

DPP No. 14

Total Marks : 34

Max. Time: 35 min.

Topic : Rectilinear Motion

Type of Questions		M.M., Min.
Single choice Objective ('–1' negative marking) Q.1 to Q.6	(3 marks, 3 min.)	[18, 18]
Multiple choice objective ('–1' negative marking) Q.7 to Q9	(4 marks, 4 min.)	[12, 12]
Subjective Questions ('–1' negative marking) Q.10	(4 marks, 5 min.)	[4, 5]

1. A particle of mass 2 kg moves in the xy plane under the action of a constant force \vec{F} where $\vec{F} = \hat{i} - \hat{j}$. Initially the velocity of the particle is 2 \hat{i} . The velocity of the particle at time t is

(A)
$$\frac{1}{2}(t+4)\hat{i} - \frac{1}{2}t\hat{j}$$
 (B) $t(\hat{i} - \hat{j})$ (C) $\frac{1}{2}t(\hat{i} - \hat{j})$ (D) $\frac{1}{2}t\hat{i} + \frac{1}{2}(t+4)\hat{j}$

2. A point moves rectilinearly. Its position x at time t is given by $x^2 = t^2 + 1$. Its acceleration at time t is:

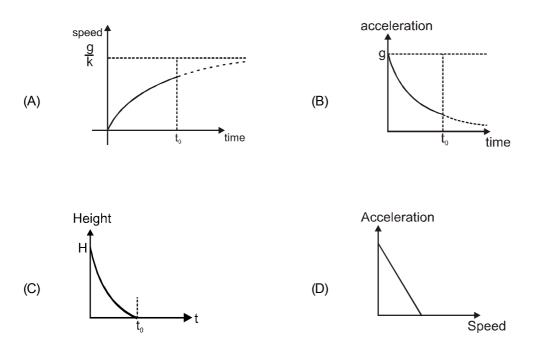
(A) $\frac{1}{x^3}$	(B) $\frac{1}{x} - \frac{1}{x^2}$	$(C) - \frac{t}{x^2}$	(D) none of these
	Λ		

3. A man moves on his motorbike with speed 54 km/h and then takes a U turn (180°) and continues to move with same speed. The time of U turn is 10 s. Find the magnitude of average acceleration during U turn .

(A) 0	(B) 3 ms ⁻²	(C) 1.5 √2 ms ⁻²	(D) none of these
()	(_) ••	(0)	(-)

4. Distance between a frog and an insect on a horizontal plane is 10 m. Frog can jump with a maximum speed of $\sqrt{10}$ m/s. g =10 m/s². Minimum number of jumps required by the frog to catch the insect is :

- (A) 5 (B) 10 (C) 100 (D) 50
- 5. A clock has a minute-hand 10 cm long. Find the average velocity between 6.00 AM to 6.30 AM for the tip of minute-hand.


(A)
$$\frac{22}{21}$$
 cm min⁻¹ (B) $\frac{2}{21}$ cm min⁻¹ (C) $\frac{12}{21}$ cm min⁻¹ (D) $\frac{2}{3}$ cm min⁻¹

6. A stone is dropped from the top of a tower. When it has fallen by 5m from the top, another stone is dropped from a point 25m below the top. If both stones reach the ground at the same moment, then height of the tower from ground is : (take $g = 10m/s^2$)

7. Angle made by vector $\sqrt{3}\hat{i} + \sqrt{2}\hat{j} - 2\hat{k}$ with -ve y-axis is :

(A)
$$\cos^{-1}\left(\frac{\sqrt{2}}{3}\right)$$
 (B) $\cos^{-1}\left(-\frac{\sqrt{2}}{3}\right)$ (C) $\pi - \cos^{-1}\left(\frac{\sqrt{2}}{3}\right)$ (D) $\pi - \cos^{-1}\left(-\frac{\sqrt{2}}{3}\right)$

8. A particle is dropped from a finite height H above the ground level under gravity. Due to air resistance acceleration of particle become a = g - kv in the direction of velocity. Where k = positive constant & v = speed of particle. Then which of the following graph(s) is/are possible ($t_0 = time when particle touches the ground)$:

9. A particle moves with an initial velocity v_0 along straight line and retardation βv , where v is its velocity at any time t (β is a positive constant).

(A) the particle will cover a total distance of v_0/β

- (B) the particle will continue to move for a very long time
- (C) the particle will stop shortly
- (D) the velocity of particle will become $v_0/2$ after time $1/\beta$.
- **10.** A particle moving along a straight line with a constant acceleration of -4 m/s^2 passes through a point A on the line with a velocity of +8 m/s at some moment. Find the distance travelled by the particle in 5 seconds after that moment.

Answers Key

DPP NO. - 14

1.	(A)	2.	(A)	3.	(B)	4.	(B)	5. (D)
6.	(A)	7.	(B)(C)	8.	(A,B,D)	9.	(A,B)	
10.	26 m.							

Hint & Solutions

DPP NO. - 14

1. m = 2kg, $\vec{F} = \hat{i} - \hat{j}$. $\Rightarrow \vec{a} = \frac{\vec{F}}{m} = \frac{1}{2} (\hat{i} - \hat{j})$ Now $\vec{V} = \vec{u} + \vec{a} t$. $\Rightarrow \vec{V} = 2\hat{i} + \frac{1}{2} (\hat{i} - \hat{j}) t$. $= \left(2 + \frac{t}{2}\right) \hat{i} - \frac{t}{2} \hat{j} = \frac{1}{2} (t + 4) \hat{i} - \frac{t}{2} \hat{j}$.

Alter : Substitute t = 0 in option and get answer

2. $x^2 = t^2 + 1$ $2x \frac{dx}{dt} = 2t$ $\Rightarrow xV = t$ $xa + V^2 = 1$

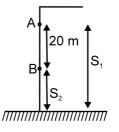
$$a = \frac{1 - V^2}{x} = \frac{1 - \frac{t^2}{x^2}}{x}$$

$$\Rightarrow$$
 a = $\frac{x^2 - t^2}{x^3} = \frac{1}{x^3}$

3. 54 km/h = 54 × $\frac{5}{18}$ = 15 m/s

$$< a > = \frac{15 - (-15)}{10} = 3 \text{ m/s}^2$$
.

4. For minimum number of jumps, range must be maximum.


maximum range = $\frac{u^2}{g} = \frac{(\sqrt{10})^2}{10} = 1$ meter.

Total distance to be covered = 10 meter So total step = 10 From 6:00 AM to 6:30 AM
displacement of tip of minute hand
= 2 × 10cm = 20 cm

Hence, average velocity = $\frac{20 \text{ cm}}{30 \text{ min}} = \frac{2}{3} \text{ cm min}^{-1}$.

6. Vel. of 1st stone when passing at A \rightarrow V² = 0 + 2.10.5 V = 10 m/s S₁ - S₂ = 20 m.

$$\Rightarrow \left(10.t + \frac{1}{2}10.t^2\right) - \left(\frac{1}{2}.10.t^2\right) = 20$$

t = 2s

$$S_2 = \frac{1}{2} \cdot 10 \cdot 4 = 20 \text{ m}$$

Ht = 25 + 20 = 45 m.

7.
$$\cos \theta = \frac{\left(\sqrt{3}\hat{i} + \sqrt{2}\hat{j} - 2\hat{k}\right)(-\hat{j})}{\sqrt{3 + 2 + 4}(1)} = \frac{-\sqrt{2}}{3}$$
$$\theta = \cos^{-1}\left(\frac{-\sqrt{2}}{3}\right) \quad \text{or} \quad \pi - \cos^{-1}\left(\frac{\sqrt{2}}{3}\right)$$

8.
$$\frac{dv}{dt} = g - kv \qquad \int_{0}^{v} \frac{dv}{g - kv} = \int_{t=0}^{t} dt$$
$$-\frac{1}{k} \ln\left(\frac{g - kv}{g}\right) = t$$
$$g - kv = ge^{-kt} \qquad v = \frac{g}{k} [1 - e^{-kt}]$$
$$a = \frac{g}{k} [0 - e^{-kt} (-k)]$$
$$= g e^{-kt}$$

$$V = \frac{g}{k} - \frac{a}{k} = -\frac{a}{k} + \frac{g}{k}$$
$$V - \frac{g}{k} = -\frac{a}{k}$$
$$kv - g = -a$$
$$a = g - kv$$
$$= -kv + g$$

9. (i)
$$V \frac{dv}{dx} = -\beta V$$
 (ii) $a = -\beta V$

$$dv = -\beta dx \qquad \frac{dv}{dt} = -\beta V$$

$$\int_{v_0}^{0} dv = -\beta \int_{0}^{x} dx \qquad \int_{v_0}^{v} \frac{dv}{v} = -\beta \int_{0}^{t} dt$$

$$-v_0 = -\beta x \qquad \ell n \left(\frac{V}{V_0}\right) = -\beta t$$

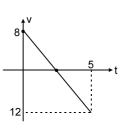
$$x = \frac{v_0}{\beta} \qquad V = V_0 e^{-\beta t}$$

$$V = \frac{V_0}{e^{\beta t}}$$
 at $t \to \infty V = 0$.

: A & B are correct answer

10. u = + 8 m/s

 $a = -4 \text{ m/s}^2$ v = 0 $\Rightarrow 0 = 8 - 4t \text{ or } t = 2 \text{ sec.}$


displacement in first 2 sec.

$$S_1 = 8 \times 2 + \frac{1}{2} \cdot (-4) \cdot 2^2 = 8 \text{ m}$$

displacement in next 3 sec.

$$S_2 = 0 \times 3 + \frac{1}{2} (-4)3^2 = -18 \text{ m}.$$

distance travelled = $|S_1| + |S_2| = 26$ m. Ans. 26 m. ALITER :

total distance =
$$\frac{1}{2} \times 2 \times 8 + \frac{1}{2} \times 3 \times 12$$

= 8 + 18 = 26 m