## PHYSICAL CHEMISTRY



## DPP No. 4

**Total Marks: 31** 

Max. Time: 33 min.

**Topic: Mole Concept** 

|                                                                                                                                        | -                                                                                                                                                                                                                                                                                                         |                                             |                                     |                                                                                   |                                                        |  |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------|--|
| Multiple choice objective ('-1' negative marking) Q.1,8 (4 marking) Short Subjective Questions ('-1' negative marking) Q.2 (3 marking) |                                                                                                                                                                                                                                                                                                           |                                             |                                     | (3 marks, 3 min.)<br>(4 marks, 4 min.)<br>(3 marks, 3 min.)<br>(8 marks, 10 min.) | M.M., Min.<br>[12, 12]<br>[8, 8]<br>[3, 3]<br>[8, 10]  |  |
| 1.*                                                                                                                                    | 11.2 L of a gas at ST<br>(A) N <sub>2</sub> O                                                                                                                                                                                                                                                             | P weighs 14 g The ga<br>(B) NO <sub>2</sub> | as could be :<br>(C) N <sub>2</sub> | (D) CO                                                                            |                                                        |  |
| 2.                                                                                                                                     | A compound of Mg contains 6% of Mg by mass. If the minimum molar mass of the compound is $n \times 10^2$ g/mol then determine value of 'n'.                                                                                                                                                               |                                             |                                     |                                                                                   |                                                        |  |
| 3.                                                                                                                                     | A sample of a compound contains 9.75 g Zn, $1.8 \times 10^{23}$ atoms of Cr and 0.6 gram-atoms of O. When the empirical formula of compound? (Atomic Mass Zn = 65)  (A) ZnCrO <sub>4</sub> (B) ZnCr <sub>2</sub> O <sub>4</sub> (C) Zn <sub>2</sub> CrO <sub>4</sub> (D) ZnCr <sub>2</sub> O <sub>2</sub> |                                             |                                     |                                                                                   |                                                        |  |
| 4.                                                                                                                                     | (A) ZnCrO <sub>4</sub> An organic compound of the compound, if it (A) 100000 u                                                                                                                                                                                                                            | d on analysis was fou                       | nd to contain 0.0329                | of sulphur by mass. Th                                                            |                                                        |  |
| 5.                                                                                                                                     | Column - I                                                                                                                                                                                                                                                                                                |                                             |                                     | Colu                                                                              | Column - II                                            |  |
|                                                                                                                                        | (A) A compound containing 5 g 'S' and 5 g oxygen                                                                                                                                                                                                                                                          |                                             |                                     | (p) Empirica                                                                      | (p) Empirical formula is CH <sub>2</sub>               |  |
|                                                                                                                                        | (B) A hydrocarbon containing $\frac{600}{7}$ % 'C' by mass                                                                                                                                                                                                                                                |                                             |                                     | (q) Molecula                                                                      | (q) Molecular formula is C <sub>2</sub> H <sub>4</sub> |  |
|                                                                                                                                        | (C) A compound cont                                                                                                                                                                                                                                                                                       | mass (r) Empirical                          | formula is SO <sub>2</sub>          |                                                                                   |                                                        |  |
|                                                                                                                                        | (D) A hydrocarbon containing $\frac{100}{7}$ % H by mass (Molecular mass = 28) (s) Empiric                                                                                                                                                                                                                |                                             |                                     |                                                                                   | formula is CO <sub>2</sub>                             |  |
| 6.                                                                                                                                     | 0.1 mole of a carbohydrate with empirical formula CH <sub>2</sub> O contains 1 g of hydrogen. What is its molecular formula?                                                                                                                                                                              |                                             |                                     |                                                                                   |                                                        |  |
|                                                                                                                                        | (A) $C_5H_{10}O_5$                                                                                                                                                                                                                                                                                        | (B) $C_6H_{12}O_6$                          | (C) $C_4H_8O_4$                     | (D) $C_3H_6O_3$                                                                   |                                                        |  |
| 7.                                                                                                                                     | The number of moles of oxygen obtained by the electrolytic decomposition of 90 g water is :                                                                                                                                                                                                               |                                             |                                     |                                                                                   |                                                        |  |
|                                                                                                                                        | $(2H_2O \xrightarrow{\text{elec.}} 2H_2 + O_2)$                                                                                                                                                                                                                                                           |                                             |                                     |                                                                                   |                                                        |  |
|                                                                                                                                        | (A) 2.5                                                                                                                                                                                                                                                                                                   | (B) 5                                       | (C) 7.5                             | (D) 10                                                                            |                                                        |  |
| 8.*                                                                                                                                    | In a gaseous reaction of type : $xA(g) + yB(g) \longrightarrow pC(g) + qD(g)$ where x, y, p and g are stoichiometric coefficients.                                                                                                                                                                        |                                             |                                     |                                                                                   |                                                        |  |

(C) x g of A combine with y g of B to give C and D.(D) x molecules of A combine with y molecules of B to give C and D.

(A) At STP, x litre of A combine with y litre of B to give C and D (B) x mole of A combine with y mole of B to give C and D

Which of the following statements is/are correct:

## Answer Key

DPP No. # 4

1.\*

3.

4. (D)

5.

$$[A - r]$$
;  $[B - p]$ ;  $[C - s]$ ;  $[D - p, q]$ . (A)

7. (A) (A,B,D)

## ints & Solutions

DPP No. #4

1.\*

Weigh of 22.4 L gas at S.T.P. 
$$\frac{14}{11.2} \times 22.4 = 28 \text{ g}$$

$$M_{N_2} = M_{CO} = 28$$

The gas could be N2 or CO.

2. Let the molar mass of compound be 'M'

Hence 
$$\frac{M \times 6}{100} = 24$$

M = 400 g /mole

3.

Mole of Zn = 
$$\frac{9.81}{65}$$
 Mole of Cr =  $\frac{1.8 \times 10^{23}}{6.023 \times 10^{23}}$   
= 0.15 = 0.3

Mole of Cr = 
$$\frac{1.8 \times 10^{23}}{6.023 \times 10^{23}}$$
$$= 0.3$$

Mole of O = 0.6

∴ simple ratio 
$$Zn = \frac{0.15}{0.15}$$
  $Cr = \frac{0.3}{0.15}$   $O = \frac{0.6}{0.15}$   
= 1 = 2 = 4

$$Cr = \frac{0.3}{0.15}$$

$$O = \frac{0.6}{0.15}$$

So ZnCr,O4.

Mass of sulphur

Mol mass of compound × 100 = % of sulphur

$$\therefore \qquad \left(\frac{2 \times 32}{M}\right) \times 100 = 0.032$$

For S and O.

Simple ratio 
$$S \Rightarrow \frac{5}{32}$$
  $O \Rightarrow \frac{5}{16}$ 

Simple ratio  $S \Rightarrow \frac{\frac{5}{32}}{\frac{5}{32}} \Rightarrow 1$   $O \Rightarrow \frac{\frac{5}{16}}{\frac{5}{32}} \Rightarrow 2$ 

For CH,,

% C = 
$$\frac{12}{14} \times 100 = \frac{600}{7}$$
  $\Rightarrow$  H % =  $\frac{2}{14} \times 100 = \frac{100}{7}$ 

For C,H,,

% of C = 
$$\frac{24}{28} \times 100 = \frac{600}{7}$$
  $\Rightarrow$  % of H =  $\frac{4}{28} \times 100 = \frac{100}{7}$ 

For CO.,

% of C = 
$$\frac{12}{44} \times 100 = \frac{300}{11}$$
  $\Rightarrow$  % of O =  $\frac{32}{44} \times 100 = \frac{800}{11}$ 

0.1 mole of carbohydrate with E.F. CH<sub>2</sub>O contains 1 g of hydrogen.

.. 1 mole of carbohydrate will contain hydrogen

In CH2O, g atomic ratio of C: H: O = 1:2:1.

∴ With 10 g atoms of H, g atoms of C combined = 5 and g atoms of O combined = 5. Hence, actual formula (molecular formula) will be C<sub>5</sub>H<sub>10</sub>O<sub>5</sub>.

Water is electrolysed as follows

$$2H_2O \xrightarrow{\text{elec.}} 2H_2 + O_2$$
  
36 g 1 mol

36 g H,O yield = 1 mol of oxygen

1 g of 
$$H_2O$$
 will yield =  $\frac{1}{36}$  mol of  $O_2$ 

$$\therefore 90 \text{ g of water will yield} = \frac{1}{36} \times 90 \text{ mol of O}_2$$

8.\* According to stoichiometry of reaction option A, B and D are correct.