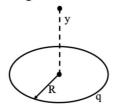
JEE (Main)-2025 (Online) Session-2 Memory Based Question with & Solutions (Physics, Chemistry and Mathematics) 2nd April 2025 (Shift-2)

Time: 3 hrs. M.M.: 300

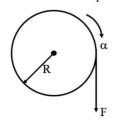

IMPORTANT INSTRUCTIONS:

- **(1)** The test is of 3 hours duration.
- **(2)** This test paper consists of 75 questions. Each subject (PCM) has 25 questions. The maximum marks are 300.
- (3) This question paper contains Three Parts. Part-A is Physics, Part-B is Chemistry and Part-C is Mathematics. Each part has only two sections: Section-A and Section-B.
- (4) Section A: Attempt all questions.
- (5) Section B: Attempt all questions.
- **(6)** Section A (01 20) contains 20 multiple choice questions which have only one correct answer. Each question carries +4 marks for correct answer and -1 mark for wrong answer.
- (7) Section B (21 25) contains 5 Numerical value based questions. The answer to each question should be rounded off to the nearest integer. Each question carries +4 marks for correct answer and -1 mark for wrong answer.

PHYSICS

SECTION-A

1. Find 'y' so that electric field E is maximum on the axis of ring

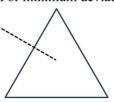

- $(1)\frac{R}{2}$
- $(3)\sqrt{2}R$
- (4) 2R

- Ans.
- $E_{axis} = \frac{KQx}{\left(R^2 + x^2\right)^{3/2}}$

$$\frac{dE}{dx} = 0$$

$$x = \pm \frac{R}{\sqrt{2}}$$

Find moment of inertia of pulley 2.



- Ans.
 - **(1)**
- Sol. $\tau = I\alpha$

$$I = \frac{FR}{\alpha}$$

- 3. An equilateral prism is made of a material of index $\sqrt{2}$. Find of incidence for minimum deviation of the light ray.
 - $(1)45^{\circ}$
- $(2) 60^{\circ}$
- $(3) 37^{\circ}$
- $(4) 30^{\circ}$
- Ans. (4)

Sol. For minimum deviation $r = 30^{\circ}$

$$1 \times \sin i = \sqrt{2} \times \frac{1}{2}$$

$$\sin i = \frac{1}{\sqrt{2}}$$

$$i = 45^{\circ}$$

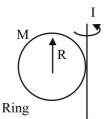
$$\delta = i + e - A$$

$$=90-60=30^{\circ}$$

4. Find which option results in same 'f', as shown the figure, if μ is same (R₁ & R₂ are in SI unit):-

- (1) $R_1 = 6$, $R_2 = \frac{1}{6}$ and $R_1 = 8$, $R_2 = \frac{1}{8}$
- (2) $R_1 = 6$, $R_2 = \frac{1}{6}$ and $R_1 = \frac{1}{6}$, $R_2 = 6$
- (3) $R_1 = 8$, $R_2 = \frac{1}{6}$ and $R_1 = \frac{1}{6}$, $R_2 = 6$
- (4) None of these
- Ans. **(2)**
- $\frac{1}{f} = (\mu 1) \left(\frac{1}{R_1} \frac{1}{R_2} \right)$ Sol.
- Dimensional formula of $\frac{1}{\mu_0 \varepsilon_0}$ (where m_0 is 5. permeability and e₀ is permittivity of free space) should be:
 - (1) L^2T^{-2}
- $(2) LT^{-1}$
- (3) MLT^{-1}
- (4) ML^2T^{-2}

- **(1)** Ans.
- $C = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$ Sol.


$$C^2 = \frac{1}{\mu_0 \epsilon_0}$$

$$\left[\frac{1}{\mu_0 \epsilon_0}\right] = \left[L^2 T^{-2}\right]$$

- 6. The moment of inertia of ring of mass M and radius R about an axis passing through tangential point in the plane of ring is:
 - $(1)\frac{5MR^2}{2}$
- $(2) \frac{3MR^2}{2}$
- $(3)\frac{4MR^2}{3}$
- $(4) \frac{2MR^2}{2}$

Ans. (2)

Sol.

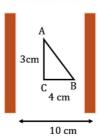
$$I = \frac{MR^2}{2} + MR^2$$

$$=\frac{3MR^2}{2}$$

- 7. Two water drops each of radius of r coalesce to from a bigger drop. If T is the surface tension, surface energy released in this process
 - (1) T $4pr^2(2-2^{2/3})$
- (2) T $4pr^2(1-2^{2/3})$
- (3) T $4pr^2(2-4^{2/3})$
- (4) T $4pr^2(2-8^{2/3})$

Ans. (1

Sol. $2 \times \frac{4}{3} \pi r^3 = \frac{4}{3} \pi R^3$


$$2^{\frac{1}{3}}r = R$$

$$E_{_{\rm I}} = 2 \times T \times 4\pi r^2$$

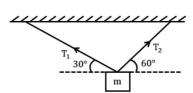
$$E_{F} = T \times 4\pi \left(2^{\frac{1}{3}}\pi\right)^{2}$$

$$E_{I-F} = T \times 4\pi r^2 \left(2 - 2^{\frac{2}{3}}\right)$$

8. The figure shows the plates of a parallel plate capacitor with a separation 10 cm and charged to a potential difference V. Find the potential difference between B and A

- $(1)\frac{2v}{5}$
- $(2)\frac{V}{2}$
- $(3)\frac{v}{5}$
- $(4)\frac{3v}{5}$

Ans. (1)


Sol.
$$\Delta V = \int \vec{E} \cdot \vec{dr}$$

$$|\frac{\Delta V}{d}| = |E|$$

$$\frac{\frac{V}{10}}{\frac{V_{BA}}{4}} = 1$$

$$\frac{V}{V} = \frac{V_{BA}}{V}$$

9. A block of mass m is suspended in a vertical plane with the help of two light strings as shown. Find the ratio of tensions $\frac{T_1}{T_2}$

- $(1)\frac{1}{3}$
- $(2)\frac{1}{\sqrt{3}}$
- (3) 3
- $(4) \sqrt{3}$

Ans. (2)

Sol.
$$T_1 \cos 30^\circ = T_2 \cos 60^\circ$$

$$\frac{\mathrm{T_1}}{\mathrm{T_2}} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}$$

- 10. A solenoid having area A and length 'l' is filled with a material having relative permeability 2. The magnetic energy stored in the solenoid is:
 - $(1)\frac{B^2A\ell}{4\mu_0}$
- $(2)\frac{B^2A\ell}{2Ha}$
- (3) $B^2A\ell$
- $(4) \frac{B^2A^4}{Ha}$

Ans. (1)

Sol.
$$U = \frac{B^2}{2\mu}$$

$$U = \frac{B^2}{2(2)\mu_0} \times A\ell$$

$$U = \frac{B^2A\ell}{4\mu_0}$$

11. First Bohr orbit of H^+ is radius r_0 . Find ground state radius of Li^{+2}

$$(1)\frac{r_0}{3}$$

$$(2) 4r_0$$

$$(3) 2r_0$$

$$(4) 3r_0$$

Ans. (1)

Sol.
$$r \propto \frac{n^2}{z}$$
$$r \propto \frac{1}{z}$$
$$\frac{r_{\text{Li}^2+}}{r_{\text{H}^+}} = \frac{1}{3}$$
$$r_{\text{Li}^2+} = \frac{r_0}{2}$$

12. ${}_{1}H^{2} + {}_{1}H^{2} \rightarrow {}_{2}He^{4}$

If binding energy per nucleon of deuterium is 1.1 eV and of helium is 7.0 eV. Find energy released in reaction:

- (1) 2.8 eV
- (2) 23.6 eV
- (3) 14.8 eV
- (4) None

Ans. (2)

Sol.
$$2_1H^2 \rightarrow {}_2He^4$$

$$\Delta E = 4 \times BE_{2}He^{4} - (2 \times_{1} H^{2})$$

= $(4 \times 7.0 - 4 \times 1.1) \text{ eV}$
= $4 \times 5.4 \text{ MeV} = 23.6 \text{ eV}$

13. A satellite of mass 500 Kg is moving in a radius 'r' around Earth; where r = 220 km. Find K.E. of satellite:

- $(1) 4.5 \times 10^{10}$ J
- $(2) 4.5 \times 10^9 \text{ J}$
- $(3) 4.5 \times 10^{11}$ J
- (4) None

Ans. (4)

Sol.
$$KE = \frac{1}{2} \frac{GM_sM_p}{r}$$

$$= \frac{6.67 \times 10^{-11} \times 500 \times 6 \times 10^{24}}{2 \times 220 \times 10^3}$$

$$= 50 \times 10^{10} \text{ J}$$

A positively charged particle is moving along X-axis has De-Broglie wavelength 'λ'. Now a magnetic field is switched on in +Y direction. Find the new wavelength when particle's velocity becomes parallel to +Z direction:

- $(1)\frac{\lambda}{\sqrt{2}}$
- $(2)\lambda$
- $(3)\frac{\lambda}{3}$
- $(4)\frac{\lambda}{4}$

Ans. (2)

Sol.
$$\lambda = \frac{h}{p} = \frac{h}{mv}$$

 $\lambda' = \lambda$.

15. Statement-I : For a polar linear isotropic material. If E = 0, then dipole moment of material is 0.

Statement-II : In absence of $\overrightarrow{E},$ the dielectric is non-polar.

- (1) Statement-I is correct, statement-II is correct and statement-II is correct explanation of statement-I.
- (2) Statement-I is correct, statement-II is correct and statement-II is not the correct explanation of statement-I.
- (3) Statement-I is correct and statement-II is incorrect.
- (4) Statement-I is incorrect and statement-II is correct.

Ans. (3)

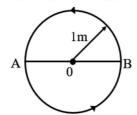
Sol. Linear dielectrics

$$\vec{P} = \gamma \vec{E}$$
If $\vec{E} = 0$, then $\vec{P} = 0$.

16. Two galvanometers G_1 and G_2 are having resistors $R_1 = 5W$ and $R_2 = 7W$, number of turns $N_1 = 21$, $N_2 = 15$, magnetic fields $B_1 = 0.25$ T, $B_2 = 0.50$ T and area of coil $A_1 = 3.6 \times 10^{-3}$ cm² and $A_2 = 1.8 \times 10^{-3}$ cm². Find the ratio of their voltage sensitivity (same spring in both)

 $(1)\frac{5}{7}$

- $(2) \frac{49}{20}$
- $(3)\frac{49}{25}$
- $(4)^{\frac{7}{5}}$


Ans. (3

Sol. Voltage sensitivity = $\frac{NAB}{CR}$

$$\frac{\chi_{_{1}}}{\chi_{_{2}}} = \frac{N_{_{1}}}{N_{_{2}}} \times \frac{A_{_{1}}}{A_{_{2}}} \times \frac{B_{_{1}}}{B_{_{2}}} \times \frac{R_{_{2}}}{R_{_{1}}}$$

$$=\frac{21}{15} \times \frac{36}{18} \times \frac{0.25}{0.5} \times \frac{7}{5} = \frac{49}{25}$$

17. A particle moves on a circular path of radius 1 m. Find displacement when it moves from $A \rightarrow B \rightarrow A \rightarrow B$. Also its distance as it moves from $A \rightarrow B \rightarrow A \rightarrow B \rightarrow A$.

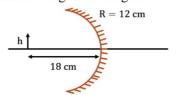
- (1) Distance = 2 m, Displacement = 4π m
- (2) Distance = 2 m, Displacement = 5π m
- (3) Distance = 4π m, Displacement = 2 m
- (4) Distance = 5π m, Displacement = 2 m

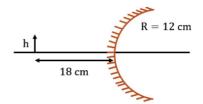
(3) Ans.

- Sol. Displacement $A \rightarrow B \rightarrow A \rightarrow B$.
 - $= A \rightarrow B$
 - = 2R = 2m

Distance : $A \rightarrow B \rightarrow A \rightarrow B \rightarrow A$

- = 2 complete circle
- $=4\pi$ m
- Match the list-I with the list-II 18.
 - (i) Heat capacity
- (a) $J kg^{-1} K^{-1}$
- (ii) Specific heat capacity
- (b) $J K^{-1}$
- (iii) Latent heat
- (c) W m⁻¹ K⁻¹
- (iv) Thermal conductivity
- (d) $J kg^{-1}$
- (1)(i) (b), (ii) (d), (iii) (c), (iv) (a)
- (2) (i) (b), (ii) (a), (iii) (c), (iv) (a)
- (3) (i) (b), (ii) (c), (iii) (d), (iv) (a)
- (4) (i) (b), (ii) (a), (iii) (d), (iv) (c)
- Ans.
- (i) Heat capacity $\frac{J}{\text{kg K}}$ Sol.
 - (ii) Specific heat capacity $\frac{J}{K}$
 - (iii) Latent heat $\frac{J}{kg}$
 - (iv) thermal conductivity $\frac{W}{mK}$


- 19. Which of the following option is correct for an adiabatic process :-
 - (1) PV = constant
- (2) PT = constant
- (3) WD $\propto T_2 T_1$
- (4) None of these


Ans.

 $W_{adia} = \frac{nR}{\gamma - 1} [T_1 - T_2]$ Sol.

$$\Rightarrow$$
 WD \propto T₂ - T₁

20. Find the ratio of heights of images:

- (1)2
- (2)4
- (3)6
- (4) 8

Ans. **(1)**

Sol.

$$\frac{1}{v_1} - \frac{1}{18} = -\frac{1}{6} \qquad \qquad \frac{1}{v_2} - \frac{1}{18} = \frac{1}{6}$$

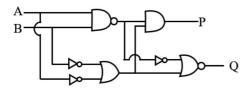
$$\frac{1}{v_1} = \frac{1}{18} - \frac{1}{6}$$

$$\frac{1}{v_2} = \frac{1}{18} + \frac{1}{6}$$

$$=\frac{-2}{18}$$

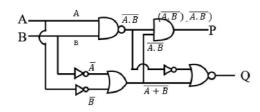
$$\frac{1}{v_2} = \frac{4}{18}$$

$$v_1 = -9 \text{ cm}$$


$$v_2 = \frac{9}{2}$$
 cm

$$\left|\frac{h_{_{i}}}{h_{_{o}}}\right| = \left|-\frac{v}{u}\right| \Longrightarrow h_{_{i}} \propto v$$

$$\frac{h_1}{h_2} = \frac{v_1}{v_2} = \frac{9}{9} \times 2 = 2$$


SECTION-B

1. Find the output of the circuit.

Ans. (0)

Sol.

$$(\overline{A.B})(\overline{A.B}) = 0$$

$$\left(\overline{\mathbf{A}}.\overline{\mathbf{B}}\right)\mathbf{A}\mathbf{B} = 0$$

CHEMISTRY

SECTION-A

- Correct order of electronegativity in below 1. elements
 - (a) $1s^22s^22p^3$
- (b) $1s^22s^22p^4$
- (c) $1s^22s^22p^5$
- (d) $1s^22s^22p^2$
- (1) a > b > c > d
- (2) c > b > a > d
- (3) d > c > b > a
- (4) c > b > d > a

Ans.

- (a) $1s^22s^22p^3 \Rightarrow N$ Sol.
 - (b) $1s^22s^22p^4 \Rightarrow O$
 - (c) $1s^22s^22p^5 \Rightarrow F$
 - (d) $1s^22s^22p^2 \Rightarrow C$

Moving from left to right in a period EN increase as Z_{eff} increases.

EN order

C < N < O < F

EN on Pauling scale: 2.5 3.0

3.5 4.0

Ans. c > b > a > d

- Nature of compounds TeO₂ and TeH₂ is 2. and respectively.
 - (1) Oxidising and reducing agent respectively
 - (2) Highly acidic and highly basic respectively
 - (3) Reducing and Basic respectively
 - (4) Basic and oxidising

Ans.

Sol. In group 16 oxides TeO₂ acts as oxidising agent due to inert pair effect, +2 oxidation state is more stable so +4 changes into +2 (Te^{⊕4} gets reduced to Te^{⊕2}).

> In group 16 hydrides TeH₂ acts as reducing agent because in group 16 hydrides down the group E-H bond length increase so, tendency to loose H atom increases, thus reducing nature increases.

 $TeO_2 \Rightarrow$ oxidising agent

 $TeH_2 \Rightarrow reducing agent$

- 3. Sodium nitroprusside test is used for detection of which of the following species in organic compounds
 - $(1) SO_4^{2-}$
- $(2) S^{2-}$
- $(3) \text{ Na}^+$
- $(4) PO_4^{3-}$

(2) Ans.

Sol.

$$S^{-2} + Na_{2}[Fe(CN)_{5}(NO)] \\ \downarrow \\ Na_{4}[Fe(CN)_{5}(NOS)] \\ Purple$$

- 4. Which of the following is the correct order of enthalpy of atomization of 3d-series?
 - (1) Ni > Cu > Mn > Zn
 - (2) Zn > Cu > Mn > Ni
 - (3) Cu > Mn > Ni > Zn
 - (4) Mn > Ni > Cu > Zn

(1) Ans.

Sol. For metals

> Enthalpy of atomisation generally depends an metallic bond strength and sublimation enthalpy order of enthalpy of atomisation in 3d-series among Ni, Cu, Mn & Zn.

 $Zn \Rightarrow$ weakest metallic bond strength among 3d series.

Mn ⇒ Low enthalpy of atomisation due to exceptional crystal lattice structure.

Enthalpy of atomisation (kJ/mole)

 $Mn \rightarrow 281$

 $Ni \rightarrow 430$

 $Cu \rightarrow 339$

 $Zn \rightarrow 126$

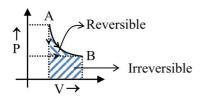
5. Among the following molecules which one has sp³d hybridized having lone pair and having different bond length:

XeF₂, XeF₄, PF₅, SF₄

- (1) XeF₂
- (2) XeF₄
- (3) PF₅
- (4) SF₄

Ans. (4)

Sol. lone pair


$$XeF_2 \Rightarrow sp^3d 3$$

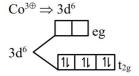
 $XeF_4 \Rightarrow sp^3d^2 2$
 $PF_5 \Rightarrow sp^3d 0$
 $SF_4 \Rightarrow sp^3d 1$

- **6.** In adiabatic process, the magnitude of work done in case of one step & infinite step follows order:
 - (1) $|W_{rev}|_{expansion} > |W_{Irrev}|_{expansion}$
 - (2) $|W_{rev}|_{expansion} < |W_{Irrev}|_{expansion}$
 - (3) $|W_{rev}|_{expansion} = |W_{Irrev}|_{expansion}$
 - (4) Can't be predicated

Ans. (1)

Sol.

 $|W_{rev}|_{expansion} > |W_{Irrev}|_{expansion}$


- 7. The d-orbital electronic configuration of the complex among $[Co(en)_3]^{3+}$, $[Co(F)_6]^{3-}$. $[Mn(H_2O)_6]^{2+}$ and $[Zn(H_2O)_6]^{2+}$ that has highest CFSE is
 - $(1) t_{2g}^3 eg^2$
- (2) $t_{2g}^6 eg^4$
- $(3) t_{2g}^6 eg^0$
- $(4) t_{2g}^4 eg^2$

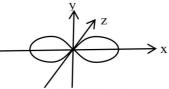
Ans. (3)

Sol. CFSE order $M^{3\oplus} > M^{2\oplus}$

General ligand strength order : C-donor > N-donor > O-donor > halogen and other donor According to above order CFSE maximum for $[Co(en)_3]^{3\oplus}$

For $[Co(en)_3]^{3\oplus} \Rightarrow$ octahedral complex

d-orbital electronic configuration : t_{2g}^6 , eg^0


- **8.** Consider the following statements
 - (A) Value of *l* gives shape of orbital
 - (B) Ψ represent wave function of an electron
 - (C) Electron density of p_x orbital in xy plane is zero
 - (D) $2p_x$ orbital is

The correct statement(s) are

- (1) (A) and (D) only
- (2) (A), (C) and (D) only
- (3) (A), (B) and (D) only
- (4) (A), (B), (C) and (D)

Ans. (3)

- **Sol.** (A) Azimuthal quantum no. $(\ell) \Rightarrow$ represents shape of orbital
 - (B) $\Psi \Rightarrow$ represents wave function of an electron and amplitude of electron wave
 - (C) Lobes of p_x orbital are present in xy and xz planes and nodal plane is yz plane, so electron density of p_x orbital is zero in yz plane
 - (D) 2p_x orbital is oriented along x-axis

Ans. A, B and D only

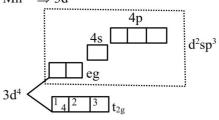
- 9. For the reversible reaction $A(g) \rightleftharpoons B(g) + C(g)$. The degree of dissociation is α at pressure P_T , then
 - (1) If $P_T \gg K_P$, then $\alpha \approx 1$
 - (2) If P_T increases, then α decreases
 - (3) If P_T increases, then α increases
 - (4) If $K_P >> P_T$, then α tend to 0

Ans. (2

Sol. According to Le-chatlier principal If P_T increases reaction will shift toward less moles, means backward reaction Hence α decreases.

- 10. The number of unpaired electrons and hybridization of $[Mn(CN)_6]^{3-}$, respectively are:
 - (1) 4 and d^2sp^3
- (2) 4 and sp³d²
- (3) 2 and d^2sp^3
- (4) 2 and sp³d²

Ans. (3)


Sol. $[Mn(CN)_6]^{3-}$

CN[−]⇒ strong field ligand

In presence of SFL $\Delta_0 > P$

Pairing is possible in t_{2g}

 $Mn^{3\oplus} \Rightarrow 3d^4$

Unpaired electrons (n) = 2 Hybridisation \Rightarrow d²sp³

- 11. In 3, 3-dimethylhex-1-en-4-yne, the number of sp, sp² and sp³ carbon atoms, respectively are
 - (1) 2, 2, 4
- (2) 2, 2, 2
- (3) 4, 2, 2
- (4) 2, 4, 2

Ans. (1)

Sol.
$$\begin{array}{c} H & CH_3 sp^3 \\ | & | \\ 1 & 2 \\ 1 & 2 \\ CH_3 sp^3 \\ \hline CH_3 sp^3 \\ \end{array}$$

$$sp^2 = C_1, C_2$$

$$sp = C_4, C_5$$

12. Statement-I: Melting point of neopentane is greater than that of n-pentane.

Statement-II: Neopentane give only one monosubstituted product.

- (1) Statement I and Statement II both are correct.
- (2) Statement I is correct but Statement II is incorrect.
- (3) Statement I is incorrect but Statement II is correct.
- (4) Statement I and Statement II both incorrect.

Ans. (1)

Sol. Statement-I:

$$CH_3 \\ CH_3 - C - CH_3 \\ CH_3 \\ neopentane \\ m.p. - (-16.6°C) \\ CH_3 \\ n.p. - (-129.8°C)$$

Symmetrical compounds have higher m.p.

Statement-II:

$$\begin{array}{c|c} CH_3 & CH_3 \\ \hline CH_3 - C - CH_3 & Br_2 \\ \hline CH_3 & hv \end{array} \rightarrow \begin{array}{c} CH_3 \\ \hline PRCH_2 - C - CH_3 \\ \hline CH_3 & CH_3 \\ \hline \end{array}$$

Only one mono-substituted product.

- 13. The four different amino acids are given A, B, C and D. Calculate the number of tetrapeptides formed including all the four amino acids.
 - (1) 8
- (2) 16
- (3)24
- (4) 32

Ans. (3)

Sol. Tetrapeptide is formed using 4 amino acids it has 3 peptide linkages the number of permutations in which they can be arranged = 4!

$$=4\times3\times2\times1$$

$$= 24$$

14. Match the column

	Column -I		Column - II
(P)	Finkelstein reaction	(I)	Co+HCl→
(Q)	Lucas reaction	(II)	R—X −Na ether >
(R)	Wurtz reaction	(III)	OH HCl ZnCl ₂
(S)	Gattermann koch reaction	(IV)	CH_3 — $CH_2Cl\frac{Na}{Acetone}$

- (1) P-IV, Q-III, R-II, S-I
- (2) P-I, Q-II, R-III, S-IV
- (3) P-II, Q-III, R-I, S-IV
- (4) P-III, Q-II, R-I, S-IV

Ans. (1)

Sol. (P)
$$CH_3$$
— $CH_2Cl \xrightarrow{Nal}$ CH_3 — CH_2I

Finkelstein reaction Halogen exchange reaction

$$(Q) \xrightarrow{OH} \xrightarrow{HCl} Cl$$

$$\xrightarrow{ZnCl_2} White turbidity$$

$$\xrightarrow{Lucas test}$$

$$(R) R - X \xrightarrow{\text{Na}} R - R$$

Wurtz reaction

$$(S) \bigodot \xrightarrow{Co+HCl} \bigodot$$

Gattermann koch reaction

Out of following reaction in how many reaction final product has –COOH functional group?

$$(A) \xrightarrow{C \equiv N} \xrightarrow{H_3O^+}$$

(B)
$$R - C = N \frac{(1) SnCl_2 + HCl}{(2) H_3O^+}$$

(C)
$$(C) \bigcirc (1) \xrightarrow{\text{H}_2/\text{Pd-BaSO}_4}$$

$$(C) \bigcirc (2) \xrightarrow{\text{Br}_2/\text{Fe}}$$

$$\begin{array}{c}
\ddot{\text{C}}-\text{Cl} \\
\hline
\end{array}$$

$$\begin{array}{c}
N\text{H}_3 \\
\end{array}$$

(E)
$$\longrightarrow$$
 MgCl $\frac{(1) CO_2}{(2) H_3 O^+}$

- (1) Only A, E
- (2) Only A, B, C
- (3) Only D, E
- (4) Only A, C, D

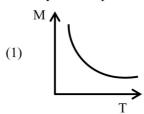
Ans. (1)

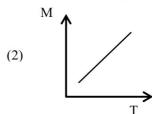
Sol. (A)
$$C\equiv N_{H_3O^+}$$
 COOH

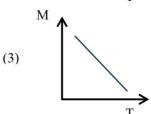
(B)
$$R - C \equiv N \xrightarrow{(1) \text{SnCl}_2 + \text{HCl}} R - C - H$$

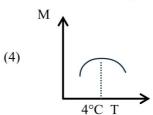
Stephen's reaction

Preparation of carboxylic acids from Grignard reagent


16. Match list-I with list-II and select the correct option


List – I (Pair of molecules)		List – II (Purification method)	
(A)	Glycerol and spent-lye	(I)	Steam distillation
(B)	Water and aniline	(II)	Fractional distillation
(C)	Petrol and Diesel	(III)	Distillation under reduced pressure
(D)	Aniline and CHCl ₃	(IV)	Distillation


- (1) A-IV, B-I, C-II, D-III
- (2) A-III, B-II, C-I, D-IV
- (3) A-IV, B-II, C-I, D-III
- (4) A-III, B-I, C-II, D-IV

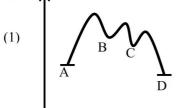

Ans. (4)

- **Sol.** (A) Glycerol and spent-lye \rightarrow Distillation under reduced pressure
 - (B) Water and aniline → Steam distillation
 - (C) Petrol and Diesel → Fractional distillation
 - (D) Aniline and CHCl₃ → Distillation
- 17. 1 M NaCl solution is prepared at 0°C in H₂O Now it is heated then find correct graph between molarity and temperature.

Ans. (4)

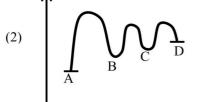
Sol.
$$M = \frac{n}{V}$$

For H₂O


$$0^{\circ}C \xrightarrow{\boxed{d \uparrow V \downarrow}} 4^{\circ}C \xrightarrow{\boxed{d \downarrow V \uparrow}} \text{higher temperature}$$

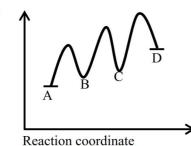
18. Consider the following reactions:

$$A \xrightarrow[slow]{\Delta H > 0} B \xrightarrow[fast]{\Delta H < 0} C \xrightarrow[fast]{\Delta H < 0} D$$


Then correct graph will be

Reaction coordinate

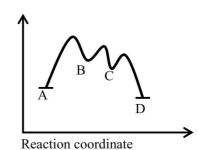
PE



Reaction coordinate

Reaction coordinate

(4)^{PE}



Ans. **(1)** Sol. H > 0 : A > B

 $\Delta H < 0 : C < B$

 $\Delta H < 0 : D < C$

PE

SECTION-B

19. 0.1 g of organic compound was subjected to estimation of N by Duma's method. Volume of N₂ evolved at 0°C, 1 atm was 11.2 mL. Find % nitrogen in organic compound.

Ans. (14)

Sol.
$$n_{N_2} = \frac{11.2}{22400} = 5 \times 10^{-4}$$

Mass of $N_2 = 5 \times 10^{-4} \times 28$

% of
$$N_2 = \frac{5 \times 10^{-4} \times 28}{0.1} \times 100$$

$$1400 \times 10^{-4} \times 100 = 14\%$$

Mass of Q formed is x (gm). Find the value of x 20.

$$\begin{array}{c}
& \text{Br} \\
& \text{1 mole} \\
\end{array}
\xrightarrow{\text{Alc.KOH}} P \xrightarrow{\text{Br}_2/\text{CCl}_4} Q \\
& \text{80\%} \\
\end{array}$$

(184)Ans.

Mass of Q formed = $0.8 \text{ mol} \times \text{molar mass of Q}$

$$= 0.8 \times 230$$

(100%)

$$= 23 \times 8 \text{ g}$$

$$= 184 g$$

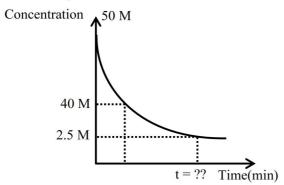
21. If the percentage w/v for NaOH is 0.2 and resistivity is 870 milliohm metre. Then, calculate Λ m (in S cm²mol⁻¹).

Ans. (230)

Sol.
$$\Lambda_n = \frac{K \times 1000}{C}$$

$$k = \frac{1}{\rho} = \frac{1000}{870} \text{ ohm}^{-1} \text{m}^{-1}$$

$$=1.15\times10^{-2} \text{ ohm}^{-1} \text{ cm}^{-1}$$


$$\Rightarrow 0.2$$
 g NaOH in 100 ml solution

$$M = \frac{\frac{0.2}{40}}{\frac{100}{1000}} = 0.05$$

$$\Rightarrow \Lambda_{m} = \frac{1.15 \times 10^{-2} \times 10^{3}}{5 \times 10^{-2}}$$

$$\Lambda_{\rm m} = 230$$

22. Concentration vs time graph for first order reaction is given

Find out time required for concentration to become 2.5 M (in min) (Nearest integer)

Ans. (65)

Sol.
$$\Rightarrow$$
 $k = \frac{1}{t} ln \frac{C_o}{C_t}$

$$\implies k = \frac{1}{5} \ln \frac{5}{4}$$

$$\Rightarrow t = \frac{1}{k} \ln \frac{50}{2.5} = \frac{1}{k} \ln 20$$

$$\Rightarrow t = \frac{5\ln 20}{\ln \frac{5}{4}}$$

$$\Rightarrow$$
 t = 65 min

SECTION-A

1. If $\theta \in \left[-\frac{7\pi}{6}, \frac{4\pi}{3} \right]$, then number of solutions of $\sqrt{3}\csc^2\theta - 2(\sqrt{3} - 1)\csc\theta - 4 = 0$, is ____.

Ans. (6

Sol. $\sqrt{3}\cos ec\theta(\cos ec\theta - 2) + 2(\cos ec\theta - 2) = 0$ $\Rightarrow \cos ec\theta = \frac{-2}{\sqrt{3}}, \cos ec\theta = 2$

$$\Rightarrow \sin \theta = \frac{-\sqrt{3}}{2}, \sin \theta = \frac{1}{2}$$

$$\theta = p\pi + \left(-1\right)^{P} \left(\frac{-\pi}{3}\right),\,$$

$$\theta = n\pi + \left(-1\right)^n \frac{\pi}{6}$$

Number of solutions = 6

2. If the domain of the function

$$f(x) = \frac{1}{\sqrt{3x+10-x^2}} + \frac{1}{\sqrt{x+|x|}}$$
 is (a, b) then

 $(1+a)^2 + b^2$ is equal to

- (1)25
- (2) 16
- (3)24
- (26)

Ans. (4)

Sol. $3x + 10 - x^2 > 0 \Rightarrow x^2 - 3x - 10 < 0$ $\Rightarrow (x - 5)(x + 2) < 0 \Rightarrow x \in (-2, 5)$...(i) $x + |x| > 0 \Rightarrow x > 0$...(ii) Domain will be (0, 5) $\Rightarrow a = 0, b = 5$

 $(1+a)^2 + b^2 = 1 + 25 = 26$

3. Total number of terms in an A.P. are even. Sum of odd terms is 24 and sum of even term is 30. Last term exceeds the first term by $\frac{21}{2}$. Find the total number of terms.

Ans. (8)

Sol. Let number of terms = 2n

Let first term of AP is a and common difference is 2d

 $a, a + 2d, a + 4d, \dots$

$$\frac{n}{2} \left[2a + \left(n - 1 \right) 2d \right] = 24$$

n[a + (n-1)d] = 24(1)

a + d, a + 3d, a + 5d,

$$\frac{n}{2} [2(a+d)+(n-1)2d] = 30$$

$$n[(a+d) + (n-1)d] = 30$$

$$24 + nd = 30$$
(2)

$$[a + (2n - 1)d] - a = \frac{21}{2}$$

$$(2n-1)d = \frac{21}{2}$$

$$2nd - d = \frac{21}{2}$$

$$12 - d = \frac{21}{2}$$

$$d = \frac{3}{2}$$

$$nd = 6 \Rightarrow n = \frac{6 \times 2}{3} = 4$$

 \Rightarrow no. of term = 8

- 4. Find the eccentricity of ellipse in which length of minor axis is equal to one fourth of the distance between foci
 - (1) $\frac{4}{\sqrt{17}}$
- (2) $\frac{2}{\sqrt{17}}$
- (3) $\frac{7}{\sqrt{17}}$
- (4) $\frac{8}{\sqrt{17}}$

Ans. (1

- **Sol.** $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a > b$
 - $2b = \frac{1}{4} \times 2ae$

$$\Rightarrow 4\frac{b}{a} = e$$

$$\Rightarrow 16\frac{b^2}{a^2} = e^2$$

$$\Rightarrow 16(1 - e^2) = e^2$$

$$\Rightarrow 16 = 17e^2$$

$$e^2 = \frac{16}{17}$$

$$e = \frac{4}{\sqrt{17}}$$

5. $\lim_{\substack{x \to 0}} \frac{\cos(2x) + a\cos(4x) - b}{x^4}$ is finite, then a+b is equal to

- $(1)^{\frac{1}{2}}$
- $(2)^{\frac{1}{4}}$
- (3)2
- **(4)** 1

Ans. (3)

Sol. Use expansion of $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$

$$\lim_{x \to 0} \frac{\left(1 - \frac{(2x)^2}{2!} + \frac{(2x)^4}{4!} - \dots\right) + a\left(1 - \frac{(4x)^2}{2!} + \frac{(4x)^4}{4!} + \dots\right) - b}{x^4}$$

$$\Rightarrow \lim_{x \to 0} \frac{(1+a-b)-(2+8a)x^2 + \left(\frac{16}{24} + \frac{2^8}{24}\right)x^4 \dots}{x^4}$$

Limit is finite:

$$\therefore 1 + a - b = 0 \text{ and } 2 + 8a = 0 \Rightarrow a = \frac{-1}{4}$$

$$\Rightarrow$$
 b - a = 1 \Rightarrow b + $\frac{1}{4}$ = 1 \Rightarrow b = $\frac{3}{4}$

$$\therefore 4(a+b)=2$$

6. If $\frac{dy}{dx} + 2y\sec^2 x = 2\sec^2 x + 3\tan x \cdot \sec^2 x$ and $f(0) = \frac{5}{4}$. Then the value of $12\left(y\left(\frac{\pi}{4}\right) - \frac{1}{e^2}\right)$ is equal to

Ans. (21)

Sol.
$$\frac{dy}{dx} + 2y \sec^2 x = \sec^2 x (2 + 3\tan x)$$
I.F.
$$e^{\int 2\sec^2 x} = e^{2\tan x}$$

$$y \cdot e^{2\tan x} = \int e^{2\tan x} (2 + 3\tan x) \sec^2 x dx$$

$$= \int e^{2t} (2 + 3t) dt$$

$$= e^{2t} + \frac{3te^{2t}}{2} - \frac{3e^{2t}}{4}$$

$$\Rightarrow y \cdot e^{2\tan x} = e^{2\tan x} \left(1 + \frac{3\tan x}{2} - \frac{3}{4} \right) + c$$
Since $f(0) = \frac{5}{4}$

$$\Rightarrow \frac{5}{4} = 1 - \frac{3}{4} + c$$

$$\Rightarrow c = 1$$

$$\Rightarrow y = \frac{1}{4} + \frac{3\tan x}{2} + e^{-2\tan x}$$
Now, $y\left(\frac{\pi}{4}\right) = \frac{1}{4} + \frac{3}{2} + e^{-2}$
So, $12\left(y\left(\frac{\pi}{4}\right) - \frac{1}{e^2}\right) = 12\left(\frac{7}{4}\right) = 21$

7. If two vectors \vec{a} and \vec{b} is given by $\vec{a} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}$ and $\vec{b} = -\hat{\imath} + 4\hat{\jmath} + 8\hat{k}$ and the vectors \vec{c} and \vec{d} are related as $(\vec{a} - \vec{c}) \times \vec{b} = 5\hat{\imath} - 2\hat{\jmath} + 3\hat{k}$ and $\vec{b} \times \vec{c} = \vec{d}$. Then $|\vec{a}.\vec{d}|$ is equal to

- (1) 12
- (2)8
- (3) 10
- (4)7

Ans. (3)

Sol. $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k} & \vec{b} = -\hat{i} + 4\hat{j} + 8\hat{k}$ $(\vec{a} - \vec{c}) \times \vec{b} = 5\hat{i} - 2\hat{j} + 3\hat{k}$ $\vec{b} \times \vec{c} = \vec{d}$ $|\vec{a} \cdot \vec{d}| = |\vec{a} \cdot (\vec{b} \times \vec{c})| = |[\vec{a} \vec{b} \vec{c}]|$

$$\Rightarrow \left(\left(\vec{a} \times \vec{b} \right) - \left(\vec{c} \times \vec{b} \right) \right) \cdot \vec{a} = \left(5\hat{i} - 2\hat{j} + 3\hat{k} \right) \cdot \left(\hat{i} + 2\hat{j} + 3\hat{k} \right)$$
$$\left[\vec{a} \ \vec{b} \ \vec{c} \right] = 5 - 4 + 9 = 10$$
$$\left[\vec{a} \ \vec{b} \ \vec{c} \right] = 10$$

8. If the mean and variance of eight observations a, b, 8, 12, 10, 6, 4, 13 is 9 and 9.25 respectively. Then a + b + ab is equal to

- (1)76
- (2)84
- (3)79
- (4) 103

Ans. (4)

Sol.
$$\frac{a+b+8+12+10+6+4+13}{8} = 9$$

$$\Rightarrow a+b+53=72$$

$$\Rightarrow a+b=19$$

$$\sum \frac{x_i^2}{8} - 9^2 = 9.25$$

$$\Rightarrow a^2+b^2+8^2+12^2+10^2+6^2+4^2+13^2$$

$$= (81+9.25) \times 8$$

$$\Rightarrow a^2+b^2+64+144+100+36+16+169$$

$$= 648+74$$

$$\Rightarrow a^2+b^2=193$$

$$ab = \frac{(a+b)^2-(a^2+b^2)}{2} = \frac{361-193}{2} = 84$$

9. If $y = \cos\left(\frac{\pi}{3} + \cos^{-1}\left(\frac{x}{2}\right)\right)$, then which of the following is true.

$$(1) x^2 - 2xy + 8y^2 = 2$$

 \Rightarrow a + b + ab = 19 + 84 = 103

(2)
$$x^2 - 2xy + 4y^2 = 3$$

$$(3) x^2 - 3xy + 4y^2 = 3$$

$$(4) x^2 - 5xy + 4y^2 = 8$$

Ans. (2

Sol.
$$y = \frac{1}{2} \cdot \frac{x}{2} - \frac{\sqrt{3}}{2} \cdot \sqrt{1 - \frac{x^2}{4}}$$

$$\Rightarrow y - \frac{x}{4} = -\frac{\sqrt{3}}{2} \sqrt{1 - \frac{x^2}{4}}$$

$$\Rightarrow y^2 + \frac{x^2}{16} - \frac{xy}{2} = \frac{3}{4} \left(1 - \frac{x^2}{4} \right)$$

$$\Rightarrow 16y^2 + x^2 - 8xy = 12 - 3x^2$$

$$\Rightarrow 4x^2 + 16y^2 - 8xy = 12$$

$$\Rightarrow x^2 + 4y^2 - 2xy = 3$$

10. If the curve $x^2 = 4y$ intersects the line y = 2(x + 6) at (a, b) in 2^{nd} quadrant, then $\int_{a}^{b} \frac{x^4}{1+5^x} dx$ is $(1)\frac{512}{5} \qquad (2)\frac{1024}{5}$ $(3)\frac{32}{5} \qquad (4)\frac{16}{5}$

Ans. (2

 $x^{2} = 4y y = 2(x + 6)$ $x^{2} = 4(2(x + 6))$ $\Rightarrow x^{2} - 8x - 48 = 0$ $\Rightarrow x^{2} - 12x + 4x - 48 = 0$ $\Rightarrow x = -4; x = 12$ So, x = -4 as it is second quadrant $y = \frac{x^{2}}{4} = 4$ So, (a, b) = (-4, 4) $I = \int_{-4}^{4} \frac{x^{4}}{1 + 5^{x}} dx$ By king $I = \int_{-4}^{4} \frac{x^{4}}{1 + 5^{x}} dx$ $I = \int_{-4}^{4} \frac{x^{4} \cdot 5^{x}}{1 + 5^{x}} dx$ $2I = \int_{-4}^{4} x^{4} \left(\frac{1 + 5^{x}}{1 + 5^{x}}\right) dx = 2 \int_{0}^{4} x^{4} dx$ $I = \frac{x^{5}}{5} \Big|_{0}^{4} = \frac{1024}{5}$

11. Let $f: [1, \infty) \to [2, \infty)$ be a differentiable function. If $10 \int_{1}^{x} f(t) dt = 5xf(x) - x^5 - 9$ for all $x \ge 1$, then the value of f(3) is

(1) 18
(2) 22
(3) 32
(4) 26

Ans. (3)

Sol.
$$10 \int_{1}^{x} f(t) dt = 5xf(x) - x^{5} - 9$$

$$\Rightarrow 10 f(x) = 5f(x) + 5xf'(x) - 5x^{4}$$

$$\Rightarrow f(x) = xf'(x) - x^{4}$$

$$\frac{dy}{dx} - \frac{1}{x}y = x^{3}$$
I.F.
$$= e^{\int \frac{-1}{x} dx} = \frac{1}{x}$$

$$y \cdot \frac{1}{x} = \int x^{3} \cdot \frac{1}{x} dx + c$$

$$\Rightarrow \frac{y}{x} = \frac{x^{3}}{3} + c$$

Since
$$f(1) = 2 \Rightarrow c = \frac{5}{3}$$

So now we have to find f(3) or y(3)

So,
$$\frac{y(3)}{3} = \frac{27}{3} + \frac{5}{3}$$

 $\Rightarrow y(3) = 32$

12.
$$4 \int_0^1 \frac{1}{\sqrt{3+x^2} + \sqrt{1+x^2}} dx - 3\ell n \sqrt{3}$$
 is equal to

(1)
$$3 - \sqrt{2} + \ell n (\sqrt{2} + 1)$$

(2)
$$2 + \sqrt{2} - \ln(\sqrt{3} + 1)$$

(3)
$$2 - \sqrt{2} - \ln(\sqrt{2} + 1)$$

(4)
$$2 - \sqrt{3} - \ln(\sqrt{3} + 1)$$

Ans.

Sol.
$$4 \left[\int_{0}^{1} \frac{\left(\sqrt{3+x^2} - \sqrt{1+x^2}\right)}{2} dx \right] - 3\ell n \sqrt{3}$$

$$\implies 2 \bigg[\bigg(\frac{x}{2} \sqrt{3 + x^2} + \frac{3}{2} \ell n \big| x + \sqrt{3 + x^2} \bigg) - \bigg(\frac{x}{2} \sqrt{1 + x^2} + \frac{1}{2} \ell n \big| x + \sqrt{1 + x^2} \bigg) \bigg]_0^1 - 3 \ell n \sqrt{3} \bigg]$$

$$\Rightarrow 2 \left[\left\{ \frac{1}{2} \times 2 + \frac{3}{2} \ln |3| - \frac{1}{2} \times \sqrt{2} - \frac{1}{2} \ln (1 + \sqrt{2}) \right\} - \left\{ \frac{3}{2} \ln \sqrt{3} \right\} \right] - 3 \ln \sqrt{3}$$

$$\Rightarrow 2 + 3\ell n 3 - \sqrt{2} - \ell n \left(1 + \sqrt{2}\right) - 3\ell n \sqrt{3} - 3\ell n \sqrt{3}$$

$$\Rightarrow 2 - \sqrt{2} - \ell n \left(\sqrt{2} + 1\right)$$

- 13. The image of the point (1,0,3) in the line joining the points A (4,7,1) and B(3,5,3) is $Q(\alpha, \beta, \gamma)$, then $\alpha + \beta + \gamma$ is equal to
 - (1) 13
- (3)18
- $(4)\frac{46}{3}$

Ans.

Sol.
$$\frac{x-4}{1} = \frac{y-7}{2} = \frac{z-1}{-2} = \lambda$$
$$(\lambda + 3)(1) + (2\lambda + 7)2 + (-2 - 2\lambda)(-2) = 0$$
$$\lambda + 3 + 4\lambda + 14 + 4 + 4\lambda = 0$$
$$\Rightarrow \lambda = -\frac{21}{9}$$

Now, coordinates of Q will be

$$(2\lambda + 7, 4\lambda + 14, -4\lambda - 1)$$

$$\alpha + \beta + \gamma = 2\lambda + 20$$

$$= 2\left(\frac{-21}{9}\right) + 20$$

$$= \frac{46}{3}$$

$$(1,0,3)$$

$$(\lambda+4,2\lambda+7,-1-2\lambda)$$

$$Q \bullet (2\lambda+7,4\lambda+14,-4\lambda-1)$$

14. If the system of equations

$$2x + \lambda y + 3z = 5$$

$$3x + 2y - z = 7$$

$$4x + 5y + \mu z = 9$$

has infinitely many solutions, then $(\lambda^2 + \mu^2)$ is equal to

- (1)22
- (2)18
- (3)26
- (4) 30

Ans.

Sol.
$$D_2 = \begin{vmatrix} 2 & 5 & 3 \\ 3 & 7 & -1 \\ 4 & 9 & \mu \end{vmatrix} = 0$$

$$\Rightarrow 2(7\mu+9)-5(3\mu+4)+3(27-28)$$

$$\Rightarrow 14\mu + 18 - 15\mu - 20 - 3 = 0$$

$$\Rightarrow \mu = 5$$

$$D_3 = \begin{vmatrix} 2 & \lambda & 5 \\ 3 & 2 & 7 \\ 4 & 5 & 9 \end{vmatrix} = 0$$

$$\Rightarrow 2(18-35) - \lambda(27-28) + 5(15-8) = 0$$

$$\Rightarrow$$
 $-34 + \lambda + 35 = 0$

$$\Rightarrow \lambda = -1$$

So,
$$\lambda^2 + \mu^2 = 1 + 25 = 26$$

15. If the sum of the series

$$\frac{1}{1+4\cdot 1^4} + \frac{2}{1+4\cdot 2^4} + \frac{3}{1+4\cdot 3^4} + \dots + \frac{10}{1+4\cdot 10^4}$$
 is $\frac{m}{n}$, where m and n are natural coprime umbers, then $(m+n)$ is equal to

- (1)289
- (2)276
- (3)225
- (4)389

Ans.

(2)

Sol.
$$T_r = \frac{r}{1+4\cdot r^4} = \frac{\frac{r}{4}}{\frac{1}{4}+r^4} = \frac{1}{4} \frac{r}{\left(r^2 + \frac{1}{2} - r\right)\left(r^2 + \frac{1}{2} + r\right)}$$

$$T_r = \frac{1}{8} \frac{2r}{\left(r^2 + \frac{1}{2} + r\right)\left(r^2 + \frac{1}{2} - r\right)}$$

$$\Rightarrow T_r = \frac{1}{8} \left[\frac{1}{r^2 + \frac{1}{2} - r} - \frac{1}{r^2 + \frac{1}{2} + r} \right]$$

$$S = \frac{1}{8} \left[\frac{1}{1^2 + \frac{1}{2} - 1} - \frac{1}{10^2 + \frac{1}{2} + 10} \right]$$

$$= \frac{1}{4} - \frac{1}{884} = \frac{220}{884} = \frac{55}{221}$$

$$M + n = 276$$
.

16. A bag is randomly selected and a ball is drawn. If drawn ball is red, then probability that ball is selected from bag I is p. If ball drawn is green then probability that ball is selected from bag III is q. Then $\frac{1}{p} + \frac{1}{q}$ equals to

	Red	Blue	Green
Bag-I	3	3	4
Bag-II	4	3	3
Bag-III	5	2	3

Sol.
$$p = \frac{\frac{1}{3} \times \frac{3}{10}}{\frac{1}{3} \left(\frac{3}{10} + \frac{4}{10} + \frac{5}{10}\right)} = \frac{3}{12} = \frac{1}{4}$$

$$q = \frac{\frac{1}{3} \times \frac{3}{10}}{\frac{1}{3} \left(\frac{4}{10} + \frac{3}{10} + \frac{3}{10}\right)} = \frac{3}{10}$$

$$\frac{1}{p} + \frac{1}{q} = 4 + \frac{10}{3} = \frac{22}{3}$$

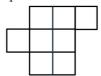
- 17. Let the point P of the focal chord PQ of the parabola $y^2 = 16x$ be (1,-4). If the focus of the parabola divides the chord PQ in the ratio m:n, gcd(m,n) = 1, then $m^2 + n^2$ is equal to (1) 17 (2) 10
 - (1) 17
 - (3)37
- (4) 26

Ans. (1)

Sol. $P \ at^2, 2at \Rightarrow P \ 4t^2, 8t = (1, -4)$

$$\Rightarrow t = \frac{-1}{2}; Q\left(\frac{a}{t^2}, \frac{-2a}{t}\right)$$

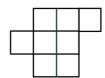
S(4, 0) is the focus


&
$$PS = a + at^2$$

$$QS = a + \frac{a}{t^2}$$

$$\frac{PS}{QS} = t^2 = \frac{4}{1} = \frac{m^2}{n^2}$$

$$m^2 + n^2 = 17$$


18. The no. of ways, in which the letters, A,B,C,D,E can be placed in the 8 boxes of the figure below, so that no row remains empty and at most one letter can be placed in a box is:

- (1) 960
- (2) 5880
- (3) 5760
- (4) 840

Ans. (3)

Sol.

A, B, C, D, E 5 objects can be occupy row-wise as follows

So, solution is

$$((3C_3 3C_1 2C_1 + 3C_1 3C_3 2C_1) + (3C_2 3C_2 2C_1 + 3C_2 3C_1 3C_2 + 3C_1 3C_2 2C_2)) \times 5!$$

$$= ((12) + (18 + 9 + 9)) \times 5!$$

$$= (12 + 36) \times 120$$

$$= 48 \times 120 = 5760$$