9

CARBOXYLIC ACID AND THEIR DERIVATIVES

LEVEL- I

1. Identify C in the following sequence of reactions :

- **2.** Saponification (basic hydrolysis) of $C_6H_5C \bigcirc CH_3$ will yield :

(c)
$$C_6H_5CO^- + H0^-$$

3.
$$\begin{array}{c|c}
 & \text{Me}_2\text{NH} \\
\hline
 & \text{0°C, 2h}
\end{array}$$
86.89% (yield);
(3 equivalent)

(d)
$$C_6H_5CO^- + HOCH_3$$

Product (X) of the reaction is:

(a)
$$Me$$

Me

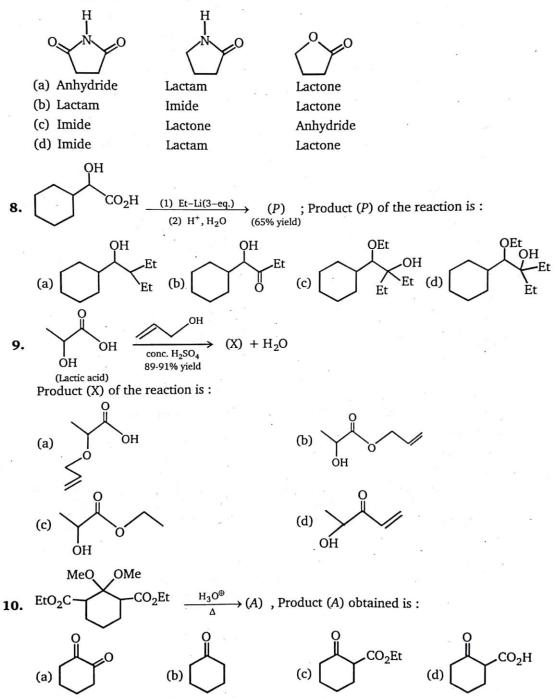
(b) $C - NMe$

(c) NMe_2

(d) $C - H$

4. Which of the following is the correct order of decarboxylation of β -keto carboxylate anion ?

$$R - C \xrightarrow{F} C \xrightarrow{O} C \xrightarrow{C} C \xrightarrow{C} C \xrightarrow{NO_2} C \xrightarrow{C} C \xrightarrow{CN} C \xrightarrow$$


5. $+ CH_3 - NH_2 \longrightarrow Product of the reaction is :$

(a)
$$O \longrightarrow O$$
 (b) $O \longrightarrow CH_3$ (c) $O \longrightarrow O$ (d) $O \longrightarrow CH_3$

6. Which β -keto acid shown will not undergo decarboxylation ?

(a)
$$CO_2H$$
 (b) CO_2H (c) $Ph - C - CH_2 - CO_2H$ (d) $CH_3 - C - CH_2 - CO_2H$

7. Choose the response that matches the correct functional group classification with the following group of structural formulas.

11. Which of the following acid on heating gives geometrical isomers as a product?

(c)
$$CH_3 - CH - CH_2 - CO_2H$$

12.
$$\longrightarrow A \xrightarrow{\text{PCl}_3} B \xrightarrow{\text{MeNH}_2} C$$
; Product (C) of the reaction is:

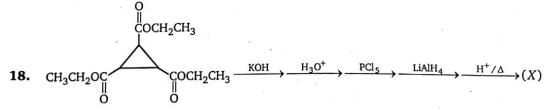
(a)
$$\bigcirc$$
 NH (b) \bigcirc NH

(d)
$$NH_2$$

14.
$$CI \longrightarrow O$$
 $O^- \longrightarrow A \longrightarrow B \longrightarrow B \longrightarrow C$. Product (C) is:

(a)
$$CH_3 - CH_2 - C - H$$

15.
$$\begin{array}{c} & & \\$$

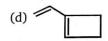

In above reaction identify major product (A) of the reaction:

(a)
$$\bigcap_{N - CH_2 - R}$$
 (b) $\bigcap_{N - CH_2}$ OH $\bigcap_{N - CH_2}$ (c) $\bigcap_{N - R}$ (d) $\bigcap_{N - R}$

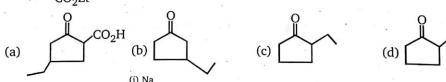
- **16.** An optically active compound 'X' has molecular formula $C_4H_8O_3$. It evolves CO_2 with $NaHCO_3$. 'X' reacts with LiAlH₄ to give an achiral compound. 'X' is:
- 17. $CH_3 C O CH_2 CH_3 + H \bullet \longrightarrow (\bullet = O^{18})$ One of the product of the reaction is:
 - (a) CH₃ -C-O-H
- (b) $CH_3 CH_2 \bigcirc -H$

(c) CH₃ −C − **②**

(d) CH₃ −CH₂ − • −


Product (X) is:

 $CH_3CHCOOH \xrightarrow{\Delta} Product$



19. Identify final product in the following reaction;

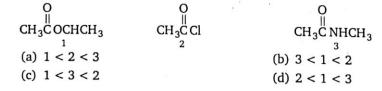
(a)
$$O = CH_3$$
 $O = CHCO_2H$ (c) $CH_3 = CCO_2H$ (d) CH_3CH_2OH

20. Select the final product from this sequence of reactions.

21. Et $CO_2CH_2 - CH_3$ $\xrightarrow{H_2O, H_2SO_4 \text{heat}} (A) \text{ ; Product } (A) \text{ will be :}$ CO_2Et

22. $CH_2(CO_2Me)_2 + ? \xrightarrow{\text{(ii) AcOH}} CH(CO_2Me)_3$

Which of the following reactants will complete the above reaction?


(a) $CH_2(CO_2Me)_2$

(b) $(CO_2Me)_2$

(c) Cl -CO₂Me

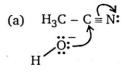
(d) COCl₂

23. Arrange the following in order of increasing reactivity (least \longrightarrow most) towards nucleophile

24. Choose the best sequence of reactions for transformation given. Semicolons indicate separate reaction steps to be used in the order shown.

$$H_3C$$
 \longrightarrow CO_2CH_3 $\xrightarrow{?}$ H_3C \longrightarrow C \longrightarrow C

- (a) H₃O⁺; SOCl₂; CH₃NH₂
- (b) HO^-/H_2O ; PBr_3 ; Mg; CO_2 ; H_3O^- ; $SOCl_2$; CH_3NH_2
- (c) LiAlH₄; H₂O; HBr; Mg; CO₂; H₃O⁺; SOCl₂; CH₃NH₂
- (d) None of these would yield the desired product
- **25.** A key step in the hydrolysis of acetamide in aqueous acid proceeds by nucleophilic addition of:
 - O +OH | (a) H_3O^+ to CH_3CNH_2 (b) H_2O to CH_3CNH_2 +OH +OH | (c) H_3O^+ to CH_3CNH_2 (d) HO^- to CH_3CNH_2
- 26. Which reaction is not possible for acetic anhydride?
 - (a) $(CH_3C)_2O + 2HN(CH_3)_2 \longrightarrow CH_3C N(CH_3)_2 + CH_3CO_2^- + H_2 N(CH_3)_2$
 - (b) $(CH_3C)_2O + CH_3CH_2OH \longrightarrow CH_3COCH_2CH_3 + CH_3CO_2H$
 - (c) $(CH_3C)_2O + C_6H_6 \xrightarrow{AlCl_3} CH_3CC_6H_5 + CH_3CO_2H_9$
 - (d) $(CH_3C)_2O + NaCl \longrightarrow CH_3CCl + CH_3CO_2^-Na^+$
- **27.** All but one of the following compounds react with aniline to give acetanilide. Which one does not?


$$(a) CH_3C - CI$$

$$(b) H_3C - CH_3$$

$$(c) CH_3C - H$$

$$(d) - CCH_3$$

28. Which of the following best describes the nucleophilic addition step in the acid-catalyzed hydrolysis of acetonitrile (CH₃CN) ?

(c)
$$H_3C - C = N$$

29. The major product expected, when Phthalamide is treated with NaOH, is:

30. Which of following acid remains unaffected on heating?

(a) malonic acid

(b) maleic acid

(c) Fumaric acid

(d) Succinic acid

31. Br
$$\sim$$
 Br + CH₂(CO₂Et)₂ \sim NaOEt EtOH cyclic product

At which value of n the formation of six membered ring takes place?

(a)
$$n = 2$$

(b)
$$n = 3$$

(c)
$$n = 5$$

(d) n = 6

32. $\underbrace{N} \xrightarrow{\text{LiAlH}_4(\text{excess})} \text{Product of the reaction is :}$

(a)
$$CH_2OH$$
 CH_2OH

$$(d) \underbrace{OH}_{OH}$$

33.
$$CO_2H$$
 $\xrightarrow{\Delta}$ $\xrightarrow{\Delta}$ Product of the reaction is : CO_2H

(a) cis-anhydride

(b) trans--anhydride

(c) both (a) & (b)

(d) mono-basic acid

34.
$$(i) \text{ EtOH, HCl} \atop (ii) \text{ EtMgBr} \atop (iii) \text{ H}^+/\Delta} (A)$$

Product (A) of the reaction is:

(d)
$$CH_3$$
 CH_3

Product (A) of the reaction is:

(a) Ethylene glycol


- (b) Glycerol
- (c) Glyceryltrinitrate (explosive)
- (d) Cumene hydrogen peroxide

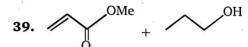
36.
$$CH_3$$
- CH - OAc \xrightarrow{HO} Product of the reaction is :

Et (d) (d=dextro rotatory)

- (a) CH₃ -CH -OH
- (b) CH₃ -CH -OH
- (c) CH₃ -CH -OH
- (d) CH₃-C =CH₂

37. Ph -CH = CH -C -O -H $\xrightarrow{\text{(i) SOCl}_2}$ (A); Product (A) of the reaction is:

(b)
$$Ph - CH = CH - C - NH$$


(c)
$$Ph - CH = CH - C - H$$

(d)
$$Ph - CH = CH - NH$$

38.
$$Ph - C - Cl + \bigcup_{\substack{N \\ H \\ (Morpholine)}}^{O} \longrightarrow (A) ; Identify the product (A).$$

(a)
$$Ph - C - O$$
 $N - H$

(c)
$$Ph - C - N$$

MeOH

Above reaction is an example of:

(a) Esterification

(b) Saponification

(c) Hydrolysis

- (d) Trans Esterification
- 40. Which of the following is an intermediate formed in the reaction shown below?

Conc. HCl

$$CH_3 - C - Cl + NH_3 \longrightarrow Intermediate \longrightarrow product.$$

(a)
$$CH_3 - NH_3$$

(c) Cl
$$\stackrel{\mid}{-C}$$
 - Cl $\stackrel{\mid}{\oplus}$ NH₃

$$R \longrightarrow R$$

Product 100°C (several hours)

(Principal component of coconut oil.)

Product is obtained in the above reaction is:

- (c) Both (a) and (b) (d) None of these
- The reaction of sodium acetate with acetyl chloride proceeds through which of the following mechanisms?

(a)
$$CH_3 - C - \overline{O} + CH_3 - C - CI$$

(d)
$$CH_3 - C - O$$

$$+ CI - C - CH_3$$

43. Which is the major product of the following reaction?

$$\begin{array}{c|c}
CH_3 & -C - Cl \xrightarrow{H_2S} \text{product}
\end{array}$$

44. Which is the major product of the following reaction?

$$O + CH_3 - NH_2 \xrightarrow{\Delta} product$$

45. Ethanoic acid + 3-methyl-1-butanol $\frac{1}{\text{traces}}$ (A); Compound (A) is :

(a)
$$CH_2 - OH$$
 (b) CO_2^- (c) $CH_2 - OH$ (d) $CH_2 - OH$ $CH_2 - OH$

47. Which of the following compounds will undergo decarboxylation on heating?

$$\bigcup_{1}^{O} \bigcup_{2}^{O} \bigcup_{2}^{CO_{2}CH_{3}} \bigcup_{3}^{CO_{2}H} \bigcup_{4}^{CO_{2}H} \bigcup_{4}^{CO_{2}H}$$

(a) 2 and 3

(b) 3 and 4

(c) 3 only

(d) 1 and 4

48. Which one of the following is not an intermediate in the generally accepted mechanism for the reaction shown below?

$$\begin{array}{c} \text{O} \\ \text{CF}_3 \overset{\text{H}}{\text{C}} \text{OH} + \text{CH}_3 \overset{\text{CH}}{\underset{\text{CH}}{\text{CH}_3}} \xrightarrow{\text{H}_2 \text{SO}_4} \\ \text{OH} \end{array} \\ \begin{array}{c} \text{O} \\ \text{H}_2 \overset{\text{O}}{\text{CH}_3} \overset{\text{O}}{\text{CH}_3} + \text{H}_2 \text{O} \\ \text{CH}_3 \end{array}$$

49. RO CO_2H $\xrightarrow{\text{3 eq. EtOH} \atop \text{dry HCl gas} \atop \text{(major product);}}$ (A); Product A is:

50. Identify the compound *C* in the following sequence :

$$(CH_3)_2CHCH_2C \equiv N \xrightarrow{HCl, H_2O} compound A \xrightarrow{1. LiAlH_4} compound B$$

 $\xrightarrow{\text{CH}_2\text{Cl}_2}$ compound C

O
$$\parallel$$
 (a) $(CH_3)_2CHCCH_3$

51. What is the final product (*B*) of this sequence?

$$\begin{array}{c}
\text{CH}_{3} \\
& \xrightarrow{\text{light}}
\end{array}
\xrightarrow{A} \xrightarrow{\text{1. KCN}} B$$

$$\begin{array}{c}
\text{CH}_{3} \\
\text{CO}_{2}\text{H}
\end{array}$$

(c)
$$CH_3$$
 CH_2CO_2H CO_2H

52. Which of the following undergoes decarboxylation most readily on being heated?

53. What is compound Z? $CH_3CH_2CH_2Br \xrightarrow{NaCN} X \xrightarrow{H_3O^+} Y \xrightarrow{CH_3CH_2OH} Z$

(a)
$$CH_3CH = CHCOH$$

(b) CH₃CH₂CH₂CH = NOCH₂CH₃

(d) CH₃CH₂CH₂COCH₂CH₃

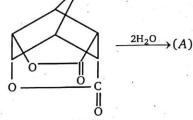
54. $CN \xrightarrow{CN} H_3O^{\oplus}/\Delta$ (A); Product (A) of the reaction is:

(c)
$$CO_2H$$

55. $CH_3 - CH = CH - CH_2 - CO_2H \xrightarrow{\Delta} (X)$ (major); Product (X) is :

- (a) $CH_3 CH = CH CH_3$
- (b) $CH_3 C = CH_2$
- (c) $CH_3 CH_2 CH = CH_2$
- CH_3 (d) $CH_3 CH = CH_2$

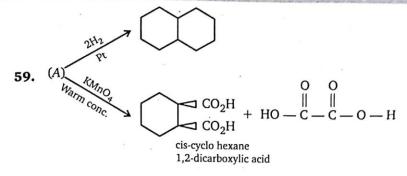
56. $H-O-C-(CH_2)_n-C-O-H \xrightarrow{\Delta} product$, At what value of (n) given compound will not evolve CO_2 gas? (a) n = 5

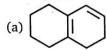

- (b) n = 4
- (c) n = 2
- (d) n = 1

 CO_2H

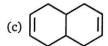
57. $(CH_2)_n$; If (n = 4) then di-carboxylic acid would be known as: CO_2H

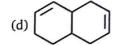
- (a) Malonic acid
- (b) Succinic acid
- (c) Adipic acid
- (d) Oxalic acid


58.

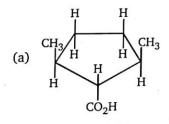

Product (A) of the above reaction is:

(a)
$$CH_3$$
 CO_2H


(d) HO
$$C - H$$

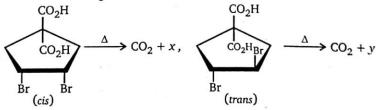


Identify (A).


(p)

How many product will be formed when above compound undergo de-carboxylation?
(a) 0 (b) 1 (c) 2 (d) 3

61. CH_3 H CH_3 CH_3 CO_2H H CH_3 CO_2H H CO_2H CO_2H



(b) CH₃ H CH₃ H CH₃

(c) Both (a) and (b)

(d) none of these

62. Products obtained in the given reactions are shown below.

The number of possible products for x and y are :

(a) 1, 1

(b) 1, 2

(c) 2, 1

(d) 2, 2

63.
$$CH_2 - Br \xrightarrow{(1) \bigcirc \bigcap_{N \text{ K + DMF}} - \bigoplus_{N \text{ K + DMF}} (A)} (A)$$
(Benzyl bromide) (81%)

Product (A) of the above reaction is:

(a) $Ph - NH_2$

(b) $Ph - CH_2 - NH_2$

(c) $Ph - CH_2 - NH - CO_2H$

(d) $Ph - CH_2 - NH - CHO$

64. Which of the following pair is C₂-epimer?

(a) D-Glucose, D-Maltose

(b) D-Glucose, D-Mannose

(c) D-Allose, D-Ribose

(d) D-Glucose, D-Arabinose

Total number of enol possible for the compound formed during given reaction will be 65. (including stereoisomer):

$$CH_{3}MgBr + CH_{3}CH_{2} - C - Cl \longrightarrow$$
(b) 3 (c) 4

(a) 2

(d) 5

What is the product of the following reaction? 66.

67.
$$OH$$

$$CH_3 \xrightarrow{(i) \text{ KBrO}, \Delta} (X) \xrightarrow{\Delta} (Y)$$

Hence the product (Y) in the above sequence of reactions, is:

(a)
$$CH_3$$
 (b) $COOH$ (c) CH_3

68.
$$C-NH_2$$
 and $C-NH_2$ $O-NH_2$ $O-$

69. $CH_3CH_2CH(OH)CH(CH_3)_2 + CH_3COCl \xrightarrow{base} CH_3CH_2CH(OCOCH_3)CH(CH_3)_2 + HCl$

In the above reaction, if the reactant alcohol is a pure R-isomer the product would.

- (a) have configuration inverted at the chiral atom
- (b) be a racemic mixture
- (c) have the same configuration at the chiral atom
- (d) be optically inactive
- **70.** The order of $S_N 1$ reactivity in aqueous acetic acid solution for the compounds

			26 3			ANSV	VERS	— LE	VEL 1						
1.	(b)	2.	(b)	3.	(a)	4.	(c)	5.	(a)	6.	(b)	7.	(d)	8.	(b)
9.	(b)	10.	(b)	11.	(d)	12.	(b)	13.	(b)	14.	(a)	15.	(b)	16.	(c)
17.	(c)	18.	(b)	19.	(a)	20.	(a)	21.	(b)	22.	(c)	23.	(b)	24.	(a)
25.	(b)	26.	(d)	27.	(c)	28.	(d)	29.	(c)	30.	(c)	31.	(b)	32.	(c)
33.	(a)	34.	(a)	35.	(b)	36.	(a)	37.	(b)	38.	(b)	39.	(d)	40.	(d)
41.	(c)	42.	(c)	43.	(b)	44.	(c)	45.	(b)	46.	(a)	47.	(c)	48.	(b)
49.	(b)	50.	(c)	51.	(d)	52.	(d)	53.	(d)	54.	(d)	55.	(c)	56.	(c)
57.	(c)	58.	(c)	59.	(b)	60.	(b)	61.	(c)	62.	(c)	63.	(b)	64.	(b)
65.	(b)	66.	(c)	67.	(c)	68.	(b)	69.	(c)	70.	(c)				

LEVEL-2

1. Match the Column (I) and (II). (Matrix)

	Column (I)	Column (II)				
	Reaction	Products formed				
(a)	$\begin{array}{c c} CH_3 \\ H & CO_2H \\ \hline Ph \end{array}$	(p)	Diastereomers			
(b)	$HO_2C \xrightarrow{CH_3} CO_2H \xrightarrow{\Delta}$	(q)	Racemic mixture			
(c)	CO_2H CO_2H CO_2H CO_3H	(r)	Meso compound			
(d)	CO_2H \longrightarrow CO_2H	(s)	CO ₂ gas will evolve			

SUBJECTIVE PROBLEMS

(Y) is including stereoisomers. Value of (X + Y) will be

ANSWERS — LEVEL 2

1. a-p, s; b-q, s; c-p, s; d-r

Subjective Problems

1. 8