
BOND STRESS, (τ_{bd})

where V = Shear force at any section

d = Effective depth of the section

 $\Sigma 0 = \text{Sum of all perimeter of reinforcement}$

 $= n \cdot \pi (\phi)$

where n = Number of reinforcement

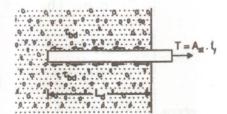
and $\phi = \text{diameter of reinforcement}$

PERMISSIBLE BOND STRESS

As per IS 456: 2000

N-W	M15	M20	M25	M30	M35	M40
WSM	0.6	0.8	0.9	1.0	1.1	1.2
LSM		1.2	1.4	1.5	1.7	1.9

These value of bond stress is for plain bar in tension.


For deformed bar the above value should be increased by 60%.

For bar in compression the above value should be increased by 25%.

DEVELOPMENT LENGTH (L_d)

$$L_{d} = \frac{\phi \sigma_{st}}{4 \cdot \tau_{bd}} \rightarrow FOR WSM$$

$$L_{d} = \frac{\phi \cdot 0.87 f_{y}}{4 \cdot \tau_{bd}} \rightarrow FOR LSM$$

