UNIT

11

WAVES

We are slowed down sound and light waves, a walking bundle of frequencies tuned into the cosmos.
We are souls dressed up in sacred biochemical garments and our bodies are the instruments through
which our souls play their music — Albert Einstein

@/ LEARNING OBJECTIVES
[

In this unit, the student is exposed to

 waves and their types (transverse and longitudinal)
« basic terms like wavelength, frequency, time period and amplitude of a wave
« velocity of transverse waves and longitudinal waves

« velocity of sound waves

« reflection of sound waves from plane and curved surfaces and its applications

« progressive waves and their graphical representation

« superposition principle, interference of waves, beats and standing waves
« characteristics of stationary waves, sonometer
« fundamental frequency, harmonics and overtones

« intensity and loudness

« vibration of air column - closed organ pipe, open organ pipe and resonance air column

« Doppler effect and its applications

INTRODUCTION

In the previous chapter, we have discussed the
oscillation of a particle. Consider a medium
which consists of a collection of particles.
If the disturbance is created at one end, it

Figure 11.1 Standing waves in a violin
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propagates and reaches the other end. That
is, the disturbance produced at the first mass
point is transmitted to the next neighbouring
mass point, and so on. Notice that here, only
the disturbance is transmitted, not the mass
points. Similarly, the speech we deliver is due
to the vibration of our vocal chord inside
the throat. This leads to the vibration of the
surrounding air molecules and hence, the
effect of speech (information) is transmitted
from one point in space to another point
in space without the medium carrying the
particles. Thus, the disturbance which carries
energy and momentum from one point in space
to another point in space without the transfer of
the medium is known as a wave.

17-08-2020 15:30:24‘ ‘



Figure 11.2 Waves formed in (a) ocean, (b) standing waves in plucking rubber band and
(c) ripples formed on water surface

Standing nearabeach, one can observe waves
in the ocean reaching the seashore with a
similar wave pattern; hence they are called
ocean waves. A rubber band when plucked
vibrates like a wave which is an example of
a standing wave. These are shown in Figure
11.2. Other examples of waves are light
waves (electromagnetic waves), through
which we see and enjoy the beauty of nature
and sound waves using which we hear and
enjoy pleasant melodious songs. Day to day
applications of waves are numerous, such
as mobile phone communication, laser
surgery, etc.

Ripples and wave
formation on the water
surface

Figure 11.3 Ripples form
surface of water

Suppose we drop a stone in a trough of still
water, we can see a disturbance produced at
the place where the stone strikes the water
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surface as shown in Figure 11.3. We find
that this disturbance spreads out (diverges
out) in the form of concentric circles of
ever increasing radii (ripples) and strike
the boundary of the trough. This is because
some of the kinetic energy of the stone is
transmitted to the water molecules on the
surface. Actually the particles of the water
(medium) themselves do not move outward
with the disturbance. This can be observed
by keeping a paper strip on the water
surface. The strip moves up and down when
the disturbance (wave) passes on the water
surface. This shows that the water molecules
only undergo vibratory motion about their
mean positions.

i ¥2 Formation of waves
on stretched string

Let us take a long string and tie one end of
the string to the wall as shown in Figure
11.4 (a). If we give a quick jerk, a bump (like
pulse) is produced in the string as shown
in Figure 11.4 (b). Such a disturbance is
sudden and it lasts for a short duration,
hence it is known as a wave pulse. If jerks
are given continuously then the waves
produced are standing waves. Similar
waves are produced by a plucked string in
a guitar.
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Figure 11.4: Wave pulse created during
jerk produced on one end of the string

Formation of waves
in a tuning fork

When we strike a tuning fork on a rubber
pad, the prongs of the tuning fork vibrate
about their mean positions. The prong
vibrating about a mean position means
moving outward and inward, as indicated
in the Figure 11.5. When a prong moves
outward, it pushes the layer of air in its
neighbourhood which means there is more
accumulation of air molecules in this region.
Hence, the density and also the pressure
increase. These regions are known as
compressed regions or compressions. This
compressed air layer moves forward and
compresses the next neighbouring layer in a
similar manner. Thus a wave of compression
advances or passes through air. When the
prong moves inwards, the particles of the
medium are moved to the right. In this
region both density and pressure are low. It
is known as a rarefaction or elongation.

€26 UNIT 11 WAVES
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Figure 11.5 Waves due to strike of a
tuning fork on a rubber pad

Characteristics of
wave motion

o For the propagation of the waves, the
medium must possess both inertia and
elasticity, which decide the velocity of
the wave in that medium.

 Inagiven medium, the velocity of a wave
is a constant whereas the constituent
particles in that medium move with
different velocities at different positions.
Velocity is maximum at their mean
position and zero at extreme positions.

« Waves undergo reflections, refraction,
interference, diffractionand polarization.

Point to ponder

The medium possesses both inertia and
elasticity for propagation of waves.

Light is an electromagnetic wave. what is
the medium for its transmission?
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Mechanical wave
motion and its types

Wave motion can be classified into two
types
a. Mechanical wave - Waves which require

a medium for propagation are known as
mechanical waves.

Examples: sound waves, ripples formed
on the surface of water, etc.

b. Non mechanical wave - Waves which do
not require any medium for propagation
are known as non-mechanical waves.

Example: light waves, Infra red rays etc.

Further, waves can also be classified into
two types

a. Transverse waves

b. Longitudinal waves

Transverse wave
motion

L o)

Figure 11.6 Transverse wave

Compressed Stretched Compressed Stretched

' | |

‘ Longitudinal waves

Figure 11.7 Longitudinal waves

In transverse wave motion, the constituents
of the medium oscillate or vibrate about their
mean positions in a direction perpendicular
to the direction of propagation (direction
of energy transfer) of waves as shown in
Figure 11.6.

Example: light (electromagnetic waves)

WA Longitudinal wave

motion

Inlongitudinal wave motion, the constituents
of the medium oscillate or vibrate about their
mean positions in a direction parallel to the
direction of propagation (direction of energy
transfer) of waves as shown in Figure 11.7.

Example: Sound waves travelling in air.

Discuss with your Teacher

o Tsunami (pronounced soo-nah-mee
in Japanese) means Harbour waves.

o Tsunami is a series of huge and giant
waves which come with great speed
and huge force. What happened on
26™ December2004 in southern part
of India? - Discuss

o Gravitational waves and LIGO (Laser
Interferometer ~ Gravitational ~— wave
Observatory) experiment.

« Nobel Prize winners in Physics 2017 are
Prof. Rainer Weiss, Prof. Barry
C. Barish and Prof. Kip S. Thorne
for decisive contributions to the
LIGO detector and observation of
gravitational forces.

|

Motion «—»
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S.No. Transverse waves

direction of propagation of waves.

1. | The direction of vibration of particles | The direction of vibration of particles of
of the medium is perpendicular to the | the medium is parallel to the direction of

Longitudinal waves

propagation of waves.

2. | The disturbances are in the form of crests | The disturbances are in the form of
and troughs. compressions and rarefactions.

3. | Transverse waves are possible in elastic | Longitudinal waves are possible in all
medium. types of media (solid, liquid and gas).

NOTE:

1. Absence of medium is also known as vacuum. Only electromagnetic waves can travel through vacuum.

2. Rayleigh waves are considered to be mixture of transverse and longitudinal.

TERMS AND DEFINITIONS
USED IN WAVE MOTION

YA

[e]

Figure 11.8 Two different sinusoidal
waves

Suppose we have two waves as shown in
Figure 11.8. Are these two waves identical? No.
Though, the two waves are both sinusoidal, there
are many difference between them. Therefore,
we have to define some basic terminologies to
distinguish one wave from another.

Consider a wave produced in a stretched
string as shown in Figure 11.9.
A

oA
Trough

| Figure 11.9 Crest and Trough of a wave

Crest
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If we are interested in counting the number
of waves created, let us put a reference level
(mean position) as shown in Figure 11.9. Here
the mean position is the horizontal line shown.
The highest point in the shaded portion is
called crest. With respect to the reference level,
the lowest point on the un-shaded portion is
called trough. This wave contains repetition of
asection O to B and hence we define the length
of the smallest section without repetition
as one wavelength as shown in Figure 11.10.
In Figure 11.10 the length OB or length BD
is one wavelengh. A Greek letter lambda 2 is
used to denote one wavelength.

A A

0o A B >0 A 5 € b
A A A
One wavelength = 2 Two wavelength = 21

Y

| Figure 11.10 Defining wavelength

For transverse waves (as shown in Figure
11.11), the distance between two neighbouring
crests or troughs is known as the wavelength.
For longitudinal waves, (as shown in
Figure 11.12) the distance between two
neighbouring compressions or rarefactions
is known as the wavelength. The SI unit of
wavelength is meter.
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Figure 11.11 Wavelength for transverse waves
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Figure 11.12 Wavelength for
longitudinal waves

EXAMPLE 11.1

Which of the following has longer
wavelength?

Answer is (¢)

In order to understand frequency and time
period, let us consider waves (made of three
wavelengths) as shown in Figure 11.13 (a).
At time ¢ = 0 s, the wave reaches the point A
from left. After time t = 1 s (shown in figure
11.13(b)), the number of waves which have
crossed the point A is two. Therefore, the
frequency is defined as the number of waves
crossing a point per second. It is measured in
hertz whose symbol is Hz. In this example,

f=2Hz (11.1)

‘ ‘ UNIT-11(XI-Physics_Vol-2)_14-08-2020.indd 229

® CH ||

A
(a) A I/\ A
A O/ U
£ O A T t=1s
U U
t=0s (b)

Figure 11.13 A wave consisting of three
wavelengths passing a point A at time
(a) t=0sand (b) after timet=1s

If two waves take one second (time) to cross
the point A then the time taken by one wave
to cross the point A is half a second. This
defines the time period T as

T:%:O,S S (11.2)

From equation (11.1) and equation (11.2),
frequency and time period are inversely
related i.e.,

T=% (11.3)
@

Time period is defined as the time taken by
one wave to cross a point.

EXAMPLE 11.2

Three waves are shown in the figure below.

(a)

[\ /\
(AR W

(b)

JAWAWA
\VARVALVARV,

(o]

N__

Write down
(a) the frequency in ascending order
(b) the wavelength in ascending order

Solution

(@) f.<f <A
(b) A, <A <A

UNIT 11 WAVES 229
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From the example 11.2, we observe that
the frequency is inversely related to the

wavelength, f o -
Then, fA is equal to what?
[(i.e) fA=7]

A simple dimensional argument will help
us to determine this unknown physical

quantity.
Dimension of wavelength is, [A\]=L
1 e
Frequency f = W , which implies
that the dimension of frequency is,
1 _ o
[f1= T T

= [M] = [A][f]= LT = [velocity]

Therefore,

Velocity, Af=v (11.4)

where v is known as the wave velocity or
phase velocity. This is the velocity with
which the wave propagates. Wave velocity
is the distance travelled by a wave in one
second.

Note:

1. The number of cycles (or revolutions)
per unit time is called angular frequency.

Angular frequency, w = an = 2nf (unit is

radians/second)

2. The number of cycles per unit distance
or number of waves per unit distance is
called wave number.

wave number, k = 2n (unit is radians/
meter)

The velocity v, angular frequency w and
wave number k are related as:

velocity, v = Af = % (2nf) = % =fA

@0 UNIT 11 WAVES
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EXAMPLE 11.3

The average range of frequencies at which
human beings can hear sound waves
varies from 20 Hz to 20 kHz. Calculate
the wavelength of the sound wave in these
limits. (Assume the speed of sound to be
340 ms™.

Solution
7»1=1=34—0=17m
fi o 20
=23 017m
7, 20x10

Therefore, the audible wavelength region is
from 0.017 m to 17 m when the velocity of
sound in that region is 340 ms™.

EXAMPLE 11.4

A man saw a toy duck on a wave in an
ocean. He noticed that the duck moved
up and down 15 times per minute. He
roughly measured the wavelength of the
ocean wave as 1.2 m. Calculate the time
taken by the toy duck for going one time
up and down and also the velocity of the
ocean wave.

=
P
==
A, PN
0 A

Solution

Given that the number of times the toy duck
moves up and down is 15 times per minute.
This information gives us frequency (the
number of times the toy duck moves up

and down)
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f= 15 times toy duck moves up and down
one minute

But one minute is 60 second, therefore,
expressing time in terms of second

1 1
=l gosm,
60 4
The time taken by the toy duck for going
one time up and down is time period which
is inverse of frequency

=L:4s

r=L1
£ 025

The velocity of ocean wave is

v=A=12x025=03ms".

Amplitude of a wave:

A
® A A~/ i i
v Ao
-y
1
QI AWANWAWAES
IVARAVARVARY)
UNEY
-y

Figure 11.14 Waves of different
amplitude

The waves shown in the Figure 11.14 have
same wavelength, same frequency and
same time period and also move with
same velocity. The only difference between
two waves is the height of either crest or
trough. This means, the height of the crest
or trough also signifies a wave character.
So we define a quantity called an amplitude
of the wave, as the maximum displacement
of the medium with respect to a reference
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axis (for example in this case x-axis). Here,
it is denoted by A.

EXAMPLE 11.5

Consider a string whose one end is
attached to a wall. Then compute the
following in both situations given in figure
(assume waves crosses the distance in one
second)

N\ /N
N 4

12 m

AVAVAVAVAVAY

< y
< >

12 m

<
<

(a) Wavelength, (b) Frequency and
(c) Velocity
Solution

First case |Second case

(a) Wavelength | A =6m A=2m

(b) Frequency | f=2Hz f=6Hz

(c) Velocity v=6x2 |v=2X6
=12ms! |=12ms!

This means that the speed of the wave along
a string is a constant. Higher the frequency,
shorter the wavelength and vice versa, and
their product is velocity which remains the
same.

VELOCITY OF WAVES IN
DIFFERENT MEDIA

Suppose a hammer is struck on long rails at
a distance and when a person keeps his ear
near the rails at the other end he/she will hear
two sounds, at different instants. The sound
thatisheard through the rails (solid medium)

UNIT 11 WAVES 239
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is faster than the sound we hear through
the air (gaseous medium). This implies the
velocity of sound is different in different
media.

In this section, we shall derive the velocity
of waves in two different cases:

1. The velocity of a transverse waves along
a stretched string.

2. The velocity of a longitudinal waves in
an elastic medium.

Velocity of transverse
waves in a stretched string

Let us compute the velocity of transverse
travelling waves on a string. When a jerk is
given at one end (left end) of the rope, the wave
pulses move towards right end with a velocity v
with respect to an observer who is at rest frame.

Consider an elemental segment in the string
as shown in the Figure 11.15. Let A and B be
two points on the string at an instant of time.
Let dl and dm be the length and mass of the
elemental string, respectively. By definition,
linear mass density, y is

«=

V (pulse)—>

_ V(pulse) =

_dm
H_E (11.5)
dm = pdl (1L.6)

The elemental string AB has a curvature
which looks like an arc of a circle with centre
at O, radius R and the arc subtending an angle
0 at the origin O as shown in Figure 11.15(b).
The angle 0 can be written in terms of arc

length and radius as 6 = % The centripetal

acceleration supplied by the tension in the
string is

a_ = = (11.7)
Then, centripetal force is -
From eqn 11.6,

(dm)v* _ wv’ dl (11.9)

R R

The tension T acts along the tangent of the
elemental segment of the string at A and B.
Since the arc length is very small, variation

Tcos (%)

AX

f

Figure 11.15 Elemental segment in a stretched string is zoomed and the pulse seen from an

observer frame who moves with velocity v.

@2 UNIT 11 WAVES
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in the tension force can be ignored. We
can resolve T into horizontal component

T cos[g
2

L)
and vertical component T'sin 5

The horizontal components at A and B
are equal in magnitude but opposite in
direction; therefore, they cancel each other.
Since the elemental arc length AB is taken
to be very small, the vertical components at
A and B appears to acts vertical towards the
centre of the arc and hence, they add up. The
net radial force F_is

(8
F =2T sm[g] (11.10)

Since the amplitude of the wave is very small
when it is compared with the length of the

. . |6 0
string, sin|—|~ —. Hence,
2 2

F =2Tx 2 =1p (11.11)
2

But O:ﬂ,weget
R

R (11.12)
! R

Applying Newton’s second law to the
elemental string in the radial direction,
under equilibrium, the radial component
of the force is equal to the centripetal
force. Hence equating equation (11.9) and
equation (11.12), we have

dl dl
T -
R Ky R
- s
w
Observations:

o The velocity of the string is

a. directly proportional to the square
root of the tension force

b. inversely proportional to the square
root of linear mass density
c. independent of shape of the waves.
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EXAMPLE 11.6

Calculate the velocity of the travelling
pulse as shown in the figure below. The
linear mass density of pulse is 0.25 kg m™".
Further, compute the time taken by the
travelling pulse to cover a distance of
30 cm on the string.

1.2 kg

Solution

The tension in the string is T = mg =
1.2x9.8=11.76 N

The mass per unit length is 4 = 0.25 kg m™
Therefore, velocity of the wave pulse is

v = Tr_ %:6.858711571:6.8141571
u Vo025

The time taken by the pulse to cover the
distance of 30 cm is
,_d_30x10”

"
ms = milli second.

=0.044s = 44 ms where,

Velocity of
longitudinal waves in an
elastic medium

Consider an elastic medium (here we assume
air) having a fixed mass contained in a long
tube (cylinder) whose cross sectional area is
A and maintained under a pressure P. One
can generate longitudinal waves in the fluid
either by displacing the fluid using a piston or
by keeping a vibrating tuning fork at one end
of the tube. Let us assume that the direction
of propagation of waves coincides with the
axis of the cylinder. Let p be the density of

UNIT 11 WAVES 29
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—>
F = (P+AP) A

Figure 11.16 Longitudinal waves in the
fluid by displacing the fluid using a piston

the fluid which is initially at rest. At ¢ =0, the
piston at left end of the tube is set in motion
toward the right with a speed u.

Let u be the velocity of the piston and v
be the velocity of the elastic wave. In time
interval At, the distance moved by the piston
Ad = u At. Now, the distance moved by the
elastic disturbance is Ax = vAt. Let Am be the
mass of the air that has attained a velocity v
in a time At. Therefore,

Am=pAAx=pA(vAt)

Then, the momentum imparted due to
motion of piston with velocity u is

Ap=I[pA(vAD]u

But the change in momentum is impulse.

The net impulse is

I=(AP A)At
Or (APA)At=[p A (v At)]u
AP=pvu (11.14)

When the sound wave passes through
air, the small volume element (AV) of the
air undergoes regular compressions and
rarefactions. So, the change in pressure can
also be written as

@4 UNIT 11 WAVES
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Ap— g2V
V

where, V is original volume and K is known
as bulk modulus of the elastic medium.

But V=A Ax=A v At and
AV=AAd=Ault

Therefore,

AulAt u
AP=K =
AvAt v (11.15)

Comparing equation (11.14) and equation
(11.15), we get

u
pvu=K— or v’ =—

:>v:\/E (11.16)
p PE—

In general, the velocity of a longitudinal

) ) ) ) /E
wave in elastic medium is v=_|—, where E
p

is the modulus of elasticity of the medium.
Cases: For a solid :

(i) one dimensional rod (1D)

:Jz (11.17)
p

where Y is the Young’s modulus of the

material of the rod and p is the density of
the rod. The 1D rod will have only Young’s
modulus.

(ii) Three dimensional rod (3D) The speed
of longitudinal wave in a solid is

[ 4
e i (11.18)
p

where # is the modulus of rigidity, K is the
bulk modulus and p is the density of the rod.
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Cases: For liquids:

v:\/E (11.19)
p

where, K (or) B is the bulk modulus and p is
the density of the rod.

EXAMPLE 11.7

Calculate the speed of sound in a steel rod
whose Young’s modulus Y=2 x 10" Nm™
and p = 7800 kg m™.

Solution

Y 2x10"
v:\/:: X107 _ fo2564%10°
P

7800

=0.506x10*ms ' =5x10’ms™"

Therefore, longitudinal waves travel faster
in a solid than in a liquid or a gas. Now you
may understand why a shepherd checks
before crossing railway track by keeping
his ears on the rails to safegaurd his cattle.

EXAMPLE 11.8

An increase in pressure of 100 kPa causes

a certain volume of water to decrease by
0.005% of its original volume.

(a) Calculate the bulk modulus of
water?

(b) Compute the speed of sound
(compressional waves) in water?

Solution
(a) Bulk modulus
3
B-y|AP|_ 100><10_2 _
AV|™ 0.005x10
3
= 0010 _ 2000 MPa, where
5x10

MPa is mega pascal
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(b) Speed of sound in water is

6
V= 5:,/—200“10 =1414ms™"
p 1000

The velocities of both
transverse ~ waves  and
longitudinal waves depend
on elastic property (like string tension

T or bulk modulus K) and inertial
property (like density or mass per
Elastic property

. 2 v =
unit length) i.e., Inertial property

Table 11.2: Speed of sound in
various media

S.No. Medium

Speedinm s’

Solids
1. Rubber 1600
2. Gold 3240
3. Brass 4700
4. Copper 5010
5. Iron 5950
6. Aluminum 6420
Liquids at 25°C
1. Kerosene 1324
2. Mercury 1450
3.  Water 1493
4. Sea Water 1533
Gas (at 0°C)
1. Oxygen 317
2. Air 331
3. Helium 972
4. Hydrogen 1286
Gas (at 20°C)
1. Air 343

UNIT 11 WAVES 239
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PROPAGATION OF SOUND
WAVES

We know that sound waves are longitudinal
waves, and when they propagate
compressions and rarefactions are formed.
In the following section, we compute the
speed of sound in air by Newton’s method
and also discuss the Laplace correction and
the factors affecting sound in air.

Newton’s formula for
speed of sound waves in air

Sir Isaac Newton assumed that when
sound propagates in air, the formation of
compression and rarefaction takes place
in a very slow manner so that the process
is isothermal in nature. That is, the heat
produced during compression (pressure
increases, volume decreases), and heat lost
during rarefaction (pressure decreases,
volume increases) occur over a period
of time such that the temperature of the
medium remains constant. Therefore, by
treating the air molecules to form an ideal
gas, the changes in pressure and volume
obey Boyle’s law, Mathematically

PV = Constant (11.20)

Differentiating equation (11.20), we get

PdV + VdP =0
o, P=-V il =K, (11.21)
av

where, K| is an isothermal bulk modulus of
air. Substituting equation (11.21) in equation
(11.16), the speed of sound in air is

_[&_P .
i . 5 (11.22)
€36
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Since P is the pressure of air whose value at
NTP (Normal Temperature and Pressure) is
76 cm of mercury, we have P = hpg

P =(0.76 x 13.6 x10°* x 9.8) N m™

p =1.293 kg m™.Here p is density of air

Then the speed of sound in air at Normal
Temperature and Pressure (NTP) is

3
. \/(0.76><13.6><10 x9.8)
1.293

=279.80 m s™! = 280 ms™! (theoretical
value)

But the speed of sound in air at 0°C is
experimentally observed as 332ms
which is close upto 16% more than
theoretical value (Percentage error is

(332-280)
332
not small

m Laplace’s correction

In 1816, Laplace satisfactorily corrected

x100% =15.6%). This error is

this discrepancy by assuming that when
the sound propagates through a medium,
the particles oscillate very rapidly such that
the compression and rarefaction occur very
fast. Hence the exchange of heat produced
due to compression and cooling effect due
to rarefaction do not take place, because,
air (medium) is a bad conductor of heat.
Since, temperature is no longer considered
as a constant here, sound propagation
is an adiabatic process. By adiabatic
considerations, the gas obeys Poisson’s
law (not Boyle’s law as Newton assumed),
which is

PVY = constant (11.23)
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C 1 .
where, y = FP’ which is the ratio between

specific heat at constant pressure and
specific heat at constant volume.

Differentiating equation (11.23) on both the
sides, we get

V' dP+ P (yVr' dV) =0

or, [P= —Vd—p:KA (11.24)
dv

where, K RE the adiabatic bulk modulus of
air. Now, substituting equation (11.24) in
equation (11.16), the speed of sound in air is

R S G
p p

Since air contains mainly, nitrogen, oxygen,
hydrogen etc, (diatomic gas), we take
y = 1.4. Hence, speed of sound in air is
v, = (3/1.4)(280 m s™)= 331.30 m s, which
is very much closer to experimental data.

Factors affecting
speed of sound in gases

Let us consider an ideal gas whose equation
of state is

PV=uRT (11.26)

where, P is pressure, V is volume, T is
temperature, p is number of mole and R is
universal gas constant. For a given mass of a
molecule, equation (11.26) can be written as

PV

T = Constant (11.27)

For a fixed mass m, density of the gas
inversely varies with volume. i.e.,

1 m
— v== _
pocV 5 (11.28)

Substituting equation (11.28) in equation
(11.27), we get
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%ch (11.29)

where c is constant.

The speed of sound in air given in equation
(11.25) can be written as

:\/%:\/W_T (11.30)

From the above relation we observe the
following

(a) Effect of pressure :

For a fixed temperature, when the pressure
varies, correspondingly density also varies

) P
such that the ratio [—] becomes constant.
p

This means that the speed of sound
is independent of pressure for a fixed
temperature. If the temperature remains
same at the top and the bottom of a mountain
then the speed of sound will remain same
at these two points. But, in practice, the
temperatures are not same at top and bottom
of a mountain; hence, the speed of sound is
different at different points.

(b) Effect of temperature :
Since v T,

the speed of sound varies directly to the
square root of temperature in kelvin.

Let v, be the speed of sound at temperature
at 0° C or 273 K and v be the speed of sound
at any arbitrary temperature T (in kelvin),

then
v \/ T \/273+z
v, V273 273

t t
V=1V, 1+2—735V0(1+%)

(using binomial expansion)
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Since v, = 331m st at 0°C, v at any
temperature in t°C is
V=(331+0.61t) ms

Thus the speed of sound in air increases
by 0.61 ms™ per degree celcius rise in
temperature. Note that when the temperature
is increased, the molecules will vibrate faster
due to gain in thermal energy and hence,
speed of sound increases.

(c) Effect of density :

Let us consider two gases with different
densities having same temperature and
pressure. Then the speed of sound in the two

gases are
y = |0 (11.31)
Py
and
v, = L2 (11.32)
P,

Taking ratio of equation (11.31) and
equation (11.32), we get

\/YT’

v NP VP

v, \/YTP T.P,
p2

For gases having same value of y,

Y_ [P

Thus the velocity of sound in a gas is
inversely proportional to the square root of

the density of the gas.
(d) Effect of moisture (humidity):

We know that density of moist air is 0.625 of that
of dry air, which means the presence of
moistureinair (increase in humidity) decreases
its density. Therefore, speed of sound increases
with rise in humidity. From equation (11.30)

@8 UNIT 11 WAVES
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w
p

Let p,, v, and p,, v, be the density and
speeds of sound in dry air and moist air,
respectively. Then

\/VTP

ﬁziz\/i P

Vs v,P P b
s

Since P is the total atmospheric pressure,
According to Dalton’s law of partial pressure,
it can be shown that

P P
P, P +0.625p,

where p and p, are the partial pressures of
dry air and water vapour respectively. Then

P
Vi —Vz,/m (11.34)

(e) Effect of wind:

The speed of sound is also affected by
blowing of wind. In the direction along the
wind blowing, the speed of sound increases
whereas in the direction opposite to wind
blowing, the speed of sound decreases.

EXAMPLE 11.9

The ratio of the densities of oxygen and
nitrogen is 16:14. Calculate the temperature
when the speed of sound in nitrogen gas
at 17°C is equal to the speed of sound in
oxygen gas.

Solution

From equation (11.25), we have
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butp= M,
utp=- Po_ v My M, _16
M M M 14
Therefore, Py 7N I i
_|YPV
V= M Substituting equation (5) in equation (3),
Using equation (11.26) we get
_ [wr
iy 2410 380014t =4640
290 14
Where, R is the universal gas constant and
M is the molecular mass of the gas. The = t=58.4°C
speed of sound in nitrogen gas at 17°C is
B \/yR(273K+17K)
’ My REFLECTION OF SOUND

’YR(290K) WAVES
o, (1)

- When sound wave passes from one medium
Similarly, the speed of sound in oxygen gas to another medium, the following things
at temperature ¢ can happen

@ YR(273K +1) (a) Reflection of sound: If the medium is @
Yo = \/TO 2) highly dense (highly rigid), the sound
can be reflected completely (bounced
Given that the value of y is same for back) to the original medium.
both the gases, the two speeds must be

equal. Hence, equating equation (1) and (b) Refraction of sound: When the sound

waves propagate from one medium to

(2), we get
another medium such that there can be
Yo = W some energy loss due to absorption by
\/ YR(273+1t) \/yR(290) the second medium.
M, M, In this section, we will consider only the

reflection of sound waves in a medium
when it experiences a harder surface. Sound
can also obey the laws of reflection, which
state that

Squaring on both sides and cancelling y R
term and rearranging, we get

M, 290 (3)

M, 273+t

Since the densities of oxygen and nitrogen Asmooth  Acontex  Aconcave  Achmer

is 16: 14’ Sr::;gie surface surface surface

Py _16 (4) Figure 11.17 Reflection of sound in
N 14 different surfaces
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(i) The angle of incidence of sound is equal
to the angle of reflection.

(ii) When the sound wave is reflected by a
surface then the incident wave, reflected
wave and the normal at the point of
incidence all lie in the same plane.

Similar to reflection of light from a mirror,
sound also reflects from a harder flat surface,
This is called as specular reflection.

Specular reflection is observed only when
the wavelength of the source is smaller than
dimensions of the reflecting surface, as well
as smaller than surface irregularities.

Reflection of sound
through the plane
surface

Reflected

spherical wave

(] Sound source

S\
S

Listener

Virtual

Incident source A\
spherical wave jj

Paper tube

Insulption

Figure 11.18 Reflection of sound
through the plane surface

When the sound waves hit the plane wall,
they bounce off in a manner similar to

@0 UNIT 11 WAVES
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that of light. Suppose a loudspeaker is kept
at an angle with respect to a wall (plane
surface), then the waves coming from the
source (assumed to be a point source) can
be treated as spherical wave fronts (say,
compressions moving like a spherical wave
front). Therefore, the reflected wave front
from the plane surface is also spherical, such
that its centre of curvature (which lies on the
other side of plane surface) can be treated
as the image of the sound source (virtual or
imaginary loud speaker). These are shown
in Figures 11.18, 11.19.

Reflected sound\4

/l)w;ct sound ?

Sl

Figure 11.19 Common examples for
reflection of sound in real situation

’ i‘

Reflected
sound

MReﬂection of sound
rough the curved surface
The behaviour of sound is different when
it is reflected from different surfaces like
convex or concave or plane. The sound
reflected from a convex surface is spread
out and so it is easily attenuated and
weakened. Whereas, if it is reflected from
the concave surface it will converge at a
point and this can be easily amplified.
The parabolic reflector (curved reflector)
which is used to focus the sound precisely
toa pointis used in designing the parabolic
mics which are known as high directional
microphones.
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We know that any surface (smooth or
rough) can absorb sound. For example, the
sound produced in a big hall or auditorium
or theatre is absorbed by the walls, ceilings,
floor, seats etc. To avoid such losses, a curved
sound board (concave board) is kept in front
of the speaker, so that the board reflects the
sound waves of the speaker towards the
audience. This method will minimize the
spreading of sound waves in all possible
directions in that hall and also enhances the Dais
uniform distribution of sound throughout
the hall. That is why a person sitting at any
position in that hall can hear the sound
without any disturbance.

Concave Surface

2950
o rtr#/
/>—T | Figure 11.21 Sound in a big auditorium

Concave Reflector

m Applications of

reflection of sound waves

Wave Front .
N Convex

et (a) Stethoscope: It works on the principle

Sound

Source of multiple reflections.

Multiple reflections of sound
in the tube of stethescope
Concave Reflector

Wave Front

Sound Source Stethescope

Figure 11.22 Stethoscope and multiple

Figure 11.20 Reflection of sound reflection of signal in a rubber tube

through the curved surface
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It consists of three main parts:
(i) Chest piece
(ii) Ear piece
(iii) Rubber tube

(i) Chest piece: It consists of a small
disc-shaped resonator (diaphragm) which
is very sensitive to sound and amplifies the
sound it detects.

(if) Ear piece: It is made up of metal
tubes which are used to hear sounds detected
by the chest piece.

(iii) Rubber tube: This tube connects
both chest piece and ear piece. It is used to
transmit the sound signal detected by the
diaphragm, to the ear piece. The sound of
heartbeats (or lungs) or any sound produced
by internal organs can be detected, and it
reaches the ear piece through this tube by
multiple reflections.

¢ Scientists have estimated
that we can hear two
sounds  properly if the

time gap or time interval between
th

1

10
(persistence of hearing) i.e., 0.1 s. Then,

of a second

each sound is [

Distance travelled %

velocity = -
time taken !

2d =344 x0.1=34.4m
d=172m

The minimum distance from a sound
reflecting wall to hear an echo at 20°C
is 17.2 meter.

(b) Echo: An echo is a repetition of sound
produced by the reflection of sound waves
from a wall, mountain or other obstructing
surfaces. The speed of sound in air at 20°C
is 344 ms!. If we shout at a wall which is
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at 344 m away, then the sound will take 1
second to reach the wall. After reflection,
the sound will take one more second to
reach us. Therefore, we hear the echo after
two seconds.

(c) SONAR: SOund NAvigation and
Ranging. Sonar systems make use of
reflections of sound waves in water
to locate the position or motion of an
object. Similarly, dolphins and bats use
the sonar principle to find their way in
the darkness.

(d) Reverberation: In a closed room the
sound is repeatedly reflected from the walls
and it is even heard long after the sound
source ceases to function. The residual
sound remaining in an enclosure and the
phenomenon of multiple reflections of
sound is called reverberation. The duration
for which the sound persists is called
reverberation time. It should be noted that
the reverberation time greatly affects the
quality of sound heard in a hall. Therefore,
halls are constructed with some optimum
reverberation time.

EXAMPLE 11.10

Suppose a man stands at a distance from
a cliff and claps his hands. He receives
an echo from the cliff after 4 second.
Calculate the distance between the man
and the cliff. Assume the speed of sound
tobe 343 m s

Solution

The time taken by the sound to come back as
echois2t=4=1t=2s

.. The distance is d = vt =(343 m s™)(2 s)
= 686 m.
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Note: Classification of sound waves:
Sound waves can be classified in three
groups according to their range of
frequencies:

(1) Infrasonic waves:
Sound waves having frequencies below
20 Hz are called infrasonic waves.
These waves are produced during
earthquakes. Human beings cannot
hear these frequencies. Snakes can
hear these frequencies.

(2) Audible waves:
Sound waves having frequencies
between 20 Hz to 20,000 Hz (20kHz)
are called audible waves. Human
beings can hear these frequencies.

(3) Ultrasonic waves:
Sound waves having frequencies
greater than 20 kHz are known as
ultrasonic waves. Human beings
cannot hear these frequencies. Bats can
produce and hear these frequencies.

o}

(1.) Supersonic speed:
An object moving
with a speed greater
than the speed of sound
is said to move with a
supersonic speed.
(2.) Mach number:
It is the ratio of the velocity of
source to the velocity of sound.

velocity of source
Mach number= Y

velocity of sound

PROGRESSIVE WAVES
(OR) TRAVELLING WAVES

If a wave that propagates in a medium is
continuous then it is known as progressive
wave or travelling wave.
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Characteristics of
progressive waves

1. Particles in the medium vibrate about
their mean positions with the same
amplitude.

2. The phase of every particle ranges from
0 to 2.

3. No particle remains at rest permanently.
During wave propagation, particles
come to the rest position only twice at
the extreme points.

4. Transverse progressive waves are
characterized by crests and troughs
whereas longitudinal progressive waves
are characterized by compressions and
rarefactions.

5. When the particles pass through the
mean position they always move with
the same maximum velocity.

6. The  displacement, velocity and
acceleration of particles separated from
each other by nA are the same, where n is
an integer, and A is the wavelength.

m Equation of a plane

progressive wave

Y Y

) >\/ —Vt—

0]
(@) Pulseatt=0 (b) Pulse at time t

Figure 11.23 Wave pulse moving with velocity
v at two instants at f = 0 and at time ¢

Suppose we give a jerk on a stretched string
at time ¢ = 0 s. Let us assume that the wave
pulse created during this disturbance moves
along positive x direction with constant
speed v as shown in Figure 11.23 (a).

We can represent the shape of the wave
pulse mathematically as y = y(x, 0) = f{x) at time
t=0s. Assume that the shape of the wave pulse
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remains the same during the propagation.
After some time f, the pulse moving
towards the right and any point on it can
be represented by x' (read it as x prime) as
shown in Figure 11.23 (b). Then,

y(x t) =fix)=flx—vt)  (11.35)

Similarly, if the wave pulse moves towards left
with constant speed v, then y = f(x + vt). Both
waves y = f(x + vt) and y = f{x — vt) will satisty
the following one dimensional differential
equation known as the wave equation

2’y 129%

W o (11.36)

where the symbol o0 represents partial
o 0 : .
derivative (read 8_y as partial y by partial
x
x). Not all the solutions satisfying this
differential equation can represent waves,
because any physical acceptable wave must
take finite values for all values of x and ¢. But
if the function represents a wave then it must
satisty the differential equation. Since, in one
dimension (one independent variable), the
partial derivative with respect to x is the same
as total derivative in coordinate x, we write
dy 1d%
W:v_zdtz (11.37)

This can be extended to more than one
dimension (two, three, etc.). Here, for
simplicity, we focus only on the one
dimensional wave equation.

EXAMPLE 11.11

Sketch y = x —a for different values of a.

Solution

This implies, when increasing the value
of a, the line shifts towards right side. For
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a = vt, y = x — vt satisfies the differential
equation. Though this function satisfies
the differential equation, it is not finite
for all values of x and t. Hence, it does not
represent a wave.

a—

(Increases)

Y A
0 <
/ 1 2 3 X
1
y=x-a
where, a = vt

lines moves towards right

EXAMPLE 11.12

How does the wave y = sin(x — a) for a = 0,
T T 31

a=—,a=—,a=— and a = look like?.
4 2 2
Sketch this wave.
Solution
YA sinx
0 2n/—\ o X
roxoaw B—" ~— 7
T3 7
sin(x-Z) 5
T n3nn\—/ ~—
T3 7
sin(x- %
« 0 2 P > X
| ir — ~~—"
T2 2
sin(x-3¢)
0 _——2n N\ 3 X
A —~—
4 2 4
sin(x-m )
I — . yN > X
OM 271:\/ ~—
4 2 4

From the above picture we observe that
. T T
y =sin (x—a) for a = 0, a = Z,a: >
3n . .
a= 5y and a =, the function y = sin (x—a)

shifts towards right. Further, we can take

a=vtandv= % , and sketching for different
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times t = 0s, t = 1s, t = 25 etc., we once again
observe that y = sin(x—vt) moves towards
the right. Hence, y = sin(x—vt) isa travelling
(or progressive) wave moving towards the
right. If y = sin(x+vt) then the travelling
(or progressive) wave moves towards the
left. Thus, any arbitrary function of type
y = flx—vt) characterising the wave must
move towards right and similarly, any
arbitrary function of type y = flx+vt)
characterizing the wave must move towards

left.

EXAMPLE 11.13

Check the dimensional of the wave

y = sin(x—vt). If it is dimensionally wrong,
write the above equation in the correct
form.

Solution

Dimensionally it is not correct. we know
that y = sin(x—vf) must be a dimensionless
quantity but x—vt has dimension. The
correct equation is y = sin (k x—wt), where
k and w have the dimensions of inverse
of length and inverse of time respectively.
The sine functions and cosine functions
are periodic functions with period 2m.
Therefore, the correct expression is
y = sin [%x—z?nt] where A and T are
wavelength and time period, respectively.
In general, y(x,t)=A sin(k x—wt).

Oscillating
Amplitude term

Displacement

Phase
T
y(x,t) = A S|nq<x -wt)
Anglljlar 1 Time
wave number POSItlon Angular
frequency
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Graphical
representation of the wave

Let us graphically represent the two forms
of the wave variation

(a) Space (or Spatial) variation graph

(b) Time (or Temporal) variation graph

(a) Space variation graph

y
T 2%

0

My

«— A —>

X X+A

Figure 11.24 Graph of sinusoidal function
y = A sin(kx)

By keeping the time fixed, the change in
displacement with respect to x is plotted. Let
us consider a sinusoidal graph, y = A sin(kx)
as shown in the Figure 11.24, where k is a
constant. Since the wavelength A denotes
the distance between any two points in the
same state of motion, the displacement y is
the same at both the ends
y=xandy=x+A, ie,

y = Asin(kx) = A sin(k(x + 1))
f = Asin(kx + k1) (11.38)

The sine function is a periodic function with
period 2m. Hence,

’y—:Ksin(kx +2m) = Assin(kx)  (11.39)

Comparing equation (11.38) and equation
(11.39), we get

kx+kA=kx+2n

This implies
21
k:T rad m™! (11.40)

where kis called wave number. This measures
how many wavelengths are present in 2n
radians.
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The spatial periodicity of the wave is
A= i m

Then, k

Att=0s y(x,0) =y(x+A,0)

At any time £, y(x, t) = y(x + A, 1)

EXAMPLE 11.14

The wavelength of two sine waves are
A, = Im and A, = 6m. Calculate the

1
corresponding wave numbers.

Solution
k1 = ZTE =6.28 rad m™!
kZ: 2T _ 1.05 rad m?!

6

(b) Time variation graph

yA 1 2T[
sin (Tt)
2T[ >
of Im t
«— 2T —

Figure 11.25 Graph of sinusoidal
function y =A sin(wt)

By keeping the position fixed, the change
in displacement with respect to time is
plotted. Let us consider a sinusoidal graph,
y =A sin(wt) as shown in the Figure 11.25,
where w is angular frequency of the wave
which measures how quickly wave oscillates
in time or number of cycles per second.
The temporal periodicity or time period is
2m _2n

T=—=w=
0 T

The angular frequency is related to frequency
f by the expression w = 2 nf, where the
frequency f is defined as the number of
oscillations made by the medium particle
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per second. Since inverse of frequency is
time period, we have,

1.
T = — in seconds

This is the time taken by a medium particle
to complete one oscillation. Hence, we can
define the speed of a wave (wave speed, v) as
the distance traversed by the wave per second

A
v:?zkf inms!

which is the same relation as we obtained in
equation (11.4).

Particle velocity and
wave velocity

In a plane progressive harmonic wave,
the constituent particles in the medium
oscillate simple harmonically about their
equilibrium positions. When a particle is in
motion, the rate of change of displacement
at any instant of time is defined as velocity
of the particle at that instant of time. This is
known as particle velocity.

i
v;% m s’ (11.41)

But y(x, t)= Asin(kx- wt) (11.42)

Therefore, Z—y =—wA cos(kx—wt)(11.43)
t

Similarly, we can define velocity (here speed)
for the travelling wave (or progressive
wave). In order to determine the velocity
of a progressive wave, let us consider
a progressive wave (shown in Figure
11.23) moving towards right. This can be
mathematically represented as a sinusoidal
wave. Let P be any point on the phase of the
wave and y, be its displacement with respect
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to the mean position. The displacement of
the wave at an instant ¢ is

y=y(xt)=Asin(kx—wt)

At the next instant of time ¢’ = t + At the
position of the point Pis x’ = x + Ax. Hence,
the displacement of the wave at this instant
is

y=y(x, ') = ylx + Ax, t + At)
= Asin[k (x + AX)- w (t + At)]  (11.44)

Since the shape of the wave remains the
same, this means that the phase of the wave
remains constant (i.e., the y- displacement of
the point is a constant). Therefore, equating
equation (11.42) and equation (11.44), we get

y(x,t') = y(x,t), which implies
Assin[k (x+ Ax)— w (t + At)]= A sin(k x— w t)
Or

k(x + Ax) — w(t + At) = kx — wt = constant
(11.45)

On simplification of equation (11.45), we
get

Ax ©
_oX_0_ 11.46
YTA ke (I

where v is called wave velocity or phase
velocity.

By expressing the angular frequency and
wave number in terms of frequency and
wave length, we obtain

2T
=2nf=—
w f -
k=2T
A
0
:—:7\,
v . Vi
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EXAMPLE 11.15

A mobile phone tower transmits a wave
signal of frequency 900MHz. Calculate the
length of the waves transmitted from the
mobile phone tower.

Solution

Frequency, f =900 MHz =900x10° Hz

The speed of wave is ¢ =3 x 10°m s™*

:l:ﬂ: 0.33m
f 900x10°
SUPERPOSITION
PRINCIPLE

When a jerk is given to a stretched string
which is tied at one end, a wave pulse is
produced and the pulse travels along the
string. Suppose two persons holding the
stretched string on either side give a jerk
simultaneously, then these two wave pulses
move towards each other, meet at some
point and move away from each other with
their original identity. Their behaviour is
very different only at the crossing/meeting
points; this behaviour depends on whether
the two pulses have the same or different
shape as shown in Figure 11.26.

Figure 11.26 Superposition of two waves
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When the pulses have the same shape,
at the crossing, the total displacement
is the algebraic sum of their individual
displacements and hence its net amplitude is
higher than the amplitudes of the individual
pulses. Whereas, if the two pulses have same
amplitude but shapes are 180° out of phase
at the crossing point, the net amplitude
vanishes at that point and the pulses will
recover their identities after crossing. Only
waves can possess such a peculiar property
and it is called superposition of waves. This
means that the principle of superposition
explains the net behaviour of the waves
when they overlap.

Generalizing to any number of waves i.e,
if two or more waves in a medium move
simultaneously, when they overlap, their
total displacement is the vector sum of the
individual displacements. We know that
the waves satisfy the wave equation which
is a linear second order homogeneous
partial differential equation in both
space coordinates and time. Hence, their
linear combination (often called as linear
superposition of waves) will also satisfy the
same differential equation.

To understand mathematically, let us
consider two functions which characterize
the displacement of the waves, for example,

y,= A, sin(kx — wt)
and

y,= A, cos(kx — wt)
Since, both y and y, satisfy the wave
equation (solutions of wave equation) then
their algebraic sum

Yy=ytJ),
also satisfies the wave equation. This means,
the displacements are additive. Suppose we

@8 UNIT 11 WAVES

‘ ‘ UNIT-11(XI-Physics_Vol-2)_14-08-2020.indd 248

multiply y, and y, with some constant then
their amplitude is scaled by that constant
Further, if C, and C, are used to multiply the
displacements y and y,, respectively, then,
their net displacement y is

y=Cn+ Gy,
This can be generalized to any number of
waves. In the case of n such waves in more
than one dimension the displacements are
written using vector notation.

Here, the net displacement Y is
; = Zl Ci)?

The principle of superposition can explain
the following :

(a) Space (or spatial) Interference (also
known as Interference)

(b) Time (or Temporal) Interference
(also known as Beats)

(c) Concept of stationary waves

Waves that obey principle of superposition
are called linear waves (amplitude is much
smaller than their wavelengths). In general,
if the amplitude of the wave is not small
then they are called non-linear waves. These
violate the linear superposition principle,
e.g. laser. In this chapter, we will focus our
attention only on linear waves.

We will discuss the following in different
subsections:

BWAN Interference of waves

Figure 11.27 Interference of waves
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Interference is a phenomenon in which two
waves superimpose to form a resultant wave
of greater, lower or the same amplitude.

y y Y1 Y,

Figure 11.28 Interference of two
sinusoidal waves

Consider two harmonic waves having identical
frequencies, constant phase difference ¢ and
same wave form (can be treated as coherent
source), but having amplitudes A and A , then

y,= A, sin(kx — wt) (11.47)
y,= A, sin(kx — wt+¢) (11.48)

Suppose they move simultaneously in a
particular direction, then interference occurs
(i.e., overlap of these two waves). Mathematically

y=y,*y, (11.49)

Therefore, substituting equation (11.47) and
equation (11.48) in equation (11.49), we get

y=A sin(kx — wt) + A, sin(kx — ot + ¢)
Using trigonometric identity sin (a+p) =
(sin « cosf + cosa sinf ), we get

y = A sin(kx — wt)+A, [sin(kx — wt) cose +
cos(kx — wt) sing]

y = sin(kx - wt)(A; +A, cosp) +

A, sing cos(kx — wt) (11.50)
Let us re-define

A cosf =(A, + A, cosp) (11.51)

and A sinf = A, sing (11.52)

then equation (11.50) can be rewritten as

y = A sin(kx—wt) cosf + A cos(kx—wt) sinf
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y = A (sin(kx—wt) cos + sinf cos(kx—wt))
y = A sin(kx-wt + 0) (11.53)

By squaring and adding equation (11.51)
and equation (11.52), we get

A’=A’+A?+2A A cosp (11.54)

Since, intensity is square of the amplitude
(I=A?), we have

I=1,+1,+21,1,cos ¢ (11.55)

This means the resultant intensity at any
point depends on the phase difference at
that point.

(a) For constructive interference:

When crests of one wave overlap with
crests of another wave, their amplitudes
will add up and we get constructive
interference. The resultant wave has a
larger amplitude than the individual
waves as shown in Figure 11.29 (a).

The constructive interference at a point
occurs if there is maximum intensity at
that point, which means that

cosp =+ 1= ¢=0,2m4mn,... = 2nm,
where n=0,1,2,...

This is the phase difference in which
two waves overlap to give constructive
interference.

Therefore, for this resultant wave,

2
Imaximum = (\/ﬁ + \/Z) = (Al + AZ)Z
Hence, the resultant amplitude
A=A +A,
Wave 1 /\/\/ m wave 1 /\_F/\i
Wave 2 m wave 2 \/\/\

Constructive interference Destructive interference

() (b)
Figure 11.29 (a) Constructive
interference (b) Destructive interference
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(b) For destructive interference:

When the trough of one wave overlaps
with the crest of another wave, their
amplitudes “cancel” each other and we
get destructive interference as shown
in Figure 11.29 (b). The resultant
amplitude is nearly zero. The destructive
interference occurs if there is minimum
intensity at that point, which means
cosp=—1=¢=m3m5m...=2n-1)m,
where n = 0,1,2,.... i.e. This is the phase
difference in which two waves overlap to
give destructive interference. Therefore,

- <\/I_1_\/z)2 = (Al _Az)z

Hence, the resultant amplitude
A=|A -A|

Let us consider a simple instrument to
demonstrate the interference of sound
waves as shown in Figure 11.30.

Sliding tube

Figure 11.30 Simple instrument to
demonstrate interference of sound waves

A sound wave from a loudspeaker S is
sent through the tube P. This looks like a
T-shaped junction. In this case, half of the
sound energy is sent in one direction and
the remaining half is sent in the opposite
direction. Therefore, the sound waves that
reach the receiver R can travel along either
of two paths. The distance covered by the
sound wave along any path from the speaker
to receiver is called the path length . From
the Figure 11.30, we notice that the lower

€50 UNIT 11 WAVES
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path length is fixed but the upper path
length can be varied by sliding the upper
tube i.e., is varied. The difference in path
length is known as path difference,

Ar=|r,—r||
Suppose the path difference is allowed to
be either zero or some integer (or integral)

multiple of wavelength A. Mathematically,
we have

Ar=n) where,n=0, 1, 2, 3,....

Then the two waves arriving from the paths
r,and r, reach the receiver at any instant are
in phase (the phase difference is 0° or 27) and
interfere constructively as shown in Figure 11.31.

y,andy, are identical

Figure 11.31 Maximum intensity when
the phase difference is 0°

Therefore, in this case, maximum sound
intensity is detected by the receiver. If the
path difference is some half-odd-integer
(or half-integral) multiple of wavelength A,

. A
mathematically, A r= n-
where, n = 1,3,... (n is odd)
then the two waves arriving from the paths r,
and r, and reaching the receiver at any instant
are out of phase (phase difference of m or

180°). They interfere destructively as shown
in Figure 11.32. They will cancel each other.

Y _,.1y1 ,,1y2 4y

Figure 11.32 Minimum intensity when the
phase difference is 180°

17-08-2020 15:31:05‘ ‘



Therefore, the amplitude is minimum or zero
amplitude which means no sound. No sound
intensity is detected by the receiver in this case.
The relation between path difference and phase
difference is

phase difference = 2% (path difference)
(11.56)

ie., Ap= %Ar or Ar= %A(p

EXAMPLE 11.16

Consider two sources A and B as shown in the
figure below. Let the two sources emit simple
harmonic waves of same frequency but of
different amplitudes, and both are in phase
(same phase). Let O be any point equidistant
from A and B as shown in the figure. Calculate
the intensity at points O, Y and X. (X and Y
are not equidistant from A & B)

Solution

The distance between OA and OB are the
same and hence, the waves starting from A
and B reach O after covering equal distances
(equal path lengths). Thus, the path difference
between two waves at O is zero.

OA-0B=0

Since the waves are in the same phase, at the
point O, the phase difference between two
waves is also zero. Thus, the resultant intensity
at the point O is maximum.

Consider a point Y, such that the path
difference between two waves is A. Then the
phase difference at Y is

A(pzz—nxArzz—nxkzzn
A A
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Therefore, at the point Y, the two waves
from A and B are in phase, hence, the
intensity will be maximum.

Consider a point X, and let the path

) A
difference the between two waves be —.
Then the phase difference at X is

2n A
= — =170
A2
Therefore, at the point X, the waves meet

Ag

and are in out of phase, Hence, due to
destructive interference, the intensity will
be minimum.

EXAMPLE 11.17

Two speakers C and E are placed 5 m apart

and are driven by the same source. Let a
man stand at A which is 10 m away from
the mid point O of C and E. The man walks
towards the point O which is at 1 m (parallel
to OC) as shown in the figure. He receives
the first minimum in sound intensity at B.
Then calculate the frequency of the source.
(Assume speed of sound = 343 m s™)

Xl
. T
5m .......................... Il m
Yy g %
Solution
C
0 X
_‘\_I@l ............. ’
Sm l)o ............................................ 1 im
Y B e ;
H - |
10 m

The first minimum occurs when the two
waves reaching the point B are 180° (out of

phase). The path difference Ax = % :

In order to calculate the path difference, we
have to find the path lengths x and x,.
In a right triangle BDC,
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DB =10m and OC = % (5)=2.5m

CD=0C-1=25m)-1m=15m

x, = (10 +(1.5)° =100+2.25
=102.25 =10.1m

In a right triangle EFB,

DB = 10m and OF = % (5) = 2.5m = FA

FB=FA+AB=(25m)+1m=35m

x, =(10)" +(3.5) =/100+12.25
=112.25=10.6m

The path difference Ax = x, — x, = 10.6
m-10.1 m = 0.5 m. Required that this
path difference

Ax = % =0.5=A=1.0m

To obtain the frequency of source, we use

. the speakers were
connected such that already

the path difference is %

Now, the path difference combines
with a path difference of > This gives a

total path difference of A which means,
the waves are in phase and there is a

maximum intensity at point B.
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r=0 r=0.05 r=0.10 r=0.15

AN A A AN
\VA\VAVY VANAVAAVAVTAVY

IPNPNIVITIPN
VYV VIV

B ——

Figure 11.33: Two waves superimpose
with different frequencies such that there
is a time alternation in constructive and
destructive interference i.e., they are
periodically in and out of phase

kW2 Formation of beats

When two or more waves superimpose each
other with slightly different frequencies, then
a sound of periodically varying amplitude
at a point is observed. This phenomenon is
known as beats. The number of amplitude
maxima per second is called beat frequency.
If we have two sources, then their difference

in frequency gives the beat frequency.

Number of beats per second
n=|f, - f,| per second
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H 2 man [

Additional information (Not for examination): Mathematical treatment of beats

For mathematical treatment, let us consider two
sound waves having same amplitude and slightly
different frequencies f, and f,, superimposed on
each other.

Since the sound wave (pressure wave) is a
longitudinal wave, let us consider y, = A sin(w,¢)
and y, = A sin(w,t) to be displacements of the
two waves at a point x = 0 with same amplitude
(region having high pressures) and different
angular frequencies w, and w, respectively.
Then when they are allowed to superimpose we
get the net displacement

Y=nt),

y=Asin(w, t) + A sin(w, t)
But

w, = 27f, and w, = 27,
Then

y = Asin(2nf t) + A sin(2nf,t)

Using trigonometry formula

sinC +sinD = 2COS[C;D]Sin[

Jsin

ffz

C+D
2

h=f fz

y=2Acos|2T 2T

&
2

Let Y, =2Acos|2n

] (11.57)

and if f is slightly higher value than f then,
fl — fz
2
(11.57) varies very slowly when compared to
f+f,
2

f,+ 1, . f
< > means yp n equation

. Therefore

Y=Y sin(Zﬂfant) (11.58)

This represents a simple harmonic wave of
frequency which is an arithmetic average
of frequencies of the individual waves,

f,+ f, ) ) .
fog= and amplitude y varies with

2

time t.
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Case (A):

The resultant amplitude is maximum when y

fl_fz]t],
2

this means maximum amplitude occurs only
when cosine takes +1,

—fl_fz]t]:il
2

= 27 —fl_fz]
2
or, (f—f,)t=n

n

=15
Hence, the time interval between two successive
maxima is |

t—t=t-t= (f_f) n=f - f|= |t1_t2|
Therefore, the number of beats produced per
second is equal to the reciprocal of the time
interval between two consecutive maxima i.e.,

If,-£).
Case (B):

2T

is maximum. Since y, o cos

COS| 2T

I =nm,

or, I = n=0,1,2,3, ....

The resultant amplitude is minimum i.e., it
is equal to zero when y is minimum. Since

fi—f
2

2T

Jp GSEOR ]t] , this means, minimum

occurs only when cosine takes 0,
2

n —fl_fz]t:(szrl)E
2 2

COS| 2T

b

= (fl—fz)t:%(Zn—}—l)

1| 2n+1
or,t =—

, wheref1 ;«r&f2 n=0,1,2,3,.....

Hence, the time intzerval between two successive
minima is
1
Lot = ht= = Ty n=|f,-f|=
2 1 3 2 ( f1 2) | F_ |

Therefore, the number of beats produced per
second is equal to the reciprocal of the time
interval between two consecutive minima i.e.,

Al
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EXAMPLE 11.18

Considertwosoundwaveswithwavelengths
5m and 6 m. If these two waves propagate
in a gas with velocity 330 ms™. Calculate
the number of beats per second.

Solution

Given A, =5mand A, = 6m

Velocity of sound waves in a gas is
v=330 ms"

The relation between wavelength and

velocityisv=Af=f= %
Thefrequency correspondingtowavelength

. v 330
AIIS .]‘-1:7\‘_:?:66HZ

1

Thefrequency correspondingtowavelength

. 330
Lis f, =2 =" —55H;

2 1 A, 6
The number of beats per second is

| f,—f,] = |66 — 55| = 11 beats per sec

EXAMPLE 11.19

Two vibrating tuning forks produce waves
whose equation is given by y = 5sin(2407¢)
and y, = 4 sin(2447nt). Compute the number
of beats per second.

Solution

Giveny, =5sin(2407t) and y, =4 sin(2447t)
Comparing with y = A sin(27 f t), we get
2nf = 240 = f, = 120Hz
2nf, = 244n = f, = 122Hz

The number of beats produced is | -1, |
=]120 — 122| = |- 2|=2 beats per sec
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STANDING WAVES

m Explanation of

stationary waves

When the wave hits the rigid boundary
it bounces back to the original medium
and can interfere with the original waves.
A pattern is formed, which are known
as standing waves or stationary waves.
Consider two harmonic progressive waves
(formed by strings) that have the same
amplitude and same velocity but move in
opposite directions. Then the displacement
of the first wave (incident wave) is

y, = Asin(kx — wt) (11.59)

(waves move toward right)

and the displacement of the second wave
(reflected wave) is

y, = A sin(kx + wt) (11.60)
(waves move toward left)
both will interfere with each other by

the principle of superposition, the net
displacement is

y=y,ty, (11.61)

Substituting equation (11.59) and equation
(11.60) in equation (11.61), we get

y = A sin(kx — wt)+A sin(kx + wt) (11.62)

Using trigonometric identity, we rewrite
equation (11.62) as

¥ (x, t) = 2A cos(wt) sin(kx) (11.63)
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This represents a stationary wave or standing
wave, which means that this wave does
not move either forward or backward,
whereas progressive or travelling waves will
move forward or backward. Further, the
displacement of the particle in equation
(11.63) can be written in more compact form,

y(x,t) = A’ cos(wt)

where, A’ = 2Asin(kx), implying that the
particular element of the string executes
simple harmonic motion with amplitude
equals to A". The maximum of this amplitude
occurs at positions for which

sin(kx) =1 => kx = 5’3_7t’5_n, .. = MT
2 2 2
where m takes half integer or half integral
values. The position of maximum amplitude
is known as antinode. Expressing wave
number in terms of wavelength, we can

represent the anti-nodal positions as

> |7 where, m =0,1,2... (11.64)

[2m+1]k
X, =

For m = 0 we have maximum at

A
xo = Z
For m = 1 we have maximum at
3\
X, =—
4
For m = 2 we have maximum at
5A
x2 = T

and so on.

The distance between two successive anti-
nodes can be computed by

(2m—+1)+1
2

A_R
2 2

2m+1|A
2

xm_xm—lz [ 2

Similarly, the minimum of the amplitude A’
also occurs at some points in the space, and
these points can be determined by setting

sin(kx)=0=kx=0,1,27,37,... =nn
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where n takes integer or integral values.
Note that the elements at these points do not
vibrate (not move), and the points are called
nodes. The n"nodal positions is given by,

A
5, = nz where, n = 0,1,2,... (11.65)

For n = 0 we have minimum at
X, = 0

For n = 1 we have minimum at

For n = 2 we have maximum at
X, = A
and so on.

The distance between any two successive
nodes can be calculated as

x =X  =n——(n—1)===.

n n-1

EXAMPLE 11.20

Compute the distance between anti-node
and neighbouring node.

Solution

For n™ mode, the distance between anti-
node and neighbouring node is

w Characteristics of
stationary waves

(1) Stationary waves are characterised by
the confinement of a wave disturbance
between two rigid boundaries. This
means, the wave does not move forward
or backward in a medium (does not
advance), it remains steady at its place.
Therefore, they are called “stationary
waves or standing waves”.
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Table 11.3: Comparison between progressive and stationary waves

S.No. Progressive waves Stationary waves

1. | Crests and troughs are formed in Crests and troughs are formed in
transverse progressive waves, and transverse stationary waves, and
compression and rarefaction are formed | compression and rarefaction are formed
in longitudinal progressive waves. in longitudinal stationary waves.

These waves move forward or backward | These waves neither move forward nor
in a medium i.e., they will advance in a | backward in a medium i.e., they will
medium with a definite velocity. not advance in a medium.

2. | All the particles in the medium vibrate | Except at nodes, all other particles of
such that the amplitude of the vibration | the medium vibrate such that amplitude
for all particles is same. of vibration is different for different

particles. The amplitude is minimum
or zero at nodes and maximum at anti-
nodes.

3. |These wave carry energy while | These waves do not transport energy.
propagating.

(2) Certain points in the region in which the Stationary waves in
wave exists have maximum amplitude, sonometer

called as anti-nodes and at certain points
the amplitude is minimum or zero, called
as nodes.

(3) The distance between two consecutive
nodes (or) anti-nodes is %

(4) The distance between a node and its
neighbouring anti-node is % .

(5) The transfer of energy along the standing
wave is zero.

Sono means sound related, and sonometer
implies sound-related measurements. It is
a device for demonstrating the relationship
between the frequency of the sound
produced in the transverse standing wave in
a string, and the tension, length and mass
per unit length of the string. Therefore, using
this device, we can determine the following

quantities:

| Figure 11.34 Sonometer

Load

b i —
BUFD92
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(a) the frequency of the tuning fork or
frequency of alternating current

(b) the tension in the string
(c) the unknown hanging mass
Construction:

The sonometer is made up of a hollow box
which is one meter long with a uniform
metallic thin string attached to it. One end
of the string is connected to a hook and the
other end is connected to a weight hanger
through a pulley as shown in Figure 11.34.
Since only one string is used, it is also known
as monochord. The weights are added to the
free end of the wire to increase the tension
of the wire. Two adjustable wooden knives
are put over the board, and their positions
are adjusted to change the vibrating length
of the stretched wire.

Working :

A transverse stationary or standing wave
is produced and hence, at the knife edges
P and Q, nodes are formed. In between the
knife edges, anti-nodes are formed.

If the length of the vibrating element is / then

l:&:ﬁ»:zl
2

Let f be the frequency of the vibrating
element, T the tension of in the string and p
the mass per unit length of the string. Then
using equation (11.13), we get

f_l_l T
r 2\ in Hertz (11.66)

Let p be the density of the material of the
string and d be the diameter of the string.
Then the mass per unit length p,

2
p = Area x density = nr’p = nid
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1 T
£ _Y_ L
requency f 2 |ndp
4
1 |T
=— [— 11.67
f ld\ mp ( )

EXAMPLE 11.21

Let f be the fundamental frequency of
the string. If the string is divided into
three segments ll, 12 and l3 such that the
fundamental frequencies of each segments
be f,, f, and f,, respectively. Show that

I 1 1 1

fof f f

Solution

For a fixed tension T and mass density y,
frequency is inversely proportional to the
string length i.e.

1 4 14
—=> f=—=l=—
Jog=l=571=7;
For the first length segment
\% v
==
S 20 71 2f

For the second length segment

\% v

=—=L=—
% 21, ~ % 2f,

For the third length segment

=1 = .
21, 21,
Therefore, the total length
I=1 +1+1

v v v v 1 1 1 1
—t—t— = —=—4+—+4

of 2f 2f 2 F £ AA

UNIT 11 WAVES ZSD

17-08-2020 15:31:22‘ ‘



m Fundamental
requency and overtones

Let us now keep the rigid boundaries at
x =0and x =L and produce a standing
waves by wiggling the string (as in plucking
strings in a guitar). Standing waves with a
specific wavelength are produced. Since, the
amplitude must vanish at the boundaries,

therefore, the displacement at the boundary
must satisty the following conditions

y(x=0,t)=0and y(x=L,t) =0 (11.68)

Since the nodes formed are at a distance

n

A A )
~ apart, we have n 7" =L, where n is

an integer, L is the length between the two
boundaries and A_is the specific wavelength
that satisfy the specified boundary
conditions. Hence,

s

O O

What will happen to wavelength if n is

taken as zero? Why is this not permitted?
(o, O

(11.69)

Therefore, not all wavelengths are allowed.
The (allowed) wavelengths should fit with
the specified boundary conditions, i.e., for n
= 1, the first mode of vibration has specific
wavelength A = 2L. Similarly for n = 2,
the second mode of vibration has specific

wavelength
A, = [E] _r
2

For n = 3, the third mode of vibration has
specific wavelength

o

The frequency of each mode of vibration
(called natural frequency) can be calculated.

and so on.
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We have,

fn:x—n:n[z] (11.70)

The lowest natural frequency is called the
fundamental frequency.

fl:x_l:[i] (11.71)

The second natural frequency is called the
first over tone.
v ] 1T

=2|—|=

2 [2L L\u

The third natural frequency is called the
second over tone.

v
5357

and so on.

1 |T

2L\p

Therefore, the n™ natural frequency can be
computed as integral (or integer ) multiple
of fundamental frequency;, i.e.,

f, =nf, where nis an integer (11.72)

If natural frequencies are written as integral
multiple of fundamental frequencies, then the
frequencies are called harmonics. Thus, the
first harmonic is f, = f, (the fundamental
frequency is called first harmonic), the
second harmonic is f, = 2f , the third
harmonic is f, = 3f, etc.

EXAMPLE 11.22

Consider a string in a guitar whose length is
80 cm and a mass of 0.32 g with tension 80 N
is plucked. Compute the first four lowest
frequencies produced when it is plucked.

Solution
The velocity of the wave
T

y= [—

u
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The length of the string, L = 80 cm = 0.8 m

The mass of the string, m =0.32 ¢

=0.32x 10°kg

Therefore, the linear mass density,
~0.32x10°°
08

The tension in the string, =80 N

ve —2  _4472ms’
0.4x10

The wavelength corresponding to the
fundamental frequency f, is A, = 2L = 2 x
0.8=1.6m

The fundamental frequency  f

=0.4x10"kgm™

corresponding to the wavelength A,

=Lt r95H,
A, 1.6
Similarly, the frequency corresponding to
the second harmonics, third harmonics
and fourth harmonics are

f2:2f1:559Hz

f,=3f=8385Hz

f,=4f=1118 Hz

Laws of transverse
vibrations in stretched
strings

There are three laws of transverse vibrations
of stretched strings which are given as
follows:

(i) Thelaw of length :

For a given wire with tension T (which is
fixed) and mass per unit length y (fixed) the
frequency varies inversely with the vibrating
length. Therefore,

1 C
f0<;:>f:7

=Ixf = C, where C is a constant
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(ii) The law of tension:

For a given vibrating length [ (fixed) and
mass per unit length u (fixed) the frequency
varies directly with the square root of the

focﬁ

=f :A\/F, where A is a constant

tension 7T,

(iii) The law of mass:

For a given vibrating length [ (fixed) and
tension T (fixed) the frequency varies
inversely with the square root of the mass
per unit length ,

fox—=

i

B .
= f=—, where B is a constant

m

INTENSITY AND
LOUDNESS

Consider a source and two observers
(listeners). The source emits sound waves
which carry energy. The sound energy
emitted by the source is same regardless of
whoever measures it, i.e., it is independent
of any observer standing in that region. But
the sound received by the two observers
may be different; this is due to some factors
like sensitivity of ears, etc. To quantify such
thing, we define two different quantities
known as intensity and loudness of sound.

m Intensity of sound

Whenasound waveisemitted byasource, the
energy is carried to all possible surrounding
points. The average sound energy emitted or
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transmitted per unit time or per second is
called sound power. Therefore, the intensity
of sound is defined as “the sound power
transmitted per unit area taken normal to the
propagation of the sound wave ”.

Sound
Source

" —

| BUY9AP ~

3r
Figure 11.35 Intensity of sound waves

For a particular source (fixed source), the
sound intensity is inversely proportional to
the square of the distance from the source.

ower of the source 1
=2 f =1

a—
4mr? r

This is known as inverse square law of sound
intensity.

EXAMPLE 11.23

A baby cries on seeing a dog and the cry
is detected at a distance of 3.0 m such that
the intensity of sound at this distance is
102 W m™. Calculate the intensity of the
baby’s cry at a distance 6.0 m.

Solution

I, is the intensity of sound detected at a
distance 3.0 m and it is given as 10> W m™>
Let I be the intensity of sound detected at
a distance 6.0 m. Then,

r o= 3.0 m, r,= 6.0 m
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) 1
and since, T -
r

the power output does not depend on
the observer and depends on the baby.
Therefore,

I,=0.25x 102 W m™

m Loudness of sound

Two sounds with same intensities need not
have the same loudness. For example, the
sound heard during the explosion of balloons
in a silent closed room is very loud when
compared to the same explosion happening
in a noisy market. Though the intensity of
the sound is the same, the loudness is not.
If the intensity of sound is increased then
loudness also increases. But additionally, not
only does intensity matter, the internal and
subjective experience of “how loud a sound
is” i.e., the sensitivity of the listener also
matters here. This is often called loudness.
That is, loudness depends on both intensity
of sound wave and sensitivity of the ear (It is
purely observer dependent quantity which
varies from person to person) whereas the
intensity of sound does not depend on the
observer. The loudness of sound is defined
as “the degree of sensation of sound produced
in the ear or the perception of sound by the
listener”.

m Intensity and
oudness of sound

Our ear can detect the sound with intensity

level ranges from 10° Wm? to 20 W m™.
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Accordingto Weber-Fechner’slaw, “loudness
(L) is proportional to the logarithm of the
actualintensity (I) measured withanaccurate
non-human instrument”. This means that

LocInl
L=klnI

where k is a constant, which depends on
the unit of measurement. The difference
between two loudnesses, L, and L, measures
the relative loudness between two precisely
measured intensities and is called as sound
intensity level. Mathematically, sound
intensity level is

AL=L-L =klnI—kInI =k 1{5—;}
If Kk =1 bel, K = 10 decibel, then sound

intensity level is measured in bel, in honour
of Alexander Graham Bell. Therefore,

AL= ln[i} bel
IO
However, this is practically a bigger unit,
so we use a convenient smaller unit, called

decibel. Thus, decibel = % bel. Therefore,
by multiplying and dividing by 10, we get
]1

AL =10 [ln

L bel
L1110

1

AL =101n decibel with k = 10

0
For practical purposes, we use logarithm to

base 10 instead of natural logarithm,

AL =10 log,,

EXAMPLE 11.24

The sound level from a musical instrument
playing is 50 dB. If three identical musical
instruments are played together then
compute the total intensity. The intensity
of the sound from each instrument is
100 W m™

Il

T decibel (11.73)
0
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Solution
AL=10log,, f_l —50 dB
0
log,, 4 =5dB
IO

N 102 1=10°1,= 10° x 102 W2

IO
I, =107 Wm™
Since three musical instruments are played,

therefore, I =3I =3 x 107 Wm™.

total

VIBRATIONS OF AIR
COLUMN

Musical instruments like flute, clarinet,
nathaswaram, etc are known as wind
instruments. They work on the principle of
vibrations of air columns. The simplest form
of a wind instrument is the organ pipe. It is
made up of a wooden or metal pipe which
produces the musical sound. For example,
flute, clarinet and nathaswaram are organ
pipe instruments. Organ pipe instruments
are classified into two types:

(a) Closed organ pipes:

Figure 11.36: Clarinet is an example of
a closed organ pipe

Look at the picture of a clarinet, shown
in Figure 11.36. It is a pipe with one end
closed and the other end open. If one end
of a pipe is closed, the wave reflected at
this closed end is 180° out of phase with
the incoming wave. Thus there is no

UNIT 11 WAVES 263
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Figure 11.37 No motion of particles which leads to nodes at closed end and antinodes at
open end (fundamental mode) (N-node, A-antinode)

displacement of the particles at the closed
end. Therefore, nodes are formed at the
closed end and anti-nodes are formed at
open end.

Let us consider the simplest mode
of vibration of the air column called the
fundamental mode. Anti-node is formed
at the open end and node at closed end.
From the Figure 11.37, let L be the length
of the tube and the wavelength of the wave
produced. For the fundamental mode of
vibration, we have,

L:ﬁomlzu (11.74)
4

The frequency of the note emitted is

f1=i=ﬁ (11.75)

which is called the fundamental note.

The frequencies higher than fundamental
frequency can be produced by blowing air
strongly at open end. Such frequencies are
called overtones.

The Figure 11.38 shows the second mode of
vibration having two nodes and two anti-

€62 UNIT 11 WAVES
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nodes, for which we have, from example
11.20.

)% 3 hcd
I

A
A
\4

s
S

A
Yy

y
A A

Figure 11.38 second mode of vibration
having two nodes and two anti-nodes

4L =3\,

L . L
4

The frequency for this,

v 3y
:—:—:3
% A, 4L h
is called first over tone, since here, the
frequency is three times the fundamental

frequency it is called third harmonic.

The Figure 11.39 shows third mode of
vibration having three nodes and three anti-
nodes.
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Figure 11.39 Third mode of vibration
having three nodes and three anti-nodes

We have, 4L = 5A3

L:% or A\, = his
The frequency
v 5y
:—:—:5
5 A, 4L 5

is called second over tone, and since n = 5
here, this is called fifth harmonic. Hence, the
closed organ pipe has only odd harmonics and
frequency of the n™ harmonic is f, = (2n+1)f,.
Therefore, the frequencies of harmonics are
in the ratio

foihifyif, o =1:3:5:7:..0 (11.76)

(b) Open organ pipes:

Figure 11.40 Flute is an example of
open organ pipe

Consider the picture of a flute, shown in Figure
11.40. 1t is a pipe with both the ends open. At
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both open ends, anti-nodes are formed. Let us
consider the simplest mode of vibration of the
air column called fundamental mode. Since
anti-nodes are formed at the open end, a node
is formed at the mid-point of the pipe.

AN A
e 4 e 4 |
I L |
Moy Mo N
4 4 2
|« » |
ITC "
A A

Figure 11.41 Antinodes are formed at
the open end and a node is formed at
the middle of the pipe.

From Figure 11.41, if L be the length of the
tube, the wavelength of the wave produced
is given by

A
L:7lor)\l =2L (11.77)

The frequency of the note emitted is

\% v

Si=—

- 11.78
A, 2L (11.78)

which is called the fundamental note.

The frequencies higher than fundamental
frequency can be produced by blowing
air strongly at one of the open ends. Such
frequencies are called overtones.

A A Ao
4 2 4
2 2 2
Tt Tt =k
A A A
><><
A
A A

Figure 11.42 Second mode of
vibration in open pipes having two
nodes and three anti-nodes
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The Figure 11.42 shows the second mode

of vibration in open pipes. It has two nodes

and three anti-nodes, and therefore,
L=AorA=L

The frequency

v v %
Yoox =2

N, L 2L S

is called first over tone. Since n = 2 here, it is

called the second harmonic.

As

Figure 11.43 Third mode of vibration
having three nodes and four anti-nodes

The Figure 11.43 above shows the third
mode of vibration having three nodes and
four anti-nodes

ng)\3 or \, _2L
3
The frequency
v 3v
:_:_:3
s A, 2L 5

is called second over tone. Since n = 3 here, it
is called the third harmonic.

Hence, the open organ pipe has all the
harmonics and frequency of n™ harmonic
is f = nf,. Therefore, the frequencies of
harmonics are in the ratio

€64 UNIT 11 WAVES
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fiifhifyifie=1:2:3:4: .0 (11.79)
EXAMPLE 11.25

If a flute sounds a note with 450Hz, what
are the frequencies of the second, third,
and fourth harmonics of this pitch?. If the
clarinet sounds with a same note as 450Hz,
then what are the frequencies of the lowest
three harmonics produced ?.

Solution

For a flute which is an open pipe, we have
f,=2f,=900 Hz

f,=3f =1350 Hz

f,=4f =1800 Hz

For a clarinet which is a closed pipe, we
have

Second harmonics
Third harmonics

Fourth harmonics

Second harmonics f2 =3 f1 = 1350 Hz
f,=5f,=2250 Hz

f,=7f,=3150 Hz

EXAMPLE 11.26

If the third harmonics of a closed organ
pipe is equal to the fundamental frequency

Third harmonics

Fourth harmonics

of an open organ pipe, compute the length
of the open organ pipe if the length of the
closed organ pipe is 30 cm.

Solution

Let [ be the length of the open organ pipe,
with [ =30cm the length of the closed
organ pipe.

It is given that the third harmonic of closed
organ pipe is equal to the fundamental
frequency of open organ pipe.

The third harmonic of a closed organ pipe
15 v 3y

=—=—=3
2 A, 4l )
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The fundamental frequency of open organ

. v v
ipeis f = — = —
Plpeis /i =1"=5,
Therefore,
L:3—v:>12:2—11:20cm
21, 4l 3

m Resonance air
column apparatus

Tuning
fork

Av-

-
One meter
cylindrical ——
glass tube

Reservoir R

"y )i
N R
= ——
L T)\ %)\ %)\

Figure 11.44: The resonance air
column apparatus and first, second and
third resonance

The resonance air column apparatus is one
of the simplest techniques to measure the
speed of sound in air at room temperature.
It consists of a cylindrical glass tube of one
meter length whose one end A is open and
another end B is connected to the water
reservoir R through a rubber tube as shown
in Figure 11.44. This cylindrical glass tube
is mounted on a vertical stand with a scale
attached to it. The tube is partially filled with
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water and the water level can be adjusted by
raising or lowering the water in the reservoir
R. The surface of the water will act as a closed
end and other as the open end. Therefore, it
behaves like a closed organ pipe, forming
nodes at the surface of water and antinodes
at the closed end. When a vibrating tuning
fork is brought near the open end of the tube,
longitudinal waves are formed inside the air
column. These waves move downward as
shown in Figure 11.44, and reach the surfaces
of water and get reflected and produce
standing waves. The length of the air column
is varied by changing the water level until a
loud sound is produced in the air column.
At this particular length the frequency of
waves in the air column resonates with
the frequency of the tuning fork (natural
frequency of the tuning fork). At resonance,
the frequency of sound waves produced is
equal to the frequency of the tuning fork.
This will occur only when the length of

: : : 1)"
air column is proportional to |—| of the

wavelength of the sound waves produced.

Let the first resonance occur at length L,
then

%/\le (11.80)

But since the antinodes are not exactly
formed at the open end, we have to include
a correction, called end correction e, by
assuming that the antinode is formed at some
small distance above the open end. Including
this end correction, the first resonance is

SA=L+e (11.81)

Now the length of the air column is
increased to get the second resonance. Let L,
be the length at which the second resonance
occurs. Again taking end correction into
account, we have

UNIT 11 WAVES 269
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%A:L2+e (11.82)

In order to avoid end correction, let us
take the difference of equation (11.82) and
equation (11.81), we get

3 1
Z/\—z)LZ(L2+e)—(L1+e)

= l /\=L2—L1:AL
2
= A1=2AL

The speed of the sound in air at room
temperature can be computed by using the
formula

v=fA=2fAL
Further, to compute the end correction, we
use equation (11.81) and equation (11.82),
we get
L,-3L
2

EXAMPLE 11.27

A frequency generator with fixed frequency
of 343 Hz is allowed to vibrate above a

e=

1.0 m high tube. A pump is switched on to
fill the water slowly in the tube. In order to
get resonance, what must be the minimum
height of the water?. (speed of sound in air
is343 ms™)

Solution
The wavelength, A = %
343ms™!
A= 313z =1.0m

Let the length of the resonant columns be
L,L, and L, The first resonance occurs at
length L,

The second resonance occurs at length L,

€66 UNIT 11 WAVES
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and so on.

Since total length of the tube is 1.0 m the
third and other higher resonances do not
occur. Therefore, the minimum height of
water H_ . for resonance is,

Hrnin =1.0m-0.75m=0.25m

EXAMPLE 11.28

A student performed an experiment to
determine the speed of sound in air using
the resonance column method. The length
of the air column that resonates in the
fundamental mode with a tuning fork
is 0.2m. If the length is varied such that
the same tuning fork resonates with the
first overtone at 0.7 m. Calculate the end
correction.

Solution

End correction

L,—3L  0.7-3(0.2)
2

EXAMPLE 11.29

Consider a tuning fork which is used to
produce resonance in an air column. A
resonance air column is a glass tube whose
length can be adjusted by a variable piston.

=0.05m

e =

At room temperature, the two successive
resonances observed are at 20 cm and 85 cm
of the column length. If the frequency of the
length is 256 Hz, compute the velocity of the
sound in air at room temperature.
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Solution

Given two successive length (resonance)
tobe L =20cmandL,=85cm

The frequencyis f=256 Hz
v=fA=2fAL=2f(L,~ L)

=2x256x%x(85—-20)x 10 ?ms™!

y=332.8ms!

DOPPLER EFFECT

Imagine that you are standing on a railway
platform and listening to the blowing
whistle of a train moving past you, the
pitch (or frequency) of the sound you listen
as the train approaches you is higher than
the pitch you listen as it moves away from
you. This is an example of Doppler effect.

This effect occurs due to the relative motion
between the source of sound and its listener.
This motion-related frequency change
was first observed and studied by Johann
Christian Doppler (1803-1853), an Austrian
Mathematician and Physicist.

Whenever there is a relative motion
between the source of sound and the
listener, the frequency of the sound
observed by the listener is different from
the frequency produced by the source.
This is known as Doppler effect.

The Doppler effect is a wave phenomenon.
Therefore, it occurs not only for sound
waves but for any wave such as light and
other electromagnetic waves. Here, we will
discuss different cases of Doppler effect for
sound and derive the expression for the
frequency observed by the listener.
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O
Stationary observer and stationary

source means the observer and source
are both at rest with respect to medium
respectively

(e,

O

i) Observed frequency: Stationary source
and Moving listener

Consider a point source S of sound at rest

with respect to the medium (air) in which it is

kept. The medium is assumed to be uniform

and is also at rest. The source emits sound

waves of frequency fand wavelength A.

Compressions
of sound waves U

Figure 11.45 Listener moves toward the
stationary source

Sound waves travel with the same speed
v in all directions radially away from the
source in the form of spherical waves. The
compressions (or wavefronts) of sound
waves are represented by concentric circles
in the Figure 11.45. The distance between
two successive compressions is equal to its
wavelength A and the frequency of the wave
is given by

v
f== (11.83)

When the listener L is stationary, there
is no relative motion between the source
and the listener. Since v and A remain
unchanged, the frequency of sound
observed by the listener is the same as the
source frequency f.

UNIT 11 WAVES 26)
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Now the listener moves directly toward the
stationary source (Figure 11.45). If v, is
the speed of the listener, then the relative
speed of sound with respect to the listener
becomes v’ =v+v,. Since the wavelength
remains unchanged (because the source is
stationary), the frequency of sound observed
by the listener is changed and the observed
frequency f’is given by

/

)V _v+y,
/ A A
Using the equation (11.83),
= er—UL]f (11.84)
v

(listener moving toward the source)

Thus, the observed frequency is greater
than the source frequency when the listener
moves toward the stationary source.

If the listener is moving away from the
stationary source, the observed frequency
can be obtained from equation (11.84) by
taking negative value for v, . It is given by

f'=

f’:[ﬂ f (11.85)

1%

(listener moving away from the source)

Thus, the observed frequency is less than
the source frequency when the listener is
moving away from the stationary source.

ii) Observed frequency: Moving source
and stationary listener

Assume that both the source S and the
listener L are at rest as shown in Figure
11.46a. Two successive compressions are

€68 UNIT 11 WAVES
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also shown and are represented by two
concentric circles. The second compression
has just been emitted and is still near the
source. The distance between two successive
compressions is the wavelength Aof the
sound. Since f is the frequency of the
source, then the time between emissions of
compressions is

T=—=
f

P
v

, Compressions

N

7 v

(a) Source at rest

Compression emitted
when S was at A

r-l

(b) Source moving

Figure 11.46 Source moves toward the
stationary listener

Now the listener is stationary and the source
moves directly toward the listener (Figure
11.46(b)). Let the speed of the source be v
which is less than the speed of sound wv.

In a time T, the first compression travels
a distance vT =M\and the source moves
a distance v T. As a result, the distance
between two successive compressions
is decreased from A to A=X-v,T.
Therefore, the wavelength observed by the
listener is given by
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A’:A—vST:A—[ﬁ]
f

The observed frequency is then given by
v v

f/ — 7 =

f

f=

(source moving toward the listener)

f (11.86)

v —Uy

Thus, whenever the source moves toward the
stationary listener, the observed frequency
is greater than the source frequency.

If the source is moving away from the
stationary listener, the observed frequency
can be obtained from equation (11.86) by
taking negative value for v,. It is given by

f (11.87)

v+u,

(source moving away from the listener)

Thus, the observed frequency is less than
the source frequency when the source is
moving away from the stationary listener.

iii) Observed frequency: Both source and
listener moving

When both source and listener are moving,
the observed frequency is obtained by
combining equations (11.84) and (11.86).
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v+u,
v—U,

f'= f (11.88)

The sign convention we used here is that both
v, and v, take positive values if the source or
the listener moves toward the other. Likewise,
they are negative when the source or the
listener moves away from the other.

The observed frequency for different situations
of relative motion between the source and the
listener is consolidated in Table 11.4.

It is important to note that
the change in frequency oc-
curs either due to the change
in speed of sound (when the listener
moves and source at rest) or due to the

change in wavelength of sound (when

the source moves and observer at rest).

If both source and listener move, the
change in frequency occurs due to
both the change in speed of sound and
the change in wavelength of sound
wave.

, Suppose the source
~ moves faster  than

e oW? sound (that is, the
- source is supersonic),
the equations (11.84) and (11.86) for
observed frequency will become invalid
and a stationary listener in front of the
source hears no sound as the sound
waves are at the rear of the source.

At such speeds, the newly produced
waves and the old waves interfere
constructively which leads to very large
amplitude of sound, called a ‘sonic
boom’ or ‘shock wave’

UNIT 11 WAVES 269
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Table 11.4: Observed frequency for different situations

S.No. Situation Observed frequency
v+v
1 L moves toward the stationary S f'= » =\ f
v—v
2 L moves away from the stationary S f'= 3 b
v
3 S moves toward the stationary L f= B f
s
v
4 S moves away from the stationary L f= f
v+,
v+v
5 S and L move toward each other f'= " UL f
T Ys
v—v
6 S and L recede from each other f'= sl
Vv
v—v
7 S chases the L f'= uli
v —U
v+v
8 L chases the S f'= . ]f
Vv,
S and L move toward each other and (v Ly ) ey
9 the medium also moves in the direction f = (v I vm) vL f
of sound with speed v, A

Doppler effect in sound is
asymmetric while that in light
is symmetric.

The observed frequency of sound when
the source moves toward stationary
listener and the observed frequency when
the listener moves toward stationary
source with the same speed are not equal.
Although the relative speed is same
in both the cases, observed frequency
is different. Hence, we say that the

€70 UNIT 11 WAVES
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Doppler effect in sound is asymmetric.
The reason is that sound wave requires a
medium for its propagation and it has its
speed with respect to that medium.

But in the case of light and other

electromagnetic radiations, the observed

frequency is the same in both abovesaid
cases. Therefore, Doppler effect in light
and other electromagnetic waves is
symmetric because the propagation of
light is independent of the medium.
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EXAMPLE 11.30

6 ms..

source.

is 330 ms™.

Solution

is
330
33046

v
v+u,

f'= f=

reaches observer, therefore,

330

A sound offrequency 1500 Hzisemitted by a
source which moves away from an observer
and moves towards a cliff at a speed of

(a) Calculate the frequency of the sound
which is coming directly from the

(b) Compute the frequency of sound

heard by the observer reflected off the
cliff. Assume the speed of sound in air

(a) Source is moving away and observer
is stationary, therefore, the frequency
of sound heard directly from source

x1500=1473Hz

(b) Sound is reflected from the cliff and

x1500=1528 Hz

‘ ‘ UNIT-11(XI-Physics_Vol-2)_14-08-2020.indd 271

EXAMPLE 11.31

An observer observes two moving trains,
one reaching the station and other leaving
the station with equal speeds of 8 ms™.
If each train sounds its whistles with
frequency 240Hz, then calculate the
number of beats heard by the observer.

Solution:

Observer is stationary

(i) Source (train) is moving towards an
observer:
The observed frequency due to train
arriving station is

330
330—-8

v %240 = 246 Hz

fo= f=

v—v,

(ii) Source (train) is moving away from an
observer:
The observed frequency due to train
leaving station is

330
330+8

v
v+,

So the number of beats = | fin—fo ut| =
(246-234) =12

x240=234Hz

f;;ut -

x
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SUMMARY

A disturbance which carries energy and momentum from one point in space to
another point in space without the transfer of medium is known as a wave.

The waves which require medium for their propagation are known as mechanical waves.
The waves which do not require medium for their propagation are known as
non-mechanical waves.

For a transverse wave, the vibration of particles in a medium is perpendicular to the
direction of propagation of the wave.

For a longitudinal wave, the vibration of particles in a medium is parallel to the
direction of propagation of the wave.

Elasticity and inertia are necessary properties of the medium for wave propagation.
Waves formed in still water (ripples) are transverse and wave formed due to vibration
of tuning fork is longitudinal.

The distance between two consecutive crests or troughs is known as wavelength, A.
The number of waves which crossed a point per second is known as frequency, f.
The time taken by one wave to cross a point is known as time period, T.

velocity of the wave is v = Af.

Frequency is source dependent and wave velocity is medium dependent.

The velocity of a transverse wave produce in a stretched string depends on tension
in the string and mass per unit length. It does not depend on shape of the wave form.

1

. . T
Velocity of transverse wave on a string is v=_|— ms .
u

Velocity of longitudinal wave in an elastic medium is v= /— ms .
p

The minimum distance from a sound reflecting wall to hear an echo at 20°C is

17.2 meters.
2 2
1 ) ) )
0 ); :_28—2; in one dimension.
Ox Ve Ot

Wave number is given by k:%rrad m.

The wave equation is

During interference the resultant intensity is I=1,+1,+2,/1,1,cosp, where the

intensity is square of the amplitude 7= 4°.

For constructive interference, I, = (\/Z + \/Z )2 = <A1 +4, )2 .

2
For destructive interference, | —(\/I — \/E ) =(A,—A,)’.

When we superimpose two or more waves with slightly different frequencies then

a sound of periodically varying amplitude at a point is observed. This phenomenon
is known as beats. The number of amplitude maxima per second is called beat
frequency.

UNIT 11 WAVES
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SUMMARY (cont.)

If natural frequencies are written as integral multiples of fundamental frequency,
then the frequencies are said to be in harmonics. Thus, the first harmonic is v, =V,
(the fundamental frequency is called first harmonics), the second harmonics is
v, =2 v,, the third harmonics is v, = 3 v, and so on.

Loudness of sound is defined as “the degree of sensation of sound produced in the ear
or the perception of sound by the listener.

The intensity of sound is defined as “the sound power transmitted per unit area placed

>

normal to the propagation of sound wave ”.

Sound intensity level, AL=10log,, ;—1 decibel .
0
A closed organ pipe has only odd harmonics and the corresponding frequency of

the n™ harmonicisf = 2n+1)f,
In a closed organ pipe the frequencies of harmonics are in the ratio

fiihifyifyr=1:3:5:70,

The open organ pipe has all harmonics and frequency of the #n” harmonic is f =nf,.
In the open organ pipe the frequencies of harmonics are in the ratio

fiihifyifyr=1:2:3140
Whenever there is a relative motion between the source of sound and the listener,

the frequency of the sound observed by the listener is different from the frequency
produced by the source. This is known as Doppler effect.

UNIT 11 WAVES 279
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‘ _ EVALUATION

I. Multiple Choice Questions:

1.

A student tunes his guitar by striking
a 120 Hertz with a tuning fork, and
simultaneously plays the 4™ string
on his guitar. By keen observation, he
hears the amplitude of the combined
sound oscillating thrice per second.
Which of the following frequencies is
the most likely the frequency of the 4
string on his guitar?.

a) 130 b) 117

) 110 d) 120

A transverse wave moves from a
medium A to a medium B. In medium
A, the velocity of the transverse wave is
500 ms™' and the wavelength is 5 m. The
frequency and the wavelength of the
wave in medium B when its velocity is
600 ms™, respectively are

a) 120 Hz and 5 m
b) 100 Hz and 5 m
¢) 120 Hz and 6 m
d) 100 Hz and 6 m

For a particular tube, among six
harmonic frequencies below 1000 Hz,
only four harmonic frequencies are
given : 300 Hz, 600 Hz, 750 Hz and 900
Hz. What are the two other frequencies
missing from this list?.

A B
(1) Quality (A) Intensity
(2) Pitch (B) Waveform

(3) Loudness

(C) Frequency

a) 100 Hz, 150 Hz
b) 150 Hz, 450 Hz
¢) 450 Hz, 700 Hz

d) 700 Hz, 800 Hz BYSSCC

Which of the following options is
correct?.

‘ ‘ UNIT-11(XI-Physics_Vol-2)_14-08-2020.indd 275

Options for (1), (2) and (3),
respectively are
a) (B),(C) and (A)
b) (C), (A) and (B)
¢) (A), (B) and (C)
d) (B), (A) and (C)
Compare the velocities of the wave

forms given below, and choose the
correct option.

A% Vv Vv A%
%m,h %AAAM %DELh %Ah
) (B) (©) )

where, V,, V;, V. and v, are velocities
given in (A), (B), (C) and (D),
respectively.

)V, >V >V >V,

b)v,<v,<v, <,

OV, =V, =V, =V,

v, >v,=v, >V,

A sound wave whose frequency is

5000 Hz travels in air and then hits

the water surface. The ratio of its
wavelengths in water and air is

a) 4.30 b) 0.23

¢) 5.30 d) 1.23
A person standing between two parallel
hills fires a gun and hears the first echo
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after t sec and the second echo after

t, sec. The distance between the two
hills is

v(t,—t,) v(t,t,)
)3 2 2(t, +1,)

d) V(tlj tz)

An air column in a pipe which is closed

o) v(t +1,)

at one end, will be in resonance with
the vibrating body of frequency 83Hz.
Then the length of the air column is
a)l.5m (b) 0.5 m

(c) 1.0 m (d) 2.0m
The displacement y of a wave
travelling in the X direction is given by

y=(2x10")sin (300t—2x—|—%), where

x and y are measured in metres and ¢ in
second. The speed of the wave is

(a) 150 ms™ (b) 300 ms™!
(c) 450 ms™ (d) 600 ms*
Consider two uniform wires vibrating
simultaneously in their fundamental
notes. The tensions, densities, lengths
and diameter of the two wires are
intheratio8:1,1:2,x:yand 4:1
respectively. If the note of the higher
pitch has a frequency of 360 Hz and the
number of beats produced per second
is 10, then the value of x : y is

(a) 36:35

(b) 35:36

(c)1:1

(d)1:2

Which of the following represents a
wave

(a) (x -vt)’

1
(©) (x4 vt)

(b) x(x+vt)
(d) sin(x+vt)

€76 UNIT 11 WAVES
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13.

14.
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A man sitting on a swing which is
moving to an angle of 60° from the
vertical is blowing a whistle which has a
frequency of 2.0 k Hz. The whistle is 2.0
m from the fixed support point of the
swing. A sound detector which detects
the whistle sound is kept in front of the
swing. The maximum frequency the
sound detector detected is

(a) 2.027 kHz (b) 1.974 kHz

(c) 9.74 kHz (d) 1.011 kHz
Let y= 1+1x2 at t=0s betheamplitude

of the wave propagating in the positive
x-direction. At t = 25, the amplitude

of the wave propagating becomes
1

Y 2y
of the wave does not change during
propagation. The velocity of the wave is

(a) 0.5ms™ (b) 1.0m !
(c) 1.5ms! (d) 2.0ms!

. Assume that the shape

A uniform rope having mass m hangs
vertically from a rigid support. A
transverse wave pulse is produced at
the lower end. Which of the following
plots shows the correct variation of
speed v with height h from the lower
end?
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15.

An organ pipe A closed at one end is
allowed to vibrate in its first harmonic
and another pipe B open at both ends is
allowed to vibrate in its third harmonic.
Both A and B are in resonance with a
given tuning fork. The ratio of the length
of Aand Bis

8 3

(a) ? (b) %

(c) c (d) 3
Answers:

1)b 2)d 3)b 4)a

5) ¢ 6)a 7)d 8) ¢

9)a 10) a 11)d 12) a
13)b 14) d 15) ¢

II.

10.
11.

12.

Short Answer Questions

What is meant by waves?.
Write down the types of waves.

What are transverse waves?. Give one
example.

What are longitudinal waves?. Give
one example.

Define wavelength.

Write down the relation between
frequency, wavelength and velocity of
a wave.

What is meant by interference of
waves?.

Explain the beat phenomenon.

Define intensity of sound and loudness
of sound.

Explain Doppler Effect.

Explain red shift and blue shift in
Doppler Effect.

What is meant by end correction in
resonance air column apparatus?

‘ ‘ UNIT-11(XI-Physics_Vol-2)_14-08-2020.indd 277

13.

14.

15.

H 2 man i

Sketch the function y = X + a.
Explain your sketch.

Write down the factors affecting
velocity of sound in gases.

What is meant by an echo?. Explain.

III. Long Answer Questions

1.

10.

11.

12.

Discuss how ripples are formed in still
water.

Briefly explain the difference between
travelling waves and standing waves.

Show that the velocity of a travelling

wave produced in a string is v = \/f
0

Describe Newton’s formula for velocity
of sound waves in air and also discuss
the Laplace’s correction.

Write short notes on reflection of sound
waves from plane and curved surfaces.

Briefly explain the concept of
superposition principle.

Explain how the interference of waves
is formed.

Describe the formation of beats.

What are stationary waves?. Explain
the formation of stationary waves and
also write down the characteristics of
stationary waves.

Discuss the law of transverse vibrations
in stretched strings.

Explain the concepts of fundamental
frequency, harmonics and overtones in
detail.

What is a sonometer?. Give its
construction and working. Explain
how to determine the frequency of
tuning fork using sonometer.

UNIT 11 WAVES 273

17-08-2020 15:32:07‘ ‘



|| T T

13.

14.

15.

16.

IV.

Write short notes on intensity and
loudness.

Explain how overtones are produced in a
(a) Closed organ pipe

(b) Open organ pipe
How will you determine the velocity

of sound using resonance air column
apparatus?

What is meant by Doppler effect?.
Discuss the following cases

(1) Source in motion and Observer at
rest

(a) Source moves towards observer
(b) Source moves away from the

observer
(2) Observer in motion and Source at
rest.

(a) Observer moves towards Source
(b) Observer resides away from the

Source
(3) Both are in motion

(a) Source and Observer approach
each other

(b) Source and Observer resides
from each other

(c) Source chases Observer

(d) Observer chases Source

Numerical Problems

1.The speed of a wave in a certain
medium is 900 m/s. If 3000 waves
passes over a certain point of the
medium in 2 minutes, then compute

its wavelength?.  Answer: 1 =36 m

€78 UNIT 11 WAVES
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Consider a mixture of 2 mol of helium
and 4 mol of oxygen. Compute the
speed of sound in this gas mixture at
300 K. Answer : 400.9 ms™

A ship in a sea sends SONAR waves
straight down into the seawater from
the bottom of the ship. The signal
reflects from the deep bottom bed
rock and returns to the ship after
3.5 s. After the ship moves to 100 km
it sends another signal which returns
back after 2s. Calculate the depth of the
sea in each case and also compute the
difference in height between two cases.

Answer : Ad = 1149.75 m

A sound wave is transmitted into a
tube as shown in figure. The sound
wave splits into two waves at the point
A which recombine at point B. Let R
be the radius of the semi-circle which
is varied until the first minimum.
Calculate the radius of the semi-circle if
the wavelength of the sound is 50.0 m.

Answer:R=219m

Source ——@ Detector

A B

5. N tuning forks are arranged in order

of increasing frequency and any two
successive tuning forks give n beats per
second when sounded together. If the
last fork gives double the frequency of
the first (called as octave), Show that
the frequency of the first tuning fork is
f=(N-1)n.

Let the source propagate a sound wave
whose intensity at a point (initially)
be I. Suppose we consider a case when
the amplitude of the sound wave is
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doubled and the frequency is reduced
to one-fourth. Calculate now the new

intensity of sound at the same point ?.

Answer:; |

new & 4 Lo
Consider two organ pipes of same
length in which one organ pipe is closed
and another organ pipe is open. If the
fundamental frequency of closed pipe
is 250 Hz. Calculate the fundamental
frequency of the open pipe.

Answer: 500Hz

A police in a siren car moving with
a velocity 20 ms™ chases a thief who
is moving in a car with a velocity
vyms'. The police car sounds at
frequency 300Hz, and both of them
move towards a stationary siren of
frequency 400Hz. Calculate the speed
in which thief is moving. (Assume
the thief does not observe any beat)
Answer: v, =10ms"
Consider the following function

@y=x+2atx
(b) y = (x + vt)?

BOOKS FOR REFERENCE

L O

H 2 man i

which among the above function can be
characterized as a wave ?.

Answer: (a) function is not describing wave

(b) satisfies wave equation.

V. Conceptual Questions

1.

Why is it that transverse waves
cannot be produced in a gas?. Can the
transverse waves can be produced in
solids and liquids?

Why is the roar of our national animal
different from the sound of a mosquito?

A sound source and listener are both
stationary and a strong wind is blowing.
Is there a Doppler effect?

In an empty room why is it that a tone
sounds louder than in the room having
things like furniture etc.

How do animals sense impending
danger of hurricane?

Is it possible to realize whether a vessel
kept under the tap is about to fill with
water?

Vibrations and Waves — A. P. French, CBS publisher and Distributors Pvt. Ltd.

Concepts of Physics - H. C. Verma, Volume 1 and Volume 2, Bharati Bhawan Publisher
Halliday, Resnick and Walker, Fundamentals of Physics, Wiley Publishers, 10" edition

Serway and Jewett, Physics for scientist and engineers with modern physics, Brook/Coole

publishers, Eighth edition
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Through this activity you will be able to
learn about the wave motion.

STEPS:

the play button.

of wave.

URL:

https://phet.colorado.edu/en/simulation/wave-on-a-string

* Pictures are indicative only.

window and by changing the ‘amplitude’ and ‘frequency’ is given below.

» Use the URL or scan the QR code to open ‘PhET’ simulation on ‘waves on a string’ Click

« In the activity window a diagram of string is given. Click the play icon to see the motion

» We can see the ‘oscillations’ and ‘pulse’ by selecting on the table given in the left side

« By selecting the ‘end types’ on the right side window and repeat the same as before.

* If browser requires, allow Flash Player or Java Script to load the page.

I
B163_11_Phy_EM
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LIST OF PRACTICALS

1. Moment of Inertia of solid sphere of known mass using Vernier caliper

2. Non-uniform bending - verification of relation between the load and the depression using

pin and microscope

3. Spring constant of a spring

4. Acceleration due to gravity using simple pendulum

5. Velocity of sound in air using resonance column

6. Viscosity of a liquid by Stoke’s method

7. Surface tension by capillary rise method

8. Verification of Newton’s law of cooling using calorimeter

9. Study of relation between the frequency and length of a given wire under

constant tension using sonometer

10. Study of relation between length of a given wire and tension for constant frequency

using sonometer

11. Verification of parallelogram law of forces (Demonstration only- not for examination)

12. Determination of density of a material of wire using screw gauge and physical balance
(Demonstration only- Not for examination).

Note: Students should be instructed to perform the experiments given in ICT corner at the end

of each unit of Volume 1. (Self study only- Not for examination)

@2 PrRACTICAL
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1. MOMENT OF INERTIA OF A SOLID SPHERE OF KNOWN MASS

USING VERNIER CALIPER

AlM To determine the moment of inertia of a solid sphere of known
mass using Vernier caliper

APPARATUS REQUIRED  Vernier caliper, Solid sphere

FORMULA Moment of inertia of a solid sphere about its diameter | = % MR? kgm?
Where M <« Mass of the sphere ( known value to be given) in kg

R < Radius of the sphere in metre
DIAGRAM

. . ®
Vernier Caliper
Main Scale
0 1 0 1 0 1
Lovtn bl Lol Lol
T QR TTTT] R T 1T
2 5 10 I 0 5 10 0 5 10
(a) No error (b) +ve error (c) —ve error
Vernier Scale of +0.03 cm of -0.06 cm
0 1 2 3 4
Ceere bbb b b oo b |
11 1 IR | 1 1
0 5 10

(d) Vernier reading

A model reading
MSR = 2.2 cm ; VSC = 4 divisions;
Reading = [2.2 cm+(4x0.01cm)] = 2.24 cm

PrRACTICAL 289
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PROCEDURE

» The Vernier caliper is checked for zero errors and error if found is to be noted.

» The sphere is kept in between the jaws of the Vernier caliper and the main scale reading
(MSR )is noted.

> Vernier scale division which coincides with some main scale division (VSC ) is noted. Multiply
this VSC by least count (LC) gives Vernier scale reading (VSR).

» Add MSR with VSR. This will be the diameter of the sphere.

» Observations are to be recorded for different positions of the sphere and the average value
of the diameter is found. From this value radius of the sphere R is calculated.

» Using the known value of the mass of the sphere M and calculated radius of the sphere R the
moment of inertia of the given sphere about its diameter can be calculated using the given
formula.

LEAST COUNT (LC)

One main scale division (MSD) R, cm
Number of Vernier scale divisions = ......
Least Count (LC) = 1 Main Scale Division (MSD)
Total Vernier scale divisions
S cm

OBSERVATIONS
Zero error =
Zero correction (Z.C) = Zero error x LC

Vernier Diameter of the sphere = 2R
MSR | VSR = (VSC x LC) TR = (MSR +VSR) ,
SI.No. coincidence correct reading = (TR £ Z.C)
x 107°m x 1072m x 1072m
VSC (div) x 10m
1
2
3
4
5
6
Mean diameter2R=............ m
Radius of the sphereR=............ m
= i m
€84 PrAcTICAL
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CALCULATION
Mass of the sphere M=............ . kg
(Known value is given)
Radius of the sphereR=............. metre

Moment of inertia of a solid sphere

about its diameter |,= % MR =............. kg m?
RESULT
The moment of inertia of the given solid sphere about its diameter using
Vernier caliper |, =....................... kg m?
® ®

PrRACTICAL 289

‘ ‘ UNIT-12(XI-Physics_Vol-2) PRACTICAL FIRST YEAR.indd 285 @ 17-08-2020 16:26:34‘ ‘



| T T ] ® CH ||

2. NON - UNIFORM BENDING - VERIFICATION OF RELATION BETWEEN
LOAD AND DEPRESSION USING PIN AND MICROSCOPE

AlM To verify the relation between the load and depression using
non-uniform bending of a beam.

APPARATUS REQUIRED A long uniform beam (usually a metre scale), two knife — edges,
mass hanger, slotted masses, pin and vernier microscope.

FORMULA M _ ; constant
S

where M < Load applied (mass) (kg)

s «— depression produced in the beam for the applied load(m)

DIAGRAM

Pin
Beam (Metre - Scale)

Mass hanger

Slotted mass

Ay

Knife edges

EXPERIMENTAL SETUP OF NON - UNIFORM BENDING PIN AND MICROSCOPE

PROCEDURE
» Place the two knife — edges on the table.
» Place the uniform beam (metre scale) on top of the knife edges.

» Suspend the mass hanger at the centre. A pin is attached at the centre of the scale where the
hanger is hung.

» Place a vernier microscope in front of this arrangement

» Adjust the microscope to get a clear view of the pin

€86 PrRACTICAL
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» Make the horizontal cross-wire on the microscope to coincide with the tip of the pin. (Here
mass hanger is the dead load M).

» Note the vertical scale reading of the vernier microscope

» Add the slotted masses to the mass hanger one by one in steps of 0.05 kg (50 g) and
corresponding readings are noted down.

» Repeat the experiment by removing masses one by one and note down the corresponding
readings.

» Subtract the mean reading of each load from dead load reading. This gives the
depressions for the corresponding load M.

OBSERVATIONS
To find A%
MICROSCOPE READINGS x 102 m DEPRESSION M/
LOAD INCREASING | DECREASING MEAN FOR M (kg) s
(kg) LOAD LOAD (s) kgm
MSR | VSR TR MSR | VSR TR
M X
M + 0.05 x| T T ——
M +0.10 x, | 2T %T ——
® M +0.15 % f:ii: ®
M + 0.20 X, |74 o
M +0.25 xg | 5T ——
Mean
MODEL GRAPH

Load (M) vs Depression (s)

A graph between M and s can be drawn by taking M along X- axis and s along Y - axis.
This is a straight line.

_M_ _ constant
S

Depression s (m)

Y
X

Mass (kg) —

Relation between Mass and depression

PrRACTICAL ZSD
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CALCULATION
. M
(i) —=
S
(ii) M_
S
(i) M _
N
(iv) M _
S
M
(V) —=
N
RESULT
» The ratio between mass and depression for each load is calculated. This is found to be
constant.

» Thus the relation between load and depression is verified by the method of non-uniform
bending of a beam.

€88 PrRACTICAL
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3. SPRING CONSTANT OF A SPRING

AlM To determine the spring constant of a spring by using the method
of vertical oscillations

APPARATUS REQUIRED  Spring, rigid support, hook, 50 g mass hanger, 50 g slotted masses,
stop clock, metre scale, pointer

M —M
FORMULA Spring constant of the spring k = 4m2 [ﬁ]
2 N

where M, M, < selected loads in kg

T,, T, < time period corresponding to masses M, and M,
respectively in second

DIAGRAM

3

Surids

J[eos

o T

PROCEDURE

» Aspring is firmly suspended vertically from a rigid clamp of a wooden stand at its upper end
with a mass hanger attached to its lower end. A pointer fixed at the lower end of the spring
moves over a vertical scale fixed.

PrRACTICAL 289
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» A suitable load M (eg; 100 g ) is added to the mass hanger and the reading on the scale at
which the pointer comes to rest is noted. This is the equilibrium position.
» The mass in the hanger is pulled downward and released so that the spring oscillates
vertically on either side of the equilibrium position.
» When the pointer crosses the equilibrium position a stop clock is started and the time taken
for 10 vertical oscillations is noted. Then the period of oscillation T is calculated.
» The experiment is repeated by adding masses in steps of 50 g to the mass hanger and period
of oscillation at each time is calculated.
> For the masses M, and M, ( with a difference of 50 g), their corresponding time
M, —M
periods are T, and T,. Then the value ———1 is calculated and its average is found.
2
» Using the given formula the spring constant of the given spring is calculated.
OBSERVATIONS
Time taken for 10 oscillations (t) | Period of M - M
. . 2 1
Mass M (s) oscillation T? T _1°
SI. No. Sk t R 2 N
x107kg Trial 1 Trial 2 Mean r= E(S) (s) x10 kg s*
1 100
® 2 150 @
3 200
4 250
5 300
Mean =..... .kgs?
CALCULATION
M,—M
Spring constant of the spring k =4m? |———*
L -1
k= .. kg s
RESULT
The spring constant of the given spring kis foundtobe=........... kg s

€90 PrRACTICAL
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4 ACCELERATION DUE TO GRAVITY USING SIMPLE PENDULUM

AlM To measure the acceleration due to gravity using a simple
pendulum

APPARATUS REQUIRED Retort stand, pendulum bob, thread, meter scale, stop watch.

FORMULA Acceleration due to gravity g =4n’ (%) (ms?)

where T <« Time period of simple pendulum (second)
g < Acceleration due to gravity (metre sec?)
L < Length of the pendulum (metre)

DIAGRAM

PROCEDURE
> Attach a small brass bob to the thread.
> Fix this thread on to the stand.

»  Measure the length of the pendulum from top of the suspension hook to the middle of the
bob of the pendulum. Record the length of the pendulum in the table given below.

»  Note down the time (t) taken for 10 oscillations using stop watch.

»  The period of oscillation 7 = % is calculated.

»  Repeat the experiment for different lengths of the pendulumL’. Find acceleration due to
gravity g using the given formula.

PrRACTICAL 293
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OBSERVATIONS To find the acceleration due to gravity ‘g’

Time taken for 10 oscillations t (s)
Period of
Length of the oscillation _4n’L
pendulum L T £="m
(metre) Trial 1 Trial 2 Average 7=t (s?)
10 m s
(s)
Mean g =
MODEL GRAPH
A
N
® 2 Ay ®
B
()
£ o
F
. Ay T2
ope = =
P Ax L
>
Length “ L (metres)
A 2
slope= Ey = T ; 1/slope = L/T?
RESULT
The acceleration due to gravity ‘g’ determined using simple pendulum is found to be
i) Bycalculation=......... m s2
i) Bygraph=......... m s

€92 PrRACTICAL
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5. VELOCITY OF SOUND IN AIR USING RESONANCE COLUMN

AlM To determine the velocity of sound in air at room temperature using

the resonance phenomenon.

APPARATUS REQUIRED Resonance tube, three tuning forks of known frequencies, a rubber

hammer, one thermometer, plumb line, set squares, water in a
beaker.

FORMULA V =2y (12 _11) ms’

where V « Speed of sound in air (m s™)

[, and | «The length of the air column for the first and
second resonance respectively (m)

v < Frequency of the tuning fork (Hz)

DIAGRAM

PROCEDURE

>

>

Adjust the position of the resonance tube, so that the length of air column inside the tube is
very small.

Take a tuning fork of known frequency and strike it with a rubber hammer. The tuning fork

now produces longitudinal waves with a frequency equal to the natural frequency of the
tuning fork.

Place the vibrating tuning fork horizontally at the open end of the resonance tube. Sound
waves pass down the total tube and reflect back at the water surface.

Length of the water column in the tube is adjusted either by lowering or raising the reservoir
or the tube, until a maximum sound(resonance) occurs.

Measure the length of air column at this position. This is taken as the first resonating
length,

PrRACTICAL 299
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» Then raise the tube approximately about two times the first resonating length. Excite the
tuning fork again and place it on the open end of the tube.

» Adjust the height of the air column until the maximum sound is heard.

» Measure the length of air column at this position. This is taken as the second resonating
length [

» We can now calculate the velocity of sound in air at room temperature by using the relation.
V=2(,-1)

» Repeat the experiment with tuning forks of different frequency and tabulate the
corresponding values of [ and L.

» The mean of the calculated values will give the velocity of sound in air at room temperature.

OBSERVATIONS
First resonating Second resonating
length [, length [, Velocity of
Frequency of
Sl i (x 102m) (x 102m) -1 sound
tuning fork 2 1
No. (Y (x107%m) V=2v(l~-1)
v' (Hz) Trial | Trial Trial | Trial (ms)
Mean Mean
1 2 1 2
® 1 ®
2
3
Mean V =
CALCULATION
Velocity sound in air at room temperature, V =2v( - [) = ms!
RESULT
Velocity of sound in air at room temperature, is found to be (V) = ms’
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6. VISCOSITY OF A LIQUID BY STOKE’'S METHOD

AIM To determine the co-efficient of viscosity of the given liquid by
stoke’s method

APPARATUS REQUIRED A long cylindrical glass jar, highly viscous liquid, metre scale,
spherical ball, stop clock, thread.

FORMULA =2 ®-0)8 Nsm?
oV

where 1 — Coefficient of viscosity of liquid (N s m™)
r < radius of spherical ball (m)
o< density of the steel sphere (kg m™)
7 < density of the liquid (kg m™)
g < acceleration due to gravity (9.8 m s2)

V <~ mean terminal velocity (ms™)

DIAGRAM
@ ®
Q >
D 8§ Spherical Ball
L R Point A
------------------- Given Experimental Viscous
Liquid
| jemememzes Point B
£ T W

EXPERIMENTAL SET UP OF MEASURING
VISCOSITY BY STOKE’S METHOD

PrRACTICAL 299
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PROCEDURE

» Along cylindrical glass jar with markings is taken.

» Fill the glass jar with the given experimental liquid.

» Two points A and B are marked on the jar. The mark A is made well below the surface of the

liquid so that when the ball reaches A it would have acquired terminal velocity V.

» The radius of the metal spherical ball is determined using screw gauge.

Y

The spherical ball is dropped gently into the liquid.

» Start the stop clock when the ball crosses the point A. Stop the clock when the ball

reaches B and note down the time‘t.

» Note the distance between A and B and use it to calculate terminal velocity.

» Now repeat the experiment for different distances between A and B. Make sure that the

point A is suitable for the ball to acquire terminal velocity.

OBSERVATIONS

To find Terminal Velocity:

Distance covered by the
S.No. spherical ball (d)
(s)

(m)

Time taken (t)

Terminal Velocity (V)

%(m s7)

MEAN
CALCULATION
Density of the spherical ball § = kg m™
Density of the given liquid T = kg m™®
2r’g(d—o0) _

Coefficient of viscosity of the liquid n= oV

RESULT

Nsm-

The coefficient of viscosity of the given liquid by stoke’s method is found to be

n= Nsm™
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7. SURFACE TENSION BY CAPILLARY RISE METHOD

AIM To determine surface tension of a liquid by capillary rise method.

APPARATUS REQUIRED A beaker of Water, capillary tube, vernier microscope, double hole
rubber stopper, a knitting needle, a short rubber tubing and retort
clamp.

FORMULA The surface tension of the liquid T = hrog Nm’
2

where T « Surface tension of the liquid (N m™)
h < height of the liquid in the capillary tube (m)
r < radius of the capillary tube (m)
o <— Density of water (kg m™3) (0 =1000 kg m)
g < Acceleration due to gravity (g =9.8 m s7?)

DIAGRAM

7 - SURFACE TENSION BY CAPILLARY RISE METHOD
EXPERIMENTAL SETUP

—Needle

PROCEDURE
» Aclean and dry capillary tube is taken and fixed in a stand

» A beaker containing water is placed on an adjustable platform and the capillary tube is
dipped inside the beaker so that a little amount of water is raised inside.

PrRACTICAL 29)
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Fix a needle near the capillary tube so that the needle touches the water surface

A Vernier microscope is focused at the lower meniscus of the water and the corresponding
reading is taken after coinciding it with the horizontal line of the cross wire.

Tip of the needle is focussed using vernier microscope after coinciding it with horizontal line
of the cross wire

The difference between the two readings of the vertical scale gives the height (h) of the
liquid raised in the capillary tube.

Now to find the radius of the tube, raise the capillary tube and remove the beaker. Carefully
rotate the capillary tube so that the immersed lower end face towards you.

Focus the capillary tube using Vernier microscope to clearly see the inner walls of the tube.

Let the vertical cross wire coincide with the left side inner walls of the tube. Note down the
reading (L,

Turn the microscope screws in horizontal direction to view the right side inner wall of the

tube. Note the reading (R,). Thus the radius of the tube can be calculated as %(L1 - Rl) .

Finally calculate the surface tension using the given formula.

L R

1 1

2r

RADIUS OF THE CAPILLARY TUBE

OBSERVATIONS
To measure height of the liquid (h)

Least count of the microscope = cm
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Radius of the capillary tube

@
Microscope reading for the Microscope reading for the )

o . o - Height of

position of Lower meniscus of position of Lower tip of the o
liquid needle the liquid

Trial No. h
VSC x LC TR (a) VSCxLC | TR(p) | x107?m
MR =VSR X102 m MR =VSR | x102m | a~b
Mean h =

Microscope reading for the Microscope reading for the Radius of the
position of inner left wall of the | position of inner right wall of the | capillary tube
tube L tube R
Tube 1 ! - %(L1~R1)
VSC x LC TR VSC x LC TR
MSR “VSR [x102m| SR =VSR | x102m x 107 m
®
CALCULATION
Mean rise of the liquid in the capillary tube h = X 1072 m
Diameter of the capillary tube 2r= X102 m
Radius of the capillary tube r= X 1072 m
Density of the liquid 0=1000 kg m*
Acceleration due to gravity g=9.8ms?
Surface tension T= hrﬁ
2
= Nm™
RESULT
Surface tension of the given liquid by capillary rise method T = Nm™
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8. VERIFICATION OF NEWTON’S LAW OF COOLING
USING CALORIMETER

AlM To study the relationship between the temperature of a hot
body and time by plotting a cooling curve.

APPARATUS REQUIRED Copper calorimeter with stirrer, one holed rubber cork,
thermometer, stop clock, heater / burner, water, clamp and
stand

NEWTON'S LAW OF COOLING Newton’s law of cooling states that the rate of change of the
temperature of an object is proportional to the difference
between its own temperature and the ambient temperature.
(i.e., the temperature of its surroundings)

dT
= o (T-T,
o <I-T)

where C;—T < Rate of change of temperature (°C)
t

T «— Temperature of water (°C)

T, <= Room Temperature (°C)

® DIAGRAM ®

EXPERIMENTAL SETUP OF NEWTON’S LAW OF COOLING
PROCEDURE

» Note the room temperature as (T,) using the thermometer.
» Hot water about 90°C is poured into the calorimeter.
Close the calorimeter with one holed rubber cork.

Insert the thermometer into calorimeter through the hole in rubber cork.

Y V V

Start the stop clock and observe the time for every one degree fall of temperature from 80°C.

00 PrRACTICAL
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» Take sufficient amount of reading, say closer to room temperature

» The observations are tabulated

» Draw a graph by taking time along the x axis and excess temperature along y axis.

MODEL GRAPH
A
[a8]
=
2
<
e~
&3]
Ay
=
8 8]
H
A
3
=
28]
Y TIME
RELATION BETWEEN TIME AND TEMPERATURE
® ®
ROOM TEMPERATURE (To) = °C
OBSERVATIONS

Measuring the change in temperature of water with time

Time (s) | Temperature of water (T) °C Excess temperature (T - TO) °C

RESULT

The cooling curve is plotted and thus Newton’s law of cooling is verified.
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9. STUDY OF RELATION BETWEEN FREQUENCY AND LENGTH OF A
GIVEN WIRE UNDER CONSTANT TENSION USING SONOMETER

AlM

APPARATUS REQUIRED

FORMULA

DIAGRAM

To study the relation between frequency and length of a given wire
under constant tension using a sonometer.

Sonometer, six tuning forks of known frequencies, Metre scale,
rubber pad, paper rider, hanger with half — kilogram masses,
wooden bridges

The frequency n of the fundamental mode of vibration of a string

is given by n:i\/z Hz
21 \'m

a) For a given m and fixed T.
1
n x 7 (or) nl = constant

where 1« Frequency of the fundamental mode of vibration of
the string (Hz)

m < Mass per unit length of the string (kg m™)
[ < Length of the string between the wedges (m)

T < Tension in the string (including the mass of the
hanger)=Mg (N)

M < Mass suspended, including the mass of the hanger (Kg)

Wedge

Steel wire

Mass hanger

a Load

SONOMETER - STUDY OF RELATION BETWEEN FREQUENCY AND LENGTH
OF A GIVEN WIRE UNDER CONSTANT TENSION USING SONOMETER
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PROCEDURE

>

Set up the sonometer on the table and clean the groove on the pulley to ensure minimum
friction

» Stretch the wire by placing suitable mass in the hanger. Keep a small paper rider over the
wire, between the two bridges.

» Set the tuning fork into vibrations by striking it against the rubber pad and place it over the
sonometer,by its stem.

» Adjust the vibrating length of the wire by sliding the bridge B till the vibrating sound of the
wire is maximum

» when the frequency of vibration is in resonance with the frequency of the tuning fork, the
paper rider falls down.

» The length of the wire between the wedges A and B is measured using meter scale. It is
called as resonant length.

» Repeat the above procedure for tuning forks of different frequencies by keeping the same
load in the hanger.

OBSERVATIONS

Tension (constant) on the wire (mass suspended from the hanger including its own mass)
T = (mass suspended x 9.8) N

Variation of frequency with length

Resonant
Frequency of the tuning fork ‘n “ ( Hz ) length nl

x 107 m

n =

n, =

n, =

n, =

n, =

n =

PrRACTICAL 3@
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GRAPH:
¥ y
A A
3 B
>» X > X
n(Hz)—) n(HZ)

Graph 1: Relation between frequency and length Graph 2: Relation between frequency and inverse of length

Sonometer - study of relation between

length of the given wire and tension for a
consant frequency

CALCULATION
The product nl for all the tuning forks remain constant (last column in the table)

RESULT

For a given tension, the resonant length of a given stretched string varies as reciprocal of

1
the frequency (i.e., n ] )
« The product nlis a constant and found to be (Hzm)
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10. STUDY OF RELATION BETWEEN LENGTH OF THE GIVEN WIRE AND
TENSION FOR A CONSTANT FREQUENCY USING SONOMETER

AlM To study the relationship between the length of a given wire and
tension for constant frequency using a sonometer

APPARATUS REQUIRED Sonometer, tuning fork of known frequency, meter scale, rubber
pad, paper rider, hanger with half — kilogram masses, wooden
bridges.

FORMULA The frequency of the fundamental mode of vibration of a string is
given by,

21\ m z

If nis a constant, for a given wire (m is constant)

JT

T is constant.

where n < Frequency of the fundamental mode of vibration of a
string (Hz)

® m < Mass per unit length of string (kg m™") ®

T < Tension in the string (including the mass of the
hanger) = Mg (N)

[ < Length of the string between the wedges (metre)

M « Mass suspended, including the mass of the hanger (kg)

DIAGRAM

Wedge

: w Steel wire
' Mass hanger

Load

A

STUDY OF RELATION BETWEEN LENGTH OF THE GIVEN WIRE AND
TENSION FOR A CONSTANT FREQUENCY USING SONOMETER
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PROCEDURE

» Set up the sonometer on the table and clean the groove on the pulley to ensure that it has
minimum friction.

» Keep a small paper rider on the wire,between the bridges.
» Place a mass of 1 kg for initial reading in the mass hanger.

» Now, strike the tuning fork and place its shank stem on the bridge A and then slowly adjust
the position of the bridge B till the paper rider is agitated violently and might eventually fall
due to resonance.

» Measure the length of the wire between wedges at A and B which is the fundamental mode
corresponding to the frequency of the tuning fork.

» Increase the load on the hanger in steps of 0.5 kg and each time find the resonating length
as done before with the same tuning fork.

» Record the observations in the tabular column.

MODEL GRAPH
y
A
® ®
g
>
> X
T (N)
Relation between tension T (N) and length /2 (cm?
OBSERVATIONS
Frequency of the tuning fork = Hz

Variation of resonant length with tension
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Mass M Tension T=Mg Vibrating length |
SL.No. JT
© (kg) (N) JT (m) -
CALCULATION

Calculate the value g for the tension applied in each case.

RESULT

« Theresonating length varies as square root of tension for a given frequency of vibration
of a stretched string.

NG

is found to be a constant.
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SOME IMPORTANT CONSTANTS IN PHYSICS

@ Wien’s constant

Name Symbols Value
Speed of light in vacuum . 2.9979 x 108 m s~
Gravitational constant G 6.67 x 10" N m? kg™
Acceleration due to gravity
(sea level, at 45° latitude) 4 9.8 ms™
Planck constant h 6.626 x 107 s
Boltzmann constant k 138 x 103 ] K-!
Avogadro number N, 6.023 x 102 mol!
Universal gas constant R 8.31 ] mol! K
Stefan — Boltmann constant - 5.67 x 10~ W m=2 K
b 2.898 x 10° m K
Permeability of free space ", 4ux 107 H m™!
Standard atmospheric pressure Latm 1.013 x 10° Pa

SOLVED EXAMPLES
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(THE GREEK ALPHABET)
($I8g4% 6T(LPSSIH6IT)

The Greek Alphabet Upper Case
Alpha A

Lower Case
1

Beta

Gamma

Delta

Epsilon

Zeta

Eta

Theta

Jota

Kappa

Lambda

Omicron

Pi

Rho

Sigma

Tau

Upsilon

=
c
X < IHe |9 |0len|Z| 2" |RI~|Z|T|N|H|>|(>|w

Phi

IX'OCD;IO':PCK-S"‘39<C°J\I'@QOOI

Chi

n

Psi

S|

DJ\

Omega

COMPETITIVE EXAM CORNER
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LOGARITHM TABLE
Mean Difference

0 1 2 3 4 5 6 7 8 9 112|314|5|6|718]|9
10 0.000 | 0.004 | 0.009 | 0.013|0.01710.02110.02510.02910.03310.03714|1811]17)121|25|29]|33|37
11 0.041 1 0.045 | 0.049 | 0.053 | 0.057 | 0.061 | 0.064 | 0.068 | 0.07210.076 | 4| 8 |11]115]|19|23|26|30|34
12 0.079 1 0.083 | 0.086 | 0.090 | 0.093 | 0.097 | 0.100 1 0.104 | 0.107 | 0.111 | 3 | 7 |10|14|17|21|24|28|31
13 0.114 | 0.117 | 0.121 1 0.124 | 0.127 1 0.130 1 0.134 |1 0.137 | 0.140 1 0.143 | 3 |1 6 |110(13|16119|23|26|29
14 0.146 1 0.149 | 0.152 | 0.155 | 0.158 | 0.161 | 0.164 | 0.167 | 0.170 | 0.173 | 3 | 6 | 9 |12|15|18|21|24|27
15 0.176 10.179 1 0.182 | 0.185 | 0.188 | 0.190 | 0.193 1 0.196 | 0.199 | 0.201 | 3| 6| 8 |11|14|17]|20|22|25
16 0.204 1 0.207 | 0.210]10.212 1 0.21510.21710.22010.223 1022510228 |1 3|58 )11|13|16(|18|21|124
17 0.230]10.233 | 0.236 |1 0.238 1 0.241 1 0.243 | 0.246 1 0.248 | 0.25010.253 |12 | 5| 7 |10]12|15|17|20]|22
18 0.25510.258 | 0.260 | 0.262 | 0.265 | 0.267 | 0.270 | 0.272 1 0.274 10276 | 2 | 5| 719 |12|14|16]|19|21
19 0.27910.281 |1 0.283|0.286 | 0.28810.29010.292 10294 1029710299 |24 | 719 11|13|16]18]20
20 0.301]10.303|0.305(10.30710.310]1 0312 0.314]10.316 | 0.31810.320| 2 |4 | 6 | 8111|13|15(17]19
21 0.32210.324 1 0.326 1 0.328 | 0.33010.33210.33410.336/|0.33810.340| 2| 4|6 |8|10|12|14|16|18
22 0.34210.344 1 0.346 | 0.348 | 0.350 |1 0.352 | 0.354 | 0.356 | 0.358 | 0.360 | 2|4 | 6| 8|10|12|14|15|17
23 0.362 1 0.364 | 0.365 | 0.367 | 0.369 1 0.371 | 0.373]10.375|0.37710378|1 2|14 |6|7]9]|11|13|15]17
24 0.38010.382]10.384|0.3860.38710.38910.39110.39310.3941039 | 2|4 |5]|7]19|11|12]|14|16
25 0.398 1 0.400 | 0.401 | 0.403 | 0.40510.407 1 0.408 10.41010.41210413|12|3|5]7]191|10|12]|14|15
26 0.41510.417 | 0.418 | 0.420 | 0.422 1 0.423 1 0.42510.427 10.428 1043012 |3|5]|7]8|10(11]13|15
27 0.431]10433]10.435]10.436(10.43810.43910.4411044210444 1044612 |3|5)16]18|9(11]|13|14
28 0.447 1 0.449 | 0.450 | 0.452 | 0.453 1 0.455 ]| 0.456 10458 | 0.459 0461 |2 |3|5|6|8|9]|11|12|14
29 0.462 | 0.464 | 0.465 | 0.467 | 0.468 | 0.470 |1 047110473 |0.47410476|11|3|14|16|7]|9]10(12|13

@ 30 0.477 10.479]10.480|0.481|0.48310.48410.48610.48710.48910490|11|3|4]|6]|7|9(10]11|13 @

31 0.491 1 0.493 | 0.494 | 0.496 | 0.497 1 0.498 | 0.500 | 0.501 | 050210504 |1113|4|6]|7]|8|10(11]12
32 0.50510.507 | 05081 0509|0511 10512|10513|0515|0516|1051711|314|5|17]18]9 (11|12
33 0519105201 0521105220524 |0525|10.526 0528 0529105301134 |5|16]|8]9]1(10(|12
34 0.531 1053310534 ]10535|053710538]0539|10540|0542 (0543111314 |5|6|18]|]9|10|111
35 0.544 1 0545 |1 0.547 |1 0.548 | 0.549 | 0.550 | 0.551 | 0.553 | 0554|0555 11|24 |5|16]|7]9(10(111
36 0.556 1 0.558 | 0.559 | 0.560 | 0.561 | 0.562 | 0.563 | 0.565 | 0566 | 0567|112 |3|5]|6]|7|8]|10]11
37 0.568 1 0.569 | 0.571 | 0.572 | 0.573 105741 057510576 | 05771057911 1|12|3]|5]|16|7|8]9]10
38 0.580]10.581 10582 |0583|0.58410.585|0587|0588|058 059 1|1112|3]|5]16|7|8]9]10
39 0.591]10.592 | 0.593 1 0.594 | 0.595 |1 0.597 | 0.598 | 0.599 | 0.600| 0601 |21 |2|3|4]|5]|7|8|9]10
40 0.602 | 0.603 | 0.604 | 0.605 | 0.606 | 0.607 | 0.609 | 0610|0611 |0612|1|2|3|14|5|6]18|9|10
41 0.61310.614 | 0.615]0.616 | 0.617 | 0.618 | 0.619 0620062110622 |1(2|3|14|5|6]|71]|81]9
42 0.623 1 0.624 | 0.625 | 0.626 | 0.627 | 0.628 | 0.629 | 0.630]0.631(10632|1|12|3|4|5]|6|7|8]9
43 0.633]10.634 | 0.635|0.636|0.63710.63810.639|1064010641106421112|314]|5|6|7]18]9
44 0.643]10.644 | 0.645 | 0.646 | 0.647 | 0.648 |1 0.649 106501 0.651]10652|1112|3|4]|5|6|7]|8]9
45 0.653 1 0.654 | 0.655 | 0.656 | 0.657 | 0.658 | 0.659 | 0.660 | 0.661 10662 |1 |2 |3|4|5|6|7]|18]|9
46 0.663 | 0.664 | 0.665 | 0.666 | 0.667 | 0.667 | 0.668 | 0.669 | 0.670|10671 11|12 |3|4|5|6|7]|7]8
47 0.672 1 0.673 | 0.674 | 0.675| 0.676 | 0.677 | 0.678 | 0.679 0679106801112 |3|4|5|5|6]|7]|8
48 0.681]10.682 | 0.683|0.684|0.685|0.686|0.687|10688|10688|0689|112|31414|5|6]|7]8
49 0.690 1 0.691 |1 0.692 1 0.693 | 0.694 | 0.695 | 0.695| 0696 069710698 | 1|2|3|14|14|5|6]|7]|8
50 0.699 1 0.700 | 0.701 | 0.702 | 0.702 1 0.703 | 0.704 | 0.705|10.706 | 0.707 | 1|2 | 3|44 |5|6|7]|8
51 0.708 1 0.708 | 0.709 | 0.710 | 0.711 1 0.712 1 0.71310.71310.71410.7151 112|314 14 |5|6]|7]8
52 0.716 1 0.717 | 0.718 | 0.719 | 0.719 1 0.720 1 0.721 1 0.722 1 0.72310.723 |1 |2 |2 |4 |14 |5|6 |77
53 0.724 1 0.725 | 0.726 | 0.727 | 0.728 1 0.728 | 0.729 | 0.730 1 0.73110.732 | 1|2 |2 |4 |4 |5|6|6|7
54 0.73210.73310.73410.735| 0.736 | 0.736 | 0.737 | 0.738 | 0.739(0.740 |1 |2 |2 |4 |4 |5|6|6|7
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Mean Difference
55 0.740 | 0.741 [ 0.742 | 0.743 | 0.744 | 0.744 [ 0.745 | 0.746 | 0.747 | 0.747 |1 (2 |2 |4 |4 |5| 5|6 | 7
56 0.748 1 0.749 |1 0.750 | 0.751 | 0.751 | 0.752 | 0.753 | 0.754 [ 0.754 [ 0.755 (1|2 |2 |4 |4 |5|5]|6 | 7
57 0.756 | 0.757 [ 0.757 | 0.758 | 0.759 | 0.760 | 0.760 | 0.761 | 0.762 | 0.763 |1 |2 |2 (4|4 |5|5]| 6|7
58 0.763 | 0.764 [ 0.765 | 0.766 | 0.766 | 0.767 [ 0.768 | 0.769 | 0.769 | 0.770 |1 (1|2 (4|4 |4 |5]| 6|7
59 0.77110.772 |1 0.772 |1 0.773 | 0.774 |1 0.775 | 0.775 | 0.776 | 0.777 | 0.777 | 1 |1 |2 |3 |4 |4 |5]|6 |7
60 0.778 | 0.779 [ 0.780 | 0.780 | 0.781 | 0.782 [ 0.782 | 0.783 | 0.784 | 0.785 |1 (1|2 (3|4 |4 |5| 6|6
61 0.785 | 0.786 | 0.787 | 0.787 | 0.788 | 0.789 [ 0.790 | 0.790 | 0.791 | 0.792 |1 (1|2 |3 |4 |4 |5]| 6|6
62 0.792 | 0.793 [ 0.794 | 0.794 | 0.795 | 0.796 [ 0.797 | 0.797 | 0.798 | 0.799 |1 (1|2 (3|3 |4 |5]| 6| 6
63 0.799 | 0.800 | 0.801 | 0.801 | 0.802 | 0.803 [ 0.803 | 0.804 | 0.805|0806 |1 (1|2 |3|3|4|5|5]|6
64 0.806 | 0.807 | 0.808 | 0.808 | 0.809 | 0.810 ( 0.810 | 0.811 |0.812| 08121 (1|2 |33 |4|[5]|5]|6
65 0.8130.814 (0.814 | 0.815]0.816 | 0.816 [ 0.817 | 0.818|10.818|0.819 |1 (1|2 |33 |4|[5]|5]| 6
66 0.820 | 0.820 | 0.821 | 0.822 |1 0.822 |1 0.823 [ 0.82310.82410.825|0.825|1 (1|2 (3|3 |4|[5]|5]|6
67 0.826 | 0.827 [ 0.827 | 0.828 1 0.829 1 0.829 (0.83010.83110.831|0832 |1 (1|23 |3|4|[5]|5]|6
68 0.8330.833(0.834|0.834 | 0.835|0.836 [ 0.836 |0.83710.838|0838|1(1|2|3|3|4|4]|5]|6
69 0.839(0.839(0.840 | 0.841]10.84110.842(0.843]10.843|10.844|10844|1(1|2|2|3|4|4]|5]|6
70 0.8450.846 | 0.846 | 0.847 |1 0.848 |1 0.848 (0.849]10.84910.850|0851 |1 (1|22 |3|4|4]|5]|6
71 0.851 | 0.852 [ 0.852 | 0.853 | 0.854 | 0.854 [ 0.855|0.856 | 0.856 | 0.857 |1 (1|2 |23 |4|4]|5]|5
72 0.857 | 0.858 [ 0.859 | 0.859 | 0.860 | 0.860 | 0.861 | 0.862 | 0.862 | 0863 |1 (1|2 |23 |4|4]|5]|5
73 0.863 | 0.864 | 0.865 | 0.865 | 0.866 | 0.866 | 0.867 | 0.867 | 0.868 | 0.869 (1 (1|2 |23 |4|4]|5]|5
74 0.869 | 0.870 | 0.870 | 0.871 | 0.872 | 0.872 [ 0.873 | 0.87310.874 0874 |1 (1|2 |2|3|4|4]|5]|5
75 0.8750.876 | 0.876 | 0.877 | 0.877 | 0.878 [ 0.87910.87910.880|0880 (1 (1|22 |3|3|4]|5]|5
@ 76 0.881(0.881 | 0.882 | 0.883 | 0.883|0.884 (0.884]0.885]|0.885|0.886 |1 |1|2|2|3|3|4]|5]|5
77 0.886 | 0.887 [ 0.888 | 0.888 |1 0.889 | 0.889 [ 0.890 | 0.890 |1 0.891|0.892 |1 (1 |2(|2|3|3|4]|4]|5
78 0.892 | 0.893 [ 0.893 | 0.894 |1 0.894 | 0.895 [ 0.895]0.896 | 0.897 | 0897 [1 (1|2 |23 |3|4]|4]|5
79 0.898 | 0.898 | 0.899 | 0.899 | 0.900 | 0.900 [ 0.901 | 0.901 | 0.902 | 0903 |1 (21 |2(|2|3|3|4]|4]|5
80 0.903 | 0.904 [ 0.904 | 0.905 | 0.905 | 0.906 [ 0.906 | 0.907 | 0.907 |0.908 1 (1|2 (|2|3|3|4]|4]|5
81 0.908 [ 0.909 [ 0.910 | 0.910 | 0.911 | 0.911 [ 0.912 1 0.912 |1 0.913 0913 |1 (1|2 |2 3|3 |4 |4 |5
82 0.914 1 0.914 [ 0.915| 0.915] 0.916 | 0.916 [ 0.917 | 0.918 |1 0.918 | 09191 (1|2 |2|3 |3 |4 |4 |5
83 0.91910.920 |1 0.920 1 0.921 1 0.921 1 0.922 [ 0.922 1 0.923 (0.923 (0924 (1 |1|2]|2|3|3|4|4]|5
84 0.924 | 0.925 [ 0.925 | 0.926 | 0.926 | 0.927 [ 0.927 | 0.928 1 0.928 | 0.929 |1 (1|2 (2|3 |3|4]|4|5
85 0.929 1 0.930 [ 0.930 | 0.931]0.93110.932(0.93210.933|10.933|0934|1(21|2|2|3|3|4]4]|5
86 0.934 | 0.935 [ 0.936 | 0.936 | 0.937 | 0.937 [ 0.93810.93810.939|0939 |1 (1|2|2|3|3|4]|4]|5
87 0.940 [ 0.940 [ 0.941 | 0.941 | 0.942 |1 0.942 [ 0.94310.94310.943|0944 |0 (2 |2|2|2|3|3]|4]|5
88 0.944 1 0.945 [ 0.945 | 0.946 | 0.946 | 0.947 [ 0.947 | 0.948 |1 0.948 | 09490 (1|2 |2|2|3 3|4 |4
89 0.949 | 0.950 [ 0.950 | 0.951 | 0.951 | 0.952 [ 0.952 | 0.953 1 0.953 | 0954 |0 (1 |1|2|2|3|3|4]|4
90 0.954 | 0.955 [ 0.955 | 0.956 | 0.956 | 0.957 [ 0.957 | 0.958 | 0.958 | 0.959 |0 (1|21 |(2|2|3|[3|4]|4
91 0.959 | 0.960 | 0.960 | 0.960 | 0.961 | 0.961 [ 0.962 | 0.962 | 0.963 | 0963 |0 (1|21 |2|2|3|3|4]|4
92 0.964 | 0.964 [ 0.965 | 0.965 | 0.966 | 0.966 [ 0.967 | 0.967 | 0.968 | 0968 |0 (1|1 |(2|2|3[3|4]|4
93 0.968 | 0.969 [ 0.969 | 0.970 | 0.970 | 0.971 [ 0.971 | 0.972 |1 0.972 | 0973 |0 (21|21 |2|2|3 3|4 |4
94 0.97310.974 1 0.974 1 0.975 1 0.975] 0.975 | 0.976 | 0.976 [ 0.977 (0977 [0 |1 |1 ]|]2|2|3|3|4 |4
95 0.978 | 0.978 [ 0.979 | 0.979 | 0.980 | 0.980 [ 0.980 | 0.981|0.981|0982|0 (1 |21|2|2|3|3|4]|4
96 0.982 | 0.983 [ 0.983|0.984 |1 0.984 |1 0.985 [ 0.985]0.985]|0.986|0986 (0|1 |21|2|2|3|3]|4]|4
97 0.987 | 0.987 [ 0.988 | 0.988 1 0.989 | 0.989 [ 0.989 |0.990 | 0.990 | 0991 |0 (21 |21|2|2|3|3|4]|4
98 0.991 | 0.992 [ 0.992 | 0.993 | 0.993 | 0.993 [ 0.994 | 0.994 | 0.995| 09950 (1|21 |2|2|3|[3]|4]|4
99 0.996 | 0.996 | 0.997 | 0.997 | 0.997 | 0.998 [ 0.998 | 0.999 | 0.999 |1.000(0 (2|2 |2|2|3[3]|3|4
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ANTILOG TABLE
Mean Difference

0 1 2 3 4 5 6 7 8 9 112|314 |5|6]7]18]9
0.00 1.000 | 1.002 | 1.005 | 1.007 | 1.009 | 1.012 | 1.014 | 1.016 | 1019|1021 OO |2 |1 |1|21]|]2]|]2]|2
0.01 1.023 | 1.026 | 1.028 | 1.030 | 1.033 | 1.035 | 1.038 | 1.040 | 1042 1045 |0 O |2 |1 |1|21]|]2]|]2]|2
0.02 1.047 | 1.050 | 1.052 | 1.054 | 1.057 | 1.059 | 1.062 | 1.064 | 1067 | 1069 |OfO |2 |1 |1|1]|2]|2]|2
0.03 1.072 | 1.074 | 1.076 | 1.079 | 1.081 | 1.084 | 1.086 | 1.089 | 1.091 1094 |OfO |21 |1 |1|1]|]2]|2]|2
0.04 1.096 | 1.099 | 1.102 | 1.104 | 1.107 | 1.109 | 1.112 | 1114 | 1117 | 1119 |Of1 |21 |1|1|2|]2]|2]|2
0.05 1.122 | 1.125 | 1.127 | 1.130 | 1.132 | 1.135 | 1.138 | 1.140 | 1143 | 1146 | O |1 |21 |1 | 1|2]|2]|2]|2
0.06 1.148 | 1.151 | 1.153 | 1.156 | 1.159 | 1.161 | 1.164 | 1.167 | 1169 | 1172 |0 (1|21 |1 |1|2]|2]|2]|2
0.07 1.175 | 1.178 | 1.180 | 1.183 | 1.186 | 1.189 | 1.191 | 1.194 | 1197 | 1199 |O |1 |21 |1|1|2]|2]|2|2
0.08 1.202 | 1.205 | 1.208 | 1.211 | 1.213 | 1.216 | 1.219 | 1222 | 1225 | 1227 |O |1 |21 |1|1|2|2]|2]|3
0.09 1.230 | 1.233 | 1.236 | 1.239 | 1.242 | 1.245 | 1.247 | 1,250 | 1253 | 1256 |O 1|21 |1|1|2]|2]|2]|3
0.10 1.259 | 1.262 | 1.265 | 1.268 | 1.271 | 1.274 | 1.276 | 1.279 | 1282 | 1285 |0 |1 |1 |1|1|2]|2]|2]|3
0.11 1.288 | 1.291 | 1.294 | 1.297 | 1.300 | 1.303 | 1.306 | 1.309 | 1312 | 1315 |0 1|1 |1|2(|2]|2]|2]|3
0.12 1.318 | 1.321 | 1.324 | 1.327 | 1.330 | 1.334 | 1.337 | 1.340 | 1343 | 1346 |0 (1|21 |1|2|2]|2]|2]|3
0.13 1.349 | 1.352 | 1.355 | 1.358 | 1.361 | 1.365 | 1.368 | 1.371 | 1374 | 1377 |0 1|21 |1|2|2]|2]|3]|3
0.14 1.380 | 1.384 | 1.387 | 1.390 | 1.393 | 1.396 | 1.400 | 1.403 | 1406 | 1409 |O 1|21 |1|2|2]|2]|3]|3
0.15 1.413 | 1.416 | 1.419 | 1422 | 1426 | 1.429 | 1432 | 1435 | 1439 | 1442 |0 1|1 |1|2|2]|2]|3]|3
0.16 1.445 | 1.449 | 1.452 | 1.455 | 1.459 | 1.462 | 1.466 | 1.469 | 1472 | 1476 |0 |1 |1 |1|2|2]|2]|3]|3
0.17 1.479 | 1.483 | 1.486 | 1.489 | 1.493 | 1.496 | 1.500 | 1503 | 1507 | 1510 |0 1|21 |1|2|2]|2]|3]|3
0.18 1514 | 1.517 | 1.521 | 1.524 | 1.528 | 1.531 | 1.535 | 1538 | 1542 | 1545 |0 1|21 |1|2|2]|]2]|3]|3
0.19 1.549 | 1.552 | 1.556 | 1.560 | 1.563 | 1.567 | 1.570 | 1.574 | 1578 | 1581 |0 (1|21 |1|2|2]|3]|3|3
0.20 1.585 | 1.589 | 1.592 | 1.596 | 1.600 | 1.603 | 1.607 | 1611 | 1614 | 1618 |O |1 |21 |1|2|2]|3|3]|3
0.21 1.622 | 1.626 | 1.629 | 1.633 | 1.637 | 1.641 | 1.644 | 1.648 | 1.652 | 1656 |0 |1 |1 |2|2|2]|3]|3]|3
0.22 1.660 | 1.663 | 1.667 | 1.671 | 1.675 | 1.679 | 1.683 | 1.687 | 1.690 | 1.694 |0 |1 |1 |2|2|2]|3|3]|3
0.23 1.698 | 1.702 | 1.706 | 1.710 | 1.714 | 1.718 | 1.722 | 1.726 | 1.730 | 1.734 |0 |1 |1 |2 | 2|2 |3 |3 | 4
0.24 1.738 | 1.742 | 1.746 | 1.750 | 1.754 | 1.758 | 1.762 | 1.766 | 1.770 | 1774 |0 1|1 |2 | 2|2 |3 |3 | 4
0.25 1.778 | 1.782 | 1.786 | 1.791 | 1.795 | 1.799 | 1.803 | 1.807 | 1.811 | 1816 |01 |1 |2 | 2|2 |3 |3 |4
0.26 1.820 | 1.824 | 1.828 | 1.832 | 1.837 | 1.841 | 1.845 | 1.849 | 1854 | 1858 |0 |1 |1 |2|2|3|3|3]|4
0.27 1.862 | 1.866 | 1.871 | 1.875 | 1.879 | 1.884 | 1.888 | 1.892 | 1.897 | 1901 |0 1|1 |2|2|3|3|3]|4
0.28 1.905 | 1.910 | 1.914 | 1919 | 1923 | 1.928 | 1.932 | 1936 | 1941 | 1945 |0 |1 |1 |2|2(|3|3|4]|4
0.29 1.950 | 1.954 | 1.959 | 1.963 | 1.968 | 1.972 | 1.977 | 1982 | 1986 | 1991 |0 |1 |1 |2|2|3|3|4]|4
0.30 1.995 | 2.000 | 2.004 | 2.009 | 2.014 | 2.018 | 2.023 | 2.028 | 2032 | 2037 |0 (1|21 |2|2|3|3|4|4
0.31 2.042 | 2.046 | 2.051 | 2.056 | 2.061 | 2.065 | 2.070 | 2.075 | 2.080 | 2084 |0 1|1 |2 |2 |3|3|4|4
0.32 2.089 | 2.094 | 2.099 | 2.104 | 2.109 | 2.113 | 2118 | 2123 | 2128 | 2133 |0 (1|1 | 2|2 |3|3|4]|4
0.33 2.138 | 2.143 | 2.148 | 2.153 | 2.158 | 2.163 | 2.168 | 2173 | 2178 | 2183 |0 (1|1 | 2| 2|3 |3|4 |4
0.34 2.188 | 2.193 | 2.198 | 2.203 | 2.208 | 2.213 | 2218 | 2223 | 2228 | 2234 |1 |1|2|2|3|3|4]|4]|5
0.35 2.239 | 2.244 | 2.249 | 2.254 | 2.259 | 2.265 | 2.270 | 2275 | 2280 | 2286 | 1 |1|2|2|3|3|4|4]|5
0.36 2.291 | 2.296 | 2.301 | 2.307 | 2.312 | 2317 | 2323 | 2328 | 2333|2339 |1 |1]|2|2|3|3|4]|4]|5
0.37 2.344 | 2.350 | 2.355 | 2.360 | 2.366 | 2.371 | 2377 | 2382 | 2388 | 2393 |1 |1]|2|2|3|3|4|4]|5
0.38 2.399 | 2404 | 2410 | 2415 | 2421 | 2427 | 2432 | 2438 | 2443 | 2449 |1 |12 | 2|3 |3|4|4]|5
0.39 2.455 | 2.460 | 2.466 | 2472 | 2477 | 2483 | 2489 | 2495 | 2500 | 2506 | 1 |12 |2 |3|3|4|5]|5
0.40 2512 | 2518 | 2523 | 2529 | 2535 | 2541 | 2547 | 2553 | 2559 | 2564 |1 |1|2|2|3|4]|4]|5]|5
0.41 2570 | 2.576 | 2.582 | 2.588 | 2.594 | 2.600 | 2.606 | 2.612 | 2618 | 2624 | 1 |1 |2 |2 |3 |4 |4 |5]|5
0.42 2.630 | 2.636 | 2.642 | 2.649 | 2.655 | 2.661 | 2.667 | 2673 | 2679 | 2685 |1 |1]|2|2|3|4]|4]|5]|6
0.43 2.692 | 2.698 | 2.704 | 2.710 | 2.716 | 2.723 | 2729 | 2735 | 2742 | 2748 | 1 | 1|2 |3 |3 |4 |4 ]|5]|6
0.44 2.754 | 2.761 | 2.767 | 2773 | 2.780 | 2.786 | 2.793 | 2.799 | 2805 | 2812 | 1 |1 |2 |3 |3 |4|4|5]|6
0.45 2.818 | 2.825 | 2.831 | 2.838 | 2.844 | 2.851 | 2.858 | 2.864 | 2871 | 2877 | 1 |12 |3 |3 |4|5|5]|6
0.46 2.884 | 2.891 | 2.897 | 2904 | 2911 | 2917 | 2924 | 2931 | 2938 | 2944 | 1 |1|2|3|3|4]|5|5]|6
0.47 2.951 | 2958 | 2.965 | 2972 | 2979 | 2.985 | 2.992 | 2999 | 3.006 | 3.013 |1 |1|2|3|3|4]|5|5]|6
0.48 3.020 | 3.027 | 3.034 | 3.041 | 3.048 | 3.055 | 3.062 | 3.069 | 3.076 | 3.083 |1 |1]|2|3|4|4]|5|6|6
0.49 3.090 | 3.097 | 3.105 | 3.112 | 3.119 | 3.126 | 3.133 | 3.141 | 3.148 | 3155 |1 | 1|2 |3 |4 |4]|5]|6|6
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ANTILOG TABLE
Mean Difference
0.50 3.162 | 3.170 | 3.177 | 3.184 | 3.192 | 3.199 | 3.206 | 3.214 | 3.221 | 3228 |1 |1 |2 |3 415|617
0.51 3.236 | 3.243 | 3.251 | 3.258 | 3.266 | 3.273 | 3.281 | 3.289 | 3.296 | 3304 | 1|2 |2 |3 |4 |5|5]|6|7
0.52 3.311 | 3.319 | 3.327 | 3.334 | 3.342 | 3.350 | 3.357 | 3.365 | 3373 |1 3381 |1|2|2|3|4|5|5|6]|7
0.53 3.388 | 3.396 | 3.404 | 3.412 | 3.420 | 3.428 | 3.436 | 3443 | 3451 | 3459 |1 |12 |2 |3|4|5|6|6]|7
0.54 3.467 | 3.475 | 3.483 | 3.491 | 3.499 | 3.508 | 3.516 | 3524 | 3532 | 3540 |12 |2 |3|4|5|6|6]|7
©.55 3.548 | 3.556 | 3.565 | 3.573 | 3.581 | 3.589 | 3.597 | 3.606 | 3614 | 3622 |1 |2 |2 |3 |4 |5|6|7]|7
0.56 3.631 | 3.639 | 3.648 | 3.656 | 3.664 | 3.673 | 3.681 | 3.690 | 3.698 | 3.707 | 1L |2 |2 |3 |4 |5]|6]|7|8
0.57 3.715 | 3.724 | 3.733 | 3.741 | 3.750 | 3.758 | 3.767 | 3.776 | 3.784 | 3.793 | 1 |2 |3 |3 |4 |5|6]|7|8
0.58 3.802 | 3.811 | 3.819 | 3.828 | 3.837 | 3.846 | 3.855 | 3.864 | 3873 | 3882|112 |3|4|4|5|6|7]|8
0.59 3.890 | 3.899 | 3.908 | 3.917 | 3.926 | 3.936 | 3.945 | 3.954 | 3963 | 3972 |12 |3 |4|5|5|6|7]|8
0.60 3.981 | 3.990 | 3.999 | 4.009 | 4.018 | 4.027 | 4.036 | 4.046 | 4055 | 4064 | 1|12 |3 |4|5|6|6|7]|8
0.61 4,074 | 4.083 | 4.093 | 4.102 | 4.111 | 4121 | 4130 | 4.140 | 4150 | 4159 | 1|12 |3 |4 |5|6|7|8]|29
0.62 4169 | 4.178 | 4.188 | 4.198 | 4.207 | 4.217 | 4227 | 4.236 | 4246 | 4256 |1 |2 |3 |4 |5|6]|7]|8]|9
0.63 4.266 | 4.276 | 4.285 | 4.295 | 4.305 | 4.315 | 4325 | 4335 | 4345 |1 4355 | 1|2 |3|4|5|6]|7]|8]|9
0.64 4.365 | 4.375 | 4.385 | 4.395 | 4.406 | 4416 | 4.426 | 4436 | 4446 | 4457 | 1|12 |3 |4|5]|6|7|8]|9
0.65 4.467 | 4.477 | 4.487 | 4.498 | 4508 | 4519 | 4529 | 4539 | 4550 | 4560 | 1|12 |3 |4|5]|6|7|8]|29
0.66 4571 | 4581 | 4592 | 4603 | 4613 | 4.624 | 4634 | 4645 | 4656 | 4667 | 1 |2 |3 |4 |5|6|7|9]10
0.67 4.677 | 4.688 | 4.699 | 4.710 | 4.721 | 4.732 | 4.742 | 4753 | 4764 | 4775 | 1|12 |3 |4 |5|7|7|9]|10
0.68 4786 | 4.797 | 4808 | 4.819 | 4.831 | 4842 | 4853 | 4864 | 4875|4887 | 1|2 |3|4|5|7|8]9]|10
0.69 4.898 | 4909 | 4.920 | 4.932 | 4.943 | 4955 | 4966 | 4977 | 4989 | 5000 |1 |2 |3 |4|5|7]|8]9]|10
0.70 5.012 | 5.023 | 5.035 | 5.047 | 5.058 | 5.070 | 5.082 | 5093 | 5105 | 5117 {112 |3 |4 |5|7|8|9|11
0.71 5.129 | 5.140 | 5.152 | 5.164 | 5.176 | 5.188 | 5.200 | 5.212 | 5224 | 5236 |1 |2 |4 | 5|6 |7 |8 |10|11
0.72 5.248 | 5.260 | 5.272 | 5.284 | 5.297 | 5309 | 5321 | 5333 | 5346 | 5358 1|12 |4 |5|6 |79 |10|11
0.73 5.370 | 5.383 | 5.395 | 5.408 | 5.420 | 5433 | 5445 | 5458 | 5470 | 5483 |1 |13 |4 |5|6 8|9 (10|11
0.74 5.495 | 5.508 | 5.521 | 5.534 | 5.546 | 5.559 | 5.572 | 5585 | 5598 [ 5610 | 1 |3 |4 |5|6|8]|9|10]12
0.75 5.623 | 5.636 | 5.649 | 5.662 | 5.675 | 5.689 | 5.702 | 5.715 | 5.728 | 5741 |1 |3 |4 | 5|7 |8 |9 |10|12
0.76 5.754 | 5.768 | 5.781 | 5.794 | 5.808 | 5821 | 5834 | 5848 | 5861 | 5875 |1 |3 |4 |5|7 |89 |11]|12
0.77 5.888 | 5.902 | 5.916 | 5929 | 5943 | 5957 | 5970 | 5984 | 5998 | 6.012 |1 |3 |4 | 5|7 |8 |10|11|12
0.78 6.026 | 6.039 | 6.053 | 6.067 | 6.081 | 6.095 | 6.109 | 6.124 | 6.138 | 6.152 | 1 |3 |4 | 6| 7|8 |10[11|13
0.79 6.166 | 6.180 | 6.194 | 6.209 | 6.223 | 6.237 | 6.252 | 6.266 | 6.281 | 6295 | 1 |3 |4 |6 | 7|9 ]|10[11|13
0.80 6.310 | 6.324 | 6.339 | 6.353 | 6.368 | 6.383 | 6.397 | 6.412 | 6427 | 6442 | 1 |3 |4 |6 |7 |9]|10|12]|13
0.81 6.457 | 6.471 | 6.486 | 6.501 | 6.516 | 6.531 | 6.546 | 6.561 | 6577 | 6592 | 2 | 3| 5|6 |8 |9 |11|12]|14
0.82 6.607 | 6.622 | 6.637 | 6.653 | 6.668 | 6.683 | 6.699 | 6.714 | 6.730 | 6.745 |2 |3 | 5|6 | 8|9 |11|12|14
0.83 6.761 | 6.776 | 6.792 | 6.808 | 6.823 | 6.839 | 6.855 | 6.871 | 6.887 | 6902 | 2 |3 | 5|6 |8 |9 |11(13|14
0.84 6.918 | 6.934 | 6.950 | 6.966 | 6.982 | 6.998 | 7.015 | 7.031 | 7.047 | 7063 | 2 |3 | 5| 6| 8 |10]|11|13|15
0.85 7.079 | 7.096 | 7.112 | 7.129 | 7.145 | 7.161 | 7.178 | 7.194 | 7.211 | 7.228 | 2 |3 | 5| 7| 8 |10]|12|13|15
0.86 7.244 | 7.261 | 7.278 | 7.295 | 7.311 | 7.328 | 7.345 | 7.362 | 7.379 | 7.396 | 2 | 3| 5| 7| 8 |10|12|13|15
0.87 7413 | 7.430 | 7.447 | 7.464 | 7.482 | 7.499 | 7.516 | 7.534 | 7551 | 7568 | 2 | 3| 5|7 |9 |10|12|14|16
0.88 7.586 | 7.603 | 7.621 | 7.638 | 7.656 | 7.674 | 7.691 | 7.709 | 7.727 | 7.745 | 2 |3 | 5| 7| 9 |10]|12|14|16
0.89 7.762 | 7.780 | 7.798 | 7.816 | 7.834 | 7.852 | 7.870 | 7.889 | 7.907 | 7925 |2 |4 | 5| 7| 9 |11|12|14|16
0.90 7.943 | 7.962 | 7.980 | 7.998 | 8.017 | 8.035 | 8.054 | 8.072 | 8091 | 8110 [ 2 |4 |6 | 7| 9 |11]|13|15|17
0.91 8.128 | 8.147 | 8.166 | 8.185 | 8.204 | 8.222 | 8.241 | 8.260 | 8279 | 8299 | 2 |4 | 6 | 8| 9 |11|13|15]|17
0.92 8.318 | 8.337 | 8.356 | 8.375 | 8.395 | 8.414 | 8433 | 8453 | 8472 | 8492 | 2 |4 | 6|8 |10|12|14|15|17
0.93 8.511 | 8.531 | 8551 | 8.570 | 8.590 | 8.610 | 8.630 | 8.650 | 8.670 | 8690 | 2 |4 | 6 | 8 |10|12|14|16]18
0.94 8.710 | 8.730 | 8.750 | 8.770 | 8.790 | 8.810 | 8.831 | 8851 | 8872 | 8892 | 2 |14 | 6 |8 |10|12|14|16|18
0.95 8.913 | 8.933 | 8.954 | 8.974 | 8.995 | 9.016 | 9.036 | 9.057 | 9.078 | 9.099 | 2 |4 | 6 | 8 |10|12|15|17 |19
0.96 9.120 | 9.141 | 9.162 | 9.183 | 9.204 | 9.226 | 9.247 | 9.268 | 9.290 | 9311 | 2 |4 | 6 | 8 |11 |13|15(17|19
0.97 9.333 | 9.354 | 9.376 | 9.397 | 9.419 | 9.441 | 9.462 | 9.484 | 9506 | 9528 | 2 |4 | 7|9 |11]|13|15(17|20
0.98 9.550 | 9.572 | 9.594 | 9.616 | 9.638 | 9.661 | 9.683 | 9.705 | 9.727 | 9.750 | 2 | 4 | 7 | 9 |11 |13|16|18|20
0.99 9.772 | 9.795 | 9.817 | 9.840 | 9.863 | 9.886 | 9.908 | 9.931 | 9.954 | 9977 | 2 | 5|7 |9 |11|14)|16]18|20
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31.
32.
33.
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Altitude

Astronomy

Angle of Contact
Aerofoil lift

Adiabatic process
Average (or) Mean speed
Angular Harmonic motion
Beats

Buoyant force

Breaking of rupture point
Compressive stress
Calorimeter

Conduction

Change of state

Capillary rise or fall
Compress

Compliance

Coefficient of performance
Degree of freedom
Damped oscillation
Elongate

Elastic limit

Escape speed

Epicycle

Epoch
Equilibrium
Flexible constant
Free oscillations
Force constant
Forced Oscillation
Frequency
Geocentric model
Gravitational field
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34. Gravitational Potential

35. Gravitational Potential energy

36. Geo- Stationary satellite

37. Hydrostatic paradox

38. Heat engine

39. Hydraulic lift

40. Harmonics

41. Heliocentric model

42. Interference

43. Isothermal process

44. Isobaric process

45. Isochoric process

46. Lateral strain

47. Longitudinal strain

48. Longitudinal stress

49. Loudness

50. Lunar Eclipse

51. Latent heat

52. Latitude

53. Law of equipartition of energy

54. Mean square speed

55. Most probable speed
® 56. Mean free path

57. Maintained Oscillation

58. Mean position

59. Number density

60. Node

61. Natural oscillation

62. Non-periodic motion

63. Oscillatory motion

64. Orbital velocity

65. Overtone

66. Polar satellite

67. Phase

68. Periodic motion

69. Phase difference

70. Penumbra

71. Retrograde motion

72. Restoring force

73 . Restoring Torque

74. Random motion

75. Root mean square speed (Vrms)

76. Radiation
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77.
78.
79.

80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.

94.
95.
97.

98.
99.

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.

Resonance

Ripples

Standard (or) Normal
temperature and pressure
Stethoscope

Sonometer
Superposition

Spring constant / force constant
Stiffness constant

Simple pendulum
Satellite

Stationary waves
Shearing Stress

Surface tension
Streamlined flow

Specific heat capacity
Speed distribution function
Specific heat capacity at
constant pressure
Specific heat capacity at
constant volume

Simple Hormonic motion
Tensile stress

Terminal velocity

Time period

Turbulent flow

Tsunami

Thermal conductivity
Thermometer

Triple Point

Universal gas constant
Umbra

Viscosity

Water striders

Wavicle

Zig - Zag path
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