CLASS-10th REVISION (CH: -1 REAL NUMBERS)

Objective Questions

-: Multiple Choice Questions :-

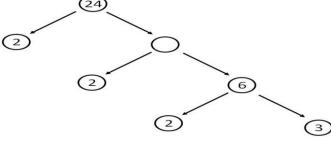
- 1). The decimal form of a rational number $\frac{p}{a}$ is terminating if the factor of q will be of the form
 - (a) $2^m 5^n$
- (b) $2^m 3^n$
- (c) $2^m 7^n$ (d) $2^m 4^n$
- 2.) Decimal expansion of rational number $\frac{17}{8}$ will be :
 - (a) Terminating
- (b) Non-terminating (c) Co prime (d) Prime
- 3.) Decimal representation of rational number $\frac{17}{8}$ will be :
 - (a) 2.125
- (b) 3.125
- (c) 1.125
- (d) 2.25
- 4.) The decimal expansion of rational number $\frac{17}{8}$ will terminate after how many places of decimals?
 - (a) 1

(b) 3

(c)

2

(d) 4


5.) Find the missing number in the following prime factorization tree:

- (a) 12
- (b) 48

(c) 3

(d) 6

- 6.) Which of the following rational numbers will have a terminating decimal expansion?

- (c) $\frac{9}{14}$ (d) $\frac{13}{30}$
- (a) $\frac{17}{8}$ (b) $\frac{7}{105}$ 7.) Decimal representation of $\frac{23}{2^3 \times 5^2}$ will be ?
 - (a) Terminating
- (b) Non-terminating (c) Co prime (d) Prime

8.) De	ecimal representation	on of $\frac{6}{15}$ will be ?		
		(b) Non-terminating		
9.) Th	ne decimal expansio	n of the rational num	ber $\frac{23}{2^2 \times 5}$ will	terminate after ?
((a) One decimal pla	ice	(b) Two decir	nal place
((c) More than three	e decimal place	(d) Three dec	imal place
10.) $$	$\sqrt{3}$ is:			
((a) a rational no.	(b) an irrational no.	(c) an integer	(d) none of these.
11.) 5	$5-3\sqrt{3}$ is :			
((a) a rational no.	(b) an irrational no.	(c) an integer	(d) none of these.
12.) $$	$\sqrt{2}$ is:			
((a) a rational no.	(b) an irrational no.	(c) an integer	(d) none of these.
13.) 6	$6-\sqrt{2}$ is :			
((a) a rational no.	(b) an irrational no.	(c) an integer	(d) none of these.
14.) $$	$\sqrt{25}$ is :			
((a) a rational no.	(b) an irrational no.	(c) an integer	(d) none of these.
15.) 4	3.123456789 is a	Number.		
((a) a rational no.	(b) an irrational no.	(c) none of th	nese.
16.) 0	D. 120120012000	120000 is a ?		
((a) Irrational no.	(b) Rational no.	(c) none of th	ese.
17.)	43. $\overline{123456789}$ is a	Number.		
((a) a rational no.	(b) an irrational no.	(c) none of th	ese.
18.) 3	$3.\overline{12}$ is			
((a) a rational no.	(b) an irrational no.	(c) an integer	(d) none of these.
	au is a/an			
((a) Irrational	(b) Rational	(c) an integer	
20). V	Which of the followi	ng is an irrational nur	mber be:	
((a) $\sqrt{3}$	(b) $\sqrt{9}$	(c) $\sqrt{25}$	(d) $\sqrt{16}$
21.) V	Which of the followi	ng is a rational numb	er be:	
((a) $\sqrt{4}$	(b) $\sqrt{3}$	(c) $\sqrt{5}$	(d) $\sqrt{2}$

22.	22.) A prime number has only factors.					
	(a) 2	(b) 1	(c) 3	(d) 4	
23.) 196 Can be express	ed as a product	of its prime	e factor as		
	(a) $2 \times 7 \times 14$	(b) $2 \times 2 \times 49$) (c	$2^2 \times 7^2$		
24.) The exponent of 2 i	in the prime fact	or of 140			
	(a) 4	(b) 3	(c) 2	(d) 12	
25.) Factors of 24 are :					
	(a) $2^3 \times 3$	(b) $2^3 \times 3^2$	(c)	2×3^2	$(d)2^2\times 3$	
26.) 5 is the prime facto	or of ?				
	(a) 72	(b) 200	(c)) 101	(d) 16	
27.	27.) Two positive integer numbers, whose $HCF = 1$ are known as $\underline{\dots}$ numbers.					
	(a) Co prime		(b)	Non-term	inating	
	(c) Terminating		(d)Prime		
28.) The pair of co-prim					
	(a) 9, 25	(b) 9, 21	(c)	32, 40	(d) 9, 18	
29.) Find the value of x	and y in given fi	gure :			
	(a) $x = 13$, $y = 7$	•		100	1	
	(b) $x = 7$, $y = 1$	3		[×]	143	
	(c) $x = 9$, $y = 1$	2		[11]		
	(d) $x = 12$, $y = 9$					
30.) If a and b are two p	rime numbers, t	hen their I	1CF is	·	
	(a) 1	(b) 2	(c)	3	(d) 4	
31.) The H.C.F of two ex	pressions P and	Q is 1, the	n L.C.M is:		
	(a) $m{p} imes m{q}$	(b) $p\pm q$	(c)	p+q	(d) $p-q$	
32.) Euclid's division ler	nma states that	for two po	sitive integ	ers a and b, there	
	exist unique intege	rs q and r such t	that $a = b$	q+r wher	e r must satisfy	
	(a) $0 \le r < b$	(b) $0 < r \le b$	(c)	1 < r < b		
33.) What is HCF of 26 a	nd 91 will be ?				
	(a) 13	(b) 16	(c)	26	(d) 9	
34.) The HCF of 8, 9 and	25 is				
	(a) 1	(h) 1 (c) 2	(4) O		
ļ	(a) 4	(b) 1 (c) 2	(d) 9		

35.)	35.) HCF of $a=2 imes 3^2 imes 5$, $b=2^2 imes 3 imes 5^2$, $c=2^2 imes 3 imes 5^2$ is					
	(a) 90	0	(b) $2 \times 3 \times 5$	(c) 60	(d) $2^2 \times 3 \times 5^2$	
36.)	LCM of	$fa = 2 \times 3 \times$	5, $b=2^2\times 3^2\times 10^2$	5, $c = 2 \times 3 \times$	5^2 is	
	(a) 2	\times 3 \times 5	(b) 900	(c) 30	(d) $2^2 \times 3^2 \times 5$	
37.)	The su	m of two cons	secutive odd numb	ers is always div	visible by	
	(a) 2		(b) 3	(c) 4	(d) 5	
38.)	The pro	oduct of two	consecutive natura	l numbers is alv	vays	
	(a) Ev	ven number	(b) Prime number	(c) Odd numl	per	
39.)	The su	m or differen	ce of a rational nun	nber and an irra	tional number is:	
	(a) Iri	rational	(b) Rational	(c) None of the	nese	
40.)	The pro	oduct and qu	otient of a non-zer	o rational numb	per and an irrational	
	numbe	er is :				
			(b) Rational	(c) None of th	nese	
41.)	2π is a	ı/an	number.			
	(a) Irı	rational	(b) Rational	(c) None of th	nese	
42.)	If any r	number is div	ided by 5, then whi	ch cannot be th	e remainder ?	
	(a) 0		(b) 1	(c) 2	(d) 5	
43.)	Which	of the follow	ing is a prime numb	er?		
	(a) 20		(b) 8	(c) 23	(d) 10	
44.)	If the p		o numbers is 120 ar	nd their LCM is 4	40. The HCF of the	
	(a) 4		(b) 1	(c) 2	(d) 3	
45.)	The pro	oduct of two	numbers is 120 and	their HCF is 40	. The LCM of the	
	numbe	ers is ?				
	(a) 4		(b) 1	(c) 2	(d) 3	
46.)	The HC	CF of 12, 15 ar	nd 21 is :			
	(a) 4		(b) 3	(c) 2	(d) 12	
47.)	If H.C.F	F of (26, 91)	= 13, then LCM of	(26, 91) = ?		
	(a) 1	3	(b) 2366	(c) 2	(d) 182	
48.)			ction in simplest fo			
	(a) $\frac{3}{10}$	0	(b) $\frac{3}{10}$	(c) $\frac{3}{1000}$	(d) None of these	

49.)	9.) Express 0. $\overline{0001}$ as a fraction in simplest form :					
	(a) $\frac{1}{999}$	(b) $\frac{1}{990}$	(c) $\frac{1}{1000}$	(d) None of these		
50.)	HCF of 96 and 404 i	s ?				
	(a) 4	(b) 101	(c) 96	(d) 16		
51.)	Which of the follow	ing rational num	bers will have a	terminating		
	decimal expansion	?				
	(a) $\frac{17}{8}$	(b) $\frac{7}{6}$	(c) $\frac{9}{7}$	(d) $\frac{11}{13}$		
52.)	H.C.F of 64 and 96 i	s:				
	(a) 32	(b) 64	(c) 4	(d) 96		
53.)	Which of the follow	ing rational num	bers will have a	terminating		
	decimal expansion					
	(a) $\frac{73}{1850}$	(b) $\frac{96}{2^3 \times 5^4}$	(c) $\frac{35}{42}$	(d) $\frac{129}{2^3 \times 5^7 \times 7^5}$		
54.)	$3.\overline{17}$ is a					
	(a) a rational num	ber	(b) an irrational number			
	(c) an integer.		(d) none of these.			
55.)	What is the L.C.M o	of 6 and 20 ?				
	(a) 2	(b) 60	(c) 120	(d) 90		
56.)	Express 140 as a pr	oduct of its prim	e:			
	(a) $2^2 \times 5 \times 7$	(b) $2^2 \times 35$	(c) $2^2 \times 35$	(d) $10 imes 14$		
57.)	$2\sqrt{5} \times 3\sqrt{5}$ is a :					
	(a) a rational no.		(b) an irrational	no.		
	(c) an integer		(d) none of the	se.		
58.)	Without doing the will have a			ational number $\frac{13}{3125}$		
	(a) Terminating			me (d) Prime		
59 \	If the L.C.M of $(a,$					
33.1	(a) 13	(b) 91	(c) 182			
60)				one number is 6 the		
30.7	other number is ?	or two mannach		one namber is o the		
	(a) 30	(b) 120	(c) 20	(d) 240		

61. If two positive integers a an	61. If two positive integers a and b are written as $a=x^5y^2$ and $b=x^3y^3$;					
a, b are prime numbers, the	n HCF (a,b) is :					
(a) x^2y^3 (b) x^2	y (c)	x^3y^2	(d) x^2y^3			
62.) $\sqrt{7}$ is :						
(a) a rational number	(b)	an irrational	number			
(c) an integer	(d)	none of thes	se.			
63.) $\frac{13}{125}$ is a Terminating Decim	al.					
(a) yes	(b)	No				
(c) May be or may not be	(d)	Non of these	2			
64.) Which of the following ratio	onal numbers is n	ot a termina	ting decimal?			
(a) $\frac{17}{8}$ (b) $\frac{6}{15}$	(c)	$\frac{14}{70} \qquad \qquad (d$	$\frac{79}{210}$			
65.) Which of the following is a	common multipl	e of 6 and 12	?			
(a) 42 (b) 30	(c)	60 (d)	18			
66.) Which of the following is no	ot a common mul	Itiple of 6 and	112?			
(a) 24 (b) 48	(c)	60 (d) 18			
67.) The product of non- zero ra	tional and an irra	ational numbe	er is :			
(a) Irrational (b) Rat	ional (c)	None of thes	e			
68.) The sum of a rational numb	er and irrational	number is:				
(a) Irrational (b) Rati	onal (c)	None of thes	e			
69.) The product of two differer	t rational numbe	er is always :				
(a) Irrational (b) Rati	onal (c)	None of thes	е			
70.) The difference of a rational	number and an i	rrational nun	nber is :			
(a) Irrational (b) Rat	ional (c)	None of thes	e			
71.) Is it possible to have two nu	ımbers whose HO	CF is 4 and LC	M is 9696 ?			
(a) yes	(b)	No				
(c) May be or may not be	(d)	Non of these				
72.) Is it possible to have two nu	ımbers whose HO	CF is 2 and LC	M is 15 ?			
(a) yes	(b)	No				
(c) May be or may not be	(d)	Non of these				
73.) $7 \times 11 \times 13 + 13$ is :						
(a) prime number	• •	an irrational ı				
(c) composite number	(d)	none of these	2.			

74.)	If a an	d b are two pr	ime numbers, then th	eir I	HCF is	•
	(a) 1		(b) 2	(c)	3	(d) 4
75.)	The su	ım of the expo	nents of prime factor	s in	the prime f	actorisation 140, is:
	(a) 1		(b) 2	(c)	3	(d) 4
76.)	If $a =$	$2 \times 3^2 \times 5^3$ a	and $b=2^2\times 5^2\times 7$,	ther	\mathbf{n} LCM (a, b)) is :
	(a) 2	$^2 \times 3^2 \times 5^3 \times$	7	• •	$2 \times 3 \times 5$	
	(c) 30)		(d)	$2^2 \times 3 \times$	5 ²
77.)	77.) $\frac{6-\sqrt{2}}{5}$ is an number, it is being given that $\sqrt{2}$ is an irrational number.					
	(a) a	rational no.		(b)	an irration	nal no.
	(c) ar	n integer		(d)	none of th	iese.
78.)	78.) If a and b are two prime numbers, then find LCM (a,b) .					
	(a) α	b	(b) $a+b$	(c)	a-b	(d) $\frac{a}{b}$
79.	If a^2b^2	2c and a^2bc^2 a	are two prime numbe	rs, tl	hen, HCF of	(a^2b^2c, a^2bc^2) is:
	(a) a ²	² bc	(b) $a^2b^2c^2$	(c)	a^2bc^2	(d) <i>abc</i>
80.)	After	how many pla	ces of decimals will be	the	decimal ex	xpansion of rational
	numb	er $\frac{23}{2^35^2}$ termir	nate ?			
	(a) 1	decimal place		(b)	3 decimal	places
		decimal places		(d)	none of th	nese
81.)			and $2^2 imes 3 imes 5^3$?			
		$^{2}3^{2}5^{2}$			$2 \times 3 \times 5$	
	(c) 2	$\times 3 \times 5^2$		(d)	$2 \times 3^2 \times 5$	5^2
82.)	If I and	d m are two pr	ime numbers, then fi	nd L		_
	(a) <i>l1</i>		(b) $l+m$	(c)	l-m	(d) $\frac{l}{m}$
83.)	What	is the HCF of 2	$2 imes 3^2$ and $2^2 imes 3$?			
	(a) 9		(b) 2	(c)	3	(d) 6
84.)	What	is the LCM of 2	$2 imes 3^2$ and $2^2 imes 3$?			
	(a) 6		(b) 2^23^2	(c)	18	(d) 54
85.)	Which	of the follow	ing is an irrational nur	nbe	r be:	
	(a) 0	. 120120012	000120000	(b)	43.12345	6789
	(c) 3.	17		(d)	17 8	

86.)	86.) The exponents of 5 in the prime factorisation of 140, is:				
	(a) 1	(b) 2	(c)	3	(d) 4
87.)	If HCF of two number	ers is 1, the number	s are	called relati	ively and
	(a) Prime, co-prime	2	(b)	Composite	e, co-prime
	(c) Composite, Prin	ne	(d)	Both (a) ar	nd (b)
88.)	For any two positive	e integers a and b, t	here e	exist unique	e integers q and r
	such that $a = bq +$	r , $0 \le r < b$. If $b = 1$	= 4 th	en which is	not the value of r?
	(a) 1	(b) 2	(c)	3	(d) 4
89.)	$10^2 - 6^2$ is:				
	(a) prime number		(b)	an irration	al number
	(c) composite num	ber	(d)	none of the	ese.
90.)	If $a = bq + r$, then	least value of r is :			
	(a) 0	(b) 2	(c) 3	3	(d) 4
91.)	What is the HCF of t	he smallest compos	site nu	umber and	the smallest even
	number?				
	(a) 4	(b) 2	(c) ()	(d) 1
92.)	Which of the follow	ing is true about the	e prim	ne factors o	f the denominator
	of the decimal expa	nsion, 23.3408?			
	(a) It is the power of	of 2 only	(b)	It is a powe	r of 5 only
	(c) It is a product of	powers of 2 and 5	(d)	It may have	any factor
93.)	How many prime fa	actors are there in p	rime	factorizatio	n of 5005 ?
	(a) 5	(b) 1	(c) 3	3	(d) 4
94.)	Which one of the fo	llowing number is a	n irra	tional num	ber?
	(a) 0.121212		(b)	0.10110010	010
	(c) 2.353535		(d)	0.11111	
95.)	A rational number of	an be expressed as	a terr	minating de	cimal if Its
	denominator has a	factor :			
	(a) 2 and 5		(b)	3 <i>and</i> 5	
	(c) 2 and 3		(d)	2.3 and 5	
96.)	If the H.C.F and LCM	l of two numbers ar	e 2 ar	nd 60, then	the product of two
	numbers is:				
	(a) 30	(b) 120	(c)	220	(d) 240
<u> </u>					

97.)	97.) Which of the following rational numbers will have a terminating decimal					
	expansion?					
	(a) $\left(2-\sqrt{3}\right)^2$		(b) $(2 + \sqrt{3})$	$\left(\frac{1}{2}\right)^2$		
	(c) $(2-\sqrt{3})(2+\sqrt{3})$	$\sqrt{3}$)	(d) Non of	these		
98.)	HCF of 96 and 104 is	s ?				
	(a) 8	(b) 101	(c) 96	(d) 16		
99.)	$5-\sqrt{3}$ is :					
	(a) a rational no.		(b) an irrat	ional no.		
	(c) an integer		(d) none of	these.		
100	.) HCF of two consec	utive even numb	ers is :			
	(a) 2	(b) 1	(c) 3	(d) 4		
101	.) The reciprocal of a	ın irrational numl	per is :			
	(a) a rational no.	(b) an integer	(c) an irratio	onal number.		
102.) A number when divided by 255 gives 3 as quotient and 102 as remainder,						
	then the number is	s:				
	(a) 767	(b) 867	(c) 567	(d) 967		
103	.) $5 + \sqrt{3} + \sqrt{5}$ is :					
	(a) a rational numl	ber	(b) an irrati	onal number		
	(c) an integer		(d) none of	these		
104	.) Every positive eve	n integers is of th	e form	for some Integers 'q'.		
	(a) $2q-1$		(b) $2q$			
	(c) $2q + 1$		(d) none of	these		
105	.) If $112 = q \times 6 + r$, then the possib	le value of r are	?		
	(a) 2, 3, 5		(b) 0, 1, 2, 3	3, 4, 5		
	(c) 0, 1, 2, 3		(d) 1, 2, 3, 4	1		
106	.) $oldsymbol{a}$ and $oldsymbol{b}$ are called	co-prime integer	s if :			
	(a) a is a factor of I	b	(b) b is a facto	or of a		
	(c) a and b are con	secutive primes	(d) The HCF of	f a and b is 1		
107	.) Every positive eve	n integers is of th	e form	for some integers 'q' .		
	(a) $2q - 1$	(b) $2q + 1$	(c) $2q$	l) none of these		
108	.) Every positive odd	integers is of the	e form <u></u> wh	ere 'q' is some integers.		
	(a) $3q + 1$	(b) $2q + 1$	(c) $2q + 2$	(d) $5q + 1$		
1						

109.) Every positive odd integers is of the form $2q+1$, where 'q' is some					
(a) Natural n	umber	(b) Integers	5		
(c) Whole nu	mber	(d) none of these.			
110.) What is the L	CM of the smallest two	digit compos	ite number and smallest		
composite nu	ımber is :				
(a) 4	(b) 20	(c) 30	(d) 14		
111.) The HCF of 13	35 and 225 will be ?				
(a) 15	(b) 25	(c) 35	(d) 45		
112.) The decimal	representation of $\frac{33}{50}$ wi	ll be ?			
(a) Terminate	e after 1 decimal place	(b) Non Te	rminate		
(c) Terminate	after 2 decimal places	(d) Termina	ate after 2 decimal places		
113.) The least number that is divisible by all the numbers from 1 to 5 is :					
(a) 30	(b) 60	(c) 90	(d) 120		
114.) The LCM of to	114.) The LCM of two numbers is 1000. Which of the following cannot be their HCF?				
(a) 100	(b) 200	(c) 300	(d) 500		
115.) The least nur	nber that is divisible by	all the number	ers from 1 to 10 is:		
(a) 1020	(b) 1520	(c) 2520	(d) 3520		
116.) The largest n respectively i	umber which divides 45 s :	and 130 leav	ing remainder 5 and 10		
(a) 30	(b) 40	(c) 85	(d) 175		
117.) If $156 = 2^m$.	3^n . 13^p , then the value 6^n	of $m+n+p$	is (or)		
sum of the ex	ponents of prime factor	rs in the prim	e factorisation 156, is:		
(a) 1	(b) 2	(c) 3	(d) 4		
118.) Decimal repr	esentation of $\frac{29}{2^2 \times 4^2}$ will	be:			
(a) Terminati	ng	(b) Nor	n-terminating		
(c) Non-term	inating and repeating	(d) Nor	ne of these		
119.) The largest n	umber that divides 40 a	nd 100, leavir	ng remainder 4 in the		
first case and	10 in the second case re	espectively is	:		
(a) 9		(b) 18			
(c) 36		(d) 90			

120.) If the HCF of 26 and 91 is expressible in the form $26m-91$, then the						
	Value of m is:					
	(a) 4	(b) 13	(c) 26	(d) 7		
121.) The largest number	er that divides 100 a	nd 408, leaving	remainder 4 in each		
	case is:					
	(a) 4	(b) 18	(c) 36	(d) 90		
122.) If 5 is the least pri	me factor of a numb	per $oldsymbol{a}$ and 7 is th	e least prime factor		
	of a number b , The	en the least prime fa	actor of $(a+b)$	is:		
	(a) 1	(b) 2	(c) 7	(d) 10		
123.) What is the LCM o	of the smallest prime	e number and sr	mallest composite		
	natural number?					
	(a) 4	(b) 2	(c) 6	(d) 8		
124.) There is a circular	path around a sport	ts field. Sonia ta	kes 18 minutes to		
	drive one round of the field, while Ravi takes 12 minutes for the same.					
	Suppose they both start at the same point and at the same time and go					
	in same direction.	After how many mi	nutes will they	meet again at the		
	starting point.					
	(a) 12	(b) 18	(c) 30	(d) 36		
125.) Calculate the least	t positive integer wh	nich is divisible k	oy 12 and 18.		
	(a) 12	(b) 18	(c) 30	(d) 36		
126.) The Decimal repre	esentation of $\frac{33}{120}$ wi	II terminate afte	er how many places		
	of decimals?					
	(a) One decimal pl	ace	(b) Two de	cimal place		
	(c) More than thre	e decimal place	(d) Three d	ecimal place		
127.) Which is the small	est odd composite i	number ?			
	(a) 5	(b) 7	(c) 9	(d) 11		
128.) Three bells ring at	intervals of 3, 6 and	d 9 minutes. All	three rings at 6:AM		
	When will they rin	g together again?				
	(a) 6:07AM	(b) 6:08AM	(c) 6:18AM	(d) 6:28AM		
129.) If two irrational nu	umbers are multiplic	ed, then their pr	oduct is:		
	(a) Always irration	nal	(b) Always rat	ional		
	(c) Rational or irra	tional	(d) None of the	ese		

130.) Decimal representation of $\frac{129}{2^2 \times 5^2 \times 7^5}$ is ?

(a) Terminating

(b) Non-terminating

(c) Non-terminating repeating

(d) None of these

131.) If $a = 2^4 \times 3^3$ and $b = 2^3 \times 3^2$, then LCM (a, b) is :

(a)
$$2^2 \times 3^2 \times 5^3 \times 7$$

(b) $2 \times 3 \times 5 \times 7$

(c)
$$2^4 \times 3^3 \times 2^3 \times 3^2$$

(d) $2^4 \times 3^3$

132.) The prime factorisation of 3825:

(a)
$$3 \times 5^2 \times 35$$

(b) $3^2 \times 5^2 \times 17$

(c)
$$3^2 \times 5 \times 85$$

(d) $9 \times 25 \times 17$

133.) The HCF and LCM of of 26 and 91 is:

(a) 13, 26

(b) 26, 13

(c) 13, 182

(d) 182, 13

134.) The LCM and HCF of of 12, 15 and 21 is:

(a) 3, 120

(b) 3, 420

(c) 420, 3

(d) 120, 3

-: ANSWER KEY :-

- 1.)- Ans. (a) $2^m 5^n$ (or) $2^n 5^m$
- 2.)- Ans. (a) Terminating.

Hint :-
$$\left[\frac{17}{8} = \frac{17}{2 \times 2 \times 2} = \frac{17}{2^3}\right]$$

Explanation :- [Here, $q=8=2\times2\times2=2^3$ is of the form of 2^3 , 5^0 (or) 2^m5^n , Hence $\frac{17}{8}$ represents terminating decimals.]

3.)- Ans. (a) 2.125

Hint:
$$-\frac{17}{8} = 2.125$$
 (or) $\frac{17}{8} = \frac{17}{2 \times 2 \times 2} = \frac{17 \times 5^3}{2^3 \times 5^3} = \frac{2125}{10^3} = \frac{2125}{100} = 2.125$

4.)- Ans. (b) 3 (Three decimal place)

Hint :-
$$\frac{17}{8}$$
 = 2.125 (Three decimal place) (or)
$$\frac{17}{8} = \frac{17}{2 \times 2 \times 2} = \frac{17 \times 5^3}{2^3 \times 5^3} = \frac{2125}{10^3} = \frac{2125}{100} = 2.125 = (3 \text{ decimal place})$$

- 5.)- Ans. (a) 12
- 6.)- Ans. (a) $\frac{17}{8}$

Hint :- [
$$\frac{17}{8}=\frac{17}{2\times2\times2}=\frac{17}{2^3}$$
 Here, $8=2\times2\times2=2^3$ can be expressed as 2^35^0] Hence, $\frac{17}{8}$ represents terminating decimal expansion .

7.)- Ans. (a) Terminating.

Hint :- (Because, q is of the form of 2^35^2 (or) 2^m5^n . Hence, $\frac{23}{2^3\times 5^2}$ represents terminating decimal expansion.)

8.)- Ans. (a) Terminating.

Hint :- $\frac{6}{15}$ has a denominator of 15, But the fraction must be in simplest Form, $\therefore \frac{6^2}{15_5} = \frac{2}{5}$, Hence q is of the form of $2^n 5^m$, where n, m are non negative integers. Then x has a terminating decimal expansion.

9.)- Ans. (b) Two decimal place.

Hint :-
$$\left(\frac{23}{2^2 \times 5} = \frac{23 \times 5}{2^2 \times 5^2} = \frac{115}{10^2} = \frac{115}{100}\right) = 1.15 = \text{Two decimal place}$$

- 10.)- Ans. (b) an irrational number.
- 11.)- Ans. (b) an irrational no. ($\sqrt{3}$, is an irrational number $\therefore 5 3\sqrt{3}$ is also)
- 12.)- Ans. (b) an irrational no.

- 13.)- Ans. (b) an irrational no. Hint ($\sqrt{2}$, is an irrational number $\div 6 \sqrt{2}$ is also)
- 14.)- Ans. (a) a rational number.

Hint :-
$$\left[\sqrt{25} = 5 = \frac{5}{1} \right]$$

Explanation :- (a rational number can be expressed in the form of $\frac{p}{q}$ where P and q are two integers and q not equal to zero.)

- 15.)- Ans. (a) a rational no.
- 16.)- Ans. (a) Irrational.
- 17.)- Ans. (a) a rational no.
- 18.)- Ans. (a) a rational number.
- 19.)- Ans. (a) Irrational.

Hint ($\pi = 3.141592...$, Which is non-terminating and non repeating decimal expansion) \therefore It is an irrational number.

- 20.)- Ans. (a) $\sqrt{3}$
- 21.)- Ans. (a) $\sqrt{4}$

Hint ($\sqrt{4}=2$, here 2 can be expressed in the form of $\frac{p}{q}=\frac{2}{1}$ where P and q are two integers and q not equal to zero.)

- 22.)- Ans. (a) 2 (1 and number itself)
- 23.)- Ans. (c) $2^2 \times 7^2$

(Hint :- Prime factor of $196 = 2 \times 2 \times 7 \times 7 = 2^2 \times 7^2$)

24.)- Ans. (c) 2

Hint :- (140 = $2 \times 2 \times 5 \times 7 = 2^2 \times 5 \times 7$) Here, exponent of 2 is 2.

25.)- Ans. (a) $2^3 \times 3$

Hint :- (Prime factor of $24 = 2 \times 2 \times 2 \times 3 = 2^3 \times 3$)

26.)- Ans. (b) 200

Hint (5 is the prime factor of that number, which ends with 0 or 5. Here there is only 200 which end with 0)

27.)- Ans. (a) Co prime.

Hint:- (Co-prime numbers are those numbers, Which do not have any common factor other than 1. e.g, 4 and 9 are co-prime numbers.)

28.)- Ans. (a) 9, 25

Hint :- (Co-prime numbers are those numbers, Which do not have any common factor other than 1.)

9 and 25 have no common factor $=>9=3\times3,\ 25=5\times5$

∴ correct answer is (a) 9, 25

28.)- Ans. (a) 9, 25

Hint (9 and 25 have no common factor $=>9=3\times3,\ 25=5\times5$)

- 29.)- Ans. (b) x = 7, y = 13
- 30.)- Ans. (a) 1

Hint :- (Hence, any two different prime numbers will have the highest common factor as '1'. therefore the HCF of given two prime numbers a and b is 1.)

HCF of two primes is always 1. \therefore correct answer is (a) 1.

31.)- Ans. (a) $p \times q$

Hint :- Here, HCF of p and q = 1.

$$\begin{aligned} \mathsf{HCF}\,(p,q) \times \, \mathsf{LCM}\,(p,q) &= \, p \times q \\ 1 \times \, \mathsf{LCM} &= \, p \times q \\ \mathsf{LCM} &= \, p \times q \end{aligned}$$

- 32.)- Ans. (a) $0 \le r < b$
- 33.)- Ans. (a) 13.

Hint :- Prime factor of $26 = 2 \times 13$, $91 = 7 \times 13$, Common factor of 26 and 91 = 13, so HCF 26 and 91 = 13)

34.)- Ans. (b) 1.

<u>Hint</u>:- (Prime factor of $8=2\times2\times2$, $9=3\times3$ and $25=5\times5$, There is no common factor of 8, 9 and 25 so, HCF of 8, 9 and 25 = 1

- 35.)- Ans. (b) $2 \times 3 \times 5$
- 36.)- Ans. (b) 900

<u>Hint</u> :- Here, $a=2\times 3\times 5$, $b=2^2\times 3^2\times 5$, $c=2\times 3\times 5^2$

<u>Explanation</u>:- LCM is the product of the greatest power of each prime factor, involve in numbers.

: LCM = $2^2 \times 3^2 \times 5^2 = 4 \times 9 \times 25 = 900$. Hence, Correct answer is (b)

37.)- Ans. (c) 4

Explanation :- (3 + 5 = 8, which is divisible by 4 and 15 + 17 = 32, which is divisible by 4)

- 38.)- Ans. (a) Even number
- 39.)- Ans. (a) Irrational.
- 40.)- Ans. (a) Irrational.

41.)- Ans. (a) Irrational.

Explanation :- The product and quotient of a non- zero rational number and an irrational number is irrational.

(π is an irrational number. $2 \times \pi = 2\pi$, $\therefore 2\pi$ is an irrational no.)

42.)- Ans. (c) 5

Hint (If any number is divided by 5, the remainder is always less than 5.)

43.)- Ans. (c) 23

Hint :- (Prime numbers are those numbers, which have no factor other than 1 and the number itself.)

44.)- Ans. (d) 3

Hint :- (HCF
$$(a, b) \times \text{LCM } (a, b) = a \times b$$
)
$$\left(\text{HCF } = \frac{\text{product of numbers}}{\text{LCM}} = \frac{120}{40} = 3\right)$$

45.)- Ans. (d) 3

Hint :- LCM =
$$\frac{\text{product of numbers}}{\text{HCF}} = \frac{120}{40} = 3$$

46.)- Ans. (b) 3.

<u>Hint</u>:- Prime factor of $12 = 2 \times 2 \times 3$, $15 = 3 \times 5$ and $21 = 3 \times 7$ Common factor of 12, 15 and 21 is 3, \therefore HCF of 12, 15 and 21 = 3

47.)- Ans. (d) 182 Hint :- LCM =
$$\frac{\text{product of numbers}}{\text{HCF}}$$

= $\frac{26 \times 91}{13} = \frac{2_{26} \times 91}{13_{11}} = 2 \times 91 = 182$

48.)- Ans. (a)
$$\frac{3}{100}$$

49.)- Ans. (a)
$$\frac{1}{999}$$

50.)- Ans. (a) 4 Hint :- (Here, $96=2\times2\times2\times2\times2\times3$, $404=2\times2\times101$

 \therefore Common factor of 96 and 404 is $2 \times 2 = 4$ so, HCF 96 and 404 = 4

51.)- Ans. (a)
$$\frac{17}{8}$$

Explanation: If $x = \frac{p}{q}$ be a rational number, such that the prime factorization of q is of the form of $2^n 5^m$, where n, m are non-negative integers. Then x has a <u>terminates</u> or <u>terminating</u> decimal expansion.)

Here,
$$8 = 2 \times 2 \times 2 = 2^3$$
, 5^0 . or $2^n 5^m$,

(Hence, $\frac{17}{8}$ represents terminating decimal.)

52.)- Ans. (a) 32.

Hint :- Here, $64 = 2 \times 2 \times 2 \times 2 \times 2 \times 2$, $96 = 2 \times 2 \times 2 \times 2 \times 2 \times 3$

 \therefore Common factor of 32 and 96 is $2^5 = 32$ so, HCF of 64 and 96 = 32

53.)- Ans. (b) $\frac{96}{2^3 \times 5^4}$ (Because, q is of the form of $2^m 5^n$)

54.)- Ans. (a) a rational no.

Hint :- [Since, rational number represent terminating or non-terminating repeating decimal.]

55.)- Ans. (b) 60

Hint :- Here, $6 = 2 \times 3$ and $20 = 2 \times 2 \times 5$

Explanation :- LCM is the product of the greatest power of each prime factor, involve in numbers.

 \therefore L.C.M of 6 and 20 = $2^2 \times 3 \times 5 = 60$. \therefore Correct answer is (b) 60

56.)- Ans. (a) $2^2 \times 5 \times 7$

Hint :- (140 = $2 \times 2 \times 5 \times 7 = 2^2 \times 5 \times 7$) \therefore Correct answer is (a)

57.)- Ans. (a) a rational number.

58.)- Ans. (a) Terminating.

Hint :- $\left[\frac{13}{3125} = \frac{13}{5\times5\times5\times5\times5} = \frac{13}{5^5}\right]$ Because, prime factor of q(3125) is of the form of 2^05^5 (or) 2^m5^n . Hence, $\frac{13}{3125}$ represents terminating decimal expansion.)

59.)- Ans. (d) 26

Solution :- (HCF
$$(a,b) \times$$
 LCM $(a,b) = a \times b$)
$$\frac{\text{HCF } (a,b) \times \text{LCM } (a,b)}{b} = a$$

$$a = \frac{13 \times 182}{91} = \frac{13 \times 182^2}{91} = 13 \times 2 = 26$$

60.)- Ans. (c) 20

Hint :- (HCF
$$(a,b) \times$$
 LCM $(a,b) = a \times b$)
$$\frac{\text{HCF } (a,b) \times \text{LCM } (a,b)}{a} = b$$

$$b = \frac{2 \times 60}{6} = \frac{2 \times 60^{10}}{61} = 2 \times 10 = 20$$

61.)- Ans. (c) x^3y^2

Hint :- (We have,
$$a=x^5y^2=x\times x\times x\times x\times x\times y\times y$$
 $b=x^3y^3=x\times x\times x\times y\times y\times y$) common factor of $a=x^5y^2$ and $b=x^3y^3$ is $x\times x\times x\times y\times y$ \therefore HCF $a=x^5y^2$ and $b=x^3y^3$ is x^3y^2

62.)- Ans. (b) an irrational no.

Hint :- (Here,
$$q = 125 = 5 \times 5 \times 5 = 5^3$$
 of the form of $2^05^3(or) \ 2^m5^n$.

64.)- Ans. (d)
$$\frac{79}{210}$$

Hint:
$$\left[\frac{79}{210} = \frac{79}{2 \times 3 \times 5 \times 7}\right]$$
 Here, $q = 210 = 2 \times 3 \times 5 \times 7$ is not of the form of $2^m 5^n$. Hence, $\frac{79}{210}$ is not a a terminating decimal.

Hint :- (Multiple of
$$6 = 6$$
, 12, 18, 24, 30, 36, 42, 48, 54, 60 and Multiple of 12 = 12, 24, 36, 48, 60)

Common multiple of 6 and 12 = 60 \therefore correct answer is (c) 60.

- 67.)- Ans. (a) Irrational.
- 68.)- Ans. (a) Irrational.
- 69.)- Ans. (b) Rational.
- 70.)- Ans. (a) Irrational.
- 71.)- Ans. (a) Yes.

Explanation :- [HCF always divides LCM completely]
$$\frac{9696}{4} = 2424$$

Hint: [We have,
$$7 \times 11 \times 13 + 13 = 13(7 \times 11 + 1)$$
Hence, given Number is divisible by 13 except 1 and itself.]

Therefore, it is a composite number.]

74.)- Ans. (a) 1

Hint: [Since, a and b two prime numbers then there is no common factors except 1.]
$$\therefore$$
 HCF $(a, b) = 1$

Hint: [We have,
$$140 = 2 \times 2 \times 5 \times 7 = 2^2 \times 5^1 \times 7^1$$
]

76.)- Ans. (a)
$$2^2 \times 3^2 \times 5^3 \times 7$$

77.)- Ans. (b) an irrational number.

Hint: [Since, $\sqrt{2}$ is an irrational number. $\therefore 6-\sqrt{2}$ is also an irrational no. Therefore, $\frac{6-\sqrt{2}}{5}$ is also an irrational number.] The difference of a rational number and an irrational number is always irrational.

- 78.)- Ans. (a) ab
- 79.)- Ans. (a) a^2bc
- 80.)- Ans. (b) 3 decimal places.

Hint :-
$$\left(\frac{23}{2^3 \times 5^2} = \frac{23 \times 5}{2^3 \times 5^3} = \frac{115}{10^3} = \frac{115}{1000}\right) =$$
0.115 = 3 decimal place

- 81.)- Ans. (c) $2 \times 3 \times 5^2$
- 82.)- Ans. (a) lm
- 83.)- Ans. (d) 6

Hint :- Here,
$$2 \times 3^2 = 2 \times 3 \times 3$$
 and $2^2 \times 3 = 2 \times 2 \times 3$

Explanation :- HCF is the product of the smallest power of each common prime factor in numbers.

Therefore HCF of 2×3^2 and $2^2\times 3=2\times 3=6$. Correct answer is (d) 6 84.)- Ans. (b) $2^2\times 3^2$

$$\underline{\text{Hint}}$$
 :- Here, $2\times 3^2=2\times 3\times 3$ and $2^2\times 3=2\times 2\times 3$

<u>Explanation</u>:- LCM is the product of the greatest power of each prime factor, involve in numbers.

Therefore LCM of 2×3^2 and $2^2 \times 3 = 2^2 \times 3^2$.: Correct answer is (b)

- 85.)- Ans. (a) 0. 120120012000120000
- 86.)- Ans. (a) 1

Hint: [We have,
$$140 = 2 \times 2 \times 5 \times 7 = 2^2 \times 5^1 \times 7^1$$
]

87.)- Ans. (a) Prime, co-prime

Hint: [Prime numbers are those numbers, which have no factor other than 1 and the number itself. Co prime numbers are those numbers, Which have at least 1 factor other than 1 and the number itself]

88.)- Ans. (d) 4

Hint: [Given
$$a = bq + r$$
, $0 \le r < b$ and $b = 4$]

89.)- Ans. (c) composite number

Hint: [We have,
$$10^2 - 6^2 = (10 + 6)(10 - 6) = 16 \times 4 = 64$$
]
Hence, $10^2 - 6^2$ is a composite number]

```
Explanation: (A composite number has more than two factors itself and 1.
                     since 64 has more than two factors i.e. 1, 2, 4, 8, 16, 32, 64.)
90.)- Ans. (a) 0
91.)- Ans. (d) 2
     Hint: [Smallest composite number = 4 = 2 \times 2 and
           Smallest even number = 2 = 2 \times 1
           Common factor of 4 and 2 = 2,
           \therefore HCF of 4 and 2 = 2
Ans. (d) 2
     Hint: [Smallest composite number = 4 and Smallest prime number = 2]
     \therefore HCF = 2
92.)- Ans. (c) It is a product of powers of 2 and 5
93.)- Ans. (d) 4 prime factors
     Solution :- [5005 = 5 \times 7 \times 11 \times 13.] Thus there are 4 prime factors
                 there in prime factorization of 5005]
94.)- Ans. (b) 0.1011001010......
     Explanation: - [A real number is an irrational number when it has a
                     non-terminating, non-repeating decimal representation.]
95.)- Ans. (a) 2 and 5
96.)- Ans. (b) 120
    Hint :- (HCF \times LCM = product of numbers)
97.)- Ans. (c) (2-\sqrt{3})(2+\sqrt{3})
98.)- Ans. (a) 8.
     Hint: [We have, 96 = 2^5 \times 3, 104 = 2^3 \times 13]
     \therefore HCF of (96, 104) = 2^3 = 8
99.)- Ans. (b) an irrational no.
     Hint : (\sqrt{3}, is an irrational number, \div 5 - \sqrt{3} is also an irrational no)
100.)- Ans. (a) 2
101.)- Ans. (b) an irrational no.
102.)- Ans. (b) 867
      Explanation :- Dividend = Divisor \times Quotient + Remainder
          Number (Dividend) = Divisor \times Quotient + Remainder
                               = 255 \times 3 + 102
                               = 867
```

```
103.)- Ans. (b) an irrational no.
      Hint: (The sum of a rational and irrational number is an Irrational number)
104.)- Ans. (b) 2q
105.)- Ans. (b) 0, 1, 2, 3, 4, 5
      Hint [a = bq + r, 0 \le r < b \text{ and } b = 6, \text{ Hence } r = 0, 1, 2, 3, 4, 5]
106.)- Ans. (d) The HCF of a and b is 1.
      Hint: [a and b are said to be co-prime integers if they have no common
             factor other than 1. The HCF of two numbers that have no common
             factor other than one is 11
107.)- Ans. (c) 2q
      Explanation: Let aa be an positive integer and b = 2. Then applying
                     Euclid's Division Lemma, we have, a = 2q + r where
                     0 \le r < 2, r = 0 or 1. Therefore a = 2q or 2q + 1
                     Thus it is clear a = 2q, I,e., aa is an even integers is of the
                     form of 2q
108.)- Ans. (b) 2q + 1
      Explanation: Let a be any positive integer and b = 2. Then by applying
                     Euclid's Division Lemma, we have, a = 2q + r
                     where 0 \le r < 2, r = 0 or 1. Therefore a = 2q or 2q + 1
                     Therefore it is clear that a = 2q, i.e., a is an even integers,
                     Therefore 2q + 1 is an odd integer.
109.)- Ans. (b) Integer.
      Explanation: [Euclid's division lemma states that for given two positive
                     integers a and b, there exist unique integers q and r such
                    that a = bq + r where r must satisfy 0 \le r < b
110.)- Ans. (b) 20
      Hint: [Smallest two digit composite number = 10 and Smallest composite
            number = 4
            Prime factor of 10 = 2 \times 5 and 4 = 2 \times 2
            LCM of 10 and 4 = 20, \therefore option (b) is correct
111.)- Ans. (d) 45.
      Hint (Prime factor of 135 = 3 \times 3 \times 3 \times 5 and 225 = 3 \times 3 \times 5 \times 5,
```

Hint (Prime factor of $135 = 3 \times 3 \times 3 \times 5$ and $225 = 3 \times 3 \times 5 \times 5$, \therefore common factor of 135 and 225 = $3 \times 3 \times 5 = 45$, Hence HCF 135 and 225 = 45) \therefore option (d) is correct.

112.)- Ans. (d) Terminate after 2 decimal places.

Hint :-
$$\left(\frac{33}{50} = \frac{33}{2 \times 5 \times 5} = \frac{33}{2 \times 5^2} = \frac{33 \times 2}{2^2 \times 5^2} = \frac{66}{(2 \times 5)^2} = \frac{66}{100}\right) = 0.66$$

 $\therefore \frac{33}{50}$ will Terminate after 2 decimal places. Hence, option (d) is correct.

113.)- Ans. (b) 60

Explanation :- [The required least number is the LCM of (1, 2, 3, 4, 5) = 60] Hence, option (b) is correct.

114.)- Ans. (c) 300

Explanation :- [HCF always divides LCM completely]

115.)- Ans. (c) 2520

Explanation :- [The required least number is the LCM of numbers (1 to 10) LCM of numbers (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) = 2520] Hence, option (c) is correct.

116.)- Ans. (b) 40

Hint :- [Largest such number will be the HCF of (45-5) and (130-10)

i. e., HCF of 40 and 120 is

$$40 = 2 \times 2 \times 2 \times 5$$
 and $120 = 2 \times 2 \times 2 \times 3 \times 5$

 \therefore common factor of 40 and 120 = 2 \times 2 \times 2 \times 5 = 40

Hence HCF of 40 and 120 is $= 40 \div$ option (b) is correct.

117.)- Ans. (d) 4

Hint: [We have,
$$156 = 2 \times 2 \times 3 \times 13 = > 156 = 2^m \times 3^n \times 13^p$$
 $m = 2, n = 1, p = 1$ $m + n + p = 2 + 1 + 1 = 4$, Hence, option (d) is correct.

118.)- Ans. (a) Terminating

Explanation: [Since the prime factorization of the denominator of the given rational number $\frac{29}{2^2 \times 4^2}$ is of the form of $2^n 5^m$, where n, m are non-negative integers. Therefore its decimal representation is terminating.]

119.)- Ans. (b) 18

Hint :- [Largest such number will be the HCF of (40-4) and (100-10) $i.\,e.$, HCF of 36 and 90 is

$$36 = 2 \times 2 \times 3 \times 3$$
 and $90 = 2 \times 3 \times 3 \times 5$

 \therefore common factor of 36 and 90 = 2 \times 3 \times 3 = 18

Hence HCF of 36 and 90 = 18, therefore (b) is correct.

120.)- Ans. (a) 4

Hint :- [HCF of 26 and 91 is expressible in the form of 26m-91, so first of all find the HCF of 26 and 91]

$$26 = 2 \times 13$$
 and $91 = 7 \times 13$

 \therefore common factor of 26 and 91 = 13, Hence HCF of 26 and 91 = 13

So,
$$26m - 91 = 13$$
, $26m = 13 + 91$

$$26m=104,$$

$$m = \frac{104}{26} = \frac{104^4}{26_1} = 4$$
 : Option (a) 4 is correct.

121.)- Ans. (b) 18

Hint :- [Largest such number will be the HCF of (100-4) and (408-4)

i. e., HCF of 66 and 404 is

$$96 = 2 \times 2 \times 2 \times 2 \times 2 \times 3$$
 and $404 = 2 \times 2 \times 101$

 \therefore common factor of 96 and 404 = 2 \times 2 = 4

Hence HCF of 96 and 404 = 4 \therefore Option (b) 18 is correct.

122.)- Ans. (b) 2

Hint :- [5 is the least prime factor of a number a (a is an odd number) and

7 is the least prime factor of a number b, (b is an odd number)]

 $\therefore (a+b)$ is an even number, because sum of two odd is even.

So, the least prime factor of (a + b) is 2,

Hence, option (b) is correct.

123.)- Ans. (a) 4

Hint: [Smallest prime number = 2 and

Smallest composite natural number $= 4 = 2 \times 21$

 \therefore LCM of 2 and 4 = 4

124.)- Ans. (d) 36

Hint :- [Required number = LCM(12, 18)]

$$12 = 2 \times 2 \times 3$$
 and $18 = 2 \times 3 \times 3$

LCM(12, 18) =
$$2^2 \times 3^2 = 4 \times 9 = 36$$
 : option (d) is correct.

125.)- Ans. (d) 36

Hint :- [Required number = LCM(12, 18)]

$$12 = 2 \times 2 \times 3$$
 and $18 = 2 \times 3 \times 3$

LCM(12, 18) =
$$2^2 \times 3^2 = 4 \times 9 = 36$$
 : option (d) is correct.

126.)- Ans. (d) Three decimal place

Hint :- [Fraction must be in simplest form]
$$\therefore \frac{33}{120} = \frac{33^{11}}{120_{40}} = \frac{11}{40}$$

$$\frac{11}{40} = \frac{11}{2 \times 2 \times 2 \times 5} = \frac{11}{2^3 \times 5} = \frac{11 \times 5^2}{2^3 \times 5^3} = \frac{11 \times 25}{10^3} = \frac{275}{1000} = 0.275$$

So, $\frac{33}{120}$ will terminate after three decimal places.

127.)- Ans. (c) 9

Hint: [Composite numbers are those numbers, Which have at least 1 factor other than 1 and the number itself.]

Odd composite numbers are all odd integers that are not prime.

Numbers 5, 7, and 11 has no other factor. 9 is a composite number because it has a factor 3×3 , Hence 9 is the smallest odd composite number.

128.)- Ans. (b) 2

Hint :- [Required number = LCM of 3, 6 and 9 = 18]

Bells will ring together again at 6:18AM]

129.)- Ans. (c) Rational or irrational

<u>Explanation</u>: - [The product of two irrational numbers can be rational or irrational depending on two numbers.]

For example $\sqrt{2} \times \sqrt{2} = 4$, which is a rational number.

where as $\sqrt{2} \times \sqrt{3} = \sqrt{6}$, which is an irrational number.

∴ option (c) is correct.

130.)- Ans. (c) Non-terminating repeating

Explanation: [Since the prime factorization of q is not of the form of 2^n5^m and also has a 7 as its factor, So the decimal expansion of $\frac{129}{2^2\times 5^2\times 7^5}$ is a non-terminating decimal expansion.]

131.)- Ans. (d)
$$2^4 \times 3^3$$

132.)- Ans. (b)
$$3^2 \times 5^2 \times 17$$

133.)- Ans. (c) 13, 182

Explanation: - We have

$$26 = 2 \times 13$$
 and $91 = 7 \times 13$

H.C.F of
$$(26, 91) = 13$$

LCM of
$$(26, 91) = 2 \times 7 \times 13 = 182$$

134.)- Ans. (c) 420, 3

Explanation :- We have

$$12=2\times2\times3$$
 , $15=3\times5$ and $21=3\times7$

H.C.F of (12, 15 and 21) = 3

LCM of (12, 15 and 21
$$= 2 \times 2 \times 3 \times 5 \times 7 = 420$$

Tick the True /False

	<u> </u>	
1)	$\sqrt{25}$ is a rational number.	(True)
2)	$\sqrt{5}$ is an irrational number.	(True)
3)	$\sqrt{5}$ is a rational number.	(False)
4)	$3\sqrt{5} imes 2\sqrt{5}$ is a rational number.	(True)
5)	$3\sqrt{5} imes2\sqrt{5}$ is a irrational number.	(False)
6)	$\frac{1}{\sqrt{2}}$ is a rational number.	(False)
7)	$\sqrt{3}$ is a irrational number.	(True)
8)	3 is a rational number.	(True)
9)	$\sqrt{9}$ is an irrational number.	(False)
10)	$2\sqrt{3}$ is an irrational number.	(True)
11)	$5-\sqrt{2}$ is a rational number.	(False)
12)	Any two positive integers a and b,	
	$HCF(a,b) \times LCM(a,b) = a \times b$	(True)
13)	The number 0.15 can be written as a rational number $\frac{3}{20}$	(True)
14)	140 Can we written as a product of factors in the form	
	of $(2)^2 (5)(7)$?	(True)
15)	Every composite number can be expressed (factorized) as a	
	product of primes.	(True)
16)	, , , , , , , , , , , , , , , , , , , ,	<i>(</i> -)
4-1	r satisfying $a = bq + r$, $0 \le r < b$	(True)
17)	If $x = \frac{p}{q}$ be a rational number, such that q is of the form of	
	2^n5^m , where n, m are non negative integers. Then x has a	
	Terminating decimal expansion.	(True)
18)	If $x = \frac{p}{q}$ be a rational number, such that q is not in the form of	
	$2^{n}5^{m}$, where n, m are non negative integers. Then x has a	
	Non-terminating repeating decimal expansion.	(True)
19)	$\frac{13}{125}$ is terminating decimal expansion.	(True)

20) Product of two positive integers. (True) 21) $a \times b = \text{HCF}(a, b) \times \text{LCM}(a, b)$ (True)

22) 0.120120001200000 is a rational number. (False)

23) $\sqrt{4}$ is an irrational number. (False)

24) Decimal expansion of $\frac{17}{8}$ is terminating. (True)

25) Prime numbers have no factor other than 1 and the number itself. (True)

Fill in the blanks given below

- 1) π is a <u>irrational</u> number.
- 2) The rational form of 0.15 is :- $\frac{3}{20}$
- 3) Product of two numbers = $HCF \times \underline{LCM}$
- 4) The sum (Addition) or difference (subtraction) of a rational and an irrational number Is irrational number.
- 5) The product and quotient of a non zeroes rational and an irrational number is <u>irrational</u>.
- 6) If $x = \frac{p}{q}$ be a rational number, such that the prime factorization of q is of the form of $2^n 5^m$, where n, m are non negative integers. Then x has a terminates / terminating decimal expansion.
- 7) If $x = \frac{p}{q}$ be a rational number, such that the prime factorization of q is not in the form of $2^n 5^m$, where n, m are non negative integers. Then x has a non-terminating repeating decimal expansion.
- 8) If a = bq + r, then least value of r is zero.
- 9) The decimal representation of a rational number is eithe <u>terminating</u> or <u>non-terminating</u> expansion.
- 10) 43. $\overline{123456789}$ is a/an Rational number.
- 11) 43.123456789 is a/an Rational number.
- 12) 0.120120012000120000 is a/an Non rational/Irrational number.
- 13) If a and b are two Prime numbers, then their HCF 1.
- 14) $\frac{6-\sqrt{2}}{5}$ is an <u>irrational</u> number, it is being given that $\sqrt{2}$ is an irrational number.
- 15) The sum of the exponents of prime factors in the prime factorisation 140, is $\underline{4}$.
- 16) HCF of 26 and 91 is 13.
- 17) If $a=2\times 3^2\times 5^3$ and $b=2^2\times 5^2\times 7$, then LCM (a,b) is $2^2\times 3^2\times 5^3\times 7$.
- 18) The condition satisfied by q so that a rational number $\frac{p}{q}$ has a terminating decimal expansion, is $q=2^{\mathrm{n}}5^{\mathrm{m}}$ where m, n be.