CHAPTER 7

SOLUTIONS OF ELECTROLYTES

§7.01 Characteristics of strong electrolytes

When certain substances such as common salt are dissolved in water, the
solution has a comparatively high conductivity showing that charged ions
must be present. We owe to Arrhenius the suggestion that for these substan-
ces, called strong electrolytes, the solute is composed largely of the free ions,
such as Na‘* and Cl™ in the case of common salt. Study of the optical
properties by Bjerrum* led him in 1909 to the conclusion that at least in
dilute solutions there are at most very few undissociated molecules and in
many such cases the properties of the solution can be accurately accounted
for on the assumption that no undissociated molecules are present.

It would be outside the province of this book to discuss whether a dilute
solution of a strong electrolyte contains a small fraction of undissociated
molecules or none at all. All that matters is that the description of a salt
solution as completely dissociated into independent ions, though admittedly
an oversimplification, is at least an incomparably better model than any
other of equal simplicity. We shall therefore compare the properties of
every real solution of strong electrolytes with an idealized solution con-
taining independent ions.

§7.02 Ionic mole ratios and ionic molalities

In accordance with the programme outlined in the previous section, we
describe the composition of solutions of electrolytes in terms of the ions,
not in terms of the undissociated molecules. We accordingly describe the
composition of a solution containing one or more electrolytes by the
mole ratio r; of each ionic species i defined by

ri=nn,. 7.02.1
* Bjerrum, Proc. 7th Int. Cong. Pure and Appl. Chem. London 1909 Sect. 10 p. 58;
Z. Elektrochem. 1918 24 321.

268



SOLUTIONS OF ELECTROLYTES 269

In practice it is customary instead of mole ratios to use molalities m; defined
by
my=r;r° 7.02.2

where r° is a standard value of r corresponding to one mole of the ionic

species per kilogramme of solvent and equal to M, /kg mole™?.

§7.03 Electrical neutrality

When we carry out our intention of describing the properties of electrolyte
solutions in terms of the ionic species, we shall find that most of the formulae
have a close resemblance to those for non-electrolytes. There is however one
important difference, namely that the molalities m; of all the ionic species
are not independent because the solution as a whole is electrically neutral.
We now proceed to express this condition mathematically.

We use the symbol z to denote the charge on an ion measured in units of
the charge of a proton, so that for example

For Na* z=1
BaZ* z=2
La’t z=3
Cl- z=-1
SO;~ =2
PO4~ =—3

FeC Ni™ z=—4.

We call z the charge number of the ion.
If then m,; denotes the molality of the ionic species i having a charge num-
ber z,, the condition for electrical neutrality of the solution may be written

Y z,m;=0. 7.03.1

Alternatively if we use the subscript . to denote positively charged ions or
cations and _ to denote negatively charged ions or anions, then we may write
(1) in the form

;z+m+=2|z_lm_ 7.03.2

wherein |z_|= —z_ is a positive integer.

Owing to the condition of electrical neutrality (1) or (2), a solution con-
taining c ionic species, as well as the solvent, has ¢ not c+ 1, independent
components,
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§7.04 Ionic absolute activities

Since most equilibrium conditions are expressible in a general, yet conve-
nient, form in terms of absolute activities we shall make continual use of the
absolute activity 4; of each ionic species i. By following this procedure we
shall in fact obtain formulae closely resembling those already obtained for
non-electrolytes. There is however one important difference. We saw in the
previous section that if there are c ionic species i and so c ionic molalities
m;, then only c—1 are independent. There must clearly be some analogous
or related property of the set of ¢ quantities 4;. We shall now discover this
property by considering the physical significance of the 4;’s first in particular
cases and then in general.

Let us consider the distribution of NaCl between two phases, of which at
least one o is a solution; the other B may be a solution in a different solvent
or the solid phase. We shall now determine the equilibrium condition for
NacCl ab initio on the same lines as in §1.39 but in terms of Na* and Cl~.
We assume the temperature, but not necessarily the pressure, to be the same
in the two phases. Suppose now a small quantity dny,+ of Na* and a small
quantity dng,- of Cl™ to pass from the phase o to the phase f, the temperature
of the whole system being kept constant. Then the increase in the Helmholtz
function is given by

d1F= —PadVa—[l;a+ ana+ _ﬂ:':l—dn(:l—
—PPAVE 4 B, dny, s +pb-dng-. 7.04.1

By an argument analogous to that of §1.39, if the two phases are in mutual
equilibrium with respect to the NaCl, the process being considered must be
reversible and so the increase in the free energy must be equal to the work
done on the system. Thus

dF=—-P*dV*—PPdVP 7.04.2
Subtracting (2) from (1) we obtain
(MRa+ — i+ )dnng s + (- — - )dng - =0. 7.04.3

The condition for electrical neutrality (7.03.2) in this case takes the simple
form

ann+ =dnc1— =dn. 7.04.4
Substituting (4) into (3) we have
(/‘ga*‘_ﬂ;a*'l'”gl‘_Auaél‘)dn=0 7.04.5

or dividing by dn
P+ F UG - = Uar + 8 - . 7.04.6
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Since according to the definition of A,

ﬂ,=RT ln A‘i 7.04.7
we may rewrite (6) as
In A%+ +1n A% -=In 28+ +1n 28, - 7.04.8
or
Mg+ Ay =2+ 2&1- . 7.04.9

We thus see that any phase equilibrium relating to NaCl involves only
the sum

Hna+ + Ucr- 7.04.10
or the product

Ana+ At - 7.04.11

In the same way an equilibrium relating to BaCl, would involve only the
sum

Hpa2+ +2/1C|- 7.04. 12
or the product
Apar+ A1~ 7.04.13
and an equilibrium relating to LaCl;, only the sum
Hypgs+ +3lcr- 7.04.14
or the product
Aass Adi- 7.04.15

and so on.

But it might be asked what about an equilibrium relating to the chloride
ion by itself? The answer is that the transfer of a chloride ion, or any other
ion alone from one phase to another involves a transfer of electrical charge,
that is to say an electric current. We shall consider such processes in detail
in the following chapter on electrochemical systems. Meanwhile as long as
we exclude processes involving an electric current, and in this chapter
we do so, we shall meet the y,’s and A,’s only in combinations corresponding
to zero net electric charge. We can express this mathematically by stating
that the only linear combinations

Y v 7.04.16
i

and the only products
IT ()" 7.04.17
i
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which will occur will be those in which the v,’s satisfy the relation

Z V,~Z,~=0. 7-04.18

This means that, apart from electrochemical flow of charge, with which
we are not concerned in this chapter, we could in each phase assign an
arbitrary value to the absolute activity 4; of one ionic species, for instance
the chloride ion. The A;’s of the remaining ions would then be unambiguously
determined. Nothing is however gained by thus arbitrarily fixing the values
of the A;’s. We can just as well leave the arbitrary factor in the 1;’s undeter-
mined, knowing that only those combinations (17) of the 4,’s satisfying
(18) will ever occur and that in these combinations the arbitrary factors
cancel.

§7.05 Ideal dilute and real solutions

It would be rational, as in the case of non-electrolytes, first to define an ideal
dilute solution of electrolytes and thereafter to compare the properties of
real solutions with ideal dilute solutions. Since however no solution of a
strong electrolyte is even approximately ideal dilute even at the highest
dilution at which accurate measurements can be made, there seems no
point in devoting space to such solutions. We therefore pass straight to real
solutions, of which ideal dilute solutions constitute an idealized limiting case.

§7.06 Osmotic coefficient of the solvent

We can define the osmotic coefficient ¢ of the solvent in complete analogy
with the case where the solute species are non-electrolytes merely replacing
rs by r; the mole ratio of an ionic species, or m, by m, the molality of an
ionie species. For electrolyte solutions (5.10.1) becomes

—In(Ay/A9)=—1In(p,/p)=0 ¥ r;i=¢r° Y m,. 7.06.1
i i

We shall use (1) to describe the several equilibrium properties of the solvent.
Before doing so we however point out that if the solution contains non-
electrolytes as well as electrolytes, the former may be included formally
inside the summation ;. We merely treat an electrically uncharged species
as if it were an ionic species with z=0.

§7.07 Freezing point and boiling point

Formula (5.17.11) relating the freezing point T of a solution to the
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freezing point T° of the pure solvent, becomes
¢S ri=¢r®Y m;=¢(M,/kgmole™ ")y m;=(AHI)(1/RT —1/RT®) 7.07.1
i i i

where (A, H?) denotes the value of the proper enthalpy of fusion A, H? of the
pure solvent averaged over the reciprocal temperature range 1 T® to 1/T.
In (1) the value of ¢ is that at the freezing point of the solution.

The relation (5.18.1) between the boiling point T of a solution of involatile
solutes and the boiling point T° of the pure solvent becomes

¢ ri=¢r® Y m=¢(M kg mole“);m,:(A,H?)(l/RT"—1/RT) 7.07.2

where (A, H®> denotes the value of the proper enthalpy of evaporation A, HY
of the pure solvent averaged over the reciprocal temperature range 1/T
to 1/T°. In (2) the value of ¢ is that at the boiling point of the solution.

§7.08 Osmotic pressure

Formula (5.16.2) for the osmotic pressure IT becomes for a solution of
electrolytes
O¢V,Y/RT=¢ Y r;. 7.08.1

§7.09 Ionic activity coefficient

[n analogy with (5.09.1) and (5.09.2) the activity coefficient y; of the ionic
species i is related to the absolute activity 4; by

Ay=2myy; 7.09.1

y—1 as Y m—0. 7.09.2

The proportionality constant 4> depends on the solvent and the temperature.
Furthermore, as explained in §7.04 in each solution an arbitrary value may be

assigned to A, for any one ionic species; the values for the remaining ionic
species are then determined in that solution.

§7.10 Mean activity coefficient of electrolyte

Let us consider an electrolyte which consists of v, cations R of charge num-
ber z, and v_ anions X of charge number z_ so that according to the con-
dition of electrical neutrality v,z, +v_z_=0. The absolute activity 4g,x



274 SOLUTIONS OF ELECTROLYTES

of the electrolyte R,, X,_ is then related to the absolute activities of the
two ionic species by

I, x=Ax*Ax . 7.10.1
Substituting (7.09.1) into (1) we have
A, x=(i§ mr7R)"* (Ax mx¥x)"~ 7.10.2
and in the limit of infinite dilution
Ir,x—(Axmg)"*(Axmy)’~ as Zi:m;—v(). 7.10.3

Since Ag,x and my and my are all well defined quaantities it is clear from (3)
that in spite of the indefiniteness in A7 and A§ separately, the product
(’R)"*(Ax)"~ is completely defined. Returning now to (2) since i x,
my, my, and, as we have just seen, the product (Ag)"* (1)~ are all well
defined, it follows that the product yx* y% is also well defined.

We now introduce a quantity yg x called the mean activity coefficient of the
electrolyte, related to y; and yx by

X =R 7.10.4
Substituting (4) into (2) we have
e, x=0R)"* (Ax) - myt m v 7.10.5

Since yg,x is well defined, while yg and yx individually are not, it would be
wrong to regard (4) as a definition of yg x in terms of y, and yx. Nevertheless
formula (4) does contain something of physical significance. For let us
consider a solution containing two cations R, R’ and two anions X, X'
from which we can form four different electrolytes, for each of which we
can write a relation of the form (4). What these relations together tell us is
that the four mean activity coefficients are not independent. We can best
illustrate the point by a simple example. Let us consider the two cations
Na®, K* and the two anions C1~, NO;. Then we have formally

VRa, c1=TNa* Yci- 7.10.6
?Izc,C1='}’K+ Yci- 7.10.7
Ve, NOs = INa+ INOF 7.10.8

71%, No; = Yk + YNoj - 7.10.9

In a given solution each of the quantities on the left of formulae (6) to (9)
is well defined, while the individual factors on the right are not. But these



SOLUTIONS OF ELECTROLYTES 275

four formulae together lead to the physically significant result

INa, ci/ VK, c1="7Na, N0/ VK, NOs - 7.10.10

§7.11 Temperature dependence
Just as for non-ionic species, we have according to (5.03.10)
dln A,/0T=—H,RT? 7.11.1
so that according to (7.09.1)
9 In(Ay,)/0T = —H,/RT?. 7.11.2
Proceeding to the limit of infinite dilution (2) becomes
d1n A°/0T=—H|RT? 7.11.3

where H;® denotes the limiting value of H; when X;m;—0. Now subtracting
(3) from (2) we find
01n 9,/0T = —(H,— H)|RT>. 7.11.4

For reasons previously given, only linear combinations of these formulae
will occur of the type defined by (7.04.18). In particular for an electrolyte
composed of v, cations R and v.. anions X, we have according to (1)

0 In Ay x/0T = —Hg x/RT? 7.11.5

where
HR,X=V+HR+V—HX 7.11.6

is the partial enthalpy of the electrolyte. Similarly from (4) we deduce
(v4+v_)d1In yp x/0T = —(Hg x—HZ x)/RT? 7.11.7

where Hg x denotes the limiting value of Hy x as Z;m;—0.

§7.12  Distribution of electrolyte between two solvents

The equilibrium condition for the distribution of an electrolyte consisting
of v, cations R and v_ anions X between two solvents o and B can be written
either in terms of the electrolytes as

7.12.1

o B
AR,X*AR,X
or in terms of the ions as

() (A =Ry (A% . 7.12.2
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According to (7.10.1) the two conditions are equivalent. Substituting (7.10.5)
into (1) we obtain
Ve V-, Vi +v_B
[mgmx yrlx "] =1an 7.12.3

V-, Vs tvoa

v
[my*mx y'x

where
Rx=0R%A%)* (Ax*/ax®)'~ 7.12.4

and according to (7.11.3) we have
0 In IR+ /0T =(HX% — HY%)/RT? 7.12.5

We notice that the numerator of the right side is the limiting value as
X,m;—0 of the partial enthalpy of transfer of the electrolyte from the solvent
o to the solvent P.

§7.13  Solubility

For the equilibrium between the solid electrolyte composed of the ions
R, X and a solution containing R, X and possibly other electrolytes,

we have
g, x =A%, x 7.13.1

where we denote the solid phase by the superscript ° and the solution by no

superscript.
Substituting from (7.10.5) into (1) we obtain
my My YRix T =K 7.13.2
where
shex =4 x/(R)" (%) 7.13.3

is called the solubility product of the electrolyte and s; x is called the mean
solubility of the electrolyte. Since

0ln A3 x/0T=—Hj x/RT? 7.13.4
we have, using this and (7.11.3) in (3)
0ln s x/0T =(Hg*x— Hg, x)/(v. +V_)RT? 7.13.5

We notice that the numerator on the right of (5) is the limiting value
as X;m;—0 of the enthalpy of dissolution of the solid electrolyte in the given
solvent.
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§7.14 Chemical reactions

If we consider the chemical reaction

0=Y vB; 7.14.1

where some or all of the species B; may be ionic, the condition of equilibrium,
in the notation defined in §6.01 is according to (6.13.3)

[T(m:) T1(v)= K1) 7.14.2

The fact that some or all of the reacting species may be ions has no effect on
the form of (2). It is however of interest to notice that, owing to the conser-
vation of net electric charge, it follows from (1) that

ZV,-Zi=0 7-14.3

and so
InT](y) 7.14.4

conforms to the type of product which is physically well defined according
to the condition (7.04.18).
We shall illustrate the point by an example. Consider the reaction

0=2Fe?* +Sn** —2Fe3* —Sn?*. 7.14.5

According to (2) the equilibrium condition is

2 2
MEe2+ Mgna+ PFez+ Ysna+ =K 7.14.6
2 2 —Om e
mFe3+ ms,,z + 'ylre:H» 'ysn2+

wherein the activity coefficients product is well defined. It can in fact be
expressed in terms of mean activity coefficients as follows

2 2 8 6 5
YFe2+Ysn4+ _ VFe2+Vsn4+Yoi- _ VFez+, cl-Vsn+, CI- 7.14.7

Vrz-'c“ Psn2+ y:‘é* Vsn2+ 'Ygl- ')’ge“,cr an“, cl-
For the temperature dependence of K,, we have (6.14.2)
dIn K, /dT=AH*/RT? 7.14.8

where AH® denotes the enthalpy of reaction at infinite dilution.

§7.15 Gibbs—Duhem relation for electrolyte solutions

For any phase whatever we have the Gibbs-Duhem relation (1.30.2). For
a solution of electrolytes in a solvent 1 this becomes
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SdT—VdP+nld/11 +Z n,-d,u,-=0 7.15.1

or considering variations of composition at constant temperature and
pressure

nydp,+Y ndy=0 (T, P const.). 7.15.2
We may rewrite (2) in terms of absolute activities 4, as
n,dini;+Y ndln4,=0 (T, P const.). 7.15.3
i
According to the definition of mole ratios and molalities given in §5.02 and
extended to ions in §7.02 we have
n/n,=r;=r°m;=(M,/kg mole ™ ")m,. 7.15.4
If then we divide (2) and (3) throughout by n, and use (4) we obtain
dp, ==Y ridp=—(M,/kg mole™ )Y m,dy; (T, P const.) 7.15.5
i i

dlnl,=-) rdlni=—(M/kgmole™)) mdIni, (T, P const.).
' ‘ 7.15.6

As explained in §7.03 all variations of composition of an electrolyte solution
are subject to the condition for electrical neutrality

Y z;m;=0 7.15.7
so that
Y z,dm;=0. 7.15.8

The variations in formulae (1), (2), (3), (5), (6) are all subject to the condi-
tion (8); but for variations satisfying (8) these formulae hold just as well for
electrolyte solutions as for other solutions.

We now recall the definition of the osmotic coefficient (7.06.1)

—In(1,/2)=¢ ¥, r;=$(M kg mole™ )3 m; 7.15.9

and the definition of ionic activity coefficients y; by (7.09.1)
A=A>mpy;. 7.15.10

Differentiating (9) with respect to changes of composition at constant
temperature and pressure we obtain

dln A =—(M,/kgmole™")d(¢ Y m,) (T, P const.). 7.15.11
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Taking logarithms of (10) and differentiating we obtain
din4=dlnm+dlny, (T, P const). 7.15.12
Now substituting (11) and (12) into (6) we obtain

d{(¢p—-1)Y m}=Y mdiny, (T, P const.) 7.15.13
i i

of the same form as formula (5.11.2) and due to Bjerrum*.
In particular for a solution of a single electrolyte having v, cations R and
v_ anions X, formula (13) becomes

(v +v.)3{(1—@)m}/om= —v, mOIn yg/Om—v_mdInyx/om  17.15.14

where m denotes the molality of the electrolyte. The mean activity coefficient
7r,x Of the electrolyte is related to the ionic activity coefficients y; and yx
by (7.10.4)

TRIX T =ROK - 7.15.15
We now divide (14) throughout by (v, +v_.)m and use (15) obtaining
—01In yg x/Om=m"18{(1—p)m}/om 7.15.16
or integrating from 0 to m
—Inyg X=Jma_-—{(1‘¢)’"} dm 7.15.17
’ 0 om m

Just as in a solution of a single solute non-electrolyte, formula (16) or (17)
may be used to determine either of the quantities y or ¢ if the other is known
as a function of composition at all molalities less than m. On the other hand
the more general relation (13) should not be used in this manner, but rather
as a check on the self-consistency of assumed formulae for ¢ and the
7’s because it is also necessary for the y,s to satisfy the relations of
the type

01n y,/0m,=0!ny,/Om;. 7.15.18

As an example of (17) suppose

l—¢=am' (a,t const.). 7.15.19

Then substituting (19) into (17) we obtain
—Inyg, x=(141"Nam'=(1+t"1)(1-¢). 7.15.20

* Bjerrum, Z. Physik. Chem. 1923 104 406.
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§7.16 Limiting behaviour at high dilutions

It was already proved* over fifty years ago that deviations from ideality
due to the long-range electrostatic interactions between ions in highly dilute
electrolyte solutions are quite different from the deviations in non-electrolyte

solutions.
The distinction can for a single solute be expressed in the form

I—¢ocm as m—0  (non-electrolyte) 7.16.1
l—¢ocm' as m—-0  (t<1)  (electrolyte). 7.16.2
This distinction is most strikingly expressed in the form
d(1—¢)/dm—finite limit as m-0  (non-electrolyte) 7.16.3
d(1-¢)/dm—>o0 as m—0  (electrolyte). 7.16.4

The latter behaviour is shown graphically in figure 7.1 which is of historical
interest being taken from a paper by Bjerrum' written as early as 1916.
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Fig. 7.1. Osmotic coefficients in aqueous solutions of potassium chloride. + + Freezing-
point measurements. Electrostatic interaction according to Milner. ——-- In-
complete dissocation ignoring electrostatic interaction

Milner* in 1912 had shown by statistical methods that the theoretical value
of t is near 1. Various values of ¢ in (2) were used empirically in the
period around 1922, some authors using different values of ¢ for different
electrolytes. Bronsted* pointed out in 1922 that in the limit of high dilutions

* Milner, Phil. Mag. 1912 23 551.
t Bjerrum, 16te Skand. Naturforskermete 1916 p. 229.
! Brensted, J. Amer. Chem. Soc. 1922 44 938.
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the value of ¢ and likewise the proportionality factor in (2) must be the
same for all electrolytes of the same charge type. For 1-1 electrolytes
Bronsted proposed t=3. Finally in 1923 Debye and Hiickel* determined
by a statistical treatment the theoretical law valid in the limit m—0.
According to this law ¢=1% and the proportionality constant in (2) is also
determined by the theory.

§7.17 Limiting law of Debye and Hiickel

As already mentioned the behaviour of a strong electrolyte in the limit of
high dilution is given quantitatively by the formulae due to Debye and
Hiickel.* We shall now specify these formulae. All the deviations from
ideality are most concisely expressed in terms of two characteristic lengths
denoted by s and k1. The definition of s is

s=e?/4neye kT 7.17.1

where e is the elementary charge, ¢, is the rationalized permittivity of empty
space (so that 4ne® is the unrationalized permittivity of empty space),
¢, is the relative permittivity (‘dielectric constant’) of the solvent and &
is the Boltzmann constant. The other characteristic length x~! is defined by

k*=8nLgs Y }z7n;n M, 7.17.2

where L is the Avogadro constant, ¢ is the density of the solvent, and M,
is the proper mass of the solvent.

If G denotes the Gibbs function of the solution and G'* denotes the Gibbs
function of an ideal dilute solution of the same composition, then at high
dilutions

(G—G/RT=-1Y nzixs. 7.17.3
Differentiating (3) with respect to n, and noting that kocn;* we obtain
(1“¢)Zni/n1=(ﬂ1—lli1d)/RT=%zniziz"s/m 7.17.4

so that

1-d=3} nizf/z n;)ks. 7.17.5

Differentiating (3) with respect to n; and noting that Koc(E,n,z,-z)* we
obtain
—In y;=4z%ks. 7.17.6

* Debye and Hiickel, Phys. Z. 1923 24 185.
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We readily verify that Bjerrum’s condition (7.15.13)
d{(1 —¢)Z m}= —Z mdlny, (T, P const.) 7.17.7
is satisfied when used with (7.15.20) and ¢=14.

We now rewrite the above formulae for numerical calculations. We recall
that the molality m; of an ionic species i is defined by

my=rrd =r/(M,/kg mole™*)=n,/n, M, mole kg™ *. 7.17.8
We also define the ionic strength, following Lewis and Randall*, by
I=1~Zzi2m,.. 7.17.9

We further define a dimensionless parameter o depending on the nature of
the solvent and on the temperature, by

a=(2nLgs® mole kg™ ')* 7.17.10
and we observe that
dxs=alt. 7.17.11
We can now rewrite (3) as
(G-G*)RT=—-3%aY zin,I* 7.17.12
and (5) as
and (6) as
—Iny,=az?I?. 7.17.14

In the simple case of a single electrolyte composed of v, cations of charge
number z, and v_ anions of charge number z_ formula (13) becomes

1—¢p=3a{(vy 2% +v_22)/(vs +v_)}E 7.17.15
Using the condition for electrical neutrality
Vezy+v_z_=0 7.17.16
we can rewrite (15) as
1—¢p=1%az, |z_|I% 7.17.17

From (14) it follows that the mean activity coefficient y, of an electrolyte
composed of v, cations of charge number z, and v_ anions of charge

* Lewis and Randall, J. Amer. Chem. Soc. 1921 43 1141.
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number z_ is given by

—Iny,=af{(vizi +v_z2)/(vy +v )HE 7.17.18
Using (16) we can rewrite (18) as

—Inyy =0z, |z_|I% 7.17.19

§7.18 Aqueous solutions

We now illustrate the formulae of the previous section by giving numerical
values for water. At 0 °C we have

L=0.60225 x 10** mole !

0=0.9999 x 10° kg m 3

e=1.6021x10"* C
4me,=8.85416x 1072 CV ! m™!

k=1.3805x10"23JK™!

T=273.15K

¢, =88.23.

As usual we take r®=M,/kg mole~!. These values lead to

§=6935A  a=1.123. 7.18.1

o
-0-02
-0:04
p—I
— _0. Ba Cl
7,z "0 NaCI’
-0 08 K2504
Bd(NO;)z
-0'10
KNO,
~0-12
o Ol 02 03
=

Fig. 7.2. Osmotic coefficients of electrolytes of various charge types at 0 °C
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Similarly for water at 25 °C we have
0=0.9971x10* kg m™~?3
T=298.15K
£,=78.54.
These lead to
s=7.134A  a=1.171 7.18.2

Figure 7.2 gives a plot of (¢—1)/z,.]z_|, determined by freezing-point
measurements, against I¥ for several electrolytes of various charge types.
The tangent at the origin shown as a broken line has the theoretical slope
}o according to formula (7.17.17).

§7.19 Less dilute solutions

The limiting law of Debye and Hiickel described in the previous two sections
is most valuable in providing a reliable means of extrapolating experimental
data to infinite dilution, since experimental measurements determine only
ratios of the values of y in the several solutions. To determine values of y
itself in the several solutions some assumption has to be made concerning
the value of y in at least one such solution, for example the most dilute.
The limiting law of Debye and Hiickel provides the necessary assumption.

On the other hand this limiting law is accurate only at very high dilutions.
For example when the solvent is water it is accurate enough at I=10"3,
but already at I=10"2 deviations are experimentally detectable and at
I=10"1 deviations are serious. In other solvents having smaller permittivi-
ties deviations from the limiting law appear at correspondingly lower ionic
strengths.

For less dilute solutions various formulae can be used, all reducing to the
limiting formula of Debye and Hiickel at high dilutions and all more or
less empirical at less high dilutions. Two of these will be described in the
succeeding sections,

§7.20 Formulae of Debye and Hiickel

We saw in §7.17 how the limiting law of Debye and Hiickel can be conve-
niently and succinctly expressed in terms of two lengths s and k™!, the former
being completely determined by the solvent and the temperature, and the
latter being inversely proportional to the square root of the ionic strength.
The formulae for less dilute solutions contain another characteristic length a
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representing an average distance of closest approach between pairs of ions
and therefore called the ionic diameter.
Formula (7.17.3) of the limiting law is replaced by*

(G—GY)RT= -} ) n;zfes {3(1 +xa) ™' —3o(ka)} 7.20.1

where o(y) is a tabulated function' defined by

o(y)=3y *{1+y—(1+y) ' =2In(1+ )} 7.20.2
or when y<1
o()=1+43Y (t+1)(t+3)"'(=y)  (y<?). 7.20.3
t=1

By differentiating (1) with respect to n, and noting that kocny* we deduce
for the osmotic coefficient

(1 _¢)Zi: nifng =(u —.uild)/RT= —4rd{(G— Gid)/RT}/d’C
=1 Z niz,-zlcspf lo(xa) 7.20.4

so that
1—¢=¥3 mzi[y, n)eso(xa). 7.20.5

By differentiating (1) with respect to n; and noting that x2ocZ;n;z? we
obtain
—Iny;=3%z}ks(l+xa)” . 7.20.6

As in §7.17 we now rewrite the above formulae for numerical calculations in
terms of the ionic strength 7 and the dimensionless parameter a. Formula
(1) becomes

(G—G)RT=—3%a ) z}n,I*{3(1+2ul%afs) ™" —4o(2al*a/s)}. 7.20.7

Formulae (5) and (6) become respectively
1—¢=1} z?m,/Y, m)IFo(2ul*afs) 7.20.8
i i

—In y,=az?I*(1+ 2ala/s)~ . 7.20.9

For solutions containing only a single electrolyte composed of v, cations
of charge number z, and v_ anions of charge number z_ these formulae,
when we use the condition of electrical neutrality,

VieZoe+v_oz_=0 7.20.10

* Debye and Hiickel, Phys. Z. 1923 24 185.
t Harned and Owen, Physical Chemistry of Electrolyte Solutions, Reinhold 2nd ed.
1950 p. 597.
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reduce to
1—¢p=1%az,|z_|I*o(2al*a/s) 7.20.11

—Iny, =0z, |z_|[I*(1+2alta/s)"". 7.20.12

§7.21 Specific interactions

The formulae of Debye and Hiickel enunciated in the previous section
contain a single adjustable parameter a. By ad hoc adjustment of the value
assigned to ¢ it is usually possible to account for the behaviour of a solution
containing a single electrolyte at ionic strengths not exceeding 0.1. In a
mixture of several electrolytes these formulae predict the same value of
y .. for all electrolytes of the same charge type and this contradicts the experi-
mental facts. To conform with these facts further adjustable parameters are
essential. We shall describe the use of a simple and convenient set of such
parameters. For the sake of brevity and simplicity we shall here consider
solutions containing only ions of charge number +1.

We begin by choosing a real or hypothetical single electrolyte as a standard
with which to compare other electrolytes either alone or in a mixed solution.
We shall find that it does not matter how this standard electrolyte is prescrib-
ed provided it resembles a typical real electrolyte. We shall mention alter-
native convenient choices of the standard electrolyte:

1. Some real electrolyte, say NaCl.

2. A hypothetical electrolyte accurately described by the formulae ot
Debye and Hiickel with 2xa/s =1 which corresponds to ax3A in water.

3. A hypothetical electrolyte accurately described by the formulae of
Debye and Hiickel with 2a/s=1 which corresponds to a~3.5A in
water.

We use the superscript © to denote the standard electrolyte and we repeat
that what follows is independent of the choice of standard.

We assume that the Gibbs function G of a solution containing ny cations
R and nx anions X is related to the Gibbs function G® of a solution of
the standard electrolyte at the same total molality m by

(G—G®)/RT =n, ;;2ﬁk,xmkmx. 7.21.1

The outstanding feature of this formula is that there is a single interaction
parameter Py x for every combination of a cation R and an anion X, that
is to say one parameter for each electrolyte. The formula contains no para-
meter for interaction between two cations, nor between two anions. This is
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the essence of a principle enunciated by Bronsted* in 1921 and called by
him the principle of specific interaction of ions. According to this principle
two ions of the same sign will so rarely come close to each other in dilute
solution that their mutual interactions may be assumed to be determined by
their charges, but otherwise to be non-specific. Ions of the opposite sign on
the other hand often come close to each other and their mutual interactions
are therefore specific depending on their sizes, shapes, polarizabilities, and
so on. When this principle is introduced into a statistical treatment' it
leads to parameters of the type Bz x but none of the type fg g- or fx x--

By differentiating (1) with respect to n; noting that myocn; ' and myocn; !
we obtain

(; "R'F;"x)(¢e*¢)=—;;25mxmkmx 721.2
so that
¢_¢e=;;ﬁk,xmnmx/m 7.21.3
where
m=y mg=)y my. 7.21.4
R X
By differentiating (1) with respect to n; noting that mgzocn, we obtain
In(yafy ) =23, Br.xmx - 7.21.5
Similarly
In(yx/y®) =23, B, xma: 7.21.6
Consequently the mean activity coefficient yg x of RX is given by
In(ye, x/)’e)=; Br.x: mx'+RZ Br:, x Mg - 7.21.7
In a solution of a single electrolyte RX these formulae reduce to
¢—¢°= Br,xm
ln()’k, x/?e)=2ﬁk,xm~ 7.21.8

We see that every parameter f; x can be determined by measurements on
solutions of the single electrolyte RX. Thus the properties of all solutions of
mixed electrolytes can be predicted from the properties of solutions of single
electrolytes.

* Brensted, J. Amer. Chem. Soc. 1922 44 938.
t Guggenheim, Phil. Mag. 1935 19 588; Guggenheim, Applications of Statistical Mecha-
nics, Clarendon Press 1966 chapter 9.
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The principle of specific interaction leads to a number of conclusions
concerning mixtures of electrolytes which have been confirmed experimen-
tally by Brensted*. We shall not give details, but shall merely mention
one illustrative example of the usefulness of the principle.

From formula (7) it follows that the mean activity of NaCl present as a
trace in a solution of HCl at m=10""! is equal to that of HCI present as a
trace in a solution of NaCl at m=10""'. The latter can be measured electro-
metrically, as we shall see in the next chapter, while there is no convenient
experimental method for determining the former. Hence the former is best
determined by measuring the latter.

TABLE 7.1

Interaction coefficients

Values of fp x—Bna,c1 at 25 °C

NaF —0.08 KF —0.02
HCl 0.12 NaCl 0.00 KCl —0.05 RbCl —0.09
HBr 0.18 NaBr 0.02 KBr —0.04 RbBr —0.10
HI 0.21 Nal 0.06 K1 0.00 Rbl —0.11
HCIO, 0.15 NaClO, —0.05 KClO, -—0.19 RbNO; -0.29
NacClo, —0.02 RbAc 0.11
LiCl 0.07 NaBrO, —0.14 KBrO, —-0.22 CsCl —0.15
LiBr 0.11 KIO, —0.22 CsBr —0.15
Lil 0.20 NaNOQ, —0.11 KNO, —0.26 Csl —0.16
CsNO; —0.30
LiClO, 0.19 NaAc 0.08 KAc 0.11 CsAc 0.13
LiNO; 0.06 NaCNS 0.05 KCNS —0.06 AgNO; —-0.29
NaH,PO, —0.21 KH,PO, —0.31 TIClO, —0.32
LiAc 0.03 TINO, —0.51
TIAc —0.19

Values of the parameter B x are known for a large number of 1:1
electrolytes in water. The values of f; x of course depend on the choice
of standard electrolyte, but the difference between the values for any two
electrolytes is almost independent of this choice. For this reason we give'
in table 7.1 values of fg x —Pnaci @t 25 °C. The values for HCl, NaCl,
and KCl are obtained from electromotive-force measurements by use of the
theory given in the following chapter. These values are probably accurate
to +0.02. The remaining values are obtained by the isopiestic measurements

* Bronsted, Kgl. Danske Videnskab. Selskab Mat.-Fys. Medd. 1921 4(4); J. Amer.
Chem. Soc. 1922 44 877; 1923 45 2898.
t Guggenheim and Turgeon, Trans. Faraday Soc. 1955 §1 747.
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relative to NaCl or KCl of Robinson and Stokes*. Some of the § values
may be uncertain by as much as 4-0.1 but most of them are probably more
accurate than this.

§7.22 Chemical reactions involving solvent

In §7.14 we obtained the condition for equilibrium in a chemical reaction
between solute ionic species, including non-ionic species as if they were ionic
with z=0. We shall now consider how in dilute solution this condition can
be extended to include chemical reactions involving the solvent.

A reaction involving the solvent is called solvolysis with the exception of
simple addition called solvation. In particular if the solvent is water it is
called hydrolysis.

For the sake of brevity we shall consider not the general case, but a
specific example. We choose the hydrolysis of chlorine

Cl,+2H,0-H,0" +Cl” + HOCL. 7.22.1
The equilibrium condition in its most general form is
A0+ Aci- AocilAci, Ao =1 7.22.2
which we rewrite as
Mso+ Aci- AnocilAc, = Mo - 7.22.3
According to (7.06.1) we have
Auy0/ ;ngo =exp(—¢ Z r). 7.22.4
Indilute solution it is sufficiently accurate to replace (4) by the approximation
Aol Aho=1 7.22.5

with an accuracy depending on the composition of the solution. As a typical
example in an aqueous solution of 1:1 electrolytes at a total molality one
tenth, we have approximately

Y rx3.6x107°
$~0.92
so that
Ayol Ao exp(—3.3x 107%)~0.997. 7.22.6

Hence we may usually replace (3) by

}‘HJO" 'A‘Cl - A’HOCI/ ;ic1z = lﬁﬁo . 7.22.7

* Robinson and Stokes, Trans. Faraday Soc. 1949 45 612.
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Using the relation (7.09.1) for each reacting species other than the solvent
H,O we obtain

(Mmy 0+ M- Myoci/ mch)(')’n,o'f Yci- Yroct/ YCIZ) = Km(T) 7.22.8

the constant A%, being absorbed as a factor of K,,.

From this typical example we see that for a chemical reaction involving
the solvent, the equilibrium condition takes the approximate form in
dilute solution

[T(m:y)=Kan(T) 7.22.9

where IT’ differs from IT by the omission of factors relating to the solvent,

§7.23 Acid-base equilibrium

One of the most important classes of chemical processes between ions in
solution, is that of the transfer of a proton from one ion or molecule to
another. Any ion or molecule capable of losing a proton is called an acid;
any ion or molecule capable of gaining a proton is called a base. These defini-
tions due to Bransted* are simpler and more rational than earlier definitions
which they supersede. The acid and base which differ from each other by one
proton are called a conjugate pair'. Obviously the electric charge number of
any acid exceeds by unity that of its conjugate base. Table 7.2 gives examples
of well-known conjugate pairs of acids and bases. It is clear from several
examples in table 7.2 that an ion or a molecule may be both an acid and a
base.

TABLE 7.2

Typical conjugate acids and bases

Acid Base
CH;CO,H CH;CO,
NH] NH;,
H,0 OH~-
H,0+ H,0
H,PO, H,PO;
H,PO; HPOY”
HPO?2- PO

H,N+CH,CO,H  H,N+CH,CO;
H,N+CHyCO;  H,N-CH,CO;

* Bronsted, Rec. Trav. Chim. Pays-Bas 1923 42 718.
t Brensted and Guggenheim, J. Amer. Chem. Soc. 1927 49 2554.
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If A and B denote an acid and its conjugate base, while A’ and B’
denote another conjugate pair then the chemical reaction

A+B'->B+A’ 7.23.1
is typical of acid-base reactions. The equilibrium condition is
(mgmy/mymy)(yeyar/vave)=K 7.23.2

where K depends on the solvent and the temperature, but not on the com-
position of the solution. As a typical example we have, using Ac as an
abbreviation for CH;CO,

NH; +Ac~—NH, +HAc 7.23.3
(Myp, Muac/ MNu; Mac —)(VNﬂg YHAc/ YNu} YAc -)=K. 7.23.4

Since water is both a base and an acid it can react with either an acid or a
base dissolved in it. As examples of acids reacting with water, we mention

HAc+H,0-Ac” +H,0" 7.23.5
NH; +H,0-»NH;+H,0" 7.23.6
H,PO; +H,0-HPOZ™ +H,0" 7.23.7
and as examples of bases reacting with water
H,0+Ac™->OH™ +HAc 7.23.8
H,0+NH,—»OH™ + NH; 7.23.9
H,0+H,PO; -OH™ +H,PO,. 7.23.10

We note that according to the definition of hydrolysis given in the preceding
section, reactions (5) to (10) are all examples of Aydrolysis. On the other
hand reaction (3) does not involve the solvent H,0 and is therefore not a
hydrolysis.
The reactions (5), (6), and (7) are all examples of the general type
A+H20—)B+H30+ 7.23.11
of which the equilibrium condition in dilute solution becomes
(mpmu,0+(Ma)(VpYr,0+/7a)=Ka 7.23.12

where K, is called the acidity constant of A in water at the given temperature.
K, is a measure of the strength of the acid A relative to water. The reciprocal
of K, may likewise be regarded as a measure of the strength of the conjugate
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base B. For example the acidity constants Ky, of HAc and Kyu; of NH}
have the values at 25 °C
Kyac=1.75%x10"% 7.23.13
Ky =6.1x 10710, 7.23 14

Two molecules of H,O can react together, the one acting as an acid, the
other as a base, thus:

H20+H20—)OH— +H30+.
The equilibrium is determined by
My,0+ Mon- YH;0+ You- = Ky 7.23.15

where K, is called the ionization product of water. Its values at various
temperatures are as follows:

0°C K,=0.115x10"1* 7.23.16
20°C K,=0.68x107'* 7.23.17
25°C K,=1.01x10"1%, 7.23.18

The equilibrium constants for reactions of the type
H,O0+B-OH™ +A 7.23.19

can always be expressed in terms of an acidity constant and the ionization
constant of water. For example for reaction (8) we have

(Mon- Myac/Mac-YVou- TuaclPac-) = Ku/Kyac 7.23.20

where Ky, is the acidity constant K, of HAc. Similarly for reaction (9)
we have

(mon- "'NH:/mNH,)(')’OH - PNH} /“yNHg) =K. /Knu; 7.23.21

where Kyy: denotes the acidity constant of NH;.
If we apply the definition (12) of an acidity constant to H;O* we obtain

Ky,o0+ =(mH10 mH,o+/mH,o+)()’Hzo ?H30+/7H30+)
=My,071,0
R My, 0% 55.5. 7.23.22

From (12) and (22) we see that no molecule or ion which is a much stronger
acid than H;O" can exist in appreciable quantity in water. For example
HCl is a much stronger acid than H;0%. Consequently when dissolved in
water it is almost completely changed to H;0" and Cl~. Similarly H,S0.
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is a much stronger acid than H,O" and is therefore almost completely
changed to H;0* and HSO;. On the other hand Kjyso; =1.0x1072 so
that HSO, being a much weaker acid than H;O" can exist in appreciable
amount in water.

Similarly no base much stronger than OH ~ can exist in appreciable quan-
tity in water, since it would be hydrolysed to its conjugate acid and OH ™.
Examples of bases too strong to exist in water are O?~ and NH; which are
hydrolysed as follows

H,0+0?">OH" +OH" 7.23.23
H,0+NH; -OH™ +NH,. 7.23.24

Examples of very strong bases, but not so strong that they cannot exist
at all in water are S~ and CN™.

When a strongly alkaline substance such as NaOH is dissolved in water,
the base present in the solution is OH™. Often NaOH is itself referred to
loosely as a base.

Similar relations hold in other solvents which can react as both base
and acid. Reactions of an ion or molecule with the solvent are called
solvolysis.

§7.24 Weak electrolytes

An electrically neutral molecule, not itself an electrolyte, which by hydrolysis
or other reaction is partly changed into ions is often called a weak electrolyte.
[n particular an electrically neutral acid such as HAc which is partly hydro-
lysed according to

HAc+H,0-Ac™ +H,0" 7.24.1

and an electrically neutral base such as NH, which is partly hydrolysed
according to
H,0+NH,-OH™ +NH{ 7.24.2

are by this definition weak electrolytes. For these substances the names
electrically neutral acids and electrically neutral bases are sufficient and
more informative.

§7.25 Surface phases

The formulae previously derived for surface phases apply just as well to
solutions of electrolytes as to solutions of non-electrolytes. In particular for
variations of composition at constant temperature formula (5.26.1) becomes
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—d7'=2(ri—-rirl)dy,i (T ConSt.) 7.251
i

where the summation Z; extends over all ions and other solute species,
Expressed in terms of absolute activities (1) becomes

~dy=RT Y (I';—r,I'})dIn2;, (T const.). 7.25.2

Even if the solution is extremely dilute the term r,I"; must not be omitted
for although r; <1 at the same time |[I'y|>|I"}].

The above relations, and in fact all the relations, for the surface of an
electrolyte solution are formally analogous to those for the surface of a
non-electrolyte solution. There is however a significant difference requiring
careful treatment, namely counting the number of independent components.
Let us consider some typical examples beginning with the simplest.

A solution of hydrochloric acid in water contains the species H,O,
H;07, and CI~. We omit OH ™, not so much because it is present in negli-
gible amount as because it is in any case not an independent component,
since

OH =2H,0-H,;0". 7.25.3

Of the three species H,0, H,0™, and C1™ the condition for electrical neu-
trality imposes the restrictions

My,0+ =Mc- 7.25.4

Fyo+=Tq- 7.25.5

so that there are only two independent components. We may take these to

be H,0 on the one hand and (H;0* +Cl™) on the other. More simply we
may choose as independent components H,O and HCL.

Similarly a solution of sodium hydroxide in water contains the species

H,0,0H", and Na*. We omit H;0* not so much because it is present in

negligible amount as because it is in any case not an independent component
owing to (3). The condition for electrical neutrality imposes the restrictions

Mop - = Mg+ 7.25.6

FOH'=FN3+ 7.25-7

so that there are only two independent components which we may take to be
H,0 and NaOH. Thus for the surface tension of the solution of NaOH we
have at constant temperature

"'d'y=RT(FNa+ —INa+ FHZO) d ln j’Na"’ +RT(FOH- —TroH- FHzO) dIn A'OH'
=2RT(I'noon— TNaon '1,0) 4 In (Maon¥ne, on) 725.8
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where my,on and I'y,on are defined by, respectively,

MiNa+ = Moy~ = MNaoH 7.25.9
I+ =Ton-=I'naon- 7.25.10

The reader should have no difficulty in distinguishing between y without
any subscript denoting surface tension and yy,,on denoting the mean activity
coefficient of NaOH.

Let us now consider a solution made by dissolving both hydrogen chlori-
de and sodium hydroxide in water. Of the five species H,0, H;0*, OH™,
Nat, and Cl~ in the system only three are independent. For the equilibrium

H,0+H,0-H;0" +OH~ 7.25.11
imposes the restriction

M0+ Mon - Yiz0+ You- = Kw 7.25.12
and the condition for electrical neutrality imposes the restrictions

Minas + Mo+ = Mer- -+ M ogr- 7.25.13
FNa"’ +FH30“' =rCl'+rOH' . 7.25. 14

If the hydrogen chloride is in excess, it is natural to choose as the three
independent components H,0, NaCl, and HCL. In this case mgy- is negli-
gible compared with all the other terms in (13). If on the contrary the sodium
hydroxide is in excess, it is natural to choose as the three independent
components H,0, NaCl, and NaOH. In this case my,o+ is negligible compar-
ed with the other terms in (13). These remarks apply equally to the bulk of
the solution and to the surface layer.

Suppose now we stipulate that precisely equivalent amounts of hydrogen
chloride and sodium hydroxide are contained in the solution. Then the rela-
tion (13) is replaced by the two relations

Mpa + =Mcy- 7.25.15
My, 0+ =Mon- 7.25.16

so that the solution contains only two independent components, which
we naturally take to be H,0 and NaCl. But the restriction (15) which reduces
by one the number of independent components in the bulk of the solution,
does not imply any analogous restriction on the I'’s. In other words the surface
layer can contain as well as H,O and NaCl either an excess of HCl or an
excess of NaOH. Thus the number of components necessary to describe the
composition of the surface phase is still three, not two.



296 SOLUTIONS OF ELECTROLYTES

We shall now analyse this problem, beginning with unspecified quantities
of NaCl and NaOH dissolved in water, introducing the restriction that the
quantity of NaOH is zero only at a later stage. There are four ionic species
Na*, C17, H,0%, and OH " in the solvent H,O. These are not independent,
but are subject to the conditions for electrical neutrality

Mg+ + My 0+ = Moy + Moy - 7.25.17
Ina+ +T'hy0+ =T'ci- +Tou- 7.25.18

and to the condition for ionization equilibrium of the solvent water
A0+ Aon- =Afi,0 =const. 7.25.19

For variations of the surface tension with composition at constant tempera-
ture we have the general relation of the form (2)

—dy/RT =(I'ng+ — Ina+ Thy0) d In Ay, s
+(Tci- —rai- Thyo) d In Ay
+(Iyy0+ — Ts0+ Thyo) d In Ao+
+(Ton-—ron-Tu,0) d1n Aoy-. 7.25.20
Using (17), (18), and (19) we can replace (20) by
—dy/RT=(I¢- — - I'n,0) d In(Ana + Acy-)
+([Iyva+ —Ta-1=[rna+ = 7ci-1Tny0) d In(Ana + Aon-)
=(Tci- —rei- Tiyy0) d In(my, + mey- '))K%Ja,Cl)
+([Inva+ —Ta-1=[rna+ —rc1-1hy0) d In(myg + Moy - 7163,0H)'
7.25.21
Thus by studying the dependence of the surface tension on the composition

by variqtions of the molalities of NaCl and of NaOH, provided the activity
coefficients are known, we can determine the separate values of

and of
[Mya+—Tei-1=[rnar —ra-iso- 7.25.23

The expression (22) is a measure of the adsorption of NaCl relative to H,O,
while the expression (23) is a measure of the adsorption of NaOH relative
to H,O. In particular as the molality of NaOH is made to tend to zero, sO
the quantity (23) tends to

Iyar—Tgy- . 7.25.24
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The value of (24) then becomes the surface concentration of NaOH in a
solution which in the bulk contains only NaCl and H,O.

To recapitulate, by varying the molalities of both NaCl and NaOH
and measuring surface tension we can determine separately the coefficients
of the two terms on the right of (21), namely the quantities (22) and (23)
of which the latter reduces to (24) in a solution containing no excess NaOH.
By measuring the surface tension of solutions containing varying amounts
of NaCl only without any NaOH it is not possible to separate the two terms
on the right of (21) and consequently the quantity (22) can not be deter-
mined in this way.



