

DPP No. 71

Total Marks:31

Max. Time : 33 min.

Type of Questions	M.M., Min.		
Single choice Objective (no negative marking) Q.1,2,3,4,5	(3 marks, 3 min.)	[15,	15]
Subjective Questions (no negative marking) Q.6,7	(4 marks, 5 min.)	[8,	10]
Match the Following (no negative marking) Q.8	(8 marks, 8 min.)	[8,	8]

1.
$$\int_{2}^{4} \left(\log_{x} 2 - \frac{(\log_{x} 2)^{2}}{\ell n 2} \right) dx \text{ equals to :}$$
(A) 0 (B) 1 (C) 2 (D) 4

The value of $\int_{1}^{2} (x^2 - x^2) dx$, where [.] denotes the greatest integer function, is equal to : 2.

(A) $4 + \sqrt{2} - \sqrt{3}$ (B) $4 - \sqrt{2} + \sqrt{3}$ (C) $4 - \sqrt{3} - \sqrt{2}$ (D) none of these

The area of the closed figure bounded by x = -1, x = 2 and $y = \begin{cases} -x^2 + 2, & x \le 1 \\ 2x - 1, & x > 1 \end{cases}$ and the abscissa axis 3.

is

(A) 16/3 sq. units (B) 10/3 sq. units (C) 13/3 sq. units (D) 7/3 sq. units

4. The area of the region for which $0 < y < 3 - 2x - x^2$ and x > 0 is

(A)
$$\int_{1}^{3} (3-2x-x^2) dx$$
 (B) $\int_{0}^{3} (3-2x-x^2) dx$
(C) $\int_{0}^{1} (3-2x-x^2) dx$ (D) $\int_{-1}^{3} (3-2x-x^2) dx$

The area bounded by the curves $\sqrt{x} + \sqrt{y} = 1$ and x + y = 1 is 5.

> (B) $\frac{1}{6}$ (C) $\frac{1}{2}$ (A) $\frac{1}{3}$ (D) none of these

6. Evaluate :
$$\int_{-1/\sqrt{3}}^{1/\sqrt{3}} \frac{\cos^{-1}\left(\frac{2x}{x^2+1}\right) + \tan^{-1}\left(\frac{2x}{1-x^2}\right)}{e^x + 1} dx$$

7. For
$$\theta \in (0, \pi) \cup (\pi, 2\pi)$$
 show that
$$\int_{0}^{\infty} \frac{dx}{x^2 + 2x\cos\theta + 1} = 2\int_{0}^{1} \frac{dx}{x^2 + 2x\cos\theta + 1}$$

8. Column – I

Column – II

(A) Let $f : R \to R$ be a differentiable function and f(1) = 1, f'(1) = 3. (P) 2

Then the value of
$$\lim_{x\to 1} \frac{\int_{-1}^{x^{-}} (f(t)-t) dt}{(x-1)^{2}}$$
 is

2

(B) If
$$\int_{0}^{3} (3ax^{2} + 2bx + c) dx = \int_{1}^{3} (3ax^{2} + 2bx + c) dx$$
 where a, b, c (Q) 0 are constants, then a + b + c =

- (C) Number of rational points $P = (\alpha, \beta)$ lying on $(x \sqrt{2})^2 + (y \sqrt{3})^2 = 4$ (R) 1 is (rational point means x and y co-ordinate both are rational)
- (D) Number of integral values of 'a' for which the function (S) 4 $f(x) = x^{3} + (a + 2) x^{2} + 3ax + 5 \text{ is monotonic in } R \text{ is}$

Answers Key

1.	(A)	2.	(C)	3.	(A)	4.	(C)
5.	(A)	6.	$\frac{\pi}{2\sqrt{3}}$				
8.	$(A) \to$	(S),($B) \rightarrow (C$	Q),(C	$(Q) \rightarrow (Q)$),(D)	\rightarrow (S)