
System Of Particles And Rotational Motion 
 

Various Motions Possessed by a Rigid Body 

A rigid body possesses different types of motion. 

For example: 

• Translational motion 

• Rotational motion 

• Combination of translational and rotational motion 

• Translational Motion 

 

• The motion of the block sliding down an inclined plane is translational motion. 

• All the particles of the body move together i.e, they have the same velocity at any 
instant of time. 

• Rotational Motion 

 

• If we fix the rigid body shown in the above figure along a straight line, then the body will 
undergo rotational motion. 

• The examples of rotational motion are motion of a ceiling fan, a potter’s wheel, a merry 
go-round, etc. 



 

In rotation of a rigid body about a fixed axis, every particle of the body moves in a circle, 
which lies in a plane perpendicular to the axis and has its centre on the axis. 

• Combination of translational and rotational motion 

The motion of a rigid body, which is not pivoted or fixed in some way, is either a pure 
translation or a combination of translation and rotation as shown in figure a & b. 

 

 

Centre of Mass 

• Centre of Mass of System of two Particles 



 

Let us consider a system of two particles having mass m1 and m2. Let the distances of 
two particles be x1 and x2 respectively from some origin O. 

The centre of mass of the system is that point C, which is at a distance X from O, 
where X is given by, 

 

If m1 = m2 = m, then 

 

• Centre of Mass of a System of n Particles 

 

∴  

If the origin of the coordinate axes lies at the centre of mass, then X = 0 

In such a case, the above equation becomes  

• Centre of Mass of a System of Three Particles 

Consider that three particles of masses m1, m2, and m3 are lying at the points (x1, y1), 
(x2, y2), and (x3, y3) respectively. Then, the centre of mass of the system of these three 
particles lies at a point, whose coordinates (X, Y) are given by, 



 

If m1 = m2 = m3 = m, then 

 

The centre of mass of the system of three particles coincides with the centroid of the 
triangle formed by the particles. 

The results of equations (i) and (ii) can be generalized to a system of n particles 
distributed in space. The centre of mass of such a system is at (X, Y, Z), where 

 

 

• Centre of Mass of a Rigid body Having Continuous Distribution of Mass 

In order to find the coordinates of the centre of mass of a rigid body having continuous 
distribution of mass, we divide the body into n elementary parts of 
masses Δm1, Δm2, Δm3, … , Δmn. If x1, x2, x3, … , xn are x-coordinates of the various 
particles, then the X-coordinate of the centre of mass of the body is given by, 

 

For a rigid body having continuous distribution of mass, n → ∞ 



Hence, Δmi → 0 

 

Hence, x is the distance of an elementary portion of mass dm of the body. 

= Total mass of the body 

 

Similarly Y- and Z-coordinates of the centre of mass of the body are given by, 

 

 

If the origin of the coordinate axis lies at the centre of mass, then 

X = Y = Z = 0 

In that case, 

 

The equations (i), (ii), and (iii) are expressed in terms of the position vector. If is the 
position vector of an elementary portion of mass dm of the body, then the position 

vector of the centre of mass is given by, 

 

Motion of Centre of Mass and Linear Momentum of a System of particles 

• Consider a system of n particles of masses m1, m2, m3, …, mn. Suppose 

that  are the position vectors of the n particles with respect to the origin of 



the coordinate axes. Then the position vector  of the centre of mass of the system is 
given by, 

 

Where, 

M = m1 + m2 + m3 + … +mn is the total mass of the system 

 

Differentiating both sides of equation (i) with respect to t, we obtain 

 

Then, the velocity of the centre of mass 

And, are the velocities of the individual particles 
of the system 

 

And, are the accelerations of the individual particles of the 
system 



Substituting these values in equation (iv), we obtain 

 

Where,  

 are the forces acting on the individual particles of the system 

If is the total force on the system, then 

 

From equations (v) and (vi), we obtain 

 

The force includes the external forces and internal forces . Thus, 

 

The internal forces between the individual particles of a system cancel out, provided the 
forces are central in nature. 

 

This implies that the centre of mass of a system of particles moves as if all the mass of 
the system is concentrated at the centre of the mass and all the external forces acting 
on the system are applied directly at this point. 

Conservation of Linear Momentum of a System of Particles 

• Consider a system of n particles of masses m1, m2, m3 …mn moving with respective 

linear velocities . 

Suppose that a total external force  acts on the system. 



Total linear momentum of the system of n-particles, 

 

The above equation describes the law of conservation of linear momentum for a system 
of n particles, which states that if no external force acts on a system, then the total 
linear momentum of the system remains constant. 

Torque and Angular Momentum 

• Torque − It is measured by the product of magnitude of force and perpendicular 
distance of the line of action of force from the axis of rotation. Moment of force or torque 

= Force × Perpendicular distance  

Where, θ is smaller angle between  and ;  is unit vector along  

• Torque is the rotational analogue of force. 

• Dimension of moment of force is ML2 T−2. 

• It is a vector quantity. 

• The direction of  is perpendicular to the plane containing  and , and is determined 
by right-handed screw rule. 

Angular Momentum of a Particle 

• It is the rotational analogue of linear momentum. 



• Consider a particle of mass m and linear momentum at a position  relative to the 
origin O. The angular momentum L of the particle with respect to the origin O is defined 
to be 

 

Magnitude of the angular momentum vector is 

L = rp sinθ 

Where, p is the magnitude of and θ is the angle between and  

 

Differentiating with respect to time, 

 

Then, the velocity of the particle is and  

Because of this,  

∴Equation (i) becomes 

 

Hence,  

 

Torque and Angular Momentum for a System of Particles 



Let us consider a system of n particles with angular momenta . The total 

angular momentum of a system is  

The angular momentum of the ith particle is given by, 

 

Then, 

 

Where, is the torque acting on ith particle 

 

The total torque can be given by, 

 

As , therefore, 

, and  

According to Newton’s third law, the forces between any two particles of the system are 
equal and opposite. Therefore, contribution of internal forces to the total torque on the 
system is zero. 

That is,  



 

From equation (i), 

 

Principle of Conservation of Angular Momentum 

When no external torque acts on a system of particles, the total angular momentum of 
the system always remains a constant. 

 

When no external torque acts on the system, that is 

 

Equilibrium of a Rigid Body 

For a rigid body to be in mechanical equilibrium, two conditions have to be satisfied. 

• The net external force or the vector sum of all the external forces acting on the body 
must be zero i.e., 

 

From Newton’s second law, 

, for translational equilibrium 

 

 

Constant or zero 



The following points can be inferred from the above equation. 

(i) When a body is in translational equilibrium, it will be either at rest (v = 0) or in uniform 
motion. 

(ii) The body will have zero linear acceleration, 

if , where U is potential energy of the body 

In translational equilibrium,  

∴ U = constant 

i.e., in equilibrium, potential energy of the body is constant (maximum or minimum). 

• A rigid body is said to be in rotational equilibrium, if the body does not rotate or rotates 
with constant angular velocity. For this, the net external torque or the vector sum of all 
the torques acting on the body is zero. 

A body is in rotational equilibrium, when algebraic sum of moments of all the forces 
acting on the body about a fixed point is zero. 

Example − In case of beam balance or see-saw, the system will be in rotational 
equilibrium, if 

 

F1 × l1 − F2 × l2 = 0 

Now,  (anticlockwise moment) 

And, (clockwise moment) 

 



i.e., for rotational equilibrium, total external force acting on the body must be zero. 

The equation of motion of a rotating body is given by, 

 

= Constant 

i.e., angular momentum of the body in rotational equilibrium will stay constant. 

 

i.e., angular acceleration of the body in rotational equilibrium will be zero. 

Partial Equilibrium 

A body is said to be in partial equilibrium if it is in translational equilibrium and not in 
rotational equilibrium or the body may be in rotational equilibrium and not in translational 
equilibrium. 

Example − Let us consider a light rod AB of negligible mass with centre at C. Two 
parallel forces, each of magnitude F, are applied at the ends perpendicular to the rod as 
shown in the figure below. 

 

F + F = 2F ≠ 0 

As , therefore, the rod will not be in translational equilibrium. 

The moment of force at A and B about fixed point C will be equal in magnitude (= aF), 
but opposite in sense. Therefore, the net moment of forces on the rod will be zero. 
Hence, the rod will be in rotational equilibrium. 

Let the force applied at end B of the rod be reversed. 



 

Here, total force on the rod = F − F = 0 

∴ The rod is in translational equilibrium. 

Moments of both forces about C are equal (= aF), but they are not opposite. They act in 
the same sense and cause anticlockwise rotation of the rod.  
 
Thus, the rod is not in rotational equilibrium. 

Important 

A pair of equal and opposite forces with different lines of action is known as a 
couple or torque. A couple produces rotation without translation. 

• Principle Of Moments 

According to the principle of moments, a body will be in rotational equilibrium if 
algebraic sum of the moments of all forces acting on the body about a fixed point is 
zero. 

Example − Take an ideal lever comprising of a light rod AB of negligible mass pivoted at 
a point O. 



 

Here, F1 and F2 are two parallel forces. R is the reaction of the support at the fulcrum. 

For translational equilibrium, net force should be equal to 0. 

∴ R − F1 − F2 = 0 

R = F1 + F2 … (i) 

For rotational equilibrium, the algebraic sum of moments of forces about O must be 
zero. If AO = d1 and OB = d2, then 

F1 × d1 − F2 × d2 = 0 … (ii) 

[Anticlockwise moments are taken as positive and clockwise as negative] 

From equation (ii), 

F1d1 = F2d2 … (iii) 

In case of the lever, force F1 is usually some weight to be lifted (called load) and its 
distance from the fulcrum (AO = d1) is called the load arm. 

Force F2 is the effort applied to lift the load and its distance from the fulcrum (OB = d2) is 
called the effort arm. 

From equation (iii), we have 

Load × Load arm = Effort × Effort arm 

The ratio F1/F2 is called mechanical advantage (M.A.) of the lever i.e., 

 



Usually, M.A > 1 i.e., F1 > F2 i.e., a small effort is applied to lift a heavy load. 

Centre of Gravity 

• The centre of gravity (CG) of a body is a point where the weight of the body acts and 
total gravitational torque on the body is zero. 

• The centre of gravity of the body coincides with the centre of mass of the body. 

• If the body is so extended that  varies from part to part of the body, then the centre 
of gravity shall not coincide with the centre of mass of the body. 

• The CG of a body of irregular shape can be determined by the following method. 

Suspend the body from some point such as A. 

 

Draw the vertical line AA1. It passes through CG. 

Similarly, draw vertical lines BB1 and CC1 by suspending the body from some other 
points B and C, etc. The point of intersection G of these verticals gives us the position of 
CG of the irregular body. 

Moment Of Inertia 

 



• Moment of inertia of a body about a given axis is the sum of the products of masses of 
all the particles of the body and squares of their respective perpendicular distance from 
the axis of rotation. 

 

• K.E. of rotation  

If ω =1, then 

K.E of rotation  

I = 2 × K.E. of rotation 

Thus, moment of inertia of a body about a given axis is equal to twice the K.E. of 
rotation of the body rotating with unit angular velocity about the given axis. 

• Physical significance of moment of inertia 

We know that K.E. of rotation of a body  

Comparing it with K.E. of translation of the body , 

since linear velocity v is an analogue of angular velocity ω in rotational motion. Similarly, 
K.E. of translation is an analogue of K.E. of rotation in rotational motion. Therefore, 
mass (m) of the body is an analogue of moment of inertia (I) of the body in rotational 
motion. 

• How to calculate moment of inertia? 

Example − Consider a thin ring of radius R and mass M, rotating in its own plane around 
its centre with angular velocity ω. 

Each mass element of the ring is at a distance R from the axis and moves with a 
speed Rω. 

Therefore, the kinetic energy is 



 

Comparing equation (i) with equation (ii), we obtain 

I = MR2, for the ring 

• Radius of gyration 

Radius of gyration of a body about a given axis is the perpendicular distance of a point 
P from the axis, where if whole mass of the body were concentrated, then the body shall 
have the same moment of inertia as it has with the actual distribution of mass. This 
distance is represented by K. 

The momentum of inertia of a body of mass M and radius of gyration K is given by, 

I = MK2 … (i) 

Also,  

If m1 = m2 = … mn = m, then 

 

 

Comparing equations (i) and (ii), we obtain 



 

∴ The radius of gyration of a body about an axis is equal to the root mean square 
distance of the various particles constituting the body from the axis of rotation. 

Theorems of Perpendicular and Parallel Axes 

Theorem of Perpendicular Axis 

The moment of inertia of a planar body about an axis perpendicular to its plane is equal 
to the sum of its moments of inertia about two perpendicular axes concurrent with 
perpendicular axis and lying in the plane of the body. 

 

Proof: 
Consider a plane lamina lying in the XOY plane. The lamina is made up of a large 
number of particles. Consider a particle of mass m at P. Now, from P, drop 

perpendiculars  and PN on the X-axis and the Y-axis, respectively. 

Now, 

and PN = y 



MI of the particle about the X-axis = my2 

MI of the whole lamina about the X-axis,  

MI of the whole lamina about the Y-axis,  

MI of the whole lamina about the Z-axis,  

r2 = x2 + y2 

 
 
Thus, we get: 

 

Theorem of Parallel Axes 

 

Statement: The moment of inertia of a body about any axis is equal to the sum of the 
moments of inertia of the body about a parallel axis passing through its centre of mass 
and the product of its mass and the square of the distance between the two parallel 
axes. 

Proof: Consider a particle of mass m at P. Let d be the perpendicular distance between 

parallel axes YY and  and let GP = x. 

MI of the particle about YY = m (x + d)2 

M.I of the whole of lamina about YY, 



 

∴  

Now, 

and  

Here, is the mass of the lamina. 

Also, 

 

 

The lamina will balance itself about its centre of gravity. Therefore, the algebraic sum of 
the moments of the weights of constituent particles about the centre of gravity G should 
be zero. 

 

 

 

From equation (i), we get: 

 

APPLICATIONS: 
 
We know that the moment of inertia of a thin uniform rod of mass M and length l about 
an axis passing through the centre of the mass of rod and perpendicular to its length is 

given by  
 



 
 
The moment of inertia of a thin ring of mass M and radius R about a transverse 
(perpendicular) axis passing through its centre is given by I = MR2. 
 

 
 
(a) Moment of inertia of a ring about diameter 
 
Because a uniform ring has a symmetric shape, the moment of inertia of the ring about 
any diameter will be the same. 
 

 
 
Let: 
Z = Perpendicular axis through the centre of mass 
IZ = IC = Moment of inertia of the ring about Z 
X and Y = Diameters 
IX and IY = Moments of inertia of the ring about X and Y, respectively. 
 
Applying the perpendicular axis theorem, we get: 
IZ = IX + IY    ...(1) 



 
IZ = IC and for the ring, IX = IY. 
 
Thus, equation (1) becomes IC = 2IX = 2IY. 
 
Let IX = IY = ID, where ID is the moment of inertia of the ring about the diameter. 
 

 
 
(b) Moment of inertia of a ring about a tangent in its plane. 
 

 
 
Let: 
X = Diameter of the ring 
Y = Tangent through point O parallel to X 
IO = Moment of inertia of the ring about Y  
IC = ID = Moment of inertia of the ring X 
R = Distance between X and Y. 
∴h=R∴h=R 
 
Applying the parallel axis theorem, we get: 
 



 
 
(c) Moment of inertia of a ring about a tangent perpendicular to its plane 
 

 
 
Let: 
IO = Moment of inertia of the ring about the tangential axis passing through O 
IC = Moment of inertia of the ring about the axis passing through centre C of the ring 
h = Perpendicular distance between the two parallel axes 
 
From the figure, we have: 
h = R 
 
Applying the parallel axis theorem, we get: 
 

 
 
(iii) Moment of inertia of a disc about an axis passing through its centre and 
perpendicular to its plane 
 



 
 
Consider a thin uniform disc of mass m and radius r rotating about an axis passing 
through its centre C and perpendicular to its plane, as shown in the figure. 
Moment of inertia of the disc is given by 
 

 
 
By applying the perpendicular axis theorem, we get the moment of inertia about the 

diameter of the disc as  By applying the parallel axis theorem, we get the 

moment of inertia of the disc about the tangent in its plane as  and the moment 
of inertia of the disc about the tangent perpendicular to the plane of the disc as 

 
(iv) Moment of inertia of a solid cylinder about its geometrical axis 
We can take a solid cylinder as a combination of a number of thin circular discs piled 
one over the other. Therefore, the moment of inertia of the solid cylinder about its 
geometrical axis will be the same as that of the disc. 
 

 
 
(v) Moment of inertia of a solid cylinder about a transverse (perpendicular axis) 
passing through its centre 
 

 



 
Let: 
M = Mass of the cylinder 
l = Length of the cylinder 
R = Radius 
 
XX' = Axis passing through the centre of mass 
YY' = Axis passing through centre C and perpendicular to its own axis XX' 
 
Moment of inertia of the cylinder about axis YY' passing through centre C and 
perpendicular to XX' is given by 
 

 
 
Kinematics of Rotational Motion About a Fixed Axis 

Suppose a rigid body is undergoing circular motion about a given axis with a uniform 
angular acceleration α. 

 

 

At t = 0, ω = ω0 

At t= t, ω = ω 

Integrating (i) within proper limits, we obtain 
 

 
 
This is first kinematic equation. 

If ω is angular velocity of the rigid body at any time t, then 



 

At t = 0, θ = 0 

At t= t, θ= θ 

∴ Integrating (ii) within proper limits, we obtain 

 

 

This is second kinematic equation. 

We know that, 

 

And,  

∴  

ω dω = α dθ (iv) 

When θ = 0, ω = ω0 and when θ = θ,ω = ω 

∴ Integrating (iv) within proper limits, we obtain 



 

 

This is third kinematic equation. 

Dynamics of Rotational Motion About a Fixed Axis 

• In case of rotational motion about a fixed axis, two important points should be kept in 
mind. 

• Only those forces that lie in planes perpendicular to the axis should be considered 
because the parallel forces will give rise to torques perpendicular to the axis of rotation, 
which will tend to turn the axis. As the axis is fixed, we will ignore the torques 
perpendicular to the axis. 

• Only those components of position vectors should be considered which are 
perpendicular to the axis of rotation. 

• Now, the small amount of work done (dW1) by torque τ1 in turning the body through a 
small angle dθ is given by, 

dW1 = τ1 dθ … (i) 

If there are more than one forces acting on the body such as τ1, τ2, τ3, …etc., then total 
work done on the body is given by, 

dW = (τ1 + τ2 + τ3 + …)dθ … (ii) 

As all the torques are parallel to the fixed axis of rotation, the magnitude τ of the total 
torque is the algebraic sum of the magnitudes of component torques i.e., 

τ = τ1 + τ2 + τ3 + … … (iii) 

∴ dW = τ dθ … … (iv) 

The corresponding relation for linear motion is 



dW = Fdx … (v) 

Dividing both sides of equation (iv) by time dt, we obtain 

 

P = τω … (vi) 

This is the instantaneous power associated with torque. This relation corresponds to 
expression for power in linear motion i.e., 

P = Fv … (vii) 

In a perfectly rigid body, as there is no internal motion amongst the particles, therefore, 
there is no dissipation of energy. The rate at which work is done in the body is equal to 
the rate at which K.E. of the body increases i.e., 

 

As I does not change with time, 

 

Equation (ix) corresponds to equation of linear motion, 

F = ma 

Angular Momentum in Case of Rotation About a Fixed Axis 

General expression for the total angular momentum of a system of particles: 



 

From the vector triple product, we obtain: 

 

For any particle, the angular momentum vector and the angular velocity vector are not 
necessarily parallel. 

 (Moment of inertia of the body about the axis of rotation, which is here taken 
as Z-axis) 

From (i), we get: 

 

Differentiating both sides with respect to time, we get: 

 

For rotation about a fixed axis, 

 

From (iii) and (iv), we get: 



 

If moment of inertia I does not change with time, then 

 
 
Principle of Conservation of Angular Momentum 
 
According to this principle, the angular momentum of a system remains conserved if the 
net external torque on it is zero. 
 
Proof: 
 

 
 
As angular momentum is a vector quantity, its magnitude and direction will not change if 
there is no external torque on the system. 
 
Some Applications of Conservation of Angular Momentum 
 

Angular momentum is also represented by  In other words, angular 
momentum depends on two quantities: moment of inertia I and angular velocity ω. For 
an isolated system, if there is any change in either of the quantities, the other quantity 
changes in order to keep their product (angular momentum) constant. 
 
Some of the common applications of conservation of angular momentum are: 
 
1. Increase in the angular velocity of a planet around the Sun as it comes near to it 

A planet revolves in an elliptical orbit, with the Sun at the focus. As the planet comes 
near the Sun, its moment of inertia decreases. As there is no external torque on the 
planet, its angular momentum remains conserved. For the conservation of the angular 
momentum of the planet, the speed of the planet increases as it comes near the Sun. 
 
2. Change in the angular velocity of a person (sitting on a rotating chair) on folding of 
arms 



 

 

A person is sitting on a rotating chair, with his arms outstretched. He is holding heavy 
weights in his hands. When he suddenly folds his arms, his angular velocity increases 
on account of decrease in the moment of inertia. 
 
3. A diver jumping from a spring board performs somersaults in air 

 

 

When the diver jumps from a springboard, he folds his body by rolling his hands and 
legs. By doing so, his moment of inertia decreases. His angular speed increases to 
keep the angular momentum constant. He then performs somersaults in the air. When 
he is about to reach the water's surface, he stretches his limbs and reduces his angular 
velocity. 



Rolling Motion 

• Rolling motion is a combination of translational motion and rotational motion. 

• Let us consider the rolling motion of a circular disc on a level surface. 

 

At any instant, the point of contact P0 of the disc with the surface is at rest. 

If is the velocity of centre of mass, then the translational velocity of the disc is , 
which is parallel to the level surface. 

Velocity of any point P2 of the disc is the vector sum of  and , which is the linear 
velocity on account of rotation. 

Magnitude of is rω, where ω is the angular velocity of the rotation of the disc. 

At point P0, the linear velocity due to rotation directed opposite to the translational 

velocity at P0 is Rω, where R is the radius of the disc. 

P0 is instantaneously at rest. 

 

Hence, for the disc to roll without slipping, the essential condition is . 

Kinetic Energy of Rolling Motion 

Total kinetic energy (K) = KE of translational motion of centre of mass (KT) + KE of 
rotational motion about centre of mass (KR) 



K = KT + KR    …(i) 

If m is mass of the body and vcm is the velocity of centre of mass of the body, then 

 

Here, I is the moment of inertia of the body about the symmetry axis of the rolling body. 
 
On putting the values in equation (i), we get: 

 

 

Now, 
I = mk2 
Here, k is the corresponding radius of gyration of the body. 

Substituting the value in (ii), we obtain: 

 

This is a general equation that applies to any rolling body—a disc, a ring, a cylinder or a 
sphere. 
 
Rolling without slipping on an inclined plane 
 
Let us take a rigid body of mass M and radius r rolling down an inclined plane of 
inclination θ and height h. As the body moves down the inclined plane, its gravitational 
potential energy is converted into kinetic energies of rotation as well as translation. 
 



 
 
The body is at rest at the top of the inclined plane. Now, let the moment of inertia of the 
body be I, v be the linear speed and ω be the angular speed acquired by the body when 
it reaches the bottom of the inclined plane. 
 

 
 
Now, 
 
Let a be the linear acceleration of the body while rolling down the plane. 
As the body starts from rest, initial velocity u is 0 and the length of the plane is s. 
 



 
 
Now, by substituting the value of radius of gyration (k) for different bodies, we can find 
out the velocity and acceleration of the rigid body rolling without slipping on the inclined 
plane. 
 
The given table shows the values of v and a for rigid bodies of different shapes. 
  

 


