WAVES

General Instructions: Answer all the questions. If you are unable to answer any question, go through the page number that is given against that particular question in the text book. You can find the answer.

Test Paper-III							
MAX MARKS: 30 TIME:		90Mts					
1	Why liquids and solids have higher speeds of sound than gases?	P371	2				
2	A pipe, 30.0cm long, is open at both ends. Which harmonic mode of the pipe		3				
	resonates a 1.1 kHz source? Will resonance with the same source be observed if one	P378					
	end of the pipe is closed? Take the speed of sound in air as 330ms ⁻¹ .						
3	What are beats? What type of waves produce beats? Give the equation of the waves	P379					
	that produce beats. Give the wave pattern representing beats.	&380	3				
4	Two sitar strings A and B playing the note " DHA "are slightly out of tune and						
	produce beats of frequency 5 Hz. The tension of the string B is slightly increased and	P380	2				
	the beat frequency is found to decrease to 3 Hz. What is the original frequency of B if						
	the frequency of A is 427 Hz?						
5	What is Doppler effect? Derive the expression for finding the Change in frequency	P381	3				
	when the observer is stationary, source is moving with a velocity $v_{ m s}$.						
6	Derive the expression for change in frequency when the observer is moving but the	P382					
	source is stationary.						
7	Derive the expression for apparent change in frequency when both the source and	P383	3				
	Observer are moving.						
8	Give the applications of Doppler effect.	P382	2				
9	A rocket is moving at a speed of 200ms ⁻¹ towards a stationary target. While moving,		3				
	it emits a wave of frequency 1000Hz. Some of the sound reaching the target gets	P383					
	reflected back to the rocket as an echo. Calculate (1) the frequency of the sound as						
	detected by the target and (2) the frequency of the echo as detected by the rocket.						

Match the following

<u>Group-A</u>	<u>Group-B</u>		
 Speed of sound Speed of a transverse wave 	a. $v = \sqrt{\frac{T}{\mu}}$	P384	3
 Speed of a progressive wave 	b. $v = \sqrt{\frac{\gamma P}{\rho}}$ c. $f = \frac{\omega}{2\pi}$		
 Angular frequency of a wave 	d. $y(x,t) = -a \sin(kx + \omega t)$ e. $y(x,t) = a \sin(kx - \omega t)$		
5. Incident wave	f. $v = \lambda v$		
 Reflected wave at a rigid boundarv 	$\nu = \lambda \nu$		
xplain how reflection of sound ir	n an open organ pipe such as flute helps in	P380	3

11Explain how reflection of sound in an open organ pipe such as flute helps inP3producing standing waves.

12

Match the following				2	
				P372	
<u>Group – A</u>			<u>Group-B</u>	to	
a. b. c. d.	Beats Standing waves Interference Doppler effect	3.	It is the superposition of two waves of same frequency, same amplitude moving with same speed in the same direction Waxing and waning of the intensity of the sound with a frequency equal to the difference in the two close frequencies of two waves Apparent change in frequency of sound due to the relative motion of the observer and source It is due to the superposition of two waves	381	
	4.	4.	of same frequency, same amplitude moving with same speed in the opposite direction		

13 Give the formula to find the vibrating frequencies of (a) a stretched string of length L P385 1 fixed at both the ends and (b) a pipe of length L with one end closed and other end open