) \cap (R \times Q)$	(b) (d)	[Karnataka CET 1993] $(R \times Q) \cap (R \times P)$ None of these s represented by
	$Q^{c})^{c} =$ (a) $(R \times P) \cap (R \times Q)$ (c) $(R \times P) \cup (R \times Q)$ In rule method the null s	(b) (d) æt i	[Karnataka CET 1993] $(R \times Q) \cap (R \times P)$ None of these s represented by [Karnataka CET 1998]
	$Q^{c})^{c} =$ (a) $(R \times P) \cap (R \times Q)$ (c) $(R \times P) \cup (R \times Q)$ In rule method the null s (a) {}	(b) (d) æt i (b)	[Karnataka CET 1993] $(R \times Q) \cap (R \times P)$ None of these s represented by [Karnataka CET 1998] ϕ
24.	$Q^{c})^{c} =$ (a) $(R \times P) \cap (R \times Q)$ (c) $(R \times P) \cup (R \times Q)$ In rule method the null s (a) {} (c) $\{x : x = x\}$	(b) (d) set i (b) (d)	[Karnataka CET 1993] $(R \times Q) \cap (R \times P)$ None of these s represented by [Karnataka CET 1998] ϕ $\{x : x \neq x\}$
	$Q^{c})^{c} =$ (a) $(R \times P) \cap (R \times Q)$ (c) $(R \times P) \cup (R \times Q)$ In rule method the null s (a) {} (c) $\{x : x = x\}$ $A = \{x : x \neq x\}$ represents	(b) (d) set i (b) (d)	[Karnataka CET 1993] $(R \times Q) \cap (R \times P)$ None of these s represented by [Karnataka CET 1998] ϕ $\{x : x \neq x\}$ [Kurukshetra CEE 1998]
24.	$Q^{c})^{c} =$ (a) $(R \times P) \cap (R \times Q)$ (c) $(R \times P) \cup (R \times Q)$ In rule method the null s (a) {} (c) $\{x : x = x\}$ $A = \{x : x \neq x\}$ represents (a) $\{0\}$	(b) (d) set i (b) (d) (b)	[Karnataka CET 1993] $(R \times Q) \cap (R \times P)$ None of these s represented by [Karnataka CET 1998] ϕ $\{x : x \neq x\}$ [Kurukshetra CEE 1998]
24. 25.	$Q^{c})^{c} =$ (a) $(R \times P) \cap (R \times Q)$ (c) $(R \times P) \cup (R \times Q)$ In rule method the null s (a) {} (c) $\{x : x = x\}$ $A = \{x : x \neq x\}$ represents (a) $\{0\}$ (c) $\{1\}$	(b) (d) et i (b) (d) (b) (d)	[Karnataka CET 1993] $(R \times Q) \cap (R \times P)$ None of these s represented by [Karnataka CET 1998] ϕ $\{x : x \neq x\}$ [Kurukshetra CEE 1998] $\{\}$ $\{x\}$
24.	$Q^{c})^{c} =$ (a) $(R \times P) \cap (R \times Q)$ (c) $(R \times P) \cup (R \times Q)$ In rule method the null s (a) {} (c) $\{x : x = x\}$ $A = \{x : x \neq x\}$ represents (a) $\{0\}$	(b) (d) et i (b) (d) (b) (d)	[Karnataka CET 1993] $(R \times Q) \cap (R \times P)$ None of these s represented by [Karnataka CET 1998] ϕ $\{x : x \neq x\}$ [Kurukshetra CEE 1998] $\{\}$ $\{x\}$
24. 25.	$Q^{c})^{c} =$ (a) $(R \times P) \cap (R \times Q)$ (c) $(R \times P) \cup (R \times Q)$ In rule method the null s (a) {} (c) $\{x : x = x\}$ $A = \{x : x \neq x\}$ represents (a) $\{0\}$ (c) $\{1\}$	(b) (d) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	[Karnataka CET 1993] $(R \times Q) \cap (R \times P)$ None of these s represented by [Karnataka CET 1998] ϕ $\{x : x \neq x\}$ [Kurukshetra CEE 1998] $\{\}$ $\{x\}$
24. 25.	$Q^{c})^{c} =$ (a) $(R \times P) \cap (R \times Q)$ (c) $(R \times P) \cup (R \times Q)$ In rule method the null s (a) {} (c) $\{x : x = x\}$ $A = \{x : x \neq x\}$ represents (a) $\{0\}$ (c) $\{1\}$ If $Q = \left\{x : x = \frac{1}{y}, \text{ where } y \in R\right\}$	(b) (d) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	[Karnataka CET 1993] $(R \times Q) \cap (R \times P)$ None of these s represented by [Karnataka CET 1998] ϕ $\{x : x \neq x\}$ [Kurukshetra CEE 1998] $\{\}$ $\{x\}$ then
24. 25. 26.	$Q^{c})^{c} =$ (a) $(R \times P) \cap (R \times Q)$ (c) $(R \times P) \cup (R \times Q)$ In rule method the null s (a) {} (c) $\{x : x = x\}$ $A = \{x : x \neq x\}$ represents (a) $\{0\}$ (c) $\{1\}$ If $Q = \left\{x : x = \frac{1}{y}, \text{ where } y \in R$ (a) $0 \in Q$ (c) $2 \in Q$	(b) (d) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	[Karnataka CET 1993] $(R \times Q) \cap (R \times P)$ None of these s represented by [Karnataka CET 1998] ϕ $\{x : x \neq x\}$ [Kurukshetra CEE 1998] $\{\}$ $\{x\}$ then $1 \in Q$ $\frac{2}{3} \in Q$
24. 25.	$Q^{c})^{c} =$ (a) $(R \times P) \cap (R \times Q)$ (c) $(R \times P) \cup (R \times Q)$ In rule method the null s (a) {} (c) $\{x : x = x\}$ $A = \{x : x \neq x\}$ represents (a) $\{0\}$ (c) $\{1\}$ If $Q = \left\{x : x = \frac{1}{y}, \text{ where } y \in R$ (a) $0 \in Q$ (c) $2 \in Q$ Which set is the subset of	(b) (d) (et i (b) (d) (d) (d) (b) (d) (d) (d)	[Karnataka CET 1993] $(R \times Q) \cap (R \times P)$ None of these s represented by [Karnataka CET 1998] ϕ $\{x : x \neq x\}$ [Kurukshetra CEE 1998] $\{\}$ $\{x\}$ then $1 \in Q$ $\frac{2}{3} \in Q$ l given sets
24. 25. 26.	$Q^{c})^{c} =$ (a) $(R \times P) \cap (R \times Q)$ (c) $(R \times P) \cup (R \times Q)$ In rule method the null s (a) {} (c) $\{x : x = x\}$ $A = \{x : x \neq x\}$ represents (a) {0} (c) {1} If $Q = \left\{x : x = \frac{1}{y}, \text{ where } y \in P$ (a) $0 \in Q$ (c) $2 \in Q$ Which set is the subset of (a) {1, 2, 3, 4,}	(b) (d) (et i (b) (d) (d) (d) (b) (d) (d) (d)	[Karnataka CET 1993] $(R \times Q) \cap (R \times P)$ None of these s represented by [Karnataka CET 1998] ϕ $\{x : x \neq x\}$ [Kurukshetra CEE 1998] $\{\}$ $\{x\}$ then $1 \in Q$ $\frac{2}{3} \in Q$ l given sets $\{1\}$
24. 25. 26.	$Q^{c})^{c} =$ (a) $(R \times P) \cap (R \times Q)$ (c) $(R \times P) \cup (R \times Q)$ In rule method the null s (a) {} (c) $\{x : x = x\}$ $A = \{x : x \neq x\}$ represents (a) $\{0\}$ (c) $\{1\}$ If $Q = \left\{x : x = \frac{1}{y}, \text{ where } y \in R$ (a) $0 \in Q$ (c) $2 \in Q$ Which set is the subset of	(b) (d) (et i (b) (d) (d) (d) (d) (d) (d) (d)	[Karnataka CET 1993] $(R \times Q) \cap (R \times P)$ None of these s represented by [Karnataka CET 1998] ϕ $\{x : x \neq x\}$ [Kurukshetra CEE 1998] $\{\}$ $\{x\}$ then $1 \in Q$ $\frac{2}{3} \in Q$ l given sets $\{1\}$ $\{\}$
24.25.26.27.	$Q^{c})^{c} =$ (a) $(R \times P) \cap (R \times Q)$ (c) $(R \times P) \cup (R \times Q)$ In rule method the null s (a) {} (c) $\{x : x = x\}$ $A = \{x : x \neq x\}$ represents (a) {0} (c) {1} If $Q = \left\{x : x = \frac{1}{y}, \text{ where } y \in R$ (a) $0 \in Q$ (c) $2 \in Q$ Which set is the subset of (a) {1, 2, 3, 4,} (c) {0}	(b) (d) (et i (b) (d) (d) (d) (d) (d) (d) (d)	[Karnataka CET 1993] $(R \times Q) \cap (R \times P)$ None of these s represented by [Karnataka CET 1998] ϕ $\{x : x \neq x\}$ [Kurukshetra CEE 1998] $\{\}$ $\{x\}$ then $1 \in Q$ $\frac{2}{3} \in Q$ l given sets $\{1\}$ $\{\}$
24.25.26.27.	$Q^{c})^{c} =$ (a) $(R \times P) \cap (R \times Q)$ (c) $(R \times P) \cup (R \times Q)$ In rule method the null s (a) {} (b) $\{x : x = x\}$ $A = \{x : x \neq x\} \text{ represents}$ (a) $\{0\}$ (c) $\{1\}$ If $Q = \left\{x : x = \frac{1}{y}, \text{ where } y \in R$ (a) $0 \in Q$ (c) $2 \in Q$ Which set is the subset of (a) $\{1, 2, 3, 4, \dots\}$ (c) $\{0\}$ Let $S = \{0, 1, 5, 4, 7\}$. Then	(b) (d) (et i (b) (d) (d) (d) (d) (d) (d) (f al (b) (d) the (b)	[Karnataka CET 1993] $(R \times Q) \cap (R \times P)$ None of these s represented by [Karnataka CET 1998] ϕ $\{x : x \neq x\}$ [Kurukshetra CEE 1998] $\{\}$ $\{x\}$ then $1 \in Q$ $\frac{2}{3} \in Q$ l given sets $\{1\}$ $\{\}$ total number of subsets 32
24.25.26.27.	$Q^{c})^{c} =$ (a) $(R \times P) \cap (R \times Q)$ (c) $(R \times P) \cup (R \times Q)$ In rule method the null s (a) {} (c) $\{x : x = x\}$ $A = \{x : x \neq x\}$ represents (a) $\{0\}$ (c) $\{1\}$ If $Q = \left\{x : x = \frac{1}{y}, \text{ where } y \in A$ (a) $0 \in Q$ (c) $2 \in Q$ Which set is the subset of (a) $\{1, 2, 3, 4, \dots\}$ (c) $\{0\}$ Let $S = \{0, 1, 5, 4, 7\}$. Then of S is (a) 64 (c) 40	(b) (d) (et i (b) (d) (d) (d) (d) (d) (d) (d) (b) (d) (b) (d)	[Karnataka CET 1993] $(R \times Q) \cap (R \times P)$ None of these s represented by [Karnataka CET 1998] ϕ $\{x : x \neq x\}$ [Kurukshetra CEE 1998] $\{\}$ $\{x\}$ then $1 \in Q$ $\frac{2}{3} \in Q$ l given sets $\{1\}$ $\{\}$ total number of subsets 32 20
24.25.26.27.	$Q^{c})^{c} =$ (a) $(R \times P) \cap (R \times Q)$ (c) $(R \times P) \cup (R \times Q)$ In rule method the null s (a) {} (c) $\{x : x = x\}$ $A = \{x : x \neq x\}$ represents (a) $\{0\}$ (c) $\{1\}$ If $Q = \left\{x : x = \frac{1}{y}, \text{ where } y \in R\right\}$ (a) $0 \in Q$ (c) $2 \in Q$ Which set is the subset of (a) $\{1, 2, 3, 4, \dots\}$ (c) $\{0\}$ Let $S = \{0, 1, 5, 4, 7\}$. Then of S is (a) 64 (c) 40 The number of non-empty	(b) (d) (et i (b) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	[Karnataka CET 1993] $(R \times Q) \cap (R \times P)$ None of these s represented by [Karnataka CET 1998] ϕ $\{x : x \neq x\}$ [Kurukshetra CEE 1998] $\{\}$ $\{x\}$ then $1 \in Q$ $\frac{2}{3} \in Q$ I given sets $\{1\}$ $\{\}$ total number of subsets 32 20 bests of the set $\{1, 2, 3, 4\}$
 24. 25. 26. 27. 28. 	$Q^{c})^{c} =$ (a) $(R \times P) \cap (R \times Q)$ (c) $(R \times P) \cup (R \times Q)$ In rule method the null s (a) {} (c) $\{x : x = x\}$ $A = \{x : x \neq x\}$ represents (a) $\{0\}$ (c) $\{1\}$ If $Q = \left\{x : x = \frac{1}{y}, \text{ where } y \in R\right\}$ (a) $0 \in Q$ (c) $2 \in Q$ Which set is the subset of (a) $\{1, 2, 3, 4, \dots\}$ (c) $\{0\}$ Let $S = \{0, 1, 5, 4, 7\}$. Then of S is (a) 64 (c) 40 The number of non-empty is [Karnataka CET 1997;	(b) (d) (et i (b) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	[Karnataka CET 1993] $(R \times Q) \cap (R \times P)$ None of these s represented by [Karnataka CET 1998] ϕ $\{x : x \neq x\}$ [Kurukshetra CEE 1998] $\{\}$ $\{x\}$ then $1 \in Q$ $\frac{2}{3} \in Q$ 1 given sets $\{1\}$ $\{\}$ total number of subsets 32 20 bsets of the set $\{1, 2, 3, 4\}$ J 1998]
 24. 25. 26. 27. 28. 	$Q^{c})^{c} =$ (a) $(R \times P) \cap (R \times Q)$ (c) $(R \times P) \cup (R \times Q)$ In rule method the null s (a) {} (c) $\{x : x = x\}$ $A = \{x : x \neq x\}$ represents (a) $\{0\}$ (c) $\{1\}$ If $Q = \left\{x : x = \frac{1}{y}, \text{ where } y \in R\right\}$ (a) $0 \in Q$ (c) $2 \in Q$ Which set is the subset of (a) $\{1, 2, 3, 4, \dots\}$ (c) $\{0\}$ Let $S = \{0, 1, 5, 4, 7\}$. Then of S is (a) 64 (c) 40 The number of non-empty	(b) (d) (et i (b) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	[Karnataka CET 1993] $(R \times Q) \cap (R \times P)$ None of these s represented by [Karnataka CET 1998] ϕ $\{x : x \neq x\}$ [Kurukshetra CEE 1998] $\{\}$ $\{x\}$ then $1 \in Q$ $\frac{2}{3} \in Q$ l given sets $\{1\}$ $\{\}$ total number of subsets 32 20 bsets of the set $\{1, 2, 3, 4\}$ J 1998] 14

30.	The smallest set A such tha 9} is	at $A \cup \{1, 2\} = \{1, 2, 3, 5,$
	(a) {2, 3, 5} (b)) {3, 5, 9}
	(c) $\{1, 2, 5, 9\}$ (d)) None of these
31.	If $A \cap B = B$, then	[JMIEE 2000]
	(a) $A \subset B$ (b)) $B \subset A$
	(c) $A = \phi$ (d)	$B = \phi$
32.	If A and B are two sets, ther	$A \cup B = A \cap B$ iff
	(a) $A \subseteq B$ (b)	$B \subseteq A$
	(c) $A = B$ (d)) None of these
33.	Let A and B be two sets. The	en
	(a) $A \cup B \subseteq A \cap B$ (b)	$) \ A \cap B \ \subseteq \ A \cup B$
	(c) $A \cap B = A \cup B$ (d)) None of these
34.	Let $A = \{(x, y) : y = e^x, x \in R\}$, B	$= \{(x, y) : y = e^{-x}, x \in R\}.$
	Then	
	(a) $A \cap B = \phi$ (b)) $A \cap B \neq \phi$
	2) None of these
35.	If $A = \{2, 3, 4, 8, 10\}, B = \{$	
55.	$C = \{4, 5, 6, 12, 14\}$ then (A	
) {2, 8, 10}
		(3, 5, 14)
36.	If <i>A</i> and <i>B</i> are any two sets,	
	to	
	(a) <i>A</i> (b)) <i>B</i>
	(c) A^c (d)	B^{c}
37.	If A, B, C be three sets such	that $A \cup B = A \cup C$ and A
	$\cap B = A \cap C$, then	[Roorkee 1991]
	• • • • • • • • • • • • • • • • • • • •	B = C
		A = B = C
38.	Let $A = \{a, b, c\}, B = \{b, c, (B \cup C) \text{ is } \}$	d}, C = {a, b, d, e}, then A [Kurukshetra CEE 1997]
		[Kurukshetra CEE 1997]
	(a) $\{a, b, c\}$ (b)	$\{b, c, d\}$
	(c) $\{a, b, d, e\}$ (d)) { <i>e</i> }
39.	If A and B are sets, then A \sim	(B - A) is
	(a) ϕ (b)) A
	(c) <i>B</i> (d)) None of these
40.	If A and B are two sets, ther	$A \cap (A \cup B)'$ is equal to
	(a) <i>A</i> (b)) <i>B</i>
	(c) <i>\phi</i> (d)) None of these
41.	Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 3, 4, 5, 6, 7, 8, 1, 2, 3, 3, 4, 5, 6, 1, 2, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,$	$\{0\}$, $A = \{1, 2, 5\}, B = \{6, 7\}$,
	then $A \cap B'$ is	
	(a) <i>B'</i> (b)) A
	(c) A' (d)) <i>B</i>
42.	If A is any set, then	
	(a) $A \cup A' = \phi$ (b)	$A \cup A' = U$
	(c) $A \cap A' = U$ (d)) None of these
43.	If $N_a = [an: n \in N]$, then $N_5 \in \mathbb{N}$	$N_7 = $ [Kerala(Engg.)
	2005]	
	(a) N_7 (b)) N
	(c) N_{35} (d)) N ₅
	(e) N ₁₂	
44.	If $aN = \{ax : x \in N\}$, then the	set $3N \cap 7N$ is
1.1.) 10 N
	(u) 21 IV (U)	, 10 IV

A survey shows that 63% of the Americans like cheese 55. whereas 76% like apples. If x% of the Americans like both cheese and apples, then (a) x = 39(b) x = 63(c) $39 \le x \le 63$ (d) None of these 20 teachers of a school either teach mathematics or 56. physics. 12 of them teach mathematics while 4 teach both the subjects. Then the number of teachers teaching physics only is (b) 8 (a) 12 (c) 16 (d) None of these Of the members of three athletic teams in a school 21 57. are in the cricket team, 26 are in the hockey team and 29 are in the football team. Among them, 14 play hockey and cricket, 15 play hockey and football, and 12 play football and cricket. Eight play all the three games. The total number of members in the three athletic teams is (b) 76 (a) 43 (d) None of these (c) 49 58. In a class of 100 students, 55 students have passed in Mathematics and 67 students have passed in Physics. Then the number of students who have passed in Physics only is [DCE 1993; ISM Dhanbad 1994] (a) 22 (b) 33 (c) 10 (d) 45 **59.** If *A* and *B* are two sets, then $A \times B = B \times A$ if (a) $A \subseteq B$ (b) $B \subset A$ (c) A = B(d) None of these **60.** If *A* and *B* be any two sets, then $(A \cap B)'$ is equal to (a) $A' \cap B'$ (b) $A' \cup B'$ (d) $A \cup B$ (c) $A \cap B$ Let *A* and *B* be subsets of a set *X*. Then 61. (a) $A-B=A\cup B$ (b) $A-B=A \cap B$ (c) $A-B=A^c \cap B$ (d) $A-B=A \cap B^c$ **62.** Let *A* and *B* be two sets in the universal set. Then A - B equals

- e, 80%(a) $A \cap B^c$ (b) $A^c \cap B$ he four(c) $A \cap B$ (d) None of these
 - **63.** If A, B and C are any three sets, then $A (B \cap C)$ is equal to
 - (a) $(A-B) \cup (A-C)$ (b) $(A-B) \cap (A-C)$
 - (c) $(A-B) \cup C$ (d) $(A-B) \cap C$
 - **64.** If A, B, C are three sets, then $A \cap (B \cup C)$ is equal to (a) $(A \cup B) \cap (A \cup C)$ (b) $(A \cap B) \cup (A \cap C)$ (c) $(A \cup B) \cup (A \cup C)$ (d) None of these
 - 65. If A = {1, 2, 4}, B = {2, 4, 5}, C = {2, 5}, then (A B) × (B C) is
 (a) {(1, 2), (1, 5), (2, 5)} (b) {(1, 4)}
 (c) (1, 4) (d) None of these
 - 66. If (1, 3), (2, 5) and (3, 3) are three elements of A × B and the total number of elements in A×B is 6, then the remaining elements of A×B are
 (a) (1, 5); (2, 3); (3, 5) (b) (5, 1); (3, 2); (5, 3)

	(c) 4 N	(d) None of these
45 .	The shaded region in th	e given figure is [NDA 2000]
	(a) $A \cap (B \cup C)$	A
	(b) $A \cup (B \cap C)$	
	(c) $A \cap (B - C)$	()
	(d) $A - (B \cup C)$	C B
46.		then $(A - B) \cup (B - A) \cup (A \cap$
	B) is equal to $(a) A = B$	
	(a) $A \cup B$ (c) A	(b) $A \cap B$ (d) B'
47.		sets then $(A \cup B)' \cup (A' \cap B)$ is
- /	equal to	
	(a) A'	(b) <i>A</i>
	(c) <i>B</i> ′	(d) None of these
48.		l set and $A \cup B \cup C = U$. Then
	$\{(A-B)\cup(B-C)\cup(C-A)\}$ (a) $A\cup B\cup C$	(b) $A \cup (B \cap C)$
	(c) $A \cap B \cap C$	(d) $A \cap (B \cup C)$
49.		$A \subseteq B$. Then the number of
49.	elements in $A \cup B$ is eq	
	(a) 3	(b) 9
		(d) None of these
-0	(c) 6	
50.		e two sets such that $\cup B = 0.25$. Then $n(A \cap B)$ is
	equal to $(10, 10, 10) = 0.11, 101$	[JMIEE 2001]
	(a) 0.3	(b) 0.5
	(c) 0.05	(d) None of these
-1		
51.	If A and B are disjoint,	-
	(a) <i>n</i> (<i>A</i>)	(b) <i>n</i> (<i>B</i>)
	(c) $n(A) + n(B)$	(d) $n(A).n(B)$
52.	If A and B are not disjo	int sets, then $n(A \cup B)$ is equal
	to	[Kerala (Engg.) 2001]
	(a) $n(A) + n(B)$	(b) $n(A) + n(B) - n(A \cap B)$
	(c) $n(A) + n(B) + n(A \cap B)$	(d) $n(A)n(B)$
	(e) $n(A) - n(B)$	
53.	In a battle 70% of the o	combatants lost one eye, 80%
		5% a leg, x % lost all the four
	limbs. The minimum va	lue of <i>x</i> is
	(a) 10	(b) 12
	(c) 15	(d) None of these
54.	Out of 800 boys in a so	hool, 224 played cricket, 240
	played hockey and 33	6 played basketball. Of the
		basketball and hockey; 80
		ketball and 40 played cricket
	and hockey; 24 playe	d all the three games. The

(a) 128 (b) 216

1995; MP PET 1996]

number of boys who did not play any game is [DCE

(c) 240 (d) 160

TUALCH 1957 CD

				following is/are rela	
		[UPSEAT 2001, 04]	2.	Let $X = \{1, 2, 3, 4, 5\}$ a	and $Y = \{1, 3, 5, 7, 9\}$. Which of the
		containing more than n elements		(a) 2 ⁹ (c) 8	(b) 6 (d) None of these
75.	(d) $\{\phi, \{x\}, \{y\}, \{x, y\}$ A set contains 2 <i>i</i>	y } <i>i</i> +1 elements. The number of	1.	Let $A = \{1, 2, 3\}$. relations that can be	The total number of distinct defined over A is
	(c) { <i>ø</i> , { <i>x</i> }, {2 <i>y</i> }}			R	telations
	(b) { <i>ø</i> , <i>x</i> , <i>y</i> }				Inlations
	(a) $\{x^x, y^y\}$			(c) 11 (e) 16	(d) 3
		[Pb. CET 2004, UPSEAT 2000]		(a) 17	(b) 9 (d) 2
74.	If $A = \{x, y\}$ then th	e power set of A is		U, then $n((A \cup B)^C) =$	[Kerala (Engg.) 2004]
	(c) {1, 4, 3}	(d) None of these			ersal set, A and B are subsets of
	(a) {3, 4, 6}	(b) {1, 2, 3}	81.		$n(A) = 12$, $n(B) = 9$, $n(A \cap B) = 4$,
	$(A \cup B) \cap C$ is	[Orissa JEE 2004]		(e) 9	
73.		, $B = \{2, 4, 6\}, C = \{3, 4, 6\},$ then		(a) 2 ⁹⁹ (c) 100	(b) 99 ² (d) 18
	b)} (d) None of these			(Engg.) 2004]	(b) 99^2
		, a),(2, b),(3, a),(3, b),(4, a), (4,	80.		<i>B</i> are having 99 elements in number of elements common to <i>B</i> and $B \times A$ are [Kerala
	(a) $\{(a, 1), (3, b)\}$			(c) 2 and 3	(d) 1 and 2
	[DCE 2005]			(a) 1 and 3	(b) 2 only
	that $f: A \to B$, then	$A \times B$ is		which of these is/are	e correct [NDA 2003]
72.		$= \{a, b\}$ and f is a mapping such		(3) $A - (B \cup C) = (A - B)$	(A-C)
	(e) 16			(2) $A = (A \cap B) \cup (A - B)$	3)
	(c) 8	(c) 8 (d) 12		(1) $A - B = A - (A \cap B)$	
	(a) 2	(b) 4	79.	Consider the followi	ng relations :
	integers, is	[Kerala (Engg.) 2005]		(e) 30	
		$a, b \in Z$ }, where Z is the set of all		(c) 60	(d) 22
71.	The number of elem			(a) 35	(b) 48
	(e) 2	· · ·			[Kerala (Engg.) 2003]
	(c) 12	(d) 17		students have offere	d Mathematics alone
	(a) 288	[Kerala (Engg.) 2005] (b) 1		-	s and Chemistry 18. How many
70.	If $n(A) = 4$, $n(B) = 3$,	$n(A \times B \times C) = 24$, then $n(C) =$			Physics and Chemistry 23;
	(c) 8	(d) 20			ad Physics 30, Mathematics and
	(a) 16	(b) 6			idents obtaining one or more ics 100, Physics 70, Chemistry
	then the number of 2005]	pupils taking 2 subjects is [J & K	78.		lents. The following data shows
	take at least one su	ubject and no one takes all three		(c) 8	(d) 4
69.		bils, 12 take needle work, 16 take e history. If all the 30 students		(a) 16	(b) 12
~	(c) {(3, 2), (3, 5)}			[UPSEAT 2000]	
		3, 5)} (b) {(3, 2), (3, 5), (3, 6)}		multiple of 6} then A	$A \subset B$ consists of all multiples of
68.		2, 5, 6}, then $(A - B) \times (A \cap B)$ is	77.		ultiple of 4} and $B = \{x : x \text{ is a } $
		c) {(1, 2), (2, 2), (3, 3), (8, 8)} d) {(8, 3), (8, 2), (8, 1), (8, 8)}		(c) $\phi \in \{a, b, c\}$	(d) None of these
	(b) $\{(1, 3), (2, 3), (3, 3), (3, 2), (3, 2), (3, 3),$			(a) $\{a\} \in \{a, b, c\}$	(b) $\{a\} \subseteq \{a, b, c\}$
	(a) {(3, 1), (3, 2), (3, 3), (3, 8)}		/0.	[UPSEAT 2005]	is a true statement
67.		$\{3, 8\}$, then $(A \cup B) \times (A \cap B)$ is	76.		llowing is a true statement
	(c) (1, 5); (2, 3); (5,	(d) None of these		(c) 2^{n+1}	(d) 2^{2n}

		1	
	(a) $R_1 = \{(x, y) y = 2 + x, x \in X, y \in Y\}$	13.	If $R \subset A \times B$ and $S \subset B \times C$ be two relations, then
	(b) $R_2 = \{(1,1), (2,1), (3,3), (4,3), (5,5)\}$		$(SoR)^{-1} =$
	(c) $R_3 = \{(1,1), (1,3)(3,5), (3,7), (5,7)\}$		(a) $S^{-1}oR^{-1}$ (b) $R^{-1}oS^{-1}$
	(d) $R_4 = \{(1,3), (2,5), (2,4), (7,9)\}$		(c) SoR (d) RoS
3.	Given two finite sets <i>A</i> and <i>B</i> such that $n(A) = 2$, $n(B) = 3$. Then total number of relations from <i>A</i> to <i>B</i> is	14.	If <i>R</i> be a relation < from $A = \{1, 2, 3, 4\}$ to $B = \{1, 3, 5\}$ <i>i.e.</i> , $(a,b) \in R \Leftrightarrow a < b$, then RoR^{-1} is
	(a) 4 (b) 8		(a) $\{(1, 3), (1, 5), (2, 3), (2, 5), (3, 5), (4, 5)\}$
	(c) 64 (d) None of these		(b) $\{(3, 1), (5, 1), (3, 2), (5, 2), (5, 3), (5, 4)\}$
4.	The relation <i>R</i> defined on the set of natural numbers		(c) {(3, 3), (3, 5), (5, 3), (5, 5)}
	as {(a, b) : a differs from b by 3}, is given by		(d) {(3, 3) (3, 4), (4, 5)}
	(a) $\{(1, 4), (2, 5), (3, 6), \dots\}$ (b) $\{(4,1), (5,2), (6, 3), \dots\}$	15.	A relation from P to Q is
	(c) {(1, 3), (2, 6), (3, 9),} (d) None of these		(a) A universal set of $P \times Q$ (b) $P \times Q$
5۰	The relation R is defined on the set of natural		(c) An equivalent set of $P \times Q$ (d) A subset of $P \times Q$
-	numbers as $\{(a, b) : a = 2b\}$. Then R^{-1} is given by (a) $\{(2, 1), (4, 2), (6, 3), \dots\}$ (b) $\{(1,2), (2,4), (3,6), \dots\}$	16.	Let $A = \{a, b, c\}$ and $B = \{1, 2\}$. Consider a relation R defined from set A to set B . Then R is equal to set
	(c) R^{-1} is not defined (d) None of these		[Kurukshetra CEE 1995]
6.	The relation $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 2), (2, 3), (1, 2), (2, 3), (1, 3), (2, 3), (2, 3), (2, 3), (2, 3), (2, 3), (3$		(a) <i>A</i> (b) <i>B</i>
	3)} on set $A = \{1, 2, 3\}$ is		(c) $A \times B$ (d) $B \times A$
	(a) Reflexive but not symmetric(b) Reflexive but not transitive	17.	Let $n(A) = n$. Then the number of all relations on A is
	(c) Symmetric and Transitive		(a) 2^n (b) $2^{(n)!}$
			(c) 2^{n^2} (d) None of these
7.	(d) Neither symmetric nor transitive The relation "less than" in the set of natural numbers is [UPSEAT 1994, 98, 99; AMU 1999]	18.	If <i>R</i> is a relation from a finite set <i>A</i> having <i>m</i> elements to a finite set <i>B</i> having <i>n</i> elements, then the number of relations from <i>A</i> to <i>B</i> is (a) 2^{mn} (b) $2^{mm} - 1$
	(a) Only symmetric (b) Only transitive		(c) $2mn$ (d) m^n
	(c) Only reflexive (d) Equivalence relation	19.	Let <i>R</i> be a reflexive relation on a finite set <i>A</i> having
8.	Let $P = \{(x, y) x^2 + y^2 = 1, x, y \in R\}$. Then <i>P</i> is		<i>n</i> -elements, and let there be m ordered pairs in R . Then
	(a) Reflexive(b) Symmetric(c) Transitive(d) Anti-symmetric		(a) $m \ge n$ (b) $m \le n$
9.	Let R be an equivalence relation on a finite set A	20	(c) $m = n$ (d) None of these The relation <i>R</i> defined on the set $A = \{1, 2, 3, 4, 5\}$ by
9.	having n elements. Then the number of ordered pairs in R is	20.	$R = \{(x, y) : x^2 - y^2 < 16\}$ is given by
	(a) Less than n		 (a) {(1, 1), (2, 1), (3, 1), (4, 1), (2, 3)} (b) {(2, 2), (3, 2), (4, 2), (2, 4)}
	(b) Greater than or equal to n		(c) $\{(3, 3), (3, 4), (5, 4), (4, 3), (3, 1)\}$
	(c) Less than or equal to <i>n</i>		(d) None of these
	(d) None of these	21.	A relation <i>R</i> is defined from $\{2, 3, 4, 5\}$ to $\{3, 6, 7, 10\}$
10.	For real numbers <i>x</i> and <i>y</i> , we write $xRy \Leftrightarrow x - y + \sqrt{2}$ is an irrational number. Then the relation <i>R</i> is		by $xRy \Leftrightarrow x$ is relatively prime to y . Then domain of R is
	(a) Reflexive (b) Symmetric		(a) $\{2, 3, 5\}$ (b) $\{3, 5\}$
	(c) Transitive (d) None of these		(c) $\{2, 3, 4\}$ (d) $\{2, 3, 4, 5\}$
11.	Let X be a family of sets and R be a relation on X defined by 'A is disjoint from B '. Then R is	22.	Let <i>R</i> be a relation on <i>N</i> defined by $x + 2y = 8$. The domain of <i>R</i> is
	(a) Reflexive (b) Symmetric		(a) $\{2, 4, 8\}$ (b) $\{2, 4, 6, 8\}$ (c) $\{2, 4, 6\}$ (d) $\{1, 2, 3, 4\}$
	(c) Anti-symmetric (d) Transitive	23.	(c) {2, 4, 6} (d) {1, 2, 3, 4} If $R = \{(x,y) x, y \in Z, x^2 + y^2 \le 4\}$ is a relation in Z, then
12.	If R is a relation from a set A to a set B and S is a relation from B to a set C , then the relation SoR	<u> </u>	domain of R is
	(a) Is from A to C (b) Is from C to A		 (a) {0, 1, 2} (b) {0, -1, -2} (c) {-2, -1, 0, 1, 2} (d) None of these
	(c) Does not exist (d) None of these		

10 Set Theory and Relations 24. *R* is a relation from {11, 12, 13} to {8, 10, 12} defined (a) Reflexive (b) Symmetric by y = x - 3. Then R^{-1} is (c) Transitive (d) None of these (a) $\{(8, 11), (10, 13)\}$ (b) {(11, 18), (13, 10)} **36.** Let $A = \{1, 2, 3, 4\}$ and let $R = \{(2, 2), (3, 3), (4, 4), \}$ (1, 2)} be a relation on A. Then R is (c) {(10, 13), (8, 11)} (d) None of these (a) Reflexive (b) Symmetric 25. Let $A = \{1, 2, 3\}, B = \{1, 3, 5\}$. If relation R from A to *B* is given by $R = \{(1, 3), (2, 5), (3, 3)\}$. Then R^{-1} is (d) None of these (c) Transitive (a) $\{(3, 3), (3, 1), (5, 2)\}$ (b) $\{(1, 3), (2, 5), (3, 3)\}$ **37.** The void relation on a set *A* is (d) None of these (c) $\{(1, 3), (5, 2)\}$ (a) Reflexive (b) Symmetric and **26.** Let *R* be a reflexive relation on a set *A* and *I* be the transitive identity relation on A. Then (c) Reflexive and symmetric (d)Reflective (a) $R \subset I$ (b) $I \subset R$ &transitive (c) R = I(d) None of these **38.** Let R_1 be a relation defined by Let $A = \{1, 2, 3, 4\}$ and R be a relation in A given by R 27. $R_1 = \{(a,b) \mid a \ge b, a, b \in R\}$. Then R_1 is [UPSEAT 1999] $= \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (3, 1), (1, 2)\}$ (a) An equivalence relation on R 3)}. Then R is (b) Reflexive, transitive but not symmetric (b) Symmetric (a) Reflexive (c) Symmetric, Transitive but not reflexive (c) Transitive (d) An equivalence relation (d) Neither transitive not reflexive but symmetric Which one of the following relations on R is an 39. **28.** An integer *m* is said to be related to another integer equivalence relation *n* if *m* is a multiple of *n*. Then the relation is (b) $aR_2b \Leftrightarrow a \ge b$ (a) $aR_1b \Leftrightarrow a \neq b$ (a) Reflexive and symmetric (c) $aR_3b \Leftrightarrow a \text{ divides } b$ (d) $aR_Ab \Leftrightarrow a < b$ (b) Reflexive and transitive (c) Symmetric and transitive (d)Equivalence relation **40.** If *R* is an equivalence relation on a set *A*, then R^{-1} is (a) Reflexive only The relation *R* defined in *N* as $aRb \Leftrightarrow b$ is divisible by 29. (b) Symmetric but not transitive a is (c) Equivalence (a) Reflexive but not symmetric (d) None of these (b) Symmetric but not transitive 41. *R* is a relation over the set of real numbers and it is (c) Symmetric and transitive given by $nm \ge 0$. Then *R* is (d) None of these (a) Symmetric and transitive **30.** Let *R* be a relation on a set *A* such that $R = R^{-1}$, then (b) Reflexive and symmetric R is (c) A partial order relation (b) Symmetric (a) Reflexive (d) An equivalence relation (c) Transitive (d) None of these In order that a relation *R* defined on a non-empty set Let $R = \{(a, a)\}$ be a relation on a set A. Then R is 42. 31. A is an equivalence relation, it is sufficient, if R (a) Symmetric [Karnataka CET 1990] (b) Antisymmetric (a) Is reflexive (b) Is symmetric (c) Symmetric and antisymmetric (c) Is transitive (d) Neither symmetric nor anti-symmetric (d) Possesses all the above three properties The relation "is subset of" on the power set *P*(*A*) of a 32. **43.** The relation "congruence modulo *m*" is set A is (a) Symmetric (b) Anti-symmetric (a) Reflexive only (b) Transitive only (c) Equivalency relation (d) None of these (c) Symmetric only (d) An equivalence relation The relation R defined on a set A is antisymmetric if 33. **44.** Solution set of $x \equiv 3 \pmod{7}$, $p \in Z$, is given by $(a,b) \in R \Longrightarrow (b,a) \in R$ for (b) $\{7p-3: p \in Z\}$ (a) {3} (a) Every $(a, b) \in R$ (b) No $(a,b) \in R$ (c) $\{7p+3: p \in Z\}$ (d) None of these (c) No $(a,b), a \neq b \in \mathbb{R}$ (d) None of these 45. Let *R* and *S* be two equivalence relations on a set *A*. **34.** In the set $A = \{1, 2, 3, 4, 5\}$, a relation *R* is defined by Then $R = \{(x, y) \mid x, y \in A \text{ and } x < y\}$. Then R is (a) $R \cup S$ is an equivalence relation on A(a) Reflexive (b) Symmetric (b) $R \cap S$ is an equivalence relation on A(c) Transitive (d) None of these (c) R-S is an equivalence relation on A

- **35.** Let *A* be the non-void set of the children in a family. The relation '*x* is a brother of *y*' on *A* is
- **46.** Let *R* and *S* be two relations on a set *A*. Then

(d) None of these

			Set Theory an	d Relations 11
	(a) R and S are transitive, then $R \cup S$ is also transitive	56.		natural numbers less than 8 me numbers less than 7, then
	(b) R and S are transitive, then $R \cap S$ is also transitive		the number of relations (a) 2 ⁹	s from A to B is [NDA 2003] (b) 9^2
	(c) <i>R</i> and <i>S</i> are reflexive, then $R \cap S$ is also reflexive		(c) 3^2	(d) 2^{9-1}
	(d) R and S are symmetric then $R \cup S$ is also			
47.	symmetric Let $R = \{(1, 3), (2, 2), (3, 2)\}$ and $S = \{(2, 1), (3, 2), (2, 3)\}$ be two relations on set $A = \{1, 2, 3\}$. Then $RoS =$		G Critica	al Thinking
	(a) {(1, 3), (2, 2), (3, 2), (2, 1), (2, 3)}			Objective Questions
	(b) {(3, 2), (1, 3)}			
	(c) {(2, 3), (3, 2), (2, 2)}	1.		and $Y = \{49(n-1) : n \in N\}$, then
	(d) {(2, 3), (3, 2)}		(a) $X \subseteq Y$	(b) $Y \subseteq X$
48.	Let <i>L</i> denote the set of all straight lines in a plane. Let <i>a</i> relation <i>R</i> be defined by $\alpha R\beta \Leftrightarrow \alpha \bot \beta, \alpha, \beta \in L$.	2.	(c) $X = Y$ If $N_a = \{an : n \in N\}$, then	(d) None of these $N_3 \cap N_4 =$
	Then R is		(a) N ₇	(b) N ₁₂
	(a) Reflexive (b) Symmetric		(c) N_3	(d) N_4
	(c) Transitive (d) None of these	3.	Sets A and B have 3	and 6 elements respectively.
49.	Let <i>R</i> be a relation over the set $N \times N$ and it is defined by $(a,b)R(c,d) \Rightarrow a+d=b+c$. Then <i>R</i> is		$\cup B$	mum number of elements in A
	(a) Reflexive only (b) Symmetric only			MNR 1987; Karnataka CET 1996]
	(c) Transitive only (d) An equivalence relation		(a) 3 (c) 9	(b) 6 (d) 18
50.	Let <i>n</i> be a fixed positive integer. Define a relation <i>R</i> on the set <i>Z</i> of integers by, $aRb \Leftrightarrow n \mid a-b \mid$. Then <i>R</i> is	4.	If $A = [(x, y): x^2 + y^2 = 25]$	
			and $B = [(x, y): x^2 + 9y^2 =$	= 144], then $A \cap B$ contains
	(a) Reflexive (b) Symmetric			[AMU 1996; Pb. CET 2002]
	(c) Transitive (d) Equivalence Let $P_{11}(2,2)$ (c) $(0,0)$ (12,12) (2,12) (2,12) (2,12) (2,12)		(a) One point	(b) Three points
51.	Let $R = \{(3, 3), (6, 6), (9, 9), (12, 12), (6, 12), (3, 9), (3, 12), (3, 6)\}$ be		(c) Two points	(d) Four points
	a relation on the set $A = \{3, 6, 9, 12\}$. The relation is	5۰		iple of 3] and $B = [x : x \text{ is a}]$
	[AIEEE 2005]		-	- <i>B</i> is $(\overline{A} \text{ means complement})$
	(a) An equivalence relation		of A) [AMU 1998]	
	(b) Reflexive and symmetric only		(a) $\overline{A} \cap B$	(b) $A \cap \overline{B}$
	(c) Reflexive and transitive only		(c) $\overline{A} \cap \overline{B}$	(d) $\overline{A \cap B}$
	(d) Reflexive only	6.		$B = \{2, 4\}, C = \{4, 5\}, \text{ then}$
52.	$x^2 = xy$ is a relation which is [Orissa JEE 2005]	0.	$A \times (B \cap C)$ is	[Kerala (Engg.) 2002]
	(a) Symmetric(b) Reflexive(c) Transitive(d) None of these		(a) {(2, 4), (3, 4)}	
53.	(c) Transitive (d) None of these Let $R = \{(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)\}$ be a			$(0) \{(4, 2), (4, 3)\}$
55.	relation on the set $A = \{1, 2, 3, 4\}$. The relation R is	-		udents, every student reads 5
	[AIEEE 2004]	7.	-	newspaper is read by 60
	(a) Reflexive (b) Transitive		students. The no. of ne	
	(c) Not symmetric (d) A function		(a) At least 30	(b) At most 20
54.	The number of reflexive relations of a set with four elements is equal to [UPSEAT 2004]		(c) Exactly 25	(d) None of these
	(a) 2^{16} (b) 2^{12}	8.		}; $B = \{2, 3, 6, 7\}$. Then the
	(c) 2^8 (d) 2^4		number of elements in (a) 18	(b) 6
55.	Let S be the set of all real numbers. Then the relation			
	$R = \{(a, b) : 1 + ab > 0\}$ on S is [NDA 2003]	_	(c) 4 $(1, 2, 2)$ $P = ($	(d) 0
	(a) Reflexive and symmetric but not transitive	9.		1, 3, 5}. A relation $R: A \rightarrow B$ is
	(b) Reflexive and transitive but not symmetric(c) Symmetric, transitive but not reflexive		defined by $R = \{(1, 3) \\ defined by$), (1, 5), (2, 1)}. Then R^{-1} is
	(d) Reflexive, transitive and symmetric		-	(1,5)} (b){(1, 2), (3, 1), (2, 1)}
	(e) None of the above is true		(c) {(1, 2), (5, 1), (3, 1)	
		I	··/ ((-, -,, (), -), (), -)	, (

- **10.** Let *R* be the relation on the set *R* of all real numbers defined by a *R* b iff $|a-b| \le 1$. Then *R* is
 - (a) Reflexive and Symmetric (b) Symmetric only
 - (c) Transitive only (d) Anti-symmetric only
- 11. With reference to a universal set, the inclusion of a subset in another, is relation, which is [CET 1995]
 - (a) Symmetric only (b) Equivalence relation
 - (c) Reflexive only (d) None of these
- **12.** Let *R* be a relation on the set *N* of natural numbers defined by $nRm \Leftrightarrow n$ is a factor of *m* (*i.e.*, n|m). Then *R* is
 - (a) Reflexive and symmetric
 - (b) Transitive and symmetric
 - (c) Equivalence
 - (d) Reflexive, transitive but not symmetric
- Let R and S be two non-void relations on a set A.
 Which of the following statements is false
 - (a) R and S are transitive $\Rightarrow R \cup S$ is transitive
 - (b) R and S are transitive $\Rightarrow R \cap S$ is transitive
 - (c) *R* and *S* are symmetric $\Rightarrow R \cup S$ is symmetric
 - (d) *R* and *S* are reflexive $\Rightarrow R \cap S$ is reflexive
- 14. Let a relation *R* be defined by $R = \{(4, 5); (1, 4); (4, 6); (7, 6); (3, 7)\}$ then $R^{-1}oR$ is
 - (a) $\{(1, 1), (4, 4), (4, 7), (7, 4), (7, 7), (3, 3)\}$
 - (b) $\{(1, 1), (4, 4), (7, 7), (3, 3)\}$
 - (c) $\{(1, 5), (1, 6), (3, 6)\}$
 - (d) None of these
- **15.** Let *R* be a relation on the set *N* be defined by $\{(x, y) | x, y \in N, 2x + y = 41\}$. Then *R* is
 - (a) Reflexive (b) Symmetric
 - (c) Transitive (d) None of these

Set theory

1	d	2	b	3	a	4	C	5	c
6	b	7	a	8	d	9	C	10	b
11	C	12	b	13	C	14	b	15	c
16	d	17	a	18	b	19	c	20	b
21	C	22	C	23	a,b	24	d	25	b
26	b	27	d	28	b	29	а	30	b
31	b	32	C	33	b	34	b	35	а
36	а	37	b	38	а	39	а	40	С
41	b	42	b	43	C	44	а	45	d
46	а	47	а	48	C	49	C	50	С
51	C	52	b	53	а	54	d	55	С
56	а	57	а	58	d	59	С	60	b
61	d	62	а	63	а	64	b	65	b
66	a	67	b	68	C	69	а	70	е
71	C	72	C	73	а	74	d	75	d
76	а	77	b	78	C	79	d	80	b
81	d								

Relations

1	a	2	a,b,c	3	C	4	b	5	b
6	а	7	b	8	b	9	b	10	а
11	b	12	a	13	b	14	C	15	d
16	c	17	C	18	а	19	а	20	d
21	d	22	C	23	C	24	а	25	а
26	b	27	a,b	28	b	29	a	30	b
31	c	32	b	33	С	34	С	35	bc
36	c	37	b	38	b	39	a	40	C
41	d	42	d	43	d	44	С	45	b
46	b,c,d	47	С	48	b	49	d	50	a,b,c,d
51	c	52	b	53	С	54	d	55	а
56	a								

Critical Thinking Questions

1	a	2	b	3	b	4	d	5	b
6	a	7	с	8	с	9	с	10	а
11	d	12	d	13	a	14	a	15	d

C Answers and Solutions

Set Theory and Relations 13

Set theory

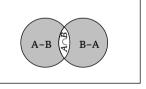
- (d) Since, intelligency is not defined for students in a class *i.e.*, Not a well defined collection.
- **2.** (b) Since $x^2 + 1 = 0$, gives $x^2 = -1 \implies x = \pm i$ $\therefore x$ is not real but x is real (given) \therefore No value of x is possible.
- 3. (a) $x^2 = 16 \implies x = \pm 4$ $2x = 6 \implies x = 3$ There is no value of x which satisfies both the above equations. Thus, $A = \phi$.
- **4.** (c) $A = {}^{n}C_{0} + {}^{n}C_{1} + \dots + {}^{n}C_{n} = 2^{n}$.
- 5. (c) Number of proper subsets of the set {1, 2, 3} = $2^{3} - 2 = 6$.
- 6. (b) $B \cap C = \{4\}$, $\therefore A \cup (B \cap C) = \{1, 2, 3, 4\}$.
- 7. (a) $A \cap B \subseteq A$. Hence $A \cup (A \cap B) = A$.
- 8. (d) $A \cap (A \cap B)^c = A \cap (A^c \cup B^c) = (A \cap A^c) \cup (A \cap B^c) = \phi \cup (A \cap B^c) = A \cap B^c$.
- 9. (c) Since $y = \frac{1}{x}$, y = -x meet when $-x = \frac{1}{x} \implies x^2 = -1$, which does not give any real value of x. Hence, $A \cap B = \phi$.
- **10.** (b) $A = [x : x \in R, -1 < x < 1]$ $B = [x : x \in R : x - 1 \le -1 \text{ or } x - 1 \ge 1]$ $= [x : x \in R : x \le 0 \text{ or } x \ge 2]$ $\therefore A \cup B = R - D$, where $D = [x : x \in R, 1 \le x < 2]$.
- **11.** (c) Since, $y = e^x$ and y = x do not meet for any $x \in R$ $\therefore A \cap B = \phi$.
- **12.** (b) Since, $4^n 3n 1 = (3+1)^n 3n 1$

 $= 3^{n} + {}^{n}C_{1}3^{n-1} + {}^{n}C_{2}3^{n-2} + \dots + {}^{n}C_{n-1}3 + {}^{n}C_{n} - 3n - 1$ = ${}^{n}C_{2}3^{2} + {}^{n}C_{3}.3^{3} + \dots + {}^{n}C_{n}3^{n}$, $({}^{n}C_{0} = {}^{n}C_{n}, {}^{n}C_{1} = {}^{n}C_{n-1}$ etc.) = $9[{}^{n}C_{2} + {}^{n}C_{3}(3) + \dots + {}^{n}C_{n}3^{n-1}]$

 $\therefore 4^n - 3n - 1$ is a multiple of 9 for $n \ge 2$.

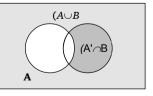
For n = 1, $4^n - 3n - 1 = 4 - 3 - 1 = 0$,

For n = 2, $4^n - 3n - 1 = 16 - 6 - 1 = 9$

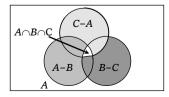

∴ $4^n - 3n - 1$ is a multiple of 9 for all $n \in N$ ∴ X contains elements, which are multiples of 9, and clearly Y contains all multiples of 9. ∴ $X \subseteq Y$ *i.e.*, $X \cup Y = Y$.

- 13. (c) $n(A^c \cap B^c) = n[(A \cup B)^c] = n(U) n(A \cup B)$ = $n(U) - [n(A) + n(B) - n(A \cap B)]$ = 700 - [200 + 300 - 100] = 300.
- 14. (b) n(A) = 40% of 10,000 = 4,000 n(B) = 20% of 10,000 = 2,000 n(C) = 10% of 10,000 = 1,000 $n(A \cap B) = 5\%$ of 10,000 = 500 $n(B \cap C) = 3\%$ of 10,000 = 300 $n(C \cap A) = 4\%$ of 10,000 = 400 $n(A \cap B \cap C) = 2\%$ of 10,000 = 200We want to find $n(A \cap B^{c} \cap C^{c}) = n[A \cap (B \cup C)^{c}]$

 $= n(A) - n[A \cap (B \cup C)] = n(A) - n[(A \cap B) \cup (A \cap A)]$ C)] $= n(A) - [n(A \cap B) + n(A \cap C) - n(A \cap B \cap C)]$ = 4000 - [500 + 400 - 200] = 4000 - 700 = 3300. (c) n(C) = 20, n(B) = 50, $n(C \cap B) = 10$ 15. Now $n(C \cup B) = n(C) + n(B) - n(C \cap B)$ = 20 + 50 - 10 = 60.Hence, required number of persons = 60%. 16. (d) n(M) = 23, n(P) = 24, n(C) = 19 $n(M \cap P) = 12, n(M \cap C) = 9, n(P \cap C) = 7$ $n(M \cap P \cap C) = 4$ We have to find $n(M \cap P' \cap C')$, $n(P \cap M' \cap C')$, $n (C \cap M' \cap P')$ Now $n (M \cap P' \cap C') = n[M \cap (P \cup C)']$ $= n(M) - n(M \cap (P \cup C))$ $= n(M) - n[(M \cap P) \cup (M \cap C)]$ $= n(M) - n(M \cap P) - n(M \cap C) + n(M \cap P \cap C)$ = 23 - 12 - 9 + 4 = 27 - 21 = 6 $n(P \cap M' \cap C') = n[P \cap (M \cup C)']$ $= n(P) - n[P \cap (M \cup C)] = n(P) - n[(P \cap M) \cup (P \cap C)]$ $= n(P) - n(P \cap M) - n(P \cap C) + n(P \cap M \cap C)$ = 24 - 12 - 7 + 4 = 9 $n(C \cap M' \cap P') = n(C) - n(C \cap P) - n(C \cap M) + n(C \cap P \cap M)$ = 19 - 7 - 9 + 4 = 23 - 16 = 7.(a) It is distributive law. 17. 18. (b) It is De' Morgan law. (c) $(A - B) \cup (B - A) = (A \cup B) - (A \cap B)$. 19. (b) $A \times B = \{(2, 7), (2, 8), (2, 9), (4, 7), (4, 8), (4, 9),$ 20. (5, 7), (5, 8), (5, 9) $n(A \times B) = n(A) \cdot n(B) = 3 \times 3 = 9.$ (c) $n(A \times B) = pq$. 21. (c) $B \cup C = \{c, d\} \cup (d, e\} = \{c, d, e\}$ 22. $\therefore A \times (B \cup C) = \{a, b\} \times \{c, d, e\}$ $= \{(a, c), (a, d), (a, e), (b, c), (b, d), \}$ (*b*, *e*)}. (a,b) $R \times (P^c \cup Q^c)^c = R \times [(P^c)^c \cap (Q^c)^c]$ 23. = $R \times (P \cap Q) = (R \times P) \cap (R \times Q) = (R \times Q) \cap (R \times P)$. (d) It is fundamental concept. 24. (b) It is fundamental concept. 25. (b) Since $\frac{1}{y} \neq 0, \frac{1}{y} \neq 2, \frac{1}{y} \neq \frac{-2}{3}, \quad [\because y \in N]$ 26. $\therefore \frac{1}{y}$ can be 1, [$\because y$ can be 1]. (d) Null set is the subset of all given sets. 27. 28. (b) $S = \{0, 1, 5, 4, 7\}$, then, total number of subsets of S is 2^n . Hence, $2^5 = 32$. (a) The number of non- empty subsets = $2^n - 1$ 29. $2^4 - 1 = 16 - 1 = 15$. (b) Given $A \cup \{1, 2\} = \{1, 2, 3, 5, 9\}$. Hence, $A = \{3, 5, 9\}$. 30. (b) Since $A \cap B = B$, $\therefore B \subset A$. 31. (c) Let $x \in A \Rightarrow x \in A \cup B$, [$:: A \subseteq A \cup B$] 32. $\Rightarrow x \in A \cap B$, [:: $A \cup B = A \cap B$] $\Rightarrow x \in A \text{ and } x \in B \Rightarrow x \in B, \therefore A \subseteq B$


Similarly, $x \in B \Rightarrow x \in A$, $\therefore B \subset A$ Now $A \subset B$, $B \subset A \implies A = B$. **33.** (b) $A \cap B \subset A \subset A \cup B$, $\therefore A \cap B \subset A \cup B$. (b) :: $y = e^x$, $y = e^{-x}$ will meet, when $e^x = e^{-x}$ 34. $\Rightarrow e^{2x} = 1, \therefore x = 0, y = 1$ \therefore *A* and *B* meet on (0, 1), \therefore *A* \cap *B* = ϕ . **35.** (a) $A \cap B = \{2, 3, 4, 8, 10\} \cap \{3, 4, 5, 10, 12\}$ $= \{3, 4, 10\}, A \cap C = \{4\}.$ $\therefore (A \cap B) \cup (A \cap C) = \{3, 4, 10\}.$ **36.** (a) $A \cap (A \cup B) = A$, [:: $A \subset B \cup A$]. (b) It is obvious. 37. 38. (a) $B \cup C = \{a, b, c, d, e\}$ $\therefore A \cap (B \cup C) = \{a, b, c\} \cap \{a, b, c, d, e\} = \{a, b, c\}.$ **39.** (a) $A \cap (B - A) = \phi$, [$\therefore x \in B - A \Rightarrow x \notin A$]. **40.** (c) $A \cap (A \cup B)' = A \cap (A' \cap B')$, $(:: (A \cup B)' = A' \cap B')$ $= (A \cap A') \cap B'$, (by associative law) $= \phi \cap B'$, $(:: A \cap A' = \phi)$ $= \phi$. 41. (b) $B' = \{1, 2, 3, 4, 5, 8, 9, 10\}$ $\therefore A \cap B' = \{1, 2, 5\} \cap \{1, 2, 3, 4, 5, 8, 9, 10\} = \{1, 2, 5\} = A$ 42. (b) It is obvious. **43.** (c) $N_5 \cap N_7 = N_{35}$, [:: 5 and 7 are relatively prime numbers]. **44.** (a) $3N = \{x \in N : x \text{ is a multiple of } 3\}$ $7N = \{x \in N : x \text{ is a multiple of } 7\}$ \therefore 3*N* \cap 7*N* = {*x* \in is a multiple of 3 and 7} $= \{x \in N : x \text{ is a multiple of } 3 \text{ and } 7\}$ $= \{x \in N : x \text{ is a multiple of } 21\}=21N.$

- **45.** (d) It is obvious.
- **46.** (a) From Venn-Euler's diagram,


 $\therefore (A-B)\cup (B-A)\cup (A\cap B)=A\cup B.$

47. (a) From *Venn-Euler's* Diagram,

 $\therefore (A \cup B)' \cup (A' \cap B) = A'.$

48. (c) From Venn-Euler's Diagram,

Clearly, $\{(A-B)\cup(B-C)\cup(C-A)\}' = A \cap B \cap C$. 49. (c) Since $A \subseteq B$, $\therefore A \cup B = B$.

So, $n(A \cup B) = n(B) = 6$. **50.** (c) $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ $0.25 = 0.16 + 0.14 - n(A \cap B)$ $\Rightarrow n(A \cap B) = 0.30 - 0.25 = 0.05$. (c) Since *A* and *B* are disjoint, $\therefore A \cap B = \phi$ 51. $n(A \cap B) = 0$ Now $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ = n(A) + n(B) - 0 = n(A) + n(B). (b) $n(A \cup B) = n(A) + n(B) - n(A \cap B)$. 52. (a) Minimum value of n = 100 - (30 + 20 + 25 + 15))53. =100 - 90 = 10. (d) n(C) = 224, n(H) = 240, n(B) = 33654. $n(H \cap B) = 64$, $n(B \cap C) = 80$ $n(H \cap C) = 40$, $n(C \cap H \cap B) = 24$ $n(C^{c} \cap H^{c} \cap B^{C}) = n[(C \cup H \cup B)^{c}]$ $= n(\cup) - n(C \cup H \cup B)$ $= 800 - [n(C) + n(H) + n(B) - n(H \cap C)]$ $-n(H \cap B) - n(C \cap B) + n(C \cap H \cap B)]$ = 800 - [224 + 240 + 336 - 64 - 80 - 40 + 24]= 800 - 640 = 160. 55. (c) Let A denote the set of Americans who like cheese and let B denote the set of Americans who like apples. Let Population of American be 100. Then n(A) = 63, n(B) = 76

Now, $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ $= 63 + 76 - n(A \cap B)$ $\Rightarrow n(A \cup B) + n(A \cap B) = 139$ $\Rightarrow n(A \cap B) = 139 - n(A \cup B)$ But $n(A \cup B) \le 100$ $\therefore -n(A \cup B) \ge -100$ $\therefore 139 - n(A \cup B) \ge 139 - 100 = 39$ $\therefore n(A \cap B) \ge 39$ i.e., $39 \le n(A \cap B)$ (i) Again, $A \cap B \subseteq A, A \cap B \subseteq B$ $\therefore n(A \cap B) \le n(A) = 63$ and $n(A \cap B) \le n(B) = 76$ $\therefore n(A \cap B) \le 63$ (ii) Then, $39 \le n(A \cap B) \le 63 \Rightarrow 39 \le x \le 63$.

56. (a) Let n(P) = Number of teachers in Physics. n(M) = Number of teachers in Maths

 $n(P \cup M) = n(P) + n(M) - n(P \cap M)$ 20 = $n(P) + 12 - 4 \Rightarrow n(P) = 12$.

57. (a) Let B, H, F denote the sets of members who are on the basketball team, hockey team and football team respectively. Then we are given n(B) = 21,n(H) = 26,n(F) = 29 n(H ∩ B) = 14 , n(H ∩ F) = 15 , n(F ∩ B) = 12 and n(B ∩ H ∩ F) = 8 . We have to find n(B ∪ H ∪ F).

To find this, we use the formula $n(B \cup H \cup F) = n(B) + n(H) + n(F)$ $-n(B \cap H) - n(H \cap F) - n(F \cap B) + n(B \cap H \cap F)$

Hence, $n(B \cup H \cup F) = (21 + 26 + 29) - (14 + 15 + 12) + 8 = 43$ Thus these are 43 members in all. **58.** (d) $n(M) = 55, n(P) = 67, n(M \cup P) = 100$ Now, $n(M \cup P) = n(M) + n(P) - n(M \cap P)$ $100 = 55 + 67 - n(M \cap P)$ $\therefore n(M \cap P) = 122 - 100 = 22$ Now $n(P \text{ only}) = n(P) - n(M \cap P) = 67 - 22 = 45$. **59.** (c) In general, $A \times B \neq B \times A$ $A \times B = B \times A$ is true, if A = B. (b) From De' morgan's law, $(A \cap B)' = A' \cup B'$. 60. 61. (d) $A - B = \{x : x \in A \text{ and } x \notin B\}$ $= \{x : x \in A \text{ and } x \in B^c\} = A \cap B^c$. 62. (a) It is obvious. (a) From De' morgan's 63. law, $A - (B \cap C) = (A - B) \cup (A - C)$. Distributive 64. (b) From law, $A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$ $B - C = \{4\}$ (b) $A - B = \{1\}$ 65. and $(A-B) \times (B-C) = \{(1,4)\}.$ 66. (a) It is obvious. 67. (b) $A \cup B = \{1, 2, 3, 8\}$; $A \cap B = \{3\}$ $(A \cup B) \times (A \cap B) = \{(1,3), (2,3), (3,3), (8,3)\}$. **68.** (c) $A-B = \{3\}, A \cap B = \{2,5\}$ $(A-B) \times (A \cap B) = \{(3,2); (3,5)\}.$ **69.** (a) Given n(N) = 12, n(P) = 16, n(H) = 18, $n(N \cup P \cup H) = 30$ From, $n(N \cup P \cup H) = n(N) + n(P) + n(H) - n(N \cap P)$ $-n(P \cap H) - n(N \cap H) + n(N \cap P \cap H)$ $\therefore n(N \cap P) + n(P \cap H) + n(N \cap H) = 16$

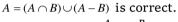
> Now, number of pupils taking two subjects = $n(N \cap P) + n(P \cap H) + n(N \cap H) - 3n(N \cap P \cap H)$ = 16 - 0 = 16.

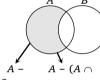
70. (e) n(A) = 4, n(B) = 3 $n(A) \times n(B) \times n(C) = n(A \times B \times C)$

$$4 \times 3 \times n(C) = 24 \implies n(C) = \frac{24}{12} = 2$$
.

- **71.** (c) Given set is $\{(a,b): 2a^2 + 3b^2 = 35, a, b \in Z\}$
 - We can see that, $2(\pm 2)^2 + 3(\pm 3)^2 = 35$ and $2(\pm 4)^2 + 3(\pm 1)^2 = 35$ \therefore (2, 3), (2, -3), (-2, -3), (-2, 3), (4, 1), (4, -1), (-4, -1), (-4, 1) are 8 elements of the set. \therefore n = 8.
- **72.** (c) It is obvious.
- 73. (a) $A \cup B = \{1, 2, 3, 4, 5, 6\}$ $\therefore (A \cup B) \cap C = \{3, 4, 6\}.$
- 74. (d) It is obvious.
- 75. (d) Let the original set contains (2n+1) elements, then subsets of this set containing more than n elements, *i.e.*, subsets containing (n+1) elements, (n+2) elements, (2n+1) elements.
 ∴ Required number of subsets
 = ²ⁿ⁺¹C_{n+1} + ²ⁿ⁺¹C_{n+2} + + ²ⁿ⁺¹C_{2n} + ²ⁿ⁺¹C_{2n+1}

Set Theory and Relations 15


$$\begin{split} &= {}^{2n+1}C_n + {}^{2n+1}C_{n-1} + \ldots + {}^{2n+1}C_1 + {}^{2n+1}C_0 \\ &= {}^{2n+1}C_0 + {}^{2n+1}C_1 + {}^{2n+1}C_2 + \ldots + {}^{2n+1}C_{n-1} + {}^{2n+1}C_n \\ &= \frac{1}{2}\left[(1+1)^{2n+1} \right] = \frac{1}{2} \left[2^{2n+1} \right] = 2^{2n} \, . \end{split}$$


- **76.** (a) It is obvious.
- **77.** (b) $A = \{4, 8, 12, 16, 20, 24, \dots\}$
 - $B = \{6, 12, 18, 24, 30, \dots\}$
 - $\therefore A \subset B = \{12, 24,\} = \{x : x \text{ is a multiple of } 12\}.$
- **78.** (c) $n(M \text{ alone}) = n(M) n(M \cap C) n(M \cap P) + n(M \cap P \cap C)$

$$=100 - 28 - 30 + 18 = 60$$
.

79. (d) $A-B = A - (A \cap B)$ is correct.

(3) is false.

 \therefore (1) and (2) are true.

80. (b) $n((A \times B) \cap (B \times A))$

$$= n((A \cap B) \times (B \cap A)) = n(A \cap B).n(B \cap A)$$

$$= n(A \cap B).n(A \cap B) = (99)(99) = 99^{2}.$$

81. (d) $n(A \cup B) = n(A) + n(B) - n(A \cap B) = 12 + 9 - 4 = 17$ Now, $n((A \cup B)^{C}) = n(U) - n(A \cup B) = 20 - 17 = 3$.

Relations

(a) n(A×A) = n(A).n(A) = 3² = 9
 So, the total number of subsets of A×A is 2⁹ and a subset of A×A is a relation over the set A.
 (a,b,c) R₄ is not a relation from X to Y, because (7, 9) ∈ R₄ but (7, 9) ∉ X×Y.

3. (c) Here n(A×B) = 2 × 3 = 6
Since every subset of A × B defines a relation from A to B, number of relation from A to B is equal to number of subsets of A×B = 2⁶ = 64.

4. (b)
$$R = \{(a,b): a, b \in N, a-b=3\} = \{((n+3), n): n \in N\}$$

= $\{(4,1), (5,2), (6,3), \dots\}$.

- 5. (b) $R = \{(2, 1), (4, 2), (6, 3), \dots\}$. So, $R^{-1} = \{(1, 2), (2, 4), (3, 6), \dots\}$.
- 6. (a) Since (1, 1); (2, 2); $(3, 3) \in R$ therefore R is reflexive. $(1, 2) \in R$ but $(2, 1) \notin R$, therefore R is not symmetric. It can be easily seen that R is transitive.

7. (b) Since $x < y, y < z \Rightarrow x < z \neq x, y, z \in N$

 $\therefore x Ry, yRz \Rightarrow x Rz$, \therefore Relation is transitive,

 $\therefore x < y$ does not give y < x,

 \therefore Relation is not symmetric.

Since x < x does not hold, hence relation is not reflexive.

- 8. (b) Obviously, the relation is not reflexive and transitive but it is symmetric, because $x^2 + y^2 = 1 \Rightarrow y^2 + x^2 = 1$.
- **9.** (b) Since *R* is an equivalence relation on set *A*, therefore $(a, a) \in R$ for all $a \in A$. Hence, *R* has at least *n* ordered pairs.
- **10.** (a) For any $x \in R$, we have $x x + \sqrt{2} = \sqrt{2}$ an irrational number.

 \Rightarrow xRx for all x. So, R is reflexive.

R is not symmetric, because $\sqrt{2}R1$ but $1R\sqrt{2}$, *R* is not transitive also because $\sqrt{2}R1$ and $1R2\sqrt{2}$ but $\sqrt{2}R 2\sqrt{2}$.

- **11.** (b) Clearly, the relation is symmetric but it is neither reflexive nor transitive.
- **12.** (a) It is obvious.
- 13. (b) It is obvious.
- 14. (c) We have, $R = \{(1, 3); (1, 5); (2, 3); (2, 5); (3, 5); (4, 5)\}$ $R^{-1} = \{(3, 1), (5, 1), (3, 2), (5, 2); (5, 3); (5, 4)\}$
 - Hence $RoR^{-1} = \{(3, 3); (3, 5); (5, 3); (5, 5)\}.$
- **15.** (d) A relation from *P* to *Q* is a subset of $P \times Q$.
- **16.** (c) $R = A \times B$.
- 17. (c) Number of relations on the set A = Number of subsets of $A \times A = 2^{n^2}$, [$\therefore n(A \times A) = n^2$].
- **18.** (a) It is obvious.
- 19. (a) Since R is reflexive relation on A, therefore (a, a) ∈ R for all a ∈ A.
 The minimum number of ordered pairs in R is n. Hence, m ≥ n.
- **20.** (d) Here $R = \{(x, y): |x^2 y^2| < 16\}$

and given $A = \{1, 2, 3, 4, 5\}$

 $\therefore R = \{(1,2)(1,3)(1,4); (2,1)(2,2)(2,3)(2,4); (3,1)(3,2)\}$

 $(3,3)(3,4);(4,1)(4,2)(4,3);(4,4)(4,5),(5,4)(5,5)\}$.

- **21.** (d) Given, $xRy \Rightarrow x$ is relatively prime to y. \therefore Domain of $R = \{2, 3, 4, 5\}$.
- **22.** (c) *R* be a relation on *N* defined by x + 2y = 8. $\therefore R\{(2,3); (4,2); (6,1)\}$
 - Hence, Domain of $R = \{2, 4, 6\}$.
- **23.** (c) $\therefore R = \{(x, y) | x, y \in Z, x^2 + y^2 \le 4\}$ $\therefore R = \{(-2, 0), (-1, 0), (-1, 1), (0, -1)(0, 1), (0, 2), (0, -2), (1, 0), (1, 1), (2, 0)\}$

Hence, Domain of $R = \{-2, -1, 0, 1, 2\}$.

- **24.** (a) *R* is a relation from {11, 12, 13}to {8, 10, 12} defined by $y = x - 3 \Rightarrow x - y = 3$ $\therefore R = \{11, 8\}, \{13, 10\}.$ Hence, $R^{-1} = \{8, 11\}; \{10, 13\}.$
- **25.** (a) It is obvious.
- **26.** (b) It is obvious.
- **27.** (a,b) (1, 1)(2, 2)(3, 3)(4, 4) $\in R$; $\therefore R$ is reflexive. \therefore (1, 2) (3, 1) $\in R$ and also (2, 1)(1, 3) $\in R$.

Hence, R is symmetric. But clearly R is not transitive. **28.** (b) For any integer *n*, we have $n \mid n \Rightarrow nRn$ So, nRn for all $n \in Z \Longrightarrow R$ is reflexive Now 2|6 but 6+2, \Rightarrow $(2,6) \in R$ but $(6, 2) \notin R$ So, *R* is not symmetric. Let $(m,n) \in R$ and $(n,p) \in R$. Then $\begin{array}{c} (m,n) \in R \Rightarrow m \mid n \\ (n,p) \in R \Rightarrow n \mid p \end{array} \Rightarrow m \mid p \Rightarrow (m,p) \in R$ So, *R* is transitive. Hence, R is reflexive and transitive but it is not symmetric. (a) For any $a \in N$, we find that a | a, therefore R is 29. reflexive but *R* is not transitive, because *aRb* does not imply that bRa. 30. (b) Let $(a,b) \in R$ Then, $(a,b) \in R \Longrightarrow (b,a) \in R^{-1}$, [By def. of R^{-1}] \Rightarrow $(b,a) \in R$, [$\therefore R = R^{-1}$] So, *R* is symmetric. (c) It is obvious. 31. (b) The relation is not symmetric, because $A \subset B$ 32. does not imply that $B \subset A$. But it is antisymmetric because $A \subset B$ and $B \subset A \implies A=B$. (c) It is obvious. 33. (c) Since $x \not< x$, therefore R is not reflexive. Also 34. x < y does not imply that y < x, So R is not symmetric. Let x R y and y R z. Then, x < y and $y < z \implies x < z$ *i.e.*, x R z. Hence R is transitive. (b,c) x is a brother of y, y is also brother of x. 35. So, it is symmetric. Clearly it is transitive. (c) Since $(1, 1) \notin R$ so, is not reflexive. 36. Now (1, 2) $\in R$ but (2,1) $\notin R$, therefore R is not symmetric Clearly R is transitive. (b) The void relation R on A is not reflexive as (a, 37. a) $\notin R$ for any $a \in A$. The void relation is symmetric and transitive. 38. (b) For any $a \in R$, we have $a \ge a$, Therefore the relation *R* is reflexive but it is not symmetric as (1, 2) $\notin R$. The relation R is $(2, 1) \in R$ but transitive also, because $(a,b) \in R, (b,c) \in R$ imply that $a \ge b$ and $b \ge c$ which is turn imply that $a \ge c$. (a) It is obvious. 39. (c) It is obvious. 40. (d) It is obvious. 41. (d) It is obvious. 42. (d) It is obvious. 43. (c) $x \equiv 3 \pmod{7} \implies x - 3 = 7p, (p \in z)$ 44. \Rightarrow $x = 7p + 3, p \in z$ *i.e.*, $\{7p + 3 : p \in z\}$. (b) Given, R and S are relations on set A. 45. \therefore $R \subset A \times A$ and $S \subset A \times A \implies R \cap C \subset A \times A$ \Rightarrow *R* \cap *S* is also a relation on *A*. Reflexivity : Let *a* be an arbitrary element of *A*. Then, $a \in A \implies (a, a) \in R$ and $(a, a) \in S$, [:: *R* and *S* are reflexive] \Rightarrow (*a*,*a*) \in *R* \cap *S* Thus, $(a, a) \in R \cap S$ for all $a \in A$. So, $R \cap S$ is a reflexive relation on A.

Symmetry : Let $a, b \in A$ such that $(a, b) \in R \cap S$. Then, $(a,b) \in R \cap S \implies (a,b) \in R$ and $(a,b) \in S$ \Rightarrow $(b,a) \in R$ and $(b,a) \in S$, [:: *R* and *S* are symmetric] $\Rightarrow (b, a) \in R \cap S$ Thus, $(a,b) \in R \cap S$ \Rightarrow $(b,a) \in R \cap S$ for all $(a,b) \in R \cap S$. So, $R \cap S$ is symmetric on A. Transitivity : Let $a, b, c \in A$ such that $(a, b) \in R \cap S$ and $(b,c) \in R \cap S$. Then, $(a,b) \in R \cap S$ and $(b,c) \in R \cap S$ \Rightarrow {((*a*,*b*) \in *R* and (*a*,*b*) \in *S*)} and $\{((b,c) \in R \text{ and } (b,c) \in S\}$ \Rightarrow { $(a,b) \in R, (b,c) \in R$ } and { $(a,b) \in S, (b,c) \in S$ } \Rightarrow (*a*, *c*) \in *R* and (*a*, *c*) \in *S* : R and S are transitiveSo $(a,b) \in R$ and $(b,c) \in R \Longrightarrow (a,c) \in R$ $(a,b) \in S$ and $(b,c) \in S \Longrightarrow (a,c) \in S$ $\Rightarrow (a,c) \in R \cap S$ Thus, $(a,b) \in R \cap S$ and $(b,c) \in R \cap S \Longrightarrow (a,c) \in R \cap S$. So, $R \cap S$ is transitive on A. Hence, *R* is an equivalence relation on *A*. **46.** (b, c, d) These are fundamental concepts. (c) Here $R = \{(1,3), (2,2); (3,2)\}, S = \{(2,1); (3,2); (2,3)\}$ Then $RoS = \{(2,3); (3,2); (2,2)\}$. **48.** (b) Here $\alpha R \beta \Leftrightarrow \alpha \bot \beta \therefore \alpha \bot \beta \Leftrightarrow \beta \bot \alpha$ Hence, *R* is symmetric. **49.** (d) We have (a,b)R(a,b) for all $(a,b) \in N \times N$ Since a + b = b + a. Hence, *R* is reflexive. *R* is symmetric for we have $(a, b)R(c, d) \Rightarrow$ a+d=b+c $\Rightarrow d + a = c + b \Rightarrow c + b = d + a \Rightarrow (c, d)R(e, f).$ Then by definition of *R*, we have a+d=b+c and c+f=d+e, whence by addition, we get a + d + c + f = b + c + d + e or a + f = b + eHence, (a,b) R(e,f)Thus, (a, b) R(c, d) and $(c, d)R(e, f) \Rightarrow (a, b)R(e, f)$. **50.** (a,b,c,d) It is obvious. (c) Here (3, 3), (6, 6), (9, 9), (12, 12), [Reflexive]; (3, 6), (6, 12), (3, 12), [Transitive]. Hence, reflexive and transitive only. (b) It is obvious. (c) Given $A = \{1, 2, 3, 4\}$ $R = \{(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)\}\$ $(2, 3) \in R$ but $(3, 2) \notin R$. Hence R is not symmetric. *R* is not reflexive as $(1, 1) \notin R$. *R* is not a function as $(2, 4) \in R$ and $(2, 3) \in R$. *R* is not transitive as $(1, 3) \in R$ and $(3, 1) \in R$ but $(1, 1) \notin R.$ 54. (d) Total number of reflexive relations in a set with *n* elements $= 2^n$. Therefore, total number of reflexive relation set with 4 elements $= 2^4$. **55.** (a) Since $1 + a \cdot a = 1 + a^2 > 0$, $\forall a \in S$, $\therefore (a, a) \in R$ \therefore R is reflexive.

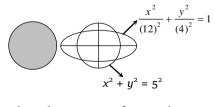
47.

51.

52.

53.

Also $(a, b) \in R \implies 1 + ab > 0 \implies 1 + ba > 0 \implies (b, a) \in R$, \therefore *R* is symmetric. $(a,b) \in R$ and $(b,c) \in R$ need not imply $(a,c) \in R$. Hence, *R* is not transitive.


- **56.** (a) $A = \{2, 4, 6\}$; $B = \{2, 3, 5\}$
 - \therefore A × B contains 3×3 = 9 elements. Hence, number of relations from A to $B = 2^9$.

Critical Thinking Questions

(a) Since $8^n - 7n - 1 = (7+1)^n - 7n - 1$ $=7^{n} + {}^{n}C_{1}7^{n-1} + {}^{n}C_{2}7^{n-2} + \dots + {}^{n}C_{n-1}7 + {}^{n}C_{n} - 7n - 1$ $={}^{n}C_{2}7^{2} + {}^{n}C_{3}7^{3} + ... + {}^{n}C_{n}7^{n}$, ${}^{n}C_{0} = {}^{n}C_{n}$, ${}^{n}C_{1} = {}^{n}C_{n-1}$ etc.) $=49[{}^{n}C_{2} + {}^{n}C_{3}(7) + \dots + {}^{n}C_{n}7^{n-2}]$ $\therefore 8^n - 7n - 1$ is a multiple of 49 for $n \ge 2$ For n = 1, $8^n - 7n - 1 = 8 - 7 - 1 = 0$; For n = 2, $8^n - 7n - 1 = 64 - 14 - 1 = 49$ $\therefore 8^n - 7n - 1$ is a multiple of 49 for all $n \in N$. \therefore X contains elements which are multiples of 49 and clearly Y contains all multiplies of 49. \therefore $X \subset Y$. (b) $N_3 \cap N_4 = \{3, 6, 9, 12, 15, \dots\} \cap \{4, 8, 12, 16, 20, \dots\}$ 2. $= \{12, 24, 36....\} = N_{12}.$ **Trick :** $N_3 \cap N_4 = N_{12}$ [:: 3, 4 are relatively prime numbers]. (b) $n(A \cup B) = n(A) + n(B) - n(A \cap B) =$ 3. $3 + 6 - n(A \cap B)$

Since, maximum number of elements in $A \cap B = 3$ Minimum number elements in of • $A \cup B = 9 - 3 = 6$

(d) A = Set of all values (x, y) : $x^2 + y^2 = 25 = 5^2$ Δ.

$$B = \frac{x^2}{144} + \frac{y^2}{16} = 1 \quad i.e., \quad \frac{x^2}{(12)^2} + \frac{y^2}{(4)^2} = 1.$$

Clearly, $A \cap B$ consists of four points.

- (b) $A B = A \cap B^{c} = A \cap \overline{B}$. 5.
- (a) Clearly, $A = \{2, 3\}, B = \{2, 4\}, C = \{4, 5\}$ 6. $B \cap C = \{4\}$
 - $\therefore A \times (B \cap C) = \{(2, 4); (3, 4)\}.$
- (c) Let number of newspapers be x. If every students 7. reads one newspaper, the number of students would be x(60) = 60x

Since, every students reads 5 newspapers

: Numbers of students
$$=\frac{x \times 60}{5} = 300$$
, $x = 25$.

8. (c) Here A and B sets having 2 elements in common, so $A \times B$ and $B \times A$ have 2^2 *i.e.*, 4 elements in common. Hence, $n[(A \times B) \cap (B \times A)] = 4$.

- (c) $(x, y) \in R \Leftrightarrow (y, x) \in R^{-1}$, $\therefore R^{-1} = \{(3, 1), (5, 1), (1, 2)\}$.
- 9. (a) |a-a|=0 < 1 $\therefore a R a \forall a \in R$ 10. \therefore *R* is reflexive. Again a $R b \Rightarrow |a-b| \le 1 \Rightarrow b-a| \le 1 \Rightarrow bRa$ \therefore *R* is symmetric, Again $1R\frac{1}{2}$ and $\frac{1}{2}R1$ but $\frac{1}{2} \neq 1$ \therefore *R* is not anti-symmetric. Further, 1 R 2 and 2 R 3 but 1R3, [: |1-3|=2>1] \therefore *R* is not transitive. (d) Since $A \subseteq A$. \therefore Relation ' \subseteq ' is reflexive. 11. Since $A \subseteq B$, $B \subseteq C \Rightarrow A \subseteq C$ \therefore Relation ' \subseteq ' is transitive. But $A \subset B$, $\Rightarrow B \subset A$, \therefore Relation is not symmetric. (d) Since $n \mid n$ for all $n \in N$, therefore *R* is reflexive. 12. Since 2 | 6 but $6 \nmid 2$, therefore R is not symmetric. Let *n R m* and *m R p* \Rightarrow *n*|*m* and *m*|*p* \Rightarrow *n*|*p* \Rightarrow nRp. So, R is transitive. **13.** (a) Let $A = \{1, 2, 3\}$ and $R = \{(1, 1), (1, 2)\}, S = \{(2, 2)\}$
 - (2, 3)} be transitive relations on *A*. Then $R \cup S = \{(1, 1); (1, 2); (2, 2); (2, 3)\}$ Obviously, $R \cup S$ is not transitive. Since (1, 2) \in $R \cup S$ and $(2,3) \in R \cup S$ but $(1,3) \notin R \cup S$.
- 14. (a) We first find R^{-1} , we have $R^{-1} = \{(5,4); (4,1); (6,4); (6,7); (7,3)\}$. We now obtain the elements of $R^{-1}oR$ we first pick the element of *R* and then of R^{-1} . Since $(4,5) \in R$ and $(5,4) \in R^{-1}$, we have $(4,4) \in R^{-1}oR$ Similarly, $(1,4) \in R, (4,1) \in R^{-1} \Longrightarrow (1,1) \in R^{-1} oR$ $(4,6) \in R, (6,4) \in R^{-1} \Longrightarrow (4,4) \in R^{-1}oR,$ $(4,6) \in R, (6,7) \in R^{-1} \Longrightarrow (4,7) \in R^{-1}oR$ $(7,6) \in R, (6,4) \in R^{-1} \Longrightarrow (7,4) \in R^{-1}oR,$ $(7,6) \in R, (6,7) \in R^{-1} \Longrightarrow (7,7) \in R^{-1}oR$ $(3,7) \in R, (7,3) \in R^{-1} \Longrightarrow (3,3) \in R^{-1}oR$, Hence, $R^{-1}oR = \{(1, 1); (4, 4); (4, 7); (7, 4), (7, 7); (7, 6), (7, 7); (7, 6), (7, 7); (7, 6), (7, 7); ($ (3, 3).
- (d) On the set N of natural numbers, 15.
 - $R = \{(x, y) : x, y \in N, 2x + y = 41\}.$ Since (11) $\sigma R \approx 21 \pm 1 - 3 \neq 41$

Since
$$(1,1) \notin R$$
 as $2 \cdot 1 + 1 = 3 \neq 41$. So, R is not reflexive.

 $(1,39) \in R$ but $(39,1) \notin R$. So *R* is not symmetric (20,

 $(1, 39 \in R$. But $(20, 39) \notin R$, So *R* is not transitive.

ET Self Evaluation Test - 1

Set Theory and Relations

1.


2.

3.

4.

5٠

6.

(b) $\frac{f(x)}{g(x)}$ (a) $[f(x)]^2 + [g(x)]^2 = 0$ (c) $\frac{g(x)}{f(x)}$ (d) None of these

(c) {1} (d) None of these Let $A = \{p, q, r\}$. Which of the following is an 14. equivalence relation on A

 $(b) \{4, 6, 9\}$

than *y*'. The range of *R* is

 $(a) \{1, 4, 6, 9\}$

(a) $R_1 = \{(p, q), (q, r), (p, r), (p, p)\}$ (b) $R_2 = \{(r, q), (r, p), (r, r), (q, q)\}$ (c) $R_3 = \{(p, p), (q, q), (r, r), (p, q)\}$

(d) None of these

15. Let *L* be the set of all straight lines in the Euclidean plane. Two lines l_1 and l_2 are said to be related by the relation *R* iff l_1 is parallel to

 l_2 . Then the relation *R* is

(a) Reflexive	(b) Symmetric
---------------	---------------

(c) Transitive (d) Equivalence

C Answers and Solutions

(SET - 1)

Set Theory and Relations 21

 $\implies m-n=3 \implies m-3=3 \implies m=6; \therefore m=6, n=3.$ (a) bN = the set of positive integral multiples of cN = the set of positive integral b, multiplies of *c*. \therefore *bN* \cap *cN* = the set of positive integral multiples of bc = $b \subset N$, [::b,c are prime] $\therefore d = bc$. (c) $O(S) = O\left(\bigcup_{i=1}^{30} A_i\right) = \frac{1}{10}(5 \times 30) = 15$ 11. Since, element in the union S belongs to 10 of A_i 's $O\left(\bigcup_{j=1}^{n}B_{j}\right)=\frac{3n}{9}=\frac{n}{3},$ Also. O(S) $\therefore \frac{n}{2} = 15 \implies n = 45$. (c) The number of proper subset $= 2^n - 1$ $=2^{5}-1 = 32-1 = 31$. (d) \therefore A is not a subset of B \therefore Some point of A will not be a point of B, So that point will being to B^c . Hence A and complement of *B* are always non-disjoint. (a) $A \cap B = \{x : x \in A \text{ and } x \in B\}$ $= [x: f(x) = 0 \text{ and } g(x) = 0] = [f(x)]^2 + [g(x)]^2 = 0$. (a) Since $A \subseteq B$, $\therefore A \cap B = A$ \therefore $n(A \cap B) = n(A) = 3$. (c) n(P) = 25%, n(C) = 15% $n(P^{c} \cap C^{c}) = 65\%, n(P \cap C) = 2000$ Since, $n(P^c \cap C^c) = 65\%$: $n(P \cup C)^c = 65\%$ and $n(P \cup C) = 35\%$ 12. Now, $n(P \cup C) = n(P) + n(C) - n(P \cap C)$ $35 = 25 + 15 - n(P \cap C)$: $n(P \cap C) = 40 - 35 = 5$. Thus $n(P \cap C) = 5\%$ But $n(P \cap C) = 2000$ Total number of families • $\frac{2000 \times 100}{2000} = 40,000$ 5 Since, $n(P \cup C) = 35\%$ and total number of families = 40,00013. and $n(P \cap C) = 5\%$. \therefore (2) and (3) are correct. (c) *R* is reflexive if it contains (1, 1), (2, 2), (3, 3) 14. \therefore (1,2) \in *R*,(2,3) \in *R*

(b)Since $2^m - 2^n = 56 = 8 \times 7 = 2^3 \times 7$

 $\Rightarrow 2^{n}(2^{m-n}-1) = 2^{3} \times 7$, $\therefore n = 3$ and $2^{m-n} = 8 = 2^{3}$

1.

2.

3.

4.

5.

6.

7.

8.

9.

 \therefore *R* is symmetric if (2, 1), (3, 2) \in *R*. Now, $R = \{(1, 1), (2, 2), (3, 3), (2, 1), (3, 2), (2, 3), (1, 2)\}$ *R* will be transitive if (3, 1); $(1, 3) \in R$. Thus, *R* becomes an equivalence relation by adding (1, 1) (2, 2) (3, 3) (2, 1) (3,2) (1, 3) (3, 1). Hence, the total number of ordered pairs is 7. 10. (c) $A = \{2, 4, 6, 8\}; R = \{(2, 4)(4, 2), (4, 6), (6, 6),$ 4) $(a, b) \in R \Rightarrow (b, a) \in R$ and also $R^{-1} = R$. Hence, *R* is symmetric. (d) For $(a, b), (c, d) \in N \times N$ $(a,b)R(c,d) \Longrightarrow ad(b+c) = bc(a+d)$ Reflexive : Since $ab(b+a) = ba(a+b) \forall ab \in N$, \therefore (a,b)R(a,b), \therefore R is reflexive. Symmetric : For $(a,b), (c,d) \in N \times N$, let (a,b)R(c,d) $\therefore ad(b+c) = bc(a+d) \implies bc(a+d) = ad(b+c)$ $\Rightarrow cb(d+a) = da(c+b) \Rightarrow (c,d)R(a,b)$ \therefore *R* is symmetric Transitive : For $(a,b), (c,d), (e,f) \in N \times N$, Let (a,b)R(c,d), (c,d)R(e,f) $\therefore ad(b+c) = bc(a+d)$, cf(d+e) = de(c+f) $\Rightarrow adb + adc = bca + bcd$(i) and cfd + cfe = dec + def.....(ii) (i) $\times ef +$ (ii) $\times ab$ gives, adbef + adcef + cfdab + cfeab= bcaef + bcdef + decab + defab $\Rightarrow adcf(b+e) = bcde(a+f) \Rightarrow af(b+e) = be(a+f)$ \Rightarrow (a,b)R(e,f). \therefore R is transitive. R is an equivalence relation. (c) $8x - 6 = 14P, (x \in Z)$ $\Rightarrow x = \frac{1}{2} [14P+6], (x \in Z)$ $\Rightarrow x = \frac{1}{4}(7P+3) \Rightarrow x = 6, 13, 20, 27, 34, 41,$ 48..... \therefore Sol set = {6, 20, 34, 48,...} \cup {13, 27, 41,} **=** [6] ∪ [13],

[6], [13] are equivalence classes of 6 and 13.

(c) Here R is a relation A to B defined by 'x is greater than $y' \therefore R = \{(2,1); (3,1)\}$ Hence, range of $R = \{1\}$.

(d) Here $A = \{p, q, r\}$

 R_1 is not symmetric because $(p,q) \in R_1$ but $(q,p) \notin R_1$

 R_2 is not symmetric because $(r,q)\!\in\!R_2$ but $(q,r)\!\not\in\!R_2$

 R_3 is not symmetric because $(p,q) \in R_3$ but $(q,p) \notin R_3$.

Hence, R_1, R_2, R_3 are not equivalence relation. **15.** (a,b,c,d) Here l_1Rl_2

 l_1 is parallel l_2 and also l_2 is parallel to l_1 , so it is symmetric.

Clearly, it is also reflexive and transitive. Hence it is equivalence relation.

* * *