2.1 Functions

If A and B are two non-empty sets, then a rule f which associated to each $x \in A$, a unique number $y \in B$, is called a function from A to B and we write, $f: A \to B$.

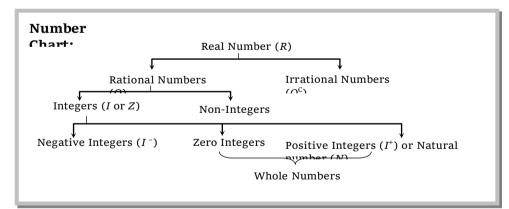
2.1.1 Some Important Definitions

(1) Real numbers : Real numbers are those which are either rational or irrational. The set of real numbers is denoted by R.

(i) **Rational numbers :** All numbers of the form p/q where p and q are integers and $q \neq 0$, are called rational numbers and their set is denoted by Q. e.g. $\frac{2}{3}$, $-\frac{5}{2}$, $4\left(as \quad 4=\frac{4}{1}\right)$ are rational numbers.

Irrational numbers : Those are numbers which can not be expressed in form of p/q(ii) are called irrational numbers and their set is denoted by Q^c (*i.e.*, complementary set of Q) *e.g.* $\sqrt{2}$, $1-\sqrt{3}$, π are irrational numbers.

(iii) Integers : The numbers- 3, - 2, - 1, 0, 1, 2, 3, are called integers. The set of integers is denoted by *I* or *Z*. Thus, *I* or $Z = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$



Note : \square Set of positive integers $I^+ = \{1, 2, 3, ...\}$

- **I** Set of negative integers $I^{-} = \{-1, -2, -3,\}$.
- **\Box** Set of non negative integers = {0, 1, 2, 3, ..}
- **\square** Set of non positive integers = {0, -1, -2, -3,....}

D Positive real numbers: $R^+ = (0, \infty)$ **D** Negative real numbers: $R^- = (-\infty, 0)$

\square R_0 : all real numbers except 0 (Zero) **\square** Imaginary numbers: $C = \{i, \omega, \dots\}$

- **D** Even numbers: $E = \{0, 2, 4, 6, \dots\}$
- **Odd numbers:** $0 = \{1, 3, 5, 7, \dots\}$
- Prime numbers : The natural numbers greater than 1 which is divisible by 1 and itself only, called prime numbers.
- **I** In rational numbers the digits are repeated after decimal
- □ 0 (zero) is a rational number
- □ In irrational numbers, digits are not repeated after decimal
- \Box π and *e* are called special irrational quantities
- $\square \quad \infty$ is neither a rational number nor an irrational number

(2) **Related quantities :** When two quantities are such that the change in one is accompanied by the change in other, *i.e.*, if the value of one quantity depends upon the other, then they are called related quantities. *e.g.* the area of a circle $(A = \pi r^2)$ depends upon its radius (*r*) as soon as the radius of the circle increases (or decreases), its area also increases (or decreases). In the given example, *A* and *r* are related quantities.

(3)**Variable:** A variable is a symbol which can assume any value out of a given set of values. The quantities, like height, weight, time, temperature, profit, sales etc, are examples of variables. The variables are usually denoted by x, y, z, u, v, w, t etc. There are two types of variables mainly:

(i) **Independent variable :** A variable which can take any arbitrary value, is called independent variable.

(ii) **Dependent variable :** A variable whose value depends upon the independent variable is called dependent variable. *e.g.* $y = x^2$, if x = 2 then $y = 4 \Rightarrow$ so value of y depends on x. y is dependent and x is independent variable here.

(4)**Constant :** A constant is a symbol which does not change its value, *i.e.*, retains the same value throughout a set of mathematical operation. These are generally denoted by a, b, c etc. There are two types of constant.

(i) **Absolute constant :** A constant which remains the same throughout a set of mathematical operation is known as absolute constant. All numerical numbers are absolute constants, *i.e.* 2, $\sqrt{3}$, π etc. are absolute constants.

(ii) **Arbitrary constant :** A constant which remains same in a particular operation, but changes with the change of reference, is called arbitrary constant *e.g.* y = mx + c represents a line. Here *m* and *c* are constants, but they are different for different lines. Therefore, *m* and *c* are arbitrary constants.

(5) **Absolute value :** The absolute value of a number x, denoted by |x|, is a number that satisfies the conditions

 $|x| = \begin{cases} -x & \text{if } x < 0\\ 0 & \text{if } x = 0. \end{cases}$ We also define |x| as follows, $|x| = \text{maximum } \{x, -x\}$ or $|x| = \sqrt{x^2}$ $x & \text{if } x > 0 \end{cases}$

The properties of absolute value are

(i) The inequality $|x| \le a$ means $-a \le x \le a$ or $x \le -a$ (ii) The inequality $|x| \ge a$ means $x \ge a$ (iii) $|x \pm y| \le |x| + |y|$ and $|x \pm y| \ge |x| - |y|$ (iv) |xy| = |x|| |y|(v) $\left|\frac{x}{y}\right| = \frac{|x|}{|y|}, y \ne 0$

(6)**Greatest integer:** Let $x \in R$. Then [x] denotes the greatest integer less than or equal to x; *e.g.* [1.34]=1, [-4.57]=-5, [0.69]=0 etc.

(7) **Fractional part :** We know that $x \ge [x]$. The difference between the number 'x' and it's integral value '[x]' is called the fractional part of x and is symbolically denoted as $\{x\}$. Thus, $\{x\} = x - [x]$

e.g., if x = 4.92 then [x] = 4 and $\{x\} = 0.92$.

Note : **D** Fractional part of any number is always non-negative and less than one.

2.1.2 Intervals

If a variable x assumes any real value between two given numbers, say a and b (a < b) as its value, then x is called a continuous variable. The set of real numbers which lie between two specific numbers, is called the interval.

There are four types of interval:

(1)	Open interval : Let <i>a</i> and <i>b</i> be two real numbers such that <i>a</i> < <i>b</i> , then the set of all real numbers lying strictly between <i>a</i> and <i>b</i> is called an open interval and is denoted by] <i>a</i> , <i>b</i> [or (<i>a</i> , <i>b</i>). Thus,] <i>a</i> , <i>b</i> [or (<i>a</i> , <i>b</i>) = $\{x \in R : a < x < b\} \xrightarrow{a < x < b} \xrightarrow{b}$ Open	Closed interval : Let <i>a</i> and <i>b</i> be two real numbers such that $a < b$, then the set of all real numbers lying between <i>a</i> and <i>b</i> including <i>a</i> and <i>b</i> is called a closed interval and is denoted by [<i>a</i> , <i>b</i>]. Thus, [<i>a</i> , <i>b</i>] = $\{x \in R : a \le x \le b\}_{a \le x \le b}$ $\overbrace{[a]{a}{b}}$ Closed
(3)	Open-Closed interval : It is denoted by]a, b] or (a, b] and]a, b] or (a, b] = $\{x \in R : a < x \le b$ $(a < x \le b)$ (a > b) Open closed	 Closed-Open interval : It is denoted by [a, b[or [a, b) and [a, b[or [a, b] = ${x \in R : a \le x < b}$ $a \le x < b$ Closed open

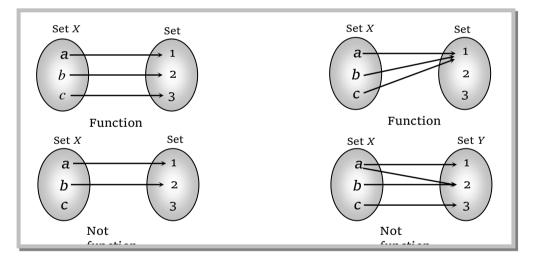
2.1.3 Definition of Function

(1) Function can be easily defined with the help of the concept of mapping. Let *X* and *Y* be any two non-empty sets. "A function from *X* to *Y* is a rule or correspondence that assigns to each element of set *X*, one and only one element of set *Y*". Let the correspondence be '*f*' then mathematically we write $f: X \to Y$ where $y = f(x), x \in X$ and $y \in Y$. We say that '*y*' is the image of '*x*' under *f* (or *x* is the pre image of *y*).

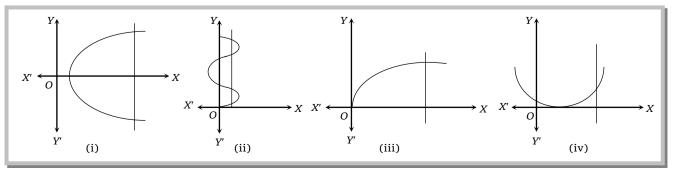
Two things should always be kept in mind:

(i) A mapping $f: X \to Y$ is said to be a function if each element in the set X has it's image in set Y. It is also possible that there are few elements in set Y which are not the images of any element in set X.

(ii) Every element in set *X* should have one and only one image. That means it is impossible to have more than one image for a specific element in set *X*. Functions can not be multi-valued (A mapping that is multi-valued is called a relation from *X* and *Y*) *e.g.*



(2)**Testing for a function by vertical line test :** A relation $f: A \rightarrow B$ is a function or not it can be checked by a graph of the relation. If it is possible to draw a vertical line which cuts the given curve at more than one point then the given relation is not a function and when this vertical line means line parallel to *Y*-axis cuts the curve at only one point then it is a function. Figure (iii) and (iv) represents a function.



(3) **Number of functions :** Let *X* and *Y* be two finite sets having *m* and *n* elements respectively. Then each element of set *X* can be associated to any one of *n* elements of set *Y*. So, total number of functions from set *X* to set *Y* is n^m .

(4) **Value of the function :** If y = f(x) is a function then to find its values at some value of x, say x = a, we directly substitute x = a in its given rule f(x) and it is denoted by f(a).

e.g. If
$$f(x) = x^2 + 1$$
, then $f(1) = 1^2 + 1 = 2$, $f(2) = 2^2 + 1 = 5$, $f(0) = 0^2 + 1 = 1$ etc.

Example: 1 If *A* contains 10 elements then total number of functions defined from *A* to *A* is (b) 2^{10} (c) 10^{10} (d) $2^{10} - 1$ (a) 10 **Solution:** (c) According to formula, total number of functions = n^n Here, n = 10. So, total number of functions = 10^{10} . If $f(x) = \frac{x - |x|}{|x|}$, then f(-1) =Example: 2 [SCRA 1996] (a) 1 (c) 0 (d) 2 **Solution:** (b) $f(-1) = \frac{-1-|-1|}{|-1|} = \frac{-1-1}{1} = -2$. **Example: 3** If $f(y) = \log y$, then $f(y) + f\left(\frac{1}{y}\right)$ is equal to [Rajasthan PET 1996] (d) – 1 (b) 1 (a) 2 (c) 0 **Solution:** (c) Given $f(y) = \log y \Rightarrow f(1/y) = \log(1/y)$, then $f(y) + f\left(\frac{1}{y}\right) = \log y + \log(1/y) = \log 1 = 0$. **Example: 4** If $f(x) = \log\left[\frac{1+x}{1-x}\right]$, then $f\left[\frac{2x}{1+x^2}\right]$ is equal to [MP PET 1999; Rajasthan PET 1999; UPSEAT 2003] (b) $[f(x)]^3$ (a) $[f(x)]^2$ (c) 2f(x)(d) 3f(x)**Solution:** (c) $f(x) = \log\left(\frac{1+x}{1-x}\right)$ $\therefore f\left(\frac{2x}{1+x^2}\right) = \log\left|\frac{1+\frac{2x}{1+x^2}}{1-\frac{2x}{1+x^2}}\right| = \log\left[\frac{x^2+1+2x}{x^2+1-2x}\right] = \log\left[\frac{1+x}{1-x}\right]^2 = 2\log\left[\frac{1+x}{1-x}\right] = 2f(x)$ If $f(x) = \cos[\pi^2]x + \cos[-\pi^2]x$, then Example: 5 [Orissa JEE 2002] (a) $f\left(\frac{\pi}{4}\right) = 2$ (b) $f(-\pi) = 2$ (c) $f(\pi) = 1$ (d) $f\left(\frac{\pi}{2}\right) = -1$ **Solution:** (d) $f(x) = \cos[\pi^2]x + \cos[-\pi^2]x$ $f(x) = \cos(9x) + \cos(-10x) = \cos(9x) + \cos(10x) = 2\cos\left(\frac{19x}{2}\right)\cos\left(\frac{x}{2}\right)$

$$f\left(\frac{\pi}{2}\right) = 2\cos\left(\frac{19\pi}{4}\right)\cos\left(\frac{\pi}{4}\right); \ f\left(\frac{\pi}{2}\right) = 2\times\frac{-1}{\sqrt{2}}\times\frac{1}{\sqrt{2}} = -1.$$
Example: 6 If $f: R \to R$ satisfies $f(x+y) = f(x) + f(y)$, for all $x, y \in R$ and $f(1) = 7$, then $\sum_{r=1}^{n} f(r)$ is
(a) $\frac{7n}{2}$ (b) $\frac{7(n+1)}{2}$ (c) $7n(n+1)$ (d) $\frac{7n(n+1)}{2}$
Solution: (d) $f(x+y) = f(x) + f(y)$
put $x = 1, y = 0 \Rightarrow f(1) = f(1) + f(0) = 7$
put $x = 1, y = 1 \Rightarrow f(2) = 2, f(1) = 2.7$; similarly $f(3) = 3.7$ and so on
 $\therefore \sum_{r=1}^{n} f(r) = 7(1+2+3+....+n) = \frac{7n(n+1)}{2}.$
Example: 7 If $f(x) = \frac{1}{\sqrt{x+2\sqrt{2x-4}}} + \frac{1}{\sqrt{x-2\sqrt{2x-4}}}$ for $x > 2$, then $f(11) =$ [EAMCET 2003]
(a) $\frac{7}{6}$ (b) $\frac{5}{6}$ (c) $\frac{6}{7}$ (d) $\frac{5}{7}$
Solution: (c) $f(x) = \frac{1}{\sqrt{x+2\sqrt{2x-4}}} + \frac{1}{\sqrt{x-2\sqrt{2x-4}}}$

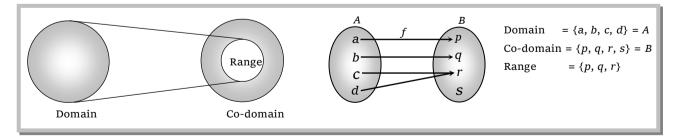
2.1.4 Domain, Co-domain and Range of Function

 $\langle \rangle$

If a function *f* is defined from a set of *A* to set *B* then for $f: A \rightarrow B$ set *A* is called the domain of function *f* and set *B* is called the co-domain of function *f*. The set of all *f*-images of the elements of *A* is called the range of function *f*.

In other words, we can say Domain = All possible values of x for which f(x) exists.

Range = For all values of x, all possible values of f(x).



(1) Methods for finding domain and range of function

(i) **Domain**

(a) Expression under even root (*i.e.*, square root, fourth root etc.) \geq 0

(b) Denominator \neq 0.

(c) If domain of y = f(x) and y = g(x) are D_1 and D_2 respectively then the domain of $f(x) \pm g(x)$ or f(x).g(x) is $D_1 \cap D_2$.

(d) While domain of $\frac{f(x)}{g(x)}$ is $D_1 \cap D_2 - \{g(x) = 0\}$.

(e) Domain of $\left(\sqrt{f(x)}\right) = D_1 \cap \{x : f(x) \ge 0\}$

(ii) **Range :** Range of y = f(x) is collection of all outputs f(x) corresponding to each real number in the domain.

(a) If domain \in finite number of points \Rightarrow range \in set of corresponding f(x) values.

(b) If domain $\in R$ or R – [some finite points]. Then express x in terms of y. From this find y for x to be defined (*i.e.*, find the values of y for which x exists).

(c) If domain \in a finite interval, find the least and greatest value for range using monotonicity.

Important Tips

- If f(x) is a given function of x and if a is in its domain of definition, then by f(a) it means the number obtained by replacing x by a in f(x) or the value assumed by f(x) when x = a.
- Range is always a subset of co-domain.

Example: 8	Domain of the function	function $\frac{1}{\sqrt{x^2-1}}$ is [Roorkee 1987; Rajasthan PET 200			
	(a) $(-\infty, -1) \cup (1, \infty)$	(b) $(-\infty, -1] \cup (1, \infty)$	(c) $(-\infty, -1) \cup [1, \infty)$	(d) None of these	
Solution: (a)	For domain, $x^2 - 1 > 0$	$\Rightarrow (x-1)(x+1) > 0$			
	$\Rightarrow x < -1 \text{ or } x > 1 \Rightarrow x$	\in (- ∞ ,-1) \cup (1, ∞).			
Example: 9	The domain of the funct	tion $f(x) = \frac{1}{\sqrt{ x - x }}$ is		[Roorkee 1998]	
	(a) <i>R</i> ⁺	(b) <i>R</i> ⁻	(c) R ₀	(d) <i>R</i>	
Solution: (b)	For domain, $ x - x > 0$	$\Rightarrow x > x$. This is possible	ble, only when $x \in R^-$.		
Example: 10	Find the domain of defi	nition of $f(x) = \frac{\log_2(x+3)}{x^2 + 3x + 3x}$	<u>)</u> 2	[IIT 2001; UPSEAT 2001]	
	(a) (−3,∞)	(b) $\{-1, -2\}$	(c) $(-3,\infty) - \{-1,-2\}$	(d) (−∞,∞)	
Solution: (c)	Here $f(x) = \frac{\log_2(x+3)}{x^2 + 3x + 2} =$	$\frac{\log_2(x+3)}{(x+1)(x+2)}$ exists if,			
	Numerator $x + 3 > 0$	$\Rightarrow x > -3$	(i)		
	and denominator $(x+1)$	$(x+2) \neq 0 \implies x \neq -1, -2$	(ii)		
	Thus, from (i) and (ii); we have domain of $f(x)$ is $(-3, \infty) - \{-1, -2\}$.				

The domain of the function $f(x) = \sqrt{(2 - 2x - x^2)}$ is Example: 11 [BIT Ranchi 1992] (a) $-3 \le x \le \sqrt{3}$ (b) $-1 - \sqrt{3} \le x \le -1 + \sqrt{3}$ (d) None of these (c) $-2 \le x \le 2$ **Solution:** (b) The quantity square root is positive, when $-1 - \sqrt{3} \le x \le -1 + \sqrt{3}$. If the domain of function $f(x) = x^2 - 6x + 7$ is $(-\infty, \infty)$, then the range of function is Example: 12 (a) $(-\infty,\infty)$ (b) $[-2,\infty)$ (c) (-2,3)(d) $(-\infty, -2)$ **Solution:** (b) $x^2 - 6x + 7 = (x - 3)^2 - 2$ Obviously, minimum value is -2 and maximum ∞ . **Example: 13** The domain of the function $f(x) = \sqrt{x - x^2} + \sqrt{4 + x} + \sqrt{4 - x}$ is [AMU 1999] (a) [−4,∞) (b) [-4,4] (c) [0,4] (d) [0,1] **Solution:** (d) $f(x) = \sqrt{x - x^2} + \sqrt{4 + x} + \sqrt{4 - x}$ clearly f(x) is defined if $4 + x \ge 0 \implies x \ge -4$ $4 - x \ge 0 \implies x \le 4$ $x(1-x) \ge 0 \implies x \ge 0$ and $x \le 1$:. Domain of $f = (-\infty, 4] \cap [-4, \infty) \cap [0, 1] = [0, 1]$. The domain of the function $\sqrt{\log(x^2 - 6x + 6)}$ is Example: 14 [Roorkee 1999; MP PET 2002] (b) $(-\infty, 3 - \sqrt{3}) \cup (3 + \sqrt{3}, \infty)$ (a) $(-\infty,\infty)$ (c) $(-\infty, 1] \cup [5, \infty)$ (d) [0, ∞) **Solution:** (c) The function $f(x) = \sqrt{\log(x^2 - 6x + 6)}$ is defined when $\log(x^2 - 6x + 6) \ge 0$ $\Rightarrow x^2 - 6x + 6 \ge 1 \Rightarrow (x - 5)(x - 1) \ge 0$ This inequality hold if $x \le 1$ or $x \ge 5$. Hence, the domain of the function will be $(-\infty, 1] \cup [5, \infty)$. The domain of definition of the function y(x) given by $2^x + 2^y = 2$ is [IIT Screening 2000; DCE 2001] Example: 15 (a) (0, 1] (c) (−∞,0] (b) [0, 1] (d) (-∞,1) **Solution:** (d) $2^{y} = 2 - 2^{x}$ *y* is real if $2-2^x \ge 0 \implies 2 > 2^x \implies 1 > x$ $\Rightarrow x \in (-\infty, 1)$ **Example: 16** The domain of the function $f(x) = \sin^{-1}[\log_2(x/2)]$ is [AIEEE 2002; Rajasthan PET 2002] (a) [1, 4] (b) [-4, 1] (c) [-1, 4] (d) None of these **Solution:** (a) $f(x) = \sin^{-1} [\log_2(x/2)]$ Domain of $\sin^{-1} x$ is $x \in [-1, 1]$ $\Rightarrow -1 \le \log_2(x/2) \le 1 \Rightarrow \frac{1}{2} \le \frac{x}{2} \le 2 \Rightarrow 1 \le x \le 4$ $\therefore x \in [1, 4].$ The domain of the derivative of the function $f(x) = \begin{cases} \tan^{-1} x & , |x| \le 1 \\ \frac{1}{2}(|x|-1) & , |x| > 1 \end{cases}$ is Example: 17 [IIT Screening 2002] (a) $R - \{0\}$ (b) $R - \{1\}$ (c) $R - \{-1\}$ (d) $R - \{-1, 1\}$

Solution: (c)
$$f(x) = \begin{cases} \frac{1}{4}(-x-1), x < -1 \\ \frac{1}{2}(x+1), x > 1 \end{cases}$$
 $f'(x) = (\frac{1}{2}, x < 1) = f'(x) = (\frac{1}{1+x^2}, -1 < x < 1) \\ \frac{1}{1+x^2}, -1 < x < 1 \\ \frac{1}{1+x^2}, x > 1 \end{cases}$
 $f'(-1-0) = -\frac{1}{2}; f'(-1+0) = \frac{1}{1+(-1-0)^2} = \frac{1}{2}$
 $f'(0-0) = \frac{1}{1+(0-0)^2} = \frac{1}{2}; f'(1+0) = \frac{1}{2}$
 $f'(1-0) = \frac{1}{2}; f'(-1+0) = \frac{1}{1+(-1-0)^2} = \frac{1}{2}$
 $f'(1-0) = \frac{1}{2}; f'(-1+0) = \frac{1}{1+(-1-0)^2} = \frac{1}{2}$
 $f'(1-0) = \frac{1}{2}; f'(-1+0) = \frac{1}{2}; f'(1+0) = \frac{1}{2}$
 $f'(1-0) = \frac{1}{2}; f'(-1+0) = \frac{1}{2}; f'(1+0) = \frac{1}{2}$
 $f'(1-0) = \frac{1}{2}; f'(-1+0) = \frac{1}{2}; f'(1+0) = \frac{$

Now since, $-1 \le \cos\left(x + \frac{\pi}{4}\right) \le 1 \implies -\sqrt{2} \le f(x) \le \sqrt{2} \implies f(x) \in [-\sqrt{2}, \sqrt{2}]$ **Trick :** \therefore Maximum value of $\cos x - \sin x$ is $\sqrt{2}$ and minimum value of $\cos x - \sin x$ is $-\sqrt{2}$. Hence, range of $f(x) = [-\sqrt{2}, \sqrt{2}]$. The range of $\frac{1+x^2}{x^2}$ is Example: 22 [Karnataka CET 1989] (a) (0.1) (b) $(1,\infty)$ (c) [0, 1] (d) [1,∞) **Solution:** (b) Let $y = \frac{1+x^2}{x^2}$ $\Rightarrow x^2y = 1+x^2 \Rightarrow x^2(y-1) = 1 \Rightarrow x^2 = \frac{1}{x-1}$ Now since, $x^2 > 0 \Rightarrow \frac{1}{y-1} > 0 \Rightarrow (y-1) > 0 \Rightarrow y > 1 \Rightarrow y \in (1,\infty)$ **Trick**: $y = \frac{1+x^2}{x^2} = 1 + \frac{1}{x^2}$. Now since, $\frac{1}{x^2}$ is always > 0 $\Rightarrow y > 1 \Rightarrow y \in (1,\infty)$. For real values of *x*, range of the function $y = \frac{1}{2 - \sin 3x}$ is Example: 23 (b) $-\frac{1}{2} \le y < 1$ (c) $-\frac{1}{2} > y > -1$ (d) $\frac{1}{2} > y > 1$ (a) $\frac{1}{2} \le y \le 1$ **Solution:** (a) $\therefore y = \frac{1}{2 - \sin 3x}$, $\therefore 2 - \sin 3x = \frac{1}{y} \implies \sin 3x = 2 - \frac{1}{y}$ Now since, $-1 \le \sin 3x \le 1 \implies -1 \le 2 - \frac{1}{\nu} \le 1 \implies -3 \le -\frac{1}{\nu} \le -1 \implies 1 \le \frac{1}{\nu} \le 3 \implies \frac{1}{3} \le y \le 1.$ Example 24 If $f(x) = a\cos(bx + c) + d$, then range of f(x) is [UPSEAT 2001] (c) [d+a, a-d](a) [d+a, d+2a](b) [a-d, a+d](d) [d-a, d+a]Solution: (d) $f(x) = a\cos(bx + c) + d$ (i) For minimum $\cos(bx + c) = -1$ from (i), f(x) = -a + d = (d - a), for maximum $\cos(bx + c) = 1$ from (i), f(x) = a + d = (d + a) \therefore Range of f(x) = [d - a, d + a]. The range of the function $f(x) = \frac{x+2}{|x+2|}$ is Example: 25 [Rajasthan PET 2002] (a) $\{0, 1\}$ (b) {-1, 1} (c) R (d) $R - \{-2\}$ $f(x) = \frac{x+2}{|x+2|} = \begin{cases} -1, & x < -2\\ 1, & x > -2 \end{cases}$ Solution: (b) \therefore Range of f(x) is $\{-1,1\}$. The range of $f(x) = \sec\left(\frac{\pi}{4}\cos^2 x\right), -\infty < x < \infty$ is Example: 26 [Orissa JEE 2002] (c) $[-\sqrt{2}, -1] \cup [1, \sqrt{2}]$ (d) $(-\infty, -1] \cup [1, \infty)$ (a) $[1, \sqrt{2}]$ (b) [1,∞)

Solution: (a) $f(x) = \sec\left(\frac{\pi}{4}\cos^2 x\right)$ We know that, $0 \le \cos^2 x \le 1$ at $\cos x = 0$, f(x) = 1 and at $\cos x = 1$, $f(x) = \sqrt{2}$ $\therefore 1 \le x \le \sqrt{2} \implies x \in [1, \sqrt{2}]$. Example: 27 Range of the function $f(x) = \frac{x^2 + x + 2}{x^2 + x + 1}; x \in R$ is [IIT Screening 2003] (a) $(1, \infty)$ (b) (1, 11/7) (c) (1, 7/3] (d) (1, 7/5]Solution: (c) $f(x) = 1 + \frac{1}{\left(x + \frac{1}{2}\right)^2 + \frac{3}{4}} \implies$ Range = (1, 7/3].

2.1.5 Algebra of Functions

Let f(x) and g(x) be two real and single-valued functions, with domains X_f, X_g and ranges Y_f and Y_g respectively. Let $X = X_f \cap X_g \neq \phi$. Then, the following operations are defined.

(1) Scalar multiplication of a function : (c f)(x) = c f(x), where c is a scalar. The new function c f(x) has the domain X_f .

(2) Addition/subtraction of functions : $(f \pm g)(x) = f(x) \pm g(x)$. The new function has the domain *X*.

(3) **Multiplication of functions** : (fg)(x) = (gf)(x) = f(x)g(x). The product function has the domain *X*.

(4) **Division of functions :**

(i) $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$. The new function has the domain *X*, except for the values of *x* for which g(x) = 0.

(ii) $\left(\frac{g}{f}\right)(x) = \frac{g(x)}{f(x)}$. The new function has the domain *X*, except for the values of *x* for

which f(x) = 0.

(5) **Equal functions :** Two function *f* and *g* are said to be equal functions, if and only if

(i) Domain of f = domain of g

(ii) Co-domain of f =co-domain of g

(iii) $f(x) = g(x) \forall x \in$ their common domain

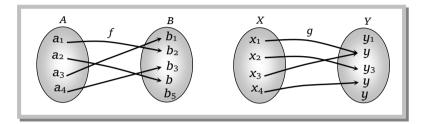
(6)**Real valued function :** If *R*, be the set of real numbers and *A*, *B* are subsets of *R*, then the function $f: A \rightarrow B$ is called a real function or real –valued function.

2.1.6 Kinds of Function

(1) **One-one function (injection) :** A function $f: A \to B$ is said to be a one-one function or an injection, if different elements of *A* have different images in *B*. Thus, $f: A \to B$ is one-one.

 $\Leftrightarrow a \neq b \Rightarrow f(a) \neq f(b) \text{ for all } a, b \in A \quad \Leftrightarrow f(a) = f(b) \Rightarrow a = b \text{ for all } a, b \in A.$

e.g. Let $f: A \rightarrow B$ and $g: X \rightarrow Y$ be two functions represented by the following diagrams.



Clearly, $f: A \to B$ is a one-one function. But $g: X \to Y$ is not one-one function because two distinct elements x_1 and x_3 have the same image under function g.

(i) Method to check the injectivity of a function

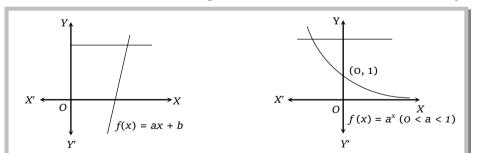
Step I : Take two arbitrary elements *x*, *y* (say) in the domain of *f*.

Step II : Put f(x) = f(y).

Step III : Solve f(x) = f(y). If f(x) = f(y) gives x = y only, then $f : A \to B$ is a one-one function (or an injection). Otherwise not.

Note : **D** If function is given in the form of ordered pairs and if two ordered pairs do not have same second element then function is one-one.

□ If the graph of the function y = f(x) is given and each line parallel to *x*-axis cuts the given curve at maximum one point then function is one-one. *e.g.*

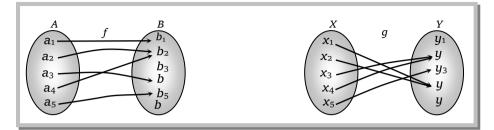


(ii) **Number of one-one functions (injections) :** If *A* and *B* are finite sets having *m* and *n* elements respectively, then number of one-one functions from *A* to $B = \begin{cases} {}^{n}P_{m}, & \text{if } n \ge m \\ 0, & \text{if } n < m \end{cases}$

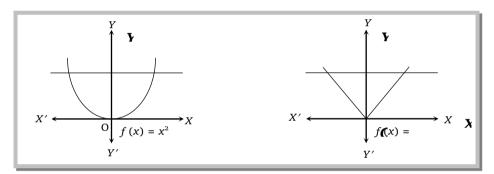
(2) **Many-one function :** A function $f: A \to B$ is said to be a many-one function if two or more elements of set *A* have the same image in *B*.

Thus, $f: A \to B$ is a many-one function if there exist $x, y \in A$ such that $x \neq y$ but f(x) = f(y).

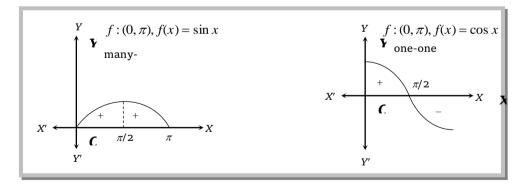
In other words, $f: A \rightarrow B$ is a many-one function if it is not a one-one function.



- **Note** : If function is given in the form of set of ordered pairs and the second element of atleast two ordered pairs are same then function is many-one.
 - □ If the graph of y = f(x) is given and the line parallel to *x*-axis cuts the curve at more than one point then function is many-one.



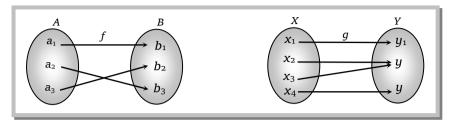
- □ If the domain of the function is in one quadrant then the trigonometrical functions are always one-one.
- □ If trigonometrical function changes its sign in two consecutive quadrants then it is one-one but if it does not change the sign then it is many-one.



□ In three consecutive quadrants trigonometrical functions are always many-one.

(3) **Onto function (surjection) :** A function $f: A \to B$ is onto if each element of *B* has its pre-image in *A*. Therefore, if $f^{-1}(y) \in A$, $\forall y \in B$ then function is onto. In other words, Range of f = Co-domain of *f*.

e.g. The following arrow-diagram shows onto function.

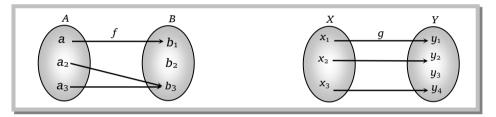


(i) Number of onto function (surjection) : If A and B are two sets having m and n elements respectively such that $1 \le n \le m$, then number of onto functions from A to B is $\sum_{n=1}^{n} (-1)^{n-r} {}^{n}C_{r}r^{m}$.

(4)**Into function :** A function
$$f: A \rightarrow B$$
 is an into function if there exists an element in *B* having no pre-image in *A*.

In other words, $f: A \rightarrow B$ is an into function if it is not an onto function.

e.g. The following arrow-diagram shows into function.



(i) Method to find onto or into function

(a) If range = co-domain, then f(x) is onto and if range is a proper subset of the co-domain, then f(x) is into.

(b) Solve f(x) = y by taking x as a function of y i.e., g(y) (say).

(c) Now if g(y) is defined for each $y \in$ co-domain and $g(y) \in$ domain for $y \in$ co-domain, then f(x) is onto and if any one of the above requirements is not fulfilled, then f(x) is into.

(5) **One-one onto function (bijection) :** A function $f: A \to B$ is a bijection if it is one-one as well as onto.

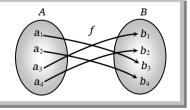
In other words, a function $f: A \rightarrow B$ is a bijection if

(i) It is one-one i.e., $f(x) = f(y) \Rightarrow x = y$ for all $x, y \in A$.

(ii) It is onto i.e., for all $y \in B$, there exists $x \in$

Clearly, *f* is a bijection since it is both injective as well as surjective.

Number of one-one onto function (bijection) : If *A* and *B* are finite sets and $f: A \rightarrow B$ is a bijection, then *A* and *B* have the same number of elements. If *A* has *n* elements, then the number of bijection from *A* to *B* is the total number of arrangements of *n* items taken all at a time *i.e. n*!.



(6)**Algebraic functions :** Functions consisting of finite number of terms involving powers and roots of the independent variable and the four fundamental operations +, -, \times and \div are called algebraic functions.

e.g., (i)
$$x^{\frac{3}{2}} + 5x$$
 (ii) $\frac{\sqrt{x+1}}{x-1}, x \neq 1$ (iii) $3x^4 - 5x + 7$

The algebraic functions can be classified as follows:

(i) **Polynomial or integral function :** It is a function of the form $a_0x^n + a_1x^{n-1} + \dots + a_{n-1}x + a_n$, where $a_0 \neq 0$ and a_0, a_1, \dots, a_n are constants and $n \in N$ is called a polynomial function of degree n

e.g. $f(x) = x^3 - 2x^2 + x + 3$ is a polynomial function.

Note :
The polynomial of first degree is called a linear function and polynomial of zero degree is called a constant function.

(ii) **Rational function :** The quotient of two polynomial functions is called the rational function. *e.g.* $f(x) = \frac{x^2 - 1}{2x^3 + x^2 + 1}$ is a rational function.

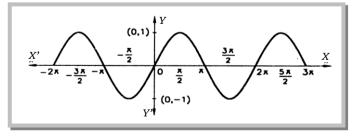
(iii) **Irrational function :** An algebraic function which is not rational is called an irrational function. *e.g.* $f(x) = x + \sqrt{x} + 6$, $g(x) = \frac{x^3 - \sqrt{x}}{1 + x^{1/4}}$ are irrational functions.

(7) **Transcendental function :** A function which is not algebraic is called a transcendental function. *e.g.*, trigonometric; inverse trigonometric , exponential and logarithmic functions are all transcendental functions.

(i) **Trigonometric functions :** A function is said to be a trigonometric function if it

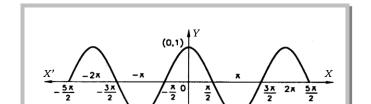
involves circular functions (sine, cosine, tangent, cotangent, secant, cosecant) of variable angles.

(a) **Sine function :** The function that associates to each real numbers x to $\sin x$ is called the sine function. Here x is the radian



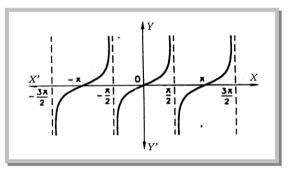
measure of the angle. The domain of the sine function is R and the range is [-1, 1].

(b)**Cosine function:** The function that associates to each real number x to $\cos x$ is called the cosine function. Here x is the radian measure of the angle. The domain of the cosine function is R and the range is [-1, 1].



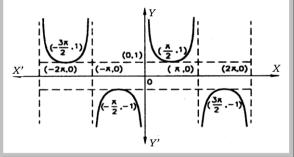
(c) **Tangent function :** The function that associates a real number x to tan x is called the tangent function.

Clearly, the tangent function is not defined at odd multiples of $\frac{\pi}{2}$ *i.e.*, $\pm \frac{\pi}{2}, \pm \frac{3\pi}{2}$ etc. So, the domain of the tangent function is $R - \{(2n+1)\frac{\pi}{2} | n \in I\}$. Since it takes every value between $-\infty$ and ∞ . So, the range is *R*. Graph of $f(x) = \tan x$ is shown in figure.



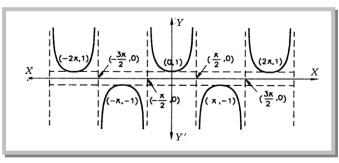
(d)**Cosecant function :** The function that associates a real number *x* to cosec*x* is called the cosecant function.

Clearly, cosec x is not defined at $x = n \pi, n \in I$. *i.e.*, $0, \pm \pi, \pm 2\pi, \pm 3\pi$ etc. So, its domain is $R - \{n\pi \mid n \in I\}$. Since $\operatorname{cosec} x \ge 1$ or $\operatorname{cosec} x \le -1$. Therefore, range is $(-\infty, -1] \cup [1, \infty)$. Graph of $f(x) = \operatorname{cosec} x$ is shown in figure.



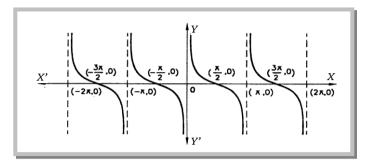
(e) **Secant function :** The function that associates a real number *x* to sec *x* is called the secant function.

Clearly, sec x is not defined at odd multiples of $\frac{\pi}{2}$ *i.e.*, $(2\pi+1)\frac{\pi}{2}$, where $n \in I$. So, its domain is $R - \{(2n+1)\frac{\pi}{2} | n \in I\}$. Also, $| \sec x | \ge 1$, therefore its range is $(-\infty, -1] \cup [1, \infty)$. Graph of $f(x) = \sec x$ is shown in figure.



(f) **Cotangent function :** The function that associates a real number *x* to cot *x* is called the cotangent function. Clearly, cot *x* is not defined at $x = n\pi$, $n \in I$ i.e., at $n = 0, \pm \pi, \pm 2\pi$ etc. So,

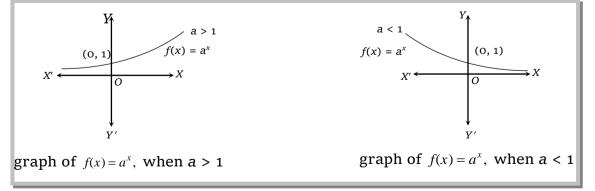
domain of $\cot x$ is $R - \{n\pi | n \in I\}$. The range of $f(x) = \cot x$ is R as is evident from its graph in figure.



(ii) Inverse trigonometric functions

Function	Domain	Range	Definition of the function
$\sin^{-1} x$	[-1,1]	$[-\pi/2, \pi/2]$	$y = \sin^{-1} x \Leftrightarrow x = \sin y$
$\cos^{-1} x$	[-1, 1]	[Ο, <i>π</i>]	$y = \cos^{-1} x \Leftrightarrow x = \cos y$
$\tan^{-1} x$	$(-\infty,\infty)$ or R	$(-\pi/2, \pi/2)$	$y = \tan^{-1} x \Leftrightarrow x = \tan y$
$\cot^{-1} x$	$(-\infty,\infty)$ or R	(Ο, π)	$y = \cot^{-1} x \Leftrightarrow x = \cot y$
$\csc^{-1}x$	R - (-1, 1)	$[-\pi/2, \pi/2] - \{0\}$	$y = \csc^{-1}x \Leftrightarrow x = \csc y$
$\sec^{-1} x$	R - (-1, 1)	$[0, \pi] - [\pi/2]$	$y = \sec^{-1} x \Leftrightarrow x = \sec y$

(iii) **Exponential function :** Let $a \neq 1$ be a positive real number. Then $f : R \to (0, \infty)$ defined by $f(x) = a^x$ is called exponential function. Its domain is *R* and range is $(0, \infty)$.



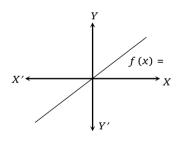
(iv) **Logarithmic function :** Let $a \neq 1$ be a positive real number. Then $f:(0,\infty) \to R$ defined by $f(x) = \log_a x$ is called logarithmic function. Its domain is $(0,\infty)$ and range is R.

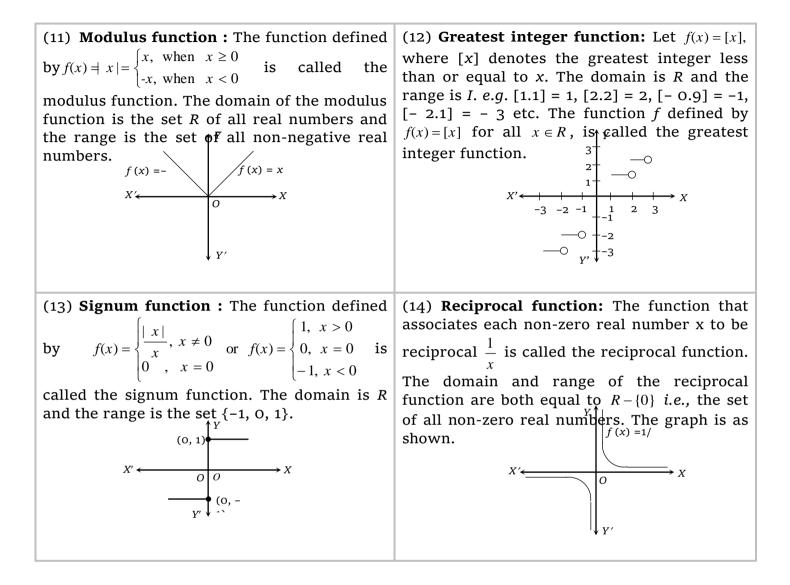
(8)**Explicit and implicit functions :** A function is said to be explicit if it can be expressed directly in terms of the independent variable. If the function can not be expressed directly in terms of the independent variable or variables, then the function is said to be implicit. *e.g.* $y = \sin^{-1} x + \log x$ is explicit function, while $x^2 + y^2 = xy$ and $x^3y^2 = (a - x)^2(b - y)^2$ are implicit functions.

(9) **Constant function :** Let *k* be a fixed real number. Then a function f(x) given by f(x) = k for all $x \in R$ is called a constant function. The domain of the constant function f(x) = k is the complete set of real numbers and the range of *f* is the singleton set $\{k\}$. The graph of a constant function is a straight line parallel to *x*-axis as shown in figure and it is above or below the *x*-axis according as *k* is positive or negative. If k = OY then the straight line coincides with x-axis $k \in [f(x) = x]$

(10) **Identity function :** The function defined by f(x) = x for all $x \in R$, is called the identity function on *R*. Clearly, the domain and range of the identity function is *R*.

The graph of the identity function is a straight line passing through the origin and inclined at an angle of 45° with positive direction of *x*-axis.





Domain and Range of Some Standard Functions

	_	
Function	Domain	Range
Polynomial function	R	R
Identity function <i>x</i>	R	R
Constant function K	R	<i>{K}</i>
Reciprocal function $\frac{1}{x}$	R _o	Ro
$x^2, x $	R	$R^+ \cup \{0\}$
$x^3, x x $	R	R
Signum function	R	{-1, 0, 1}
x+ x	R	$R^+ \cup \{0\}$
x- x	R	$R^- \cup \{0\}$

[<i>x</i>]	R	Ι
x - [x]	R	[0, 1)
\sqrt{x}	$[0, \infty)$	R
a^x	R	<i>R</i> ⁺
$\log x$	R^+	R
$\sin x$	R	[-1, 1]
$\cos x$	R	[-1, 1]
tan x	$R - \left\{ \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \dots \right\}$	R
$\cot x$	$R = \{0, \pm \pi, \pm 2\pi, \dots, \}$	R
sec x	$R - \left\{ \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \dots \right\}$	R -(-1, 1)
cosec x	$R = \{0, \pm \pi, \pm 2\pi, \dots, \}$	R - (- 1, 1)
$\sin^{-1} x$	[-1, 1]	$\left[\frac{-\pi}{2},\frac{\pi}{2}\right]$
$\cos^{-1} x$	[-1, 1]	$[0, \pi]$
$\tan^{-1} x$	R	$\left(\frac{-\pi}{2},\frac{\pi}{2}\right)$
$\cot^{-1} x$	R	$(0, \pi)$
$\sec^{-1} x$	<i>R</i> -(-1, 1)	$[0,\pi] - \left\{\frac{\pi}{2}\right\}$
$\csc^{-1}x$	<i>R</i> -(-1, 1)	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]-\{0\}$

Important Tips

- *The Any function, which is entirely increasing or decreasing in the whole of a domain, is one-one.*
- *Any continuous function f(x), which has at least one local maximum or local minimum, is many-one.*
- If any line parallel to the x-axis cuts the graph of the function at most at one point, then the function is one-one and if there exists a line which is parallel to the x-axis and cuts the graph of the function in at least two points, then the function is many-one.
- The Any polynomial function $f: \mathbb{R} \to \mathbb{R}$ is onto if degree of f is odd and into if degree of f is even.
- *The area of the original function as the range of the original function.*

Example: 28	Function $f: N \to N, f(x) =$		[IIT 1973; UPSEAT 1983]	
	(a) One-one onto	(b) One-one into	(c) Many-one onto	(d) Many –one into
Solution:(b)	f is one-one because $f($	$+3 \implies x_1 = x_2$		

	Further $f^{-1}(x) = \frac{x-3}{2} \notin N$ (domain) when $x = 1, 2, 3$ etc.						
	\therefore f is into which shows that f is one-one into.						
Example: 29	The function $f: R \to R$ defined by $f(x) = (x-1)(x-2)(x-3)$ is [Roorkee 19]						
	(a) One-one but not onto)	(b) Onto but not one-on	e			
	(c) Both one-one and on	to	(d)	Neither one-one nor onto			
Solution: (b)	We have $f(x) = (x - 1)(x - 2)$	f(1) = f(2) = f(1) = f(2) = f(1)	$f(x) = 0 \implies f(x)$ is not one-on	ne			
	For each $y \in R$, there exists	sts $x \in R$ such that $f(x)$	such that $f(x) = y$. Therefore <i>f</i> is onto.				
	Hence, $f: R \to R$ is onto	, $f: R \to R$ is onto but not one-one.					
Example: 30	Find number of surjection	on from A to B where A	$= \{1, 2, 3, 4\}, B = \{a, b\}$	[IIT Screening 2001]			
	(a) 13	(b) 14	(c) 15	(d) 16			
Solution: (b)	Number of surjection fro	om A to B = $\sum_{r=1}^{2} (-1)^{2-r} C$	$f_r(r)^4$				
	$= (-1)^{2-1} {}^{2}C_{1}(1)^{4} + (-1)^{2-2} {}^{2}C_{1}(1)^{4}$	$_{2}(2)^{4} = -2 + 16 = 14$					
	Therefore, number of su	rjection from <i>A</i> to <i>B</i> = 1	4.				
	Trick : Total number of	functions from A to B is	2^4 of which two function	h $f(x) = a$ for all $x \in A$ and			
	$g(x) = b$ for all $x \in A$ are	not surjective. Thus, to	otal number of surjection	from A to B			
	$=2^4-2=14.$						
Example: 31	If $A = \{a, b, c\}$, then total	number of one-one onto	o functions which can be o	defined from A to A is			
	(a) 3	(b) 4	(c) 9	(d) 6			
Solution: (d)	Total number of one-one	onto functions = 3!					
Example: 32	If $f: R \to R$, then $f(x) = 1$.	x is		[Rajasthan PET 2000]			
	(a) One-one but not onto)	(b) Onto but not one-on	e			
Solution: (d)	(c) One-one and onto f(-1) = f(1) = 1; function	is many one function	(d) None of these				
Solution. (u)	f(-1) = f(1) = 1 : function Obviously, <i>f</i> is not onto s	-	or onto				
		-					
Example: 33	Let $f: R \to R$ be a function	on defined by $f(x) = \frac{1}{x - x}$	m , where $m \neq n$. Then n	[UPSEAT 2001]			
	(a) f is one-one onto	-	(c) <i>f</i> is many one onto	(d) <i>f</i> is many one into			
Solution: (b)	For any $x, y \in R$, we have	2	For any $x, y \in R$, we have				
	$f(x) = f(y) \Longrightarrow \frac{x-m}{x-n} = \frac{y-m}{y-n} \Longrightarrow x = y$						
	$f(x) = f(y) \Longrightarrow \frac{x-m}{x-n} = \frac{y-m}{y-n}$	$\Rightarrow x = y$					
	$f(x) = f(y) \Longrightarrow \frac{x - m}{x - n} = \frac{y - m}{y - n}$ $\therefore f$ is one-one	$\Rightarrow x = y$					
	-		$\frac{n}{1-\alpha}$				
	$\therefore f$ is one-one	$= \alpha \Rightarrow \frac{x-m}{x-n} = \alpha \Rightarrow x = \frac{m}{n}$	$\frac{n}{1-\alpha}$				
Example: 34	$\therefore f$ is one-one Let $\alpha \in R$ such that $f(x)$ =	$= \alpha \Rightarrow \frac{x - m}{x - n} = \alpha \Rightarrow x = \frac{m}{2}$ So, <i>f</i> is not onto.		ataka CET 2002; UPSEAT 2002]			

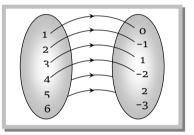
- **Solution:** (c) Function $f: R \to R$ is defined by $f(x) = e^x$. Let $x_1, x_2 \in R$ and $f(x_1) = f(x_2)$ or $e^{x_1} = e^{x_2}$ or $x_1 = x_2$. Therefore f is one-one. Let $f(x) = e^x = y$. Taking log on both sides, we get $x = \log y$. We know that negative real numbers have no pre-image or the function is not onto and zero is not the image of any real number. Therefore function f is into.
- **Example: 35** A function *f* from the set of natural numbers to integers defined by $f(n) = \begin{cases} \frac{n-1}{2}, \text{ when } n \text{ is odd} \\ -\frac{n}{2}, \text{ when } n \text{ is even} \end{cases}$, is [AIEEE 2003]
 - (a) One-one but not onto (b) Onto but not one-one
 - (c) One-one and onto both

I

Neither one-one nor onto

Solution: (c)
$$f: N \rightarrow$$

f(1) = 0, f(2) = -1, f(3) = 1, f(4) = -2, f(5) = 2 and f(6) = -3 so on.



In this type of function every element of set A has unique image in set B and there is no element left in set B. Hence f is one-one and onto function.

2.1.7 Even and Odd function

(1) **Even function :** If we put (-*x*) in place of *x* in the given function and if f(-x) = f(x), $\forall x \in domain$ then function f(x) is called even function. *e.g.* $f(x) = e^x + e^{-x}$, $f(x) = x^2$, $f(x) = x \sin x$, $f(x) = \cos x$, $f(x) = x^2 \cos x$ all are even function.

(2) **Odd function :** If we put (-x) in place of x in the given function and if f(-x) = -f(x), $\forall x \in$ domain then f(x) is called odd function. *e.g.* $f(x) = e^x - e^{-x}$, $f(x) = \sin x$, $f(x) = x^3$, $f(x) = x \cos x$, $f(x) = x^2 \sin x$ all are odd function.

Important Tips

The graph of even function is always symmetric with respect to y-axis.

- The graph of odd function is always symmetric with respect to origin.
- The product of two even functions is an even function.
- The sum and difference of two even functions is an even function.
- The sum and difference of two odd functions is an odd function.
- The product of two odd functions is an even function.
- The product of an even and an odd function is an odd function
- T is not essential that every function is even or odd. It is possible to have some functions which are neither even nor odd function. e.g. $f(x) = x^2 + x^3$, $f(x) = \log_e x$, $f(x) = e^x$.

(c) $\frac{a^x - a^{-x}}{2}$

- The sum of even and odd function is neither even nor odd function.
- Tero function f(x) = 0 is the only function which is even and odd both.

Example: 36 Which of the following is an even function

(a)
$$x\left(\frac{a^{x}-1}{a^{x}+1}\right)$$
 (b) $\tan x$

[UPSEAT 1998]

(d) $\frac{a^x + 1}{a^x - 1}$

Solution: (a) We have :
$$f(x) = x \left(\frac{a^{x} - 1}{a^{x} + 1} \right)$$

$$f(-x) = -x \left(\frac{a^{-x} - 1}{a^{-x} + 1}\right) = -x \left(\frac{\frac{1}{a^x} - 1}{\frac{1}{a^x} + 1}\right) = -x \left(\frac{1 - a^x}{1 + a^x}\right) = x \left(\frac{a^x - 1}{a^x + 1}\right) = f(x)$$

So, f(x) is an even function.

Example: 37 Let $f(x) = \sqrt{x^4 + 15}$, then the graph of the function y = f(x) is symmetrical about (a) The *x*-axis (b) The *y*-axis (c) The origin (d) The line x = y

Solution: (b)
$$f(x) = \sqrt{x^4 + 15} \implies f(-x) = \sqrt{(-x)^4 + 15} = \sqrt{x^4 + 15} = f(x)$$

 $\Rightarrow f(-x) = f(x) \Rightarrow f(x)$ is an even function $\Rightarrow f(x)$ is symmetric about y-axis.

Example: 38 The function
$$f(x) = \log(x + \sqrt{x^2 + 1})$$
 is

(a) An even function (b) An odd function (c) Periodic function (d) None of these **Solution:** (b) $f(x) = \log(x + \sqrt{x^2 + 1})$ and $f(-x) = -\log(x + \sqrt{x^2 + 1}) = -f(x)$, so f(x) is an odd function.

Example: 39 Which of the following is an even function

(a)
$$f(x) = \frac{a^x + 1}{a^x - 1}$$
 (b) $f(x) = x \left(\frac{a^x - 1}{a^x + 1} \right)$ (c) $f(x) = \frac{a^x - a^{-x}}{a^x + a^{-x}}$ (d) $f(x) = \sin x$

Solution: (b) In option (a),
$$f(-x) = \frac{a^{-x} + 1}{a^{-x} - 1} = \frac{1 + a^x}{1 - a^x} = -\frac{a^x + 1}{a^x - 1} = -f(x)$$
 So, It is an odd function.

In option (b), $f(-x) = (-x)\frac{a^{-x}-1}{a^{-x}+1} = -x\frac{(1-a^x)}{1+a^x} = x\frac{(a^x-1)}{(a^x+1)} = f(x)$ So, It is an even function.

In option (c), $f(-x) = \frac{a^{-x} - a^x}{a^{-x} + a^x} = -f(x)$ So, It is an odd function.

[Rajasthan PET 2000]

In option (d), $f(-x) = \sin(-x) = -\sin x = -f(x)$ So, It is an odd function.

Example: 40 The function
$$f(x) = \sin\left(\log(x + \sqrt{x^2 + 1})\right)$$
 is **[Orissa JEE 2002]**

(a) Even function (b) Odd function (c) Neither even nor odd (d) Periodic function
Solution: (b)
$$f(x) = \sin\left(\log(x + \sqrt{1 + x^2})\right)$$

$$\Rightarrow f(-x) = \sin[\log(-x + \sqrt{1 + x^2})] \Rightarrow f(-x) = \sin\log\left((\sqrt{1 + x^2} - x)\frac{(\sqrt{1 + x^2} + x)}{(\sqrt{1 + x^2} + x)}\right)$$
$$\Rightarrow f(-x) = \sin\log\left[\frac{1}{(x + \sqrt{1 + x^2})}\right] \Rightarrow f(-x) = \sin\left[\log(x + \sqrt{1 + x^2})^{-1}\right]$$
$$\Rightarrow f(-x) = \sin\left[-\log(x + \sqrt{1 + x^2})\right] \Rightarrow f(-x) = -\sin\left[\log(x + \sqrt{1 + x^2})\right] \Rightarrow f(-x) = -f(x)$$

 \therefore f(x) is odd function.

2.1.8 Periodic Function

A function is said to be periodic function if its each value is repeated after a definite interval. So a function f(x) will be periodic if a positive real number T exist such that, f(x + T) = f(x), $\forall x \in$ domain. Here the least positive value of T is called the period of the function. Clearly $f(x) = f(x + T) = f(x + 2T) = f(x + 3T) = \dots$. *e.g.* $\sin x, \cos x, \tan x$ are periodic functions with period $2\pi, 2\pi$ and π respectively.

Functions	Periods		
(1) $\sin^n x$, $\cos^n x$, $\sec^n x$, $\csc^n x$	$\int \pi$; if <i>n</i> is even		
	2π ; if <i>n</i> is odd or fraction		
(2) $\tan^n x$, $\cot^n x$	$\pi;n$ is even or odd.		
(3) $ \sin x , \cos x , \tan x ,$	π		
$ \cot x , \sec x , \cos x $			
(4) $x - [x]$	1		
(5) Algebraic functions e.g.,	Period does not exist		
$-\sqrt{x}, x^2, x^3 + 5,$ etc			

Some standard results on periodic functions

- The f(x) is periodic with period T, then c.f(x) is periodic with period T, f(x + c) is periodic with period T and $f(x) \pm c$ is periodic with period T. where c is any constant.
- The implication f(x) has a period T, then the function f(ax+b) will have a period $\frac{T}{|a|}$.
- Therefore f(x) is periodic with period T then $\frac{1}{f(x)}$ is also periodic with same period T.
- *T* If f(x) is periodic with period T, $\sqrt{f(x)}$ is also periodic with same period T.
- ^{*c*} *If* f(x) *is periodic with period T*, *then* a f(x) + b, *where* $a, b \in R(a \neq 0)$ *is also a periodic function with period T*.
- *If* $f_1(x)$, $f_2(x)$, $f_3(x)$ are periodic functions with periods T_1 , T_2 , T_3 respectively then; we have $h(x) = af_1(x) \pm bf_2(x) \pm cf_3(x)$, has period as,

 $= \begin{cases} \text{L.C.M.of} \{T_1, T_2, T_3\}; & \text{if } h(x) \text{ is not an even function} \\ \frac{1}{2} \text{L.C.M.of} \{T_1, T_2, T_3\}; & \text{if } h(x) \text{ is an even function} \end{cases}$

Example: 41 The period of the function
$$f(x) = 2\cos \frac{1}{3}(x - \pi)$$
 is [DCE 1998]
(a) 6π (b) 4π (c) 2π (d) π
Solution: (a) $f(x) = 2\cos \frac{1}{3}(x - \pi) = 2\cos(\frac{x}{3} - \frac{\pi}{3})$
Now, since $\cos x$ has period $2\pi \Rightarrow \cos(\frac{x}{3} - \frac{\pi}{3})$ has period $\frac{2\pi}{\frac{1}{3}} = 6\pi$
 $\Rightarrow 2\cos(\frac{x}{3} - \frac{\pi}{3})$ has period $= 6\pi$.
Example: 42 The function $f(x) = \sin \frac{\pi x}{2} + 2\cos \frac{\pi x}{3} - \tan \frac{\pi x}{4}$ is periodic with period [EAMCET 1992]
(a) 6 (b) 3 (c) 4 (d) 12
Solution: (d) $\because \sin x$ has period $= 2\pi \Rightarrow \sin \frac{\pi x}{2}$ has period $= \frac{2\pi}{\frac{\pi}{2}} = 4$
 $\because \cos x$ has period $= 2\pi \Rightarrow \sin \frac{\pi x}{3}$ has period $= \frac{2\pi}{\frac{\pi}{3}} = 6 \Rightarrow 2\cos \frac{\pi x}{3}$ has period $= 6$
 $\because \tan x$ has period $= \pi \Rightarrow \tan \frac{\pi x}{4}$ has period $= \frac{\pi}{\frac{\pi}{4}} = 4$.
L.C.M. of 4 , 6 and $4 = 12$, period of $f(x) = 12$.
Example: 43 The period of $|\sin 2x|$ is
(a) $\frac{\pi}{4}$ (b) $\frac{\pi}{2}$ (c) π (d) 2π

Solution: (b) Here |
$$\sin 2x_1 = \sqrt{\sin^2 2x} = \sqrt{\frac{1-(x+x)}{2}}$$

Period of $\cos 4x$ is $\frac{x}{2}$. Hence, period of | $\sin 2x_1$ will be $\frac{x}{2}$
Trick : \because sin x has period $= 2x \Rightarrow \sin 2x$ has period $= \frac{2x}{2} = x$
Now, if $f(x)$ has period p then | $f(x)$ has period $\frac{p}{2} \Rightarrow$ | $\sin 2x_1$ has period $= \frac{\pi}{2}$.
Example: 44 If $f(x)$ is an odd periodic function with period 2, then $f(4)$ equals [IIT 1991]
(a) 0 (b) 2 (c) 4 (d) - 4
Solution: (a) Given, $f(x)$ is an odd periodic function we can take sin x, which is odd and periodic.
Now since, $\sin x$ has period $= 2$ and $f(x)$ has period $= 2$.
So, $f(x) = \sin(xx) \Rightarrow f(4) = \sin(4\pi) = 0$.
Example: 45 The period of the function $f(x) = \sin^2 x$ is [UPSEAT 1991, 2002; AIEEE 2002]
(a) $\frac{\pi}{2}$ (b) π (c) 2π (d) None of these
Solution: (b) $\sin^2 x = \frac{1-\cos 2x}{2} \Rightarrow$ Period $= \frac{2\pi}{2} = \pi$.
Example: 46 The period of $f(x) = x - |x|$, if it is periodic, is [AMU 2000]
(a) $f(x)$ is not periodic (b) $\frac{1}{2}$ (c) 1 (d) 2
Solution: (c) Let $f(x)$ be periodic with period T. Then,
 $f(x+T) = f(x)$ for all $x \in R \Rightarrow x+T - [x+T] = x - [x]$ for all $x \in R \Rightarrow x+T - x = [x+T] - [x]$
 $\Rightarrow |x+T| - |x| = T$ for all $x \in R \Rightarrow T = 1, 2, 3, 4, \dots$.
The smallest value of T satisfying,
 $f(x+T) = f(x)$ for all $x \in R$ is 1.
Hence $f(x) = x - [x]$ has period 1.
Example: 47 The period of $f(x) = \sin\left(\frac{\pi}{n}\right\right) + \cos\left(\frac{\pi}{n}\right)^{-1} n < 2\pi$.
Solution: (c) $f(x) = \sin\left(\frac{\pi}{n-1}\right) + \cos\left(\frac{\pi}{n}\right)^{-1} n < 2\pi$.
Hence period of $f(x) = \sin\left(\frac{\pi}{n}\right)^{-1} \cos\left(\frac{\pi}{n}\right)^{-1} - 2\pi$
Hence period of $f(x)$ is LCM of $2n$ and $2(n-1) \Rightarrow 2n(n-1)$.
Example: 48 If a, b be vin fixed positive integers such that $f(a+x) = b + [b^2 + 1 - 3b^2 f(x) + 3b(f(x))^2 - [f(x)]^2 \frac{1}{p^2}$ for all
real x , then $f(x)$ is a periodic with period
(a) $a = (b) 2 a (c) b (d) 2 b$
Solution: (b) $f(a+x) = b + (1 + (b - f(x))^2)^{1/2} \Rightarrow f(a+x) - b - [(-f(x) - b)^2]^{1/2} = \phi(x)$
 $\Rightarrow f(x + 20 - b + (x) - b + (x) = 2\pi(x) = 1$.

2.1.9 Composite Function

If $f: A \to B$ and $g: B \to C$ are two function then the composite function of f and g, $gof A \to C$ will be defined as $gof(x) = g[f(x)], \forall x \in A$ (1) **Properties of composition of function :** (i) f is even, g is even \Rightarrow fog even function. (ii) f is odd, g is odd \Rightarrow fog is odd function. (iii) f is even, g is odd \Rightarrow fog is even function. (iv) f is odd, g is even \Rightarrow for \Rightarrow fog is even function. (v) Composite of functions is not commutative *i.e.*, $fog \neq gof$ (vi) Composite of functions is associative *i.e.*, (fog)oh = fo(goh)(vii) If $f: A \to B$ is bijection and $g: B \to A$ is inverse of f. Then $fog = I_B$ and $gof = I_A$.

where, I_A and I_B are identity functions on the sets A and B respectively.

(viii) If $f: A \to B$ and $g: B \to C$ are two bijections, then $gof: A \to C$ is bijection and $(gof)^{-1} = (f^{-1}og^{-1})$.

(ix) $fog \neq gof$ but if , fog = gof then either $f^{-1} = g$ or $g^{-1} = f$ also, (fog)(x) = (gof)(x) = (x).

Important Tips

- gof(x) is simply the g-image of f(x), where f(x) is f-image of elements $x \in A$.
- Function gof will exist only when range of f is the subset of domain of g.
- *fog does not exist if range of g is not a subset of domain of f.*
- *fog and gof may not be always defined.*

The set of the set of

If both f and g are onto, then gof is onto.

Example: 49	If $f: R \to R, f(x) = 2x - 1$	[Rajasthan PET 1987]		
	(a) $2x^2 - 1$	(b) $(2x-1)^2$	(c) $4x^2 - 2x + 1$	(d) $x^2 + 2x - 1$
Solution: (b)	$gof(x) = g\{f(x)\} = g(2x - 1)$	$=(2x-1)^2$.		
Example: 50	If $f: R \to R, f(x) = (x+1)^2$	and $g: R \rightarrow R, g(x) = x^2 +$	1, then $(fog)(-3)$ is equal to	0 [Rajasthan PET 1999]
	(a) 121	(b) 144	(C) 112	(d) 11
Solution: (a)	$fog(x) = f\{g(x)\} = f(x^2 + 1)$	$=(x^{2} + 1 + 1)^{2} = (x^{2} + 2)^{2}$	$\Rightarrow fog(-3)=(9+2)^2=121$.	
Example: 51	$f(x) = \sin^2 x + \sin^2 \left(x + \frac{\pi}{3} \right)$	$+\cos x \cos\left(x+\frac{\pi}{3}\right)$ and $g\left(\frac{5}{4}\right)$	= 1, then $(gof)(x)$ is equal t	0 [IIT 1996]
	(a) 1	(b) -1	(c) 2	(d) – 2
Solution: (a)	$f(x) = \sin^2 x + \sin^2(x + \pi/3)$	$(1 + \cos x \cos(x + \pi/3)) = \frac{1 - \pi}{2}$	$\frac{\cos 2x}{2} + \frac{1 - \cos(2x + 2\pi/3)}{2} + 1 - $	$\frac{1}{2} \{ 2\cos x \cos(x + \pi/3) \}$
	$= \frac{1}{2} [1 - \cos 2x + 1 - \cos(2x)]$	$+2\pi/3) + \cos(2x + \pi/3) + \cos(2x + \pi/3) + \cos(2x + \pi/3))$	s π / 3]	

$$= \frac{1}{2} \left[\frac{5}{2} - (\cos 2x + \cos \left(2x + \frac{2x}{3}\right) + \cos \left(2x + \frac{2x}{3}\right) \right] = \frac{1}{2} \left[\frac{5}{2} - 2\cos \left(2x + \frac{x}{3}\right) \cos \frac{x}{3} + \cos \left(2x + \frac{x}{3}\right) \right] = 5/4 \text{ for all } x.$$

$$\Rightarrow p(x) = p(tx) = p(x) = x^{5} + x - 2 \text{ and } \frac{1}{2} (p(y)(x) = 2x^{2} - 5x + 2, \text{ then } f(x) \text{ is equal to} \qquad [Roorkee 1998; MP PR 2002]$$
(a) $2x - 3$
(b) $2x + 3$
(c) $2x^{2} + 3x + 1$
(d) $2x^{3} - 3x - 1$
Solution: (a) $p(x) = x^{2} + x - 2 \text{ out} p(x) = p(t(x)) = f(x)^{2} + f(x) - 2$
Given, $\frac{1}{2} (g(y)(x) - 2x^{2} - 5x + 2)$

$$\Rightarrow [f(x)]^{2} + f(x) = 4x^{3} - 10x + 6 \Rightarrow f(x)(f(x) + 1] = (2x - 3)((2x - 3) + 1] \Rightarrow f(x) = 2x - 3.$$
Example: 53
If $f(y) = \frac{y}{\sqrt{1 - y^{2}}}$, $g(y) = \frac{y}{\sqrt{1 + y^{2}}}$, then $(f(y)(y)$ is equal to
(a) $\frac{y}{\sqrt{1 - y^{2}}}$, $g(y) = \frac{y}{\sqrt{1 + y^{2}}}$, then $(f(y)(y)$ is equal to
(b) $\frac{y}{\sqrt{1 + y^{2}}}$, (c) y
(c) y
(d)
Solution: (c) $f(g(y)] = \frac{y(\sqrt{1 + y^{2}})}{\sqrt{1 + y^{2}}} = \frac{y}{\sqrt{1 + y^{2}}} + \frac{\sqrt{1 + y^{2}}}{\sqrt{1 + y^{2} - y^{2}}} = y$
Example: 54
If $f(x) = \frac{2x - 3}{x - 2}$, then $[f(f(x))] = 4x \sqrt{x} + x$, then $f(x)$ is
(D) $-x$
(c) $\frac{1}{2}$ (d) $-\frac{1}{x}$
Solution: (a) $f(f(x)] = \frac{4(x - 3)}{(\frac{1}{x - 2})^{-2}} = x$
Example: 55
Suppose that $g(x) = 1 + \sqrt{x}$ and $f(g(x)) = 3 + 2\sqrt{x} + x$, then $f(x)$ is
(MP PR 2000; Karnataka CR 200]
(a) $+ 2\sqrt{x} + x$
Put $1 + \sqrt{x} = 2 + (x) - 1^{2}$
Hence, $f(y) = 1 + \sqrt{x}$ and $f(g(x)) = 3 + 2\sqrt{x} + x$, then $f(x)$ is
(b) $(x - 1 + x)$
(c) $1 + x^{2}$
(c) $1 + x$
(d)
Solution: (b) $g(x) - 1 + \sqrt{x}$ and $f(g(x)) = 2 + x^{2}$
(c) $1 + x$
(d)
Solution: (c) $f(g(x) - 3 + 2\sqrt{x} + x)$
Put $1 + \sqrt{x} = 2 + (x) - 1^{2}$
Example: 55
Let $g(x) = 1 + x - (x)$
and $f(y) = \left\{ -\frac{1}{x} - \frac{x - 0}{x} + \frac{1}{x} + \frac{1}{x}$

Now $f(g(x)) = \begin{cases} -1, & g(x) < 0 \\ 0, & g(x) = 0 \\ 1, & g(x) > 0 \end{cases}$

Clearly, g(x) > 0 for all x. So, f(g(x)) = 1 for all x.

Example: 57 If $f(x) = \frac{2x+1}{3x-2}$, then (fof)(2) is equal to [Kerala (Engg.) 2002] (a) 1 (b) 3 (c) 4 (d) 2 Solution: (d) Here $f(2) = \frac{5}{4}$

Hence $(fof)(2) = f(f(2)) = f\left(\frac{5}{4}\right) = \frac{2 \times \frac{5}{4} + 1}{3 \times \frac{5}{4} - 2} = 2$.

Example: 58 If $f: R \to R$ and $g: R \to R$ are given by f(x) = |x| and g(x) = [x] for each $x \in R$, then $\{x \in R : g(f(x)) \le f(g(x))\} =$ [EAMCET 2003] (a) $Z \cup (-\infty, 0)$ (b) $(-\infty, 0)$ (c) Z (d) Solution: (d) $g(f(x)) \le f(g(x)) \Rightarrow g(|x|) \le f[x] \Rightarrow [|x|] \le [x]|$. This is true for $x \in R$.

2.1.10 Inverse Function

If $f: A \to B$ be a one-one onto (bijection) function, then the mapping $f^{-1}: B \to A$ which associates each element $b \in B$ with element $a \in A$, such that f(a) = b, is called the inverse function of the function $f: A \to B$

 $f^{-1}: B \to A, f^{-1}(b) = a \Longrightarrow f(a) = b$

In terms of ordered pairs inverse function is defined as $f^{-1} = (b,a)$ if $(a, b) \in f$.

Note : **D** For the existence of inverse function, it should be one-one and onto.

Important Tips

- *There of a bijection is also a bijection function.*
- Inverse of a bijection is unique.
- $(f^{-1})^{-1} = f$
- $\overset{\circ}{=}$ If f and g are two bijections such that (gof) exists then $(gof)^{-1}=f^{-1}og^{-1}$.
- ^{*T*} *If* f: A → B is a bijection then $f^{-1}: B → A$ is an inverse function of $f, f^{-1}of = I_A$ and $fof^{-1}=I_B$. Here I_A , is an identity function on set A, and I_B , is an identity function on set B.

Example: 59 If $f: R \to R$ is given by f(x) = 3x - 5, then $f^{-1}(x)$ [IIT Solution (a) Is given by $\frac{1}{3x - 5}$ (b) Is given by $\frac{x + 5}{3}$ (c) Does not exist because f is not one-one (d) Does not exist because f is not onto

Solution: (b) Clearly, $f: R \to R$ is a one-one onto function. So, it is invertible.

[IIT Screening 1998]

$$\text{Let } f(x) = y. \text{ then, } 3x - 5 = y \to x = \frac{y - 5}{3} \to f^{-1}(y) = \frac{y + 5}{3}. \text{ Fience, } f^{-1}(x) = \frac{x + 5}{3}. \text{ Example: 60} \quad \text{Let } f: R \to R \text{ be defined by } f(x) = 3x - 4, \text{ then } f^{-1}(x) \text{ is } \\ (a) & 3x + 4 \quad (b) & \frac{1}{3}x - 4 \quad (c) & \frac{1}{2}(x + 4) \quad (d) & \frac{1}{3}(x - 4) \\ \text{Solution: (c) } f(x) = 3x - 4 = y \Rightarrow y = 3x - 4 \Rightarrow x = \frac{y + 4}{3} \Rightarrow f^{-1}(y) = \frac{y + 4}{3} \Rightarrow f^{-1}(x) = \frac{x + 4}{3}. \text{ Example: 61} \quad \text{If the function } f: R \to R \text{ be such that } f(x) - x - |x|, \text{ where } |y| \text{ denotes the greatest integer less than or equal to y, then } f^{-1}(x) is \\ (a) & \frac{1}{x - |x|} \quad (b) |x| - x \quad (c) \text{ Not defined } \quad (d) \text{ None of these} \\ \text{Solution: (c) } f(x) = x - [x] \text{ Since, for } x = 0 \Rightarrow f(x) = 0 \\ \Rightarrow f(x) \text{ is not one-one } \Rightarrow So f^{-1}(x) \text{ is not defined.} \\ \text{Example: 62 } \text{ If } f(-|x|, x) \rightarrow ||, \infty| \text{ is defined as } f(x) = 2^{n(x-1)} \text{ then } f^{-1}(x) \text{ is equal to } \qquad \text{[ITT screening 1999]} \\ (c) & \frac{1}{2}(1 - \sqrt{1 + 4\log_2 x}) \\ (c) & \frac{1}{2}(1 - \sqrt{1 + 4\log_2 x}) \end{bmatrix} \quad (d) \text{ Not defined} \\ \text{Solution: (b) Given } f(x) = 2^{n(x-1)} \Rightarrow x(x-1) = \log_2 f(x) \\ \Rightarrow x^{-1} - x - \log_3 f(x) = 0 = x = \frac{1 \pm \sqrt{1 + 4\log_3 f(x)}}{2} \\ \text{Only } x = \frac{1 + \sqrt{1 + 4\log_3 f(x)}}{2} \\ \text{Only } x = \frac{1 + \sqrt{1 + 4\log_3 f(x)}}{2} \\ \text{Only } x = \frac{1 + \sqrt{1 + 4\log_3 f(x)}}{2} \\ \text{Only } x = \frac{1 + \sqrt{1 + 4\log_3 f(x)}}{2} \\ \text{IEXample: 63 } \text{ Much of the following function is invertible } \\ \text{(Astu 2001]} \\ (a) f(x) = 2^{r} \quad (b) f(x) = x^{-1} - x \quad (c) f(x) = x^{1} \quad (d) \text{ None of these} \\ \text{Solution: (a) A function is invertible if it is one-one and onto. \\ \text{Example: 64 } \text{ If } f(x) = x^{2} + 1, \text{ then } f^{-1}(x) \text{ and } f^{-1}(3) \text{ will be } \\ \text{(JEXEL 2003]} \\ (a) (4, 1 \qquad (b) 4, 0 \qquad (c) 3, 2 \qquad (d) \text{ None of these} \\ \text{Solution: (a) Let } y = x^{2} + 1 \longrightarrow x = \pm \sqrt{y-1} \\ \Rightarrow f^{-1}(y) = \pm \sqrt{y-1} \rightarrow f^{-1}(x) = \pm \pm \sqrt{y-1} \\ \Rightarrow f^{-1}(y) = \pm \sqrt{y-1} \rightarrow f^{-1}(x) = \pm \pm \sqrt{y-1} \\ \Rightarrow f^{-1}(y) = \pm \sqrt{y-1} \rightarrow f^{-1}(x) = \pm \sqrt{y-1} \\ \Rightarrow f^{-1}(y) = \pm \sqrt{y-1} = \pm \sqrt{y-1} \\ \Rightarrow f^{-1}(y) = \pm \sqrt{y-1} = \pm \sqrt{y-1} \\ \Rightarrow f^{-1$$

Value of Function

Basic Level

If $f(x) = \frac{1-x}{1+x}$, then $f[f(\cos 2\theta)]$ equations	al to			[MP PET 1994, 2001]
(a) $\tan 2\theta$	(b) $\sec 2\theta$	(c) $\cos 2\theta$	(d)	$\cot 2\theta$
If $f(x) = \frac{\cos^2 x + \sin^4 x}{\sin^2 x + \cos^4 x}$ for $x \in R$,	then $f(2002) =$			[EAMCET 2002]
(a) 1	(b) 2	(c) 3	(d)	4
If $\phi(x) = a^x$, then $\{\phi(p)\}^3$ is equal to				[MP PET 1999]
(a) $\phi(3p)$	(b) $3\phi(p)$	(c) $6\phi(p)$		$2\phi(p)$
If $f(x) = \cos(\log x)$, then $f(x)f(y) - \frac{1}{2}$	$\left[f\left(\frac{x}{y}\right) + f(xy)\right] =$ [IIT 1983; Rajasth	nan PET 1995; MP PET 1995; KCET	1999; T	UPSEAT 2001]
(a) $\frac{1}{2}$	(b) 2	(c) 0	(d)	1
If $f(\theta) = \tan \theta$, then $\frac{f(\theta) - f(\phi)}{1 + f(\theta)f(\phi)}$ is eq	ual to			[Rajasthan PET 1996]
(a) $f(\theta - \phi)$	(b) $f(\phi - \theta)$	(c) $f(\theta + \phi)$	(d)	None of these
If $f(x) = 2x\sqrt{1-x^2}$, then $f\left(\sin x\right)$	$\left(\frac{x}{2}\right)$ equals			[Rajasthan PET 1989]
(a) $\sin 2x$	(b) $\sin x$	(c) $2\sin x$	(d)	$2\sin\frac{x}{2}$
If $f(x) = \frac{x}{x-1}$, then $\frac{f(a)}{f(a+1)}$ is	s equal to			[MP PET 1996]
(a) <i>f</i> (- <i>a</i>)	(b) $f\left(\frac{1}{a}\right)$	(c) $f(a^2)$	(d)	$f\left(\frac{-a}{a-1}\right)$
If $f(x) = \begin{cases} 2x - 3 & , x \ge 2 \\ x & , x < 2 \end{cases}$, then $f(1)$	is equal to			[Karnataka CET 1989]
(a) 2 <i>f</i> (2)	(b) <i>f</i> (2)	(c) − <i>f</i> (2)	(d)	$\frac{1}{2}f(2)$
If $f(x) = x^2 - x^{-2}$, then $f\left(\frac{1}{x}\right)$ is equal	l to			[SCRA 1999]
(a) $f(x)$	(b) $-f(x)$	(c) $\frac{1}{f(x)}$	(d)	$\left[f(x)\right]^2$

If $f(x) = 4x^3 + 3x^2 + 3x + 4$,	then $x^3 f\left(\frac{1}{x}\right)$ is			[SCRA 1996]
(a) <i>f</i> (- <i>x</i>)	(b) $\frac{1}{f(x)}$	(c) $\left[f\left(\frac{1}{x}\right)\right]^2$	(d)	f(x)
The equivalent function of $\log x^2$ is				[MP PET 1997]
(a) $2 \log x$	(b) $2\log x $	(c) $ \log x^2 $	(d)	$(\log x)^2$
	Advar	ice		
If $f(x) = \cos[\pi]x + \cos[\pi x]$, where $[y]$] is the greatest integer function of y	then $f\left(\frac{\pi}{2}\right)$ is equal to		
(a) cos 3	(b) 0	(c) cos 4	(d)	None of these
Let $f(x) = \begin{cases} 1+ x & , x < -1 \\ [x] & , x \ge -1 \end{cases}$, where	e [.] denotes the greatest integer function	on. Then $f{f(-2.3)}$ is equal to		
(a) 4	(b) 2	(c) -3	(d)	3
If $f(x_1) + f(x_2) = f\left(\frac{x_1 + x_2}{1 + x_1 x_2}\right), x_1 x_2$	\in (-1,1), then $f(x)$ is equal to			[Roorkee 1998]
(a) $\log\left(\frac{1-x}{1+x}\right)$	(b) $\tan^{-1}\left(\frac{1-x}{1+x}\right)$	(c) $\log\left(\frac{2x}{1-x^2}\right)$	(d)	$\tan^{-1}\left(\frac{1+x}{1-x}\right)$
If $f(x) = \frac{ x }{x}$, $x \neq 0$, then the value of	f function			[BIT Mesra 1999]
(a) 1	(b) o	(c) -1	(d)	Does not exists
If a function $g(x)$ is defined in $[-1, 1]$	and two vertices of an equilateral tria	ngle are $(0,0)$ and $(x, g(x))$ and its a	rea is -	$\frac{\sqrt{3}}{4}$, then $g(x)$ equals[IIT 1989]
(a) $\sqrt{1+x^2}$	(b) $-\sqrt{1+x^2}$	(c) $\sqrt{1-x^2}$	(d)	None of these
If $f(x) = \frac{2^x + 2^{-x}}{2}$, then $f(x + y)$. $f(x + y)$.	-y) is equal to			[Rajasthan PET 1998]
(a) $\frac{1}{2}[f(x+y)+f(x-y)]$	(b) $\frac{1}{2}[f(2x)+f(2y)]$	(c) $\frac{1}{2}[f(x+y).f(x-y)]$	(d)	None of these
f(1) = 1 and $f(n+1) = 2 f(n) + 1$ if n	≥ 1 , then $f(n)$ is		[[Karnataka CET 1994; IIT 1995]
(a) 2^{n+1}	(b) 2^n	(c) $2^n - 1$	(d)	$2^{n-1} - 1$
If $2f(x) - 3f(1 / x) = x^2$, $x \neq 0$	0, then $f(2)$ is equal to			[IIT 1991]
(a) $5/2$	(b) -7/4	(c) -1	(d)	None of these
If $f(x) \neq x-1 $, then correct s				[IIT 1983]
(a) $f(x^2) = [f(x)]^2$	(b) $f(x) \neq f(x)$	(c) $f(x+y) = f(x) + f(y)$	(a)	None of these
Domain of Function	Basic	Level		

The domain of the function $f(x) = \sqrt{\log_{0.5} x}$ is				
(a) (0, 1]	(b) (0, ∞)	(c) (0.5, ∞)	(d) [1,∞)	
The domain of definition				
(a) $x > 0$	(b) $ x \ge 1$	(c) $ x \ge 4$	(d) $x \ge 4$	

The natural domain of the real valued function defined by $f(x) = \sqrt{x^2 - 1} + \sqrt{x^2 + 1}$ [SCRA 1996] (b) $-\infty < x < \infty$ (a) $1 < x < \infty$ (c) $-\infty < x < -1$ (d) $(-\infty,\infty)-(-1,1)$ The domain of the function $y = \sqrt{\frac{1}{r} - 1}$ is, [AMU 2000] (b) $0 \le x \le 1$ (c) $0 \le x < 1$ (d) $0 < x \le 1$ (a) $x \le 1$ Domain of $f(x) = \log |\log x|$ is [Pb. CET 1998; DCE 2002] (a) $(0,\infty)$ (b) $(1,\infty)$ (c) $(0,1) \cup (1,\infty)$ (d) (−∞,1) Domain of function $f(x) = \left[\log_{10} \left(\frac{5x - x^2}{4} \right) \right]^{1/2}$ is **[UPSEAT 2001]** (a) $-\infty < x < \infty$ (b) $1 \le x \le 4$ (c) $4 \le x \le 16$ (d) $-1 \le x \le 1$ Domain of the function $\sin^{-1} \left[\log_2 \left(\frac{x^2}{2} \right) \right]$ is [MP PET 1998] (d) $[-2, 2] - \{\}$ (a) [1,2] (b) [-1, 2] (c) [-2, 2] - (-1, 1)The domain of the function $f(x) = \frac{\sqrt{4-x^2}}{\sin^{-1}(2-x)}$ is (a) [0, 2] (b)[0,2)(c)[1, 2) (d) [1, 2] The domain of the function $f(x) = \log(\sqrt{x-4} + \sqrt{6-x})$ is [Rajasthan PET 2001] (b) (-∞, 6] (a) [4,∞) (d) None of these (c) [4,6] Advance The largest set of real values of x for which $f(x) = \sqrt{(x+2)(5-x)} - \frac{1}{\sqrt{x^2-4}}$ is a real function (a) [1, 2] ∪(2,5] (d) None of these (b) (2,5) (c) [3,4] The domain of the function $f(x) = \frac{1}{\log_{10}(1-x)} + \sqrt{x+2}$ is [DCE 2000] (a) $]-3, -2.5[\cup]-2.5, -2[$ (b) $[-2,0[\cup]0,1[$ (d) None of these (c)]0,1[The domain of the function $f(x) = \log_e(x - [x])$, where [.] denotes the greatest integer function, is (a) R (b) *R*-*Z* (c) $(0, +\infty)$ (d) None of these The domain of the function $f(x) = \frac{\sin^{-1}(3-x)}{\ln(|x|-2)}$ is [Orissa JEE 2002] (a) [2,4] (b) $(2, 3) \cup (3, 4]$ (d) $(-\infty, -3) \cup [2, \infty)$ (c) [2, ∞) Domain of the function $f(x) = \sin^{-1}(1 + 3x + 2x^2)$ is [Roorkee 2000] (d) $\left(-\infty,\frac{-1}{2}\right)\cup(2,\infty)$ (c) $\left[\frac{-3}{2}, 0\right]$ (a) $(-\infty,\infty)$ (b) (-1,1) Domain of the function $\sin \ln \left(\frac{\sqrt{4-x^2}}{1-x} \right)$ [IIT 1985; Rajasthan PET 2003] (a) [-2,1] (b) (-2,1) (c) [-2,1) (d) (-2,1] Domain of the function $f(x) = \sqrt{\log_{0.5}(3x-8) - \log_{0.5}(x^2+4)}$ is [AMU 1999]

(3)	(1) (8)					
(a) $\left(\frac{8}{3},\infty\right)$		(C) (−∞, ∞)	(a)	$(0,\infty)$		
The domain of $f(x) = \frac{1}{\sqrt{\cos x + \cos x }}$	$\frac{1}{5x}$ is					
(a) $[-2n\pi, 2n\pi]$	(b) $(2n\pi, 2n+1\pi)$	$(c)\left(\frac{(4n+1)\pi}{2},\frac{(4n+3)\pi}{2}\right)$	(d)	$\left(\frac{(4n-1)\pi}{2},\frac{(4n+1)\pi}{2}\right)$		
The domain of $f(x) = \sin^{-1}\left(\frac{1+x^2}{2x}\right)$	$+\sqrt{1-x^2}$ is					
(a) {1}	(b) (-1,1)	(c) {1,-1}	(d)	None of these		
The domain of the function $f(x) = \sqrt{1}$	$\operatorname{og}\left(\frac{1}{ \sin x }\right)$ is			[Rajasthan PET 2001]		
(a) $R - \{-\pi, \pi\}$	(b) $R - \{n\pi n \in Z\}$	(c) $R - \{2n\pi n \in Z\}$	(d)	$(-\infty,\infty)$		
The domain of the function $f(x) = {}^{16}$	$^{-x}C_{2x-1} + ^{20-3x}P_{4x-5}$, where the sym	bols have their usual meanings, is t	he set	[AMU 2002]		
(a) {2, 3}	(b) {2, 3, 4}	(c) {1, 2, 3, 4}	(d)	{1, 2, 3, 4, 5}		
Domain of the function $f(x) = \sin^{-1} \{$	$(1+e^x)^{-1}$ is			[AMU 1999]		
(a) $(-\infty,\infty)$	(b) [-1,0]	(c) [0,1]	(d)	[-1, 1]		
If <i>n</i> is an integer then domain of the function $\sqrt{\sin 2x}$ is [MP PET 20]						
(a) $[n\pi - \frac{\pi}{2}, n\pi]$	(b) $\left[n\pi, n\pi + \frac{\pi}{2}\right]$	(c) $[(2n-1)\pi, 2n\pi]$	(d)	$[2n\pi,(2n+1)\pi]$		
Range of Function						
Basic Level						
	Basic	Level				
If $A\{-2, -1, 0, 1, 2\}$ and $f: A \to Z$,		Level		[Rajasthan PET 1995]		
If $A\{-2, -1, 0, 1, 2\}$ and $f: A \to Z$, (a) $\{0, 1, 2, 5\}$			(d)			
(a) {0, 1, 2, 5}	$f(x) = x^2 + 1$, then the range of f is	(c) {-5, -2, 1, 2, 3}	(d)			
(a) {0, 1, 2, 5}	$f(x) = x^2 + 1$, then the range of f is (b) {1, 2, 5} $0, 1] \rightarrow R, f(x) = x^3 - x^2 + 4x + 2 \sin^{-1}$	(c) {-5, -2, 1, 2, 3}				
(a) {0, 1, 2, 5} The range of the function $f:$	$f(x) = x^2 + 1$, then the range of f is (b) {1, 2, 5} $0, 1] \rightarrow R, f(x) = x^3 - x^2 + 4x + 2 \sin^{-1}$	(c) {-5, -2, 1, 2, 3} ¹ x is		A		
 (a) {0, 1, 2, 5} The range of the function <i>f</i>:[(a) [-π-2,0] 	$f(x) = x^2 + 1$, then the range of f is (b) {1, 2, 5} $0, 1] \rightarrow R, f(x) = x^3 - x^2 + 4x + 2 \sin^{-1}$	(c) {-5, -2, 1, 2, 3} ¹ x is	(d)	A $[0, 2 + \pi]$		
 (a) {0, 1, 2, 5} The range of the function f: [(a) [-π-2,0] The range of f(x) = cos(x / 3) is 	$f(x) = x^{2} + 1, \text{ then the range of } f \text{ is}$ (b) {1, 2, 5} $0, 1] \rightarrow R, f(x) = x^{3} - x^{2} + 4x + 2 \sin^{-1}$ (b) [2, 3] (b) [-3, 3]	 (c) {-5, -2, 1, 2, 3} ¹ x is (c) [0, 4+ π] 	(d)	A $[0, 2 + \pi]$ [Rajasthan PET 2002]		
 (a) {0, 1, 2, 5} The range of the function f: [(a) [-π-2,0] The range of f(x) = cos(x/3) is (a) [-1/3, 1/3] 	$f(x) = x^{2} + 1, \text{ then the range of } f \text{ is}$ (b) {1, 2, 5} $0, 1] \rightarrow R, f(x) = x^{3} - x^{2} + 4x + 2 \sin^{-1}$ (b) [2, 3] (b) [-3, 3]	 (c) {-5, -2, 1, 2, 3} ¹ x is (c) [0, 4+ π] 	(d) (d)	A [0, 2 + π] [Rajasthan PET 2002] [- 1, 1]		
(a) {0, 1, 2, 5} The range of the function $f:[$ (a) $[-\pi - 2, 0]$ The range of $f(x) = \cos(x/3)$ is (a) $[-1/3, 1/3]$ Range of $f(x) = \frac{x^2 + 34x - 7}{x^2 + 2x - 7}$	f(x) = x ² + 1, then the range of f is (b) {1, 2, 5} 0,1] → R, f(x) = x ³ - x ² + 4x + 2 sin ⁻¹ (b) [2, 3] (b) [-3,3] (c) (-∞,5]∪[9,∞)	 (c) {-5, -2, 1, 2, 3} ¹ x is (c) [0, 4+ π] (c) [1/3, -1/3] 	(d) (d)	A [0, 2 + π] [Rajasthan PET 2002] [- 1, 1] [Roorkee 1983]		
(a) {0, 1, 2, 5} The range of the function $f:$ [(a) $[-\pi - 2, 0]$ The range of $f(x) = \cos(x/3)$ is (a) $[-1/3, 1/3]$ Range of $f(x) = \frac{x^2 + 34x - 7}{x^2 + 2x - 7}$ (a) $[5, 9]$	f(x) = x ² + 1, then the range of f is (b) {1, 2, 5} 0,1] → R, f(x) = x ³ - x ² + 4x + 2 sin ⁻¹ (b) [2, 3] (b) [-3,3] (c) (-∞,5]∪[9,∞)	 (c) {-5, -2, 1, 2, 3} ¹ x is (c) [0, 4+ π] (c) [1/3, -1/3] 	(d) (d) (d)	A [0, 2 + π] [Rajasthan PET 2002] [- 1, 1] [Roorkee 1983] None of these		
(a) {0, 1, 2, 5} The range of the function $f:$ [(a) $[-\pi - 2, 0]$ The range of $f(x) = \cos(x/3)$ is (a) $[-1/3, 1/3]$ Range of $f(x) = \frac{x^2 + 34x - 7}{x^2 + 2x - 7}$ (a) [5,9] Range of the function $f(x) = \frac{x^2 - x}{x^2 + x}$	$f(x) = x^{2} + 1, \text{ then the range of } f \text{ is}$ (b) {1, 2, 5} $0, 1] \rightarrow R, f(x) = x^{3} - x^{2} + 4x + 2 \sin^{-1}$ (b) [2, 3] (b) [-3, 3] (c) [-3, 3] (c) (-\infty, 5] \cup [9, \infty) $\frac{x + 1}{x + 1}$	(c) $\{-5, -2, 1, 2, 3\}$ ¹ x is (c) $[0, 4+\pi]$ (c) $[1/3, -1/3]$ (c) $(5, 9)$ (c) $\left[\frac{1}{3}, 3\right]$	(d) (d) (d)	A [0, 2 + π] [Rajasthan PET 2002] [- 1, 1] [Roorkee 1983] None of these [Karnataka CET 1993]		
(a) {0, 1, 2, 5} The range of the function $f:$ [(a) $[-\pi - 2, 0]$ The range of $f(x) = \cos(x/3)$ is (a) $[-1/3, 1/3]$ Range of $f(x) = \frac{x^2 + 34x - 7}{x^2 + 2x - 7}$ (a) [5,9] Range of the function $f(x) = \frac{x^2 - x}{x^2 + x}$	$f(x) = x^{2} + 1, \text{ then the range of } f \text{ is}$ (b) {1, 2, 5} 0, 1] $\rightarrow R, f(x) = x^{3} - x^{2} + 4x + 2 \sin^{-1}$ (b) [2, 3] (b) [-3, 3] (c) [-3, 3] (c) (- ∞ , 5] \cup [9, ∞) $\frac{+1}{+1}$ (c) [3, ∞) Advan	(c) $\{-5, -2, 1, 2, 3\}$ ¹ x is (c) $[0, 4+\pi]$ (c) $[1/3, -1/3]$ (c) $(5, 9)$ (c) $\left[\frac{1}{3}, 3\right]$	(d) (d) (d)	A [0, 2 + π] [Rajasthan PET 2002] [- 1, 1] [Roorkee 1983] None of these [Karnataka CET 1993]		

The range of the function $f(x) \neq x-1 $	+ $x - 2$, $-1 \le x \le 3$ is			
(a) [1, 3]	(b) [1, 5]	(c) [3, 5]		None of these
Let $f(x) = (1 + b^2)x^2 + 2bx + 1$	and $m(b)$ the minimum value of $f(x)$) for a given b. As b varies, the range	ge of	
		[,]		[IIT Screening 2001]
(a) [0,1]	(b) $\left(0,\frac{1}{2}\right]$	(c) $\left\lfloor \frac{1}{2}, 1 \right\rfloor$	(d)	(0,1]
Kind of Functions				
	Basic Le	evel		
Which of the following functions defined	d from <i>R</i> to <i>R</i> is onto			[Rajasthan PET 1985, 86]
(a) $f(x) \neq x$	(b) $f(x) = e^{-x}$	(c) $f(x) = x^3$	(d)	$f(x) = \sin x$
The number of bijective function from se	et A to itself when A contains 106 elen	nents is		[EAMCET 1994]
(a) 106	(b) $(106)^2$	(c) 106 !	(d)	2^{106}
If A contains 3 elements and B contains	4 elements, then the number of all one	- one functions defined from A to A		
(2) 144	(h) 12	$(a) \geq 4$		EAMCET 1992; UPSEAT 2001]
(a) 144 If $A = \{a, b\}$, then total number of func	(b) 12 tions which can be defined from A to A	(c) 24 A is	(u)	64
(a) 2	(b) 3	(c) 4	(d)	1
Function $f: R \to R, f(x) = x^3 + 7$ is			()	- [Rajasthan PET 1984]
(a) One – one onto	(b) One – one into	(c) Many – one onto	(d)	Many – one into
Which of the following functions from <i>K</i>	• •		()	[Rajasthan PET 1984]
(a) x^5	(b) $3x - 7$	(c) x^3	(d)	$\sin x$
Function $f: R \to R, f(x) = x^2$ is				[IIT 1970; MP PET 1997]
(a) One – one but not onto	o (b) Onto but not one- one	(c) Neither one-one nor or	nto	(d) One- one onto
If $A = R - \{3\}, B = R - \{1\}$ and $f : A - \{3\}, B = R - \{1\}$	$\Rightarrow B, f(x) = \frac{x-2}{x-3}$, then f is			
(a) One-one	(b) Onto	(c) One-one onto	(d)	Many-one into
	Advance	e		
Let $f(x) = \frac{x^2 - 4}{x^2 + 4}$ for $ x > 2$, then the	function $f: (-\infty, -2] \cup [2, \infty) \rightarrow (-1, 2)$	1) is		[Orissa JEE 2002]
(a) One-one into	(b) One-one onto	(c)Many one into	(d)	Many one onto
Let the function $f: R \to R$ be defined		-	()	[IIT Screening 2002]
(a) One-to-one and onto		(b) One-to-one but not ont	0	
(c) Onto but not one-to-one		(d) Neither one-to-one nor onto		
function $f: R \to R$, $f(x) = x x $ is				[Rajasthan PET 1991, 98]
(a) One – one but not onto		(b) Onto but not one – one		
(c) One – one onto		(d) Neither one – one nor onto		
If for two function f and g ; gof is a bijection, then correct statement is				[Haryana CEE 1998]
(a) Both g and f must be b	ijections	(b)	g r	nust be a bijection

If $f:[0,\infty) \to [0,\infty)$ and $f(x) = \frac{x}{1+x}$, then f is [IIT Screening 2003] (b) One – one but not onto (c) Onto but not one – one (d) Neither one – one nor (a) One – one and onto onto The number of all onto functions which can be defined from $A = \{1, 2, 3, \dots, n\}, n \ge 2$ to $B = \{a, b\}$ is **IEAMCET 19921** (a) ${}^{n}P_{2}$ (b) $2^n - 2$ (c) $2^n - 1$ (d) None of these If 1+2x is a function having $\left(\frac{-\pi}{2},\frac{\pi}{2}\right)$ as domain and $(-\infty,\infty)$ as co-domain, then it is [IIT 1992] (a) Onto but not one- one (b) One - one but not onto (c) One - one and onto (d) Neither one - one nor onto If $A = \{x \mid -1 \le x \le 1\} = B$ and $f : A \to B$, $f(x) = \sin \pi x$, then f is (a) One – one (b) Onto (c) One - one onto (d) Many one into If the real-valued function $f(x) = px + \sin x$ is a bijective function then the set of possible valued of $p \in R$ is (a) $R - \{0\}$ (b) *R* (c) $(0, +\infty)$ (d) None of these **Even/Odd Functions Basic Level** The function $f(x) = x \cos x$ is (a) Even function (b) Odd function (c) Neither even nor odd (d) Periodic function A function whose graph is symmetrical about the y-axis is given by (a) $f(x) = \log_{a}(x + \sqrt{x^{2} + 1})$ (b) f(x + y) = f(x) + f(y) for all $x, y \in R$ (c) $f(x) = \cos x + \sin x$ (d) None of these Let f(x + y) = f(x) + f(y) for all $x, y \in R$. Then (a) f(x) is an even function (b) f(x) is an odd function (d) $f(n) = nf(1), n \in N$ (c) f(0) = 0If f(x) is an odd function then (a) $\frac{f(-x) + f(x)}{2}$ is an even function (b) [|f(x)|+1] is even, where [x] = the greatest integer $\leq x$ (c) $\frac{f(x) - f(-x)}{2}$ is neither even nor odd (d) None of these Advance If f(x) and g(x) are two functions of x such that $f(x) + g(x) = e^x$ and $f(x) - g(x) = e^{-x}$ then (a) f(x) is an odd function (b) g(x) is an odd function (c) f(x) is an even function (d) g(x) is an even function If $f(x) = \begin{cases} x^2 \sin \frac{\pi x}{2}, |x| < 1 \\ x |x|, |x| > 1 \end{cases}$ then f(x) is (b) An odd function (c) A periodic function (d) None of these (a) An even function Which of the following is an even function? Here [.] denotes the greatest integer function and f is any function (c) $e^{3-2x} \cdot \tan^2 x$ (b) f(x) - f(-x)(d) f(x) + f(-x)(a) [x] - x**Periodic Function Basic Level**

(d) Neither of them may be a bijection

(c) *f* must be a bijection

The period of $ \cos x $ is			[Rajasthan PET 1998]
(a) 2 <i>π</i>	(b) <i>π</i>	(c) $\frac{\pi}{2}$	(d) $\frac{3\pi}{2}$
The period of the function $\sin\left(\frac{\pi x}{2}\right)$	$+ \left(- \frac{\pi x}{2} \right)$ is		[EAMCET 1990]
(a) 4	(b) 6	(c) 12	(d) 24
If $f(x)$ is a periodic function of the	e period T, then $f(ax+b)$	where $a > 0$, is a periodic function of the period	[AMU 2000]
(a) <i>T/b</i>	(b) <i>aT</i>	(c) <i>bT</i>	(d) <i>T/a</i>
The period of the function $f(x) = x$	$\sin\!\left(\frac{2x+3}{6\pi}\right)$ is		
(a) 2π	(b) 6π	(c) $6\pi^2$	(d) None of these
The period of the function	$f(x) = 3\sin\frac{\pi x}{3} + 4\cos\frac{\pi x}{4}$	is	
(a) 6	(b) 24	(c) 8	(d) 2π
The period of the function $f(x) \neq$	$\sin x + \cos x $ is		
(a) <i>π</i>	(b) <i>π</i> / 2	(c) 2 <i>π</i>	(d) None of these
		Advance	
Let $f(x) = \cos 3x + \sin \sqrt{3}x$. The	n $f(x)$ is		
(a) A periodic function	on of period 2π	(b) A periodic function of	of period $\sqrt{3}\pi$
(c) Not a periodic fu	nction	(d)	None of these
$f(x) = \cos \sqrt{x}$, correct statement	is		[Haryana CEE 1998]
(a) $f(x)$ is periodic &	its period $=\sqrt{2}\pi$	(b) $f(x)$ is periodic & its	s period $=4\pi^2$
(c) $f(x)$ is periodic &	its period $= \sqrt{\pi}$	(d) $f(x)$ is not periodic	
Composite Functions			
	<	Basic Level	
If $f: R \to R$, $f(x) = \sin x$; $g: R -$	$\Rightarrow R, g(x) = x^2$, then (fog	g(x) equals to	[UPSEAT 1987, 2000]
(a) $\sin x^2$	(b) $\sin^2 x$	(c) $\sin x + x^2$	(d) $\sin \frac{x}{x^2}$
If $f(x) = (a - x^n)^{1/n}$, where $a > 0$) and n is a positive integ	er, then $f[f(x)] =$	[IIT 1983; UPSET 2001]
(a) x^3	(b) x^2	(c) <i>x</i>	(d) None of these
If $f(x) = \frac{x}{\sqrt{1+x^2}}$, then $fofof(x)$	is equal to		[Rajasthan PET 2000]

(a) $\frac{x}{\sqrt{1+3x^2}}$	(b) $\frac{x}{\sqrt{1+2x^2}}$	(c) $\frac{x}{\sqrt{1+x^2}}$	(d)	None of these
Let f and g be functions defined by f	$f(x) = \frac{x}{x+1}, g(x) = \frac{x}{1-x}$, then (fog	(x) is		
(a) $\frac{1}{x}$	(b) $\frac{1}{x-1}$	(c) $x - 1$	(d)	x
If $f(x) = ax + b$ and $g(x) = cx + d$, t	hen $f(g(x)) = g(f(x))$ is equivalent	to		[UPSEAT 2001]
(a) $f(a) = g(c)$	(b) $f(b) = g(b)$	(c) $f(d) = g(b)$	(d)	f(c) = g(a)
	Adv	vance		
If $f(x) = \sqrt{ x-1 }$ and $g(x) = \sin x$,	then $(fog)(x)$ is equal to			[Roorkee 1992]
(a) $\sin \sqrt{ x-1 }$	(b) $ \sin x/2 - \cos x/2 $	(c) $ \sin x - \cos x $	(d)	None of these
If f and g are two real valued function	defined by $f(x) = e^x$ and $g(x) =$	$3x-2$, then $(fog)^{-1}(x)$ is equal to		[Roorkee 1998]
(a) $\log(3x-2)$	(b) $\frac{2 + \log x}{3}$	(c) $\log\left(\frac{x+2}{3}\right)$	(d)	None of these
If $f(x) = \frac{1}{1-x}$, $x \neq 0, 1$, then the gradent	aph of the function $y = f\{f(f(x))\}, $	x > 1, is		
(a) A circle	(b) An ellipse	(c) A straight line	(d)	A pair of straight lines
If $f(x)$ is defined on [0, 1] by the rul	$e f(x) = \begin{cases} x, \text{ if } x \text{ is rational} \\ 1 - x, \text{ if } x \text{ is irrational} \end{cases} . T$	Then for all $x \in [0,1], f(f(x))$ is		
(a) Constant	(b) $1+x$	(c) x	(d)	None of these
Inverse Function				
Inverse Function	Bas	sic Level		
Inverse Function $f: R \to R \text{ is a function defined by } j$				[EAMCET 1993]
$f: R \to R$ is a function defined by f (a) $\frac{1}{10x - 7}$			(d)	[EAMCET 1993] <u>x - 7</u> 10
$f: R \to R$ is a function defined by f (a) $\frac{1}{10x - 7}$	$f(x) = 10x - 7$. If $g = f^{-1}$, then g	(x) =	(d)	_
$f: R \to R$ is a function defined by j	$f(x) = 10x - 7$. If $g = f^{-1}$, then g	(x) =		$\frac{x-7}{10}$
$f: R \to R$ is a function defined by f (a) $\frac{1}{10x-7}$ If $y = f(x) = \frac{x+2}{x-1}$, then $x = 1$	$f(x) = 10x - 7$. If $g = f^{-1}$, then go (b) $\frac{1}{10x + 7}$ (b) $2f(y)$	(x) = (c) $\frac{x+7}{10}$		$\frac{x-7}{10}$ [IIT 1984]
$f: R \to R \text{ is a function defined by } p$ (a) $\frac{1}{10x-7}$ If $y = f(x) = \frac{x+2}{x-1}$, then $x =$ (a) $f(y)$	$f(x) = 10x - 7$. If $g = f^{-1}$, then go (b) $\frac{1}{10x + 7}$ (b) $2f(y)$	(x) = (c) $\frac{x+7}{10}$	(d)	$\frac{x-7}{10}$ [IIT 1984] None of these
$f: R \to R$ is a function defined by y (a) $\frac{1}{10x-7}$ If $y = f(x) = \frac{x+2}{x-1}$, then $x =$ (a) $f(y)$ Inverse of the function $y = 2x - 3$ is	$f(x) = 10x - 7. \text{ If } g = f^{-1}, \text{ then } g(x) = \frac{1}{10x + 7}$ (b) $\frac{1}{10x + 7}$ (b) $2f(y)$ (c) $\frac{x - 3}{2}$	(x) = (c) $\frac{x+7}{10}$ (c) $\frac{1}{f(y)}$	(d)	$\frac{x-7}{10}$ [IIT 1984] None of these [UPSEAT 2002]
$f: R \to R \text{ is a function defined by } p$ $(a) \frac{1}{10x-7}$ If $y = f(x) = \frac{x+2}{x-1}$, then $x =$ $(a) f(y)$ Inverse of the function $y = 2x - 3$ is $(a) \frac{x+3}{2}$ The value of α for which the function	$f(x) = 10x - 7. \text{ If } g = f^{-1}, \text{ then } g(x) = 10x - 7. \text{ If } g = f^{-1}, \text{ then } g(x) = 1 + \alpha x, \alpha \neq 0 \text{ is inverse of } f(x) = 1 + \alpha x, \alpha \neq 0 \text{ is inverse of } g(x) = 1 + \alpha x + \alpha x \text{ is inverse of } g(x) = 1 $	$(x) =$ $(c) \frac{x+7}{10}$ $(c) \frac{1}{f(y)}$ $(c) \frac{1}{2x-3}$ f itself will be	(d) (d)	$\frac{x-7}{10}$ [IIT 1984] None of these [UPSEAT 2002] None of these [IIT 1992]
$f: R \to R \text{ is a function defined by } p$ $(a) \frac{1}{10x-7}$ If $y = f(x) = \frac{x+2}{x-1}$, then $x =$ $(a) f(y)$ Inverse of the function $y = 2x - 3$ is $(a) \frac{x+3}{2}$ The value of α for which the function $(a) - 2$	$f(x) = 10x - 7$. If $g = f^{-1}$, then go (b) $\frac{1}{10x + 7}$ (b) $2f(y)$ (c) $\frac{x - 3}{2}$ Adv on $f(x) = 1 + \alpha x, \alpha \neq 0$ is inverse of (b) -1	(x) = (c) $\frac{x+7}{10}$ (c) $\frac{1}{f(y)}$ (c) $\frac{1}{2x-3}$	(d)	x - 7 [IIT 1984] IIT 1984] [IIT 1984] None of these [IIT 2002] None of these [IIT 1992] 2 2
$f: R \to R \text{ is a function defined by } p$ $(a) \frac{1}{10x-7}$ If $y = f(x) = \frac{x+2}{x-1}$, then $x =$ $(a) f(y)$ Inverse of the function $y = 2x - 3$ is $(a) \frac{x+3}{2}$ The value of α for which the function	$f(x) = 10x - 7$. If $g = f^{-1}$, then go (b) $\frac{1}{10x + 7}$ (b) $2f(y)$ (c) $\frac{x - 3}{2}$ Adv on $f(x) = 1 + \alpha x, \alpha \neq 0$ is inverse of (b) -1	$(x) =$ $(c) \frac{x+7}{10}$ $(c) \frac{1}{f(y)}$ $(c) \frac{1}{2x-3}$ f itself will be	(d) (d) (d)	$\frac{x-7}{10}$ [IIT 1984] None of these [UPSEAT 2002] None of these [IIT 1992]

The inverse of the function
$$f(x) = \frac{10^x - 10^{-x}}{10^x + 10^{-x}}$$
 is [Rajasthan PET 2001]
(a) $\log_{10}(2-x)$ (b) $\frac{1}{2}\log_{10}\left(\frac{1+x}{1-x}\right)$ (c) $\frac{1}{2}\log_{10}(2x-1)$ (d) $\frac{1}{4}\log\left(\frac{2x}{2-x}\right)$
The inverse of the function $f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} + 2$ is given by [Haryana CEE 1996]
(a) $\log_e\left(\frac{x-2}{x-1}\right)^{\frac{1}{2}}$ (b) $\log_e\left(\frac{x-1}{3-x}\right)^{\frac{1}{2}}$ (c) $\log_e\left(\frac{x}{2-x}\right)^{\frac{1}{2}}$ (d) $\log_e\left(\frac{x-1}{x+1}\right)^{-2}$

								Assi	gnment	(Basi	c & Ad	vance	Level)						
_																			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
с	a	a	с	a	b	с	b	b	d	b	с	d	a	d	с	b	с	b	d
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
a	b	d	d	с	b	с	с	с	b	b	b	b	с	b	a	d	с	b	a
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
a	b	b	с	d	b	с	b	b	d	с	с	с	с	a	d	с	с	с	a
61	62	63	64	65	66	67	68	69	7 0	71	72	73	74	75	76	77	78	79	80
с	a	b	b	b	b	d	b	d	b,c,d	a,b	b,c	b	d	b	a	d	с	b	b
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98		
с	d	a	с	a	d	с	b	b	с	с	с	a	a	b	a	b	b		

$${\cal A}$$
nswer Sheet

2.2 Limits

2.2.1 Limit of a Function

Let y = f(x) be a function of x. If at x = a, f(x) takes indeterminate form, then we consider the values of the function which are very near to 'a'. If these values tend to a definite unique number as x tends to 'a', then the unique number so obtained is called the limit of f(x) at x = a and we write it as $\lim f(x)$.

(1) **Meaning of '** $x \rightarrow a$ **':** Let *x* be a variable and *a* be the constant. If *x* assumes values nearer and nearer to '*a*' then we say '*x* tends to *a*' and we write '*x* \rightarrow *a*'. It should be noted that as $x \rightarrow a$, we have $x \neq a$. By '*x* tends to *a*' we mean that

(ii) x assumes values nearer and nearer to 'a' and

(iii) We are not specifying any manner in which *x* should approach to '*a*'. *x* may approach to *a* from left or right as shown in figure.

(2) **Left hand and right hand limit :** Consider the values of the functions at the points which are very near to *a* on the left of *a*. If these values tend to a definite unique number as *x* tends to *a*, then the unique number so obtained is called left-hand limit of f(x) at x = a and symbolically we write it as $f(a-0) = \lim_{x \to a^-} f(x) = \lim_{h \to 0} f(a-h)$

Similarly we can define right-hand limit of f(x) at x = a which is expressed as $f(a+0) = \lim_{x \to a^+} f(x)$

$$=\lim_{h\to 0}f(a+h).$$

(i) $x \neq a$

(3) Method for finding L.H.L. and R.H.L.

(i) For finding right hand limit (R.H.L.) of the function, we write x + h in place of x, while for left hand limit (L.H.L.) we write x - h in place of x.

(ii) Then we replace *x* by '*a*' in the function so obtained.

- (iii) Lastly we find limit $h \to 0$.
- (4) **Existence of limit :** $\lim f(x)$ exists when,
- (i) $\lim_{x \to \infty} f(x)$ and $\lim_{x \to \infty} f(x)$ exist *i.e.* L.H.L. and R.H.L. both exists.
- (ii) $\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x)$ *i.e.* L.H.L. = R.H.L.

Note: \Box If a function f(x) takes the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$ at x = a, then we say that f(x) is indeterminate or

meaningless at x = a. Other indeterminate forms are $\infty - \infty, \infty \times \infty, 0 \times \infty, 1^{\infty}, 0^{0}, \infty^{0}$

□ In short, we write L.H.L. for left hand limit and R.H.L. for right hand limit.

□ It is not necessary that if the value of a function at some point exists then its limit at that point must exist.

(5) **Sandwich theorem :** If f(x), g(x) and h(x) are any three functions such that, $f(x) \le g(x) \le h(x) \forall x \in$ neighborhood of x = a and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = l(\text{say})$, then $\lim_{x \to a} g(x) = l$. This theorem is normally applied when the $\lim_{x \to a} g(x)$ can't be obtained by using conventional methods as function f(x) and h(x) can be easily found.

Example: 1	If $f(x) = \begin{cases} x, \text{ when } x > 1 \\ x^2, \text{ when } x < 1 \end{cases}$, t	then $\lim_{x \to 1} f(x) =$		[MP PET 1987]
	(a) x^2	(b) <i>x</i>	(c) – 1	(d) 1
Solution: (d)	To find L.H.L. at $x = 1$. <i>i.e.</i>			
	$\lim_{x \to 1^{-}} f(x) = \lim_{h \to 0} f(1-h) = \lim_{h \to 0}$	$\lim_{h \to 0} (1-h)^2 = \lim_{h \to 0} (1+h^2 - 2h)$	$= 1$ i.e., $\lim_{x \to 1^{-}} f(x) = 1$	(i)
	Now find R.H.L. at $x = 1$ i.e.	e., $\lim_{x \to 1^+} f(x) = \lim_{h \to 0^+} f(1+h) =$	= 1 i.e., $\lim_{x \to 1^+} f(x) = 1$	(ii)
	From (i) and (ii), L.H.L. = R	A.H.L. $\Rightarrow \lim_{x \to 1} f(x) = 1$.		
Example: 2	$\lim_{x \to 2} \frac{ x-2 }{ x-2 } =$			
	(a) 1	(b) –1	(c) Does not exist	(d) None of these
Solution: (c)	L.H.L.= $\lim_{x \to 2^{-}} \frac{ x-2 }{x-2} = \lim_{h \to 0^{+}} \frac{ x-2 }{x-2}$			(i)
	and, R.H.L.= $\lim_{x \to 2^+} \frac{ x-2 }{ x-2 } =$	$\lim_{h \to 0} \frac{ 2+h-2 }{2+h-2} = \lim_{h \to 0} \frac{h}{h} =$	1(ii)	
	From (i) and (ii) L.H.L. \neq R.	H.L. <i>i.e.</i> $\lim_{x \to 2} \frac{ x-2 }{ x-2 }$ does	not exist.	
Example: 3	If $f(x) = \begin{cases} \frac{2}{5-x}, \text{ when } x < 3\\ 5-x, \text{ when } x > 3 \end{cases}$, then		
	(a) $\lim_{x \to 3^+} f(x) = 0$	(b) $\lim_{x \to 3^{-}} f(x) = 0$	(c) $\lim_{x \to 3^+} f(x) \neq \lim_{x \to 3^-} f(x)$	(d) None of these
Solution: (c)	$\lim_{x \to 3^+} f(x) = 5 - 3 = 2 \text{ and } \lim_{x \to 3^+} f(x) = 5 - 3 = 2$	$\lim_{x \to 3^{-}} f(x) = \frac{2}{5-3} = 1$		
Example: 4	Let the function f be defined	by the equation $f(x) = \begin{cases} 5 \\ 5 \end{cases}$	3 <i>x</i> , if $0 \le x \le 1$ -3 <i>x</i> , if $1 < x \le 2$, then	[SCRA 1996]
	(a) $\lim_{x \to 1} f(x) = f(1)$	(b) $\lim_{x \to 1} f(x) = 3$	(c) $\lim_{x \to 1} f(x) = 2$	(d) $\lim_{x \to 1} f(x)$ does not exist
Solution: (d)	L.H.L. = $\lim_{x \to 1-0} f(x) = \lim_{h \to 0} f(1)$	$(-h) = \lim_{h \to 0} 3(1-h) = \lim_{h \to 0} (3 - h)$	(-3h) = 3 - 3.0 = 3	
	R.H.L. = $\lim_{x \to 1+0} f(x) = \lim_{h \to 0} f(x)$	$(1+h) = \lim_{h \to 0} [5 - 3(1+h)] = \lim_{h \to 0} [$	$m_{0}(2-3h) = 2 - 3.0 = 2$	
	Hence $\lim_{x \to 1} f(x)$ does not exist	sts.		
Example: 5	$\lim_{x \to 0} \frac{ x }{x} =$			[Roorkee 1982; UPSEAT 2001]
	(a) 1	(b) –1	(c) 0	(d) Does not exist

 $\therefore \lim_{x \to 0^-} \frac{|x|}{x} = -1$ and $\lim_{x \to 0^+} \frac{|x|}{x} = 1$, hence limit does not exists. Solution: (d)

2.2.2 Fundamental Theorems on Limits

The following theorems are very useful for evaluation of limits if $\lim_{x\to 0} f(x) = l$ and $\lim_{x\to 0} g(x) = m$ (*l* and *m* are real numbers) then

- (2) $\lim_{x \to \infty} (f(x) g(x)) = l m$ (Difference rule) (1) $\lim_{x \to a} (f(x) + g(x)) = l + m$ (Sum rule) (3) $\lim_{x \to a} (f(x).g(x)) = l.m$ (Product rule) $(4) \lim_{x \to a} k f(x) = k.l$ (Constant multiple rule)
- (6) If $\lim_{x \to n} f(x) = +\infty$ or $-\infty$, then $\lim_{x \to n} \frac{1}{1-x}$ (5) $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{l}{m}, m \neq 0$ (Quotient rule) (7) $\lim_{x \to a} \log\{f(x)\} = \log\{\lim_{x \to a} f(x)\}$ (8
- (9) $\lim_{x \to a} [f(x)]^{g(x)} = \{\lim_{x \to a} f(x)\}^{\lim_{x \to a} g(x)}$

B) If
$$\lim_{x \to a} f(x) = +\infty$$
 or $-\infty$, then $\lim_{x \to a} \frac{1}{f(x)} = 0$
B) If $f(x) \le g(x)$ for all x , then $\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$

(10) If *p* and *q* are integers, then $\lim_{x\to a} (f(x))^{p/q} = l^{p/q}$, provided $(l)^{p/q}$ is a real number.

(11) If $\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x)) = f(m)$ provided 'f is continuous at g(x) = m. e.g. $\lim_{x \to a} \ln[f(x)] = \ln(l)$, only if l > 0.

2.2.3 Some Important Expansions

In finding limits, use of expansions of following functions are useful :

(1)
$$(1 + x)^{n} = 1 + nx + \frac{n(n-1)}{2!}x^{2} + \dots$$

(2) $a^{x} = 1 + x \log a + \frac{(x \log a)^{2}}{2!} + \dots$
(3) $e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$
(4) $\log(1 + x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots$, $|x| < 1$
(5) $\log(1 - x) = -x - \frac{x^{2}}{2} - \frac{x^{3}}{3} - \frac{x^{4}}{4} - \dots$, where $|x| < 1$
(6) $(1 + x)^{\frac{1}{x}} = e^{\frac{1}{x}\log(1 + x)} = e^{1 - \frac{x}{2} + \frac{x^{2}}{3}} \dots = e\left(1 - \frac{x}{2} + \frac{11}{24}x^{2} - \dots\right)$
(7) $\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots$
(8) $\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots$
(9) $\tan x = x + \frac{x^{3}}{3} + \frac{2x^{5}}{15} + \dots$
(10) $\sinh x = x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots$
(11) $\cosh x = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \frac{x^{6}}{6!} + \dots$
(12) $\tanh x = x - \frac{x^{3}}{3} + 2x^{5} - \dots$

(13)
$$\sin^{-1} x = x + 1^2 \cdot \frac{x^3}{3!} + 3^2 \cdot 1^2 \cdot \frac{x^5}{5!} + \dots$$
 (14) $\cos^{-1} x = \left(\frac{\pi}{2}\right) - \sin^{-1} x$
(15) $\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$

2.2.4 Methods of Evaluation of Limits

We shall divide the problems of evaluation of limits in five categories.

(1) **Algebraic limits :** Let f(x) be an algebraic function and '*a*' be a real number. Then $\lim_{x \to a} f(x)$ is known as an algebraic limit.

(i) **Direct substitution method :** If by direct substitution of the point in the given expression we get a finite number, then the number obtained is the limit of the given expression.

(ii) **Factorisation method :** In this method, numerator and denominator are factorised. The common factors are cancelled and the rest outputs the results.

(iii) **Rationalisation method :** Rationalisation is followed when we have fractional powers (like $\frac{1}{2}, \frac{1}{3}$

etc.) on expressions in numerator or denominator or in both. After rationalisation the terms are factorised which on cancellation gives the result.

(iv) **Based on the form when** $x \to \infty$: In this case expression should be expressed as a function 1/x

and then after removing indeterminate form, (if it is there) replace $\frac{1}{r}$ by 0.

Step I: Write down the expression in the form of rational function, *i.e.*, $\frac{f(x)}{g(x)}$, if it is not so.

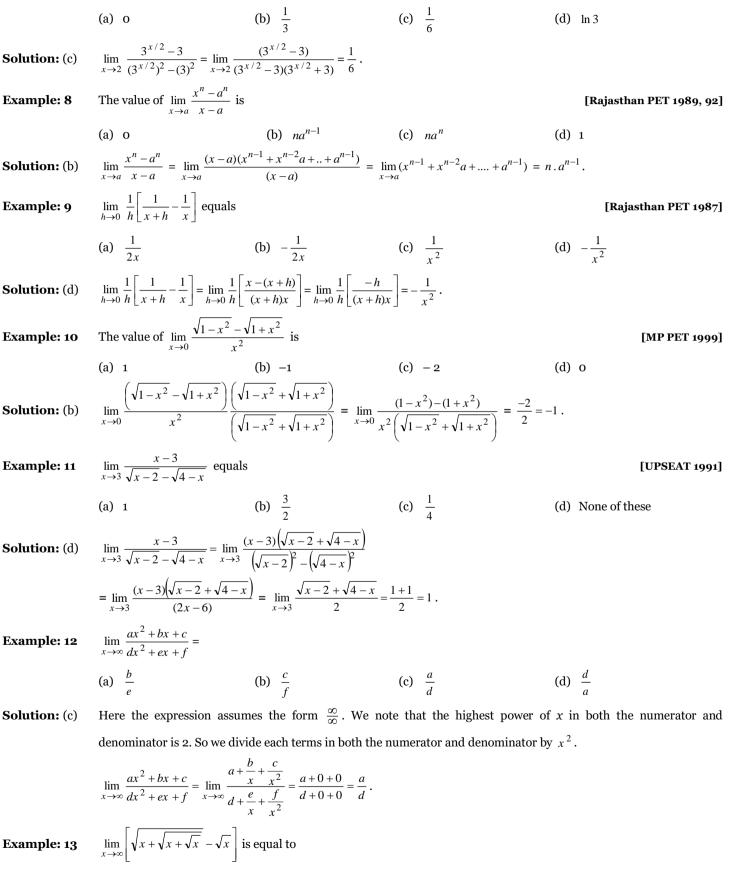
Step II : If *k* is the highest power of *x* in numerator and denominator both, then divide each term of numerator and denominator by x^k .

Step III : Use the result $\lim_{x\to\infty} \frac{1}{x^n} = 0$, where n > 0.

Note : \Box An important result : If *m*, *n* are positive integers and $a_0, b_0 \neq 0$ are non-zero real numbers,

then
$$\lim_{x \to \infty} \frac{a_0 x^m + a_1 x^{m-1} + \dots + a_{m-1} x + a_m}{b_0 x^n + b_1 x^{n-1} + \dots + b_{n-1} x + b_n} = \begin{cases} \frac{a_0}{b_0}, & \text{if } m = n \\ 0, & \text{if } m < n \\ \infty, & \text{if } m > n \end{cases}$$

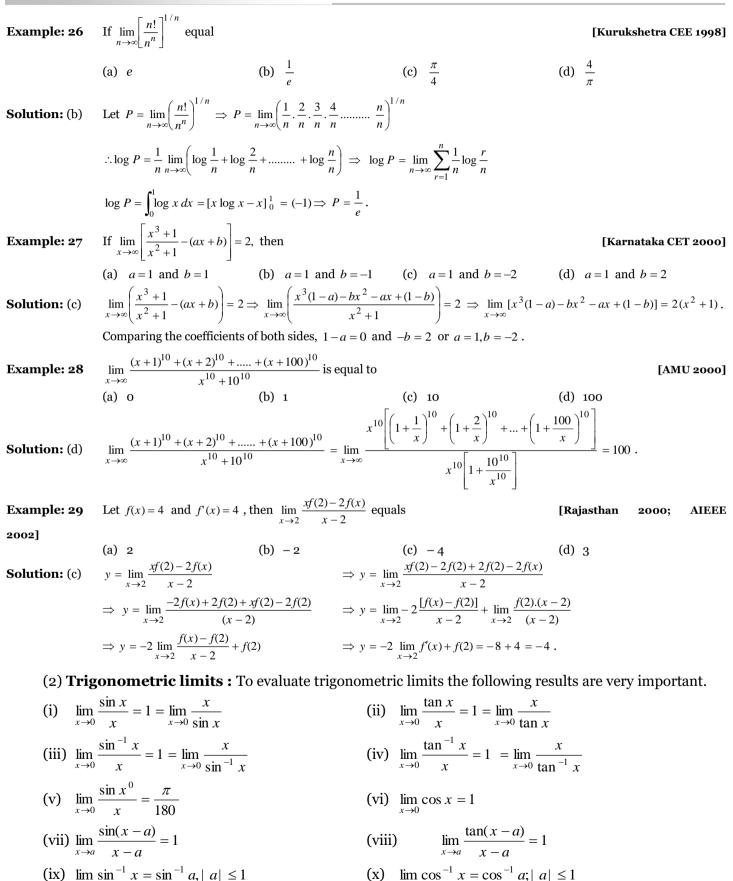
Example: 6	$\lim_{x \to 1} (3x^2 + 4x + 5) =$			
	(a) 12	(b) –1	(c) Does not exist	(d) None of these
Solution: (a)	$\lim_{x \to 1} (3x^2 + 4x + 5) = 3($	$(1)^2 + 4(1) + 5 = 12$.		
Example: 7	The value of $\lim_{x \to 2} \frac{3^{x/2}}{3^x}$	$\frac{2}{-3}$ is		[MP PET 2000]



(a) 0 (b)
$$\frac{1}{2}$$
 (c) $\log 2$ (d) e^4
Solution: (b) $\lim_{x\to 0} \left[\sqrt{x + \sqrt{x} + \sqrt{x}} - \sqrt{x} \right] = \lim_{x\to 0} \frac{x + \sqrt{x} + \sqrt{x}}{\sqrt{x + \sqrt{x} + \sqrt{x}}} = \lim_{x\to 0} \frac{\sqrt{x + \sqrt{x}}}{\sqrt{x + \sqrt{x} + \sqrt{x}}} = \lim_{x\to 0} \frac{\sqrt{1 + x^{-1/2}}}{\sqrt{1 + \sqrt{x^{-1} + x^{-2/2}}}} = \frac{1}{2}.$
Example: 14 The values of constants *a* and *b* so that $\lim_{x\to 0} \left(\frac{x^2 + 1}{x + 1} - ax - b\right) = 0$ is
(a) $a = 0, b = 0$ (b) $a = 1, b = 1$ (c) $a = -1, b = 1$ (d) $a = 2, b = -1$
Solution: (b) We have $\lim_{x\to 0} \left(\frac{x^2 + 1}{x + 1} - ax - b\right) = 0 \Rightarrow \lim_{x\to 0} \frac{x^2(1 - a) - x(a + b) + 1 - b}{x + 1} = 0$
Since the limit of the given expression is zero, therefore degree of the polynomial in numerator must be less than that
defending that is a first degree polynomial. So, numerator must be less than that
Since the limit of the given expression is zero, therefore degree of the polynomial in a unerator is a first degree polynomial. So, numerator must be less than that
defending that is a first degree polynomial. So, numerator must be a constant *i.e.*, a zero degree
polynomial. : 1 $a = 0$ and $a + b = 0 \Rightarrow a = 1$ and $b = -1$. Hence, $a = 1$ and $b = -1$.
Example: 15 $\lim_{x\to 1} x^4 = (\lim_{x\to 1} x)^{1/x} = \frac{1}{(x)} = 1$
(a) 1 (b) ∞ (c) Not defined (d) None of these
Solution: (a) $\lim_{x\to 1} 4 - x + \frac{1}{(x)} = 1^{1} = 1$
Example: 16 $\lim_{x\to 1} 0 + x^{1/x} = \frac{1}{(x)} + 2^{1/x} = \frac{1}{x-3} = 2$
Example: 17 The value of the limit of $\frac{x^3 - x^2 - 18}{x^2 - 4} = \lim_{x\to 2} \frac{x^2 + 2x + 4}{x^2 - 4} = \frac{4 + 4 + 4}{2 + 2} = 3$.
Example: 18 The value of the limit of $\frac{x^3 - x^2}{(x^2 - 4)} = \lim_{x\to 2} \frac{x^2 + 2x + 4}{x + 2} = \frac{4 + 4 + 4}{2 + 2} = 3$.
Example: 19 $\lim_{x\to 0} \frac{x}{\sqrt{1 + x} - \sqrt{1 - x}}$ is equal to 2 is
(a) $\frac{1}{2}$ (b) $\frac{2}{(x)}$ (c) 1 (d) o
Solution: (a) $\lim_{x\to 0} \frac{x}{\sqrt{1 + x} - \sqrt{1 - x}}$ is equal to
(b) 2 (c) 1 (d) o
Solution: (c) $\lim_{x\to 0} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} - \sqrt{1 - x}}} = \frac{1}{x \to 0} \left(\frac{\sqrt{1 + x} - \sqrt{1 - x}}{2} = \frac{1}{2} = 1$
Example: 20 $\lim_{x\to 0} \frac{\sqrt{2 - 2 - \sqrt{3 x}}}{\sqrt{1 + x} - \sqrt{1 - x}}} = \lim_{x\to 0} \left(\frac{\sqrt{1$

Functions, Limits, Continuity and Differentiability

Solution: (b)
$$\lim_{x \to a} \frac{\sqrt{a + 2x} - \sqrt{2x}}{\sqrt{3a + x} - 2\sqrt{x}} = \lim_{x \to a} \left(\frac{\sqrt{a + 2x} - \sqrt{3x}}{\sqrt{3a + x} - 2\sqrt{x}} \right) \times \left(\frac{\sqrt{a + 2x} + \sqrt{3x}}{\sqrt{a + 2x} + \sqrt{3x}} \right) \times \left(\frac{\sqrt{3a + x} + 2\sqrt{x}}{\sqrt{3a + x} + 2\sqrt{x}} \right)$$
$$= \lim_{x \to a} \left(\frac{\sqrt{3a + x} + 2\sqrt{x}}{\sqrt{3a + x} + 2\sqrt{x}} \right) = \frac{2}{3\sqrt{3}}.$$
Example: 21
$$\lim_{x \to a} \frac{1^{29} + 2^{29} + 3^{29} + \dots + n^{29}}{n^{100}} = \lim_{x \to x} \frac{2}{n^{10}} \left(\frac{x^9}{n^{100}} \right) = \lim_{x \to x} \frac{1}{n^{10}} \left(\frac{x^9}{n^{10}} \right) = \frac{1}{n^{10}} \left(\frac{x^9}{n^{10}} \right) = \frac{1}{n^{10}} \left(\frac{x^9}{n^{$$



(x)
$$\lim_{x \to a} \cos^{-1} x = \cos^{-1} a; |a| \le 1$$

(xi)
$$\lim_{k \to \infty} \tan^{-1} x = \tan^{-1} a; -\infty < a < \infty$$
(xii)
$$\lim_{k \to \infty} \frac{\sin x}{x} = \lim_{k \to 0} \frac{\cos x}{x} = 0$$
(xiii)
$$\lim_{k \to \infty} \frac{\sin x}{x} = \lim_{k \to 0} \frac{\cos x}{x} = 0$$
(xiii)
$$\lim_{k \to \infty} \frac{\sin x}{x} = \lim_{k \to 0} \frac{\cos x}{x} = 0$$
(xiii)
$$\lim_{k \to \infty} \frac{\sin x}{(1/x)} = 1$$
Example: 30
$$\lim_{k \to 0} (1 - x) \tan\left(\frac{\pi}{2}\right) =$$
(IIT 1978, 84; Rajashan PET 1997, 200; UPSEAT 2002]
(a) $\frac{\pi}{2}$
(b) π
(c) $\frac{2}{\pi}$
(d) 0
Solution: (c)
$$\lim_{k \to 0} (1 - x) \tan\left(\frac{\pi}{2}\right)$$
, Put $1 - x = y \Rightarrow as x \rightarrow 1, y \rightarrow 0$
Thus $\lim_{k \to 0} y \tan \frac{\pi(1 - y)}{2} = \lim_{p \to 0} \frac{2}{\pi} \cdot \frac{(\pi)}{(1/2)} = \frac{2}{\pi} \cdot 1 = \frac{2}{\pi}$.
Example: 31
$$\lim_{k \to 0} \frac{\sqrt{1 - \cos 2(x - 1)}}{x - 1}$$
(IIT 1998; UPSEAT 2001)
(a) Exists and it equals $-\sqrt{2}$
(b) Exists and it equals $-\sqrt{2}$
(c) Does not exist because left hand limit is not equal to right hand limit.
Solution: (d) $f(1 +) = \lim_{k \to 0} (1 - x) = \frac{1}{h \to 0} \frac{\sqrt{1 - \cos 2/2}}{h} = \lim_{k \to 0} \sqrt{2} \frac{\sin x}{h} = \sqrt{2}$
 $f(1 -) = \lim_{k \to 0} (1 - x) = \frac{1}{h \to 0} \frac{\sqrt{1 - \cos 2/2}}{h} = \lim_{k \to 0} \sqrt{2} \frac{\sin x}{h} = \sqrt{2}$
(d) $\frac{5}{6}$
Solution: (a) $\lim_{k \to 0} \frac{2 \sin 5x}{x^2} = \lim_{k \to 0} \frac{2 \sin^2 x}{x^2} \cdot \frac{\sin 5x}{\sin 2} \cdot \frac{5x}{3} = 2 \cdot \frac{5}{3} = \frac{10}{3}$.
Example: 33 $\lim_{k \to 0} \frac{2 \sin^2 x}{x^2} = \lim_{k \to 0} \frac{x^2 \sin^2 x}{x^2} \cdot \frac{\sin 5x}{\sin 3x} \cdot \frac{5x}{3x} = 2 \cdot \frac{5}{3} = \frac{10}{3}$.
Example: 34 $\lim_{k \to 0} \frac{2 \sin^2 x}{x^2} = \lim_{k \to 0} \frac{x^2 \sin^2 x}{x^2} \cdot \frac{\sin 5x}{x^3} \cdot \frac{5x}{3x} \cdot \frac{5x}{3x} = 2 \cdot \frac{5}{3} = \frac{10}{3}$.
Example: 34 $\lim_{k \to 0} \frac{x^2}{x^2} - \frac{x^2}{x^2} \cdot \frac{x^2}{x^2} \cdot \frac{x^2}{x^2} \cdot \frac{x^2}{x^2} \cdot \frac{x^2}{x^2} - \frac{x^2}{x^2} \cdot \frac{x^2}{x^2} - \frac{10}{x^2} \cdot \frac{1}{x^2} \cdot \frac{1}{x^2} \cdot \frac{1}{x^2} \cdot \frac{1}{x^2} \cdot \frac{x^2}{x^2} + \frac{x^2}{x^2} \cdot \frac{x^2}{x^2} - \frac{1}{x^2} \cdot \frac{x^2}{x^2} - \frac{1}{x^2} \cdot \frac{1}{x^2} \cdot \frac{1}{x^2} \cdot \frac{1}{x^2} + \frac{1}{x^2} \cdot \frac{1}{x^2} \cdot \frac{1}{x^2} + \frac{1}{x^2} \cdot \frac{1}{x^2} \cdot \frac{1}{x^2} \cdot \frac{1}{x^2} \cdot \frac{1}{x^2} + \frac{1}{x^2} \cdot \frac{1$

Example: 35	If $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$, then $\lim_{x \to 0} f(x) = $	[IIT 1988; UPSEAT 1988; SCRA 1996]
	(a) 1 (b) 0 (c)	-1 (d) None of these
Solution: (b)	$\lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = \left(\lim_{x \to 0} x\right) \left(\lim_{x \to 0} \sin\frac{1}{x}\right) = 0 \times (\mathbf{A} \text{ number oscillat})$	
Example: 36	If $f(x) = \begin{cases} \frac{\sin[x]}{[x]}, & [x] \neq 0\\ 0, & [x] = 0 \end{cases}$, then $\lim_{x \to 0} f(x)$ equals	[IIT 1985; Rajasthan PET 1995]
Solution: (d)	In closed interval of $x = 0$ at right hand side $[x] = 0$ and at l	
	Therefore function is defined as $f(x) = \begin{cases} \frac{\sin[x]}{[x]}, & (-1 \le x < 0 \\ 0, & (0 \le x < 1) \end{cases}$	0))
	:. Left hand limit $= \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{\sin[x]}{[x]} = \frac{\sin(-1)}{-1} = \sin 1$	с
	Right hand limit = 0, Hence, limit doesn't exist.	
Example: 37	$\lim_{x \to 0} \frac{\tan x - \sin x}{x^3}$	[IIT 1974; Rajasthan PET 2000]
	(a) $\frac{1}{2}$ (b) $-\frac{1}{2}$ (c)	5
Solution: (a)	$\lim_{x \to 0} \frac{\tan x - \sin x}{x^3} = \lim_{x \to 0} \frac{\sin x - \sin x \cos x}{x^3 \cos x} = \lim_{x \to 0} \frac{\sin x \left(2 \sin^2 x\right)}{x^3 \cos x}$	$\frac{\frac{x}{2}}{\frac{1}{2}} = \lim_{x \to 0} \left[\frac{\sin x}{x} \cdot \frac{2}{\cos x} \cdot \frac{\sin^2 \frac{x}{2}}{\left(\frac{x}{2}\right)^2} \cdot \frac{1}{4} \right] = \frac{1}{2}$
Example: 38	If $f(x) = \frac{\sin(e^{x-2}-1)}{\log(x-1)}$, then $\lim_{x \to 2} f(x)$ is given by	
		0 (d) 1
Solution: (d)	$\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{\sin(e^{x-2} - 1)}{\log(t+1)} = \lim_{t \to 0} \frac{\sin(e^t - 1)}{\log(t+1)}.$	(Putting $x = 2 + t$)
	$= \lim_{x \to \infty} \frac{\sin(e^t - 1)}{e^t - 1} \cdot \frac{e^t - 1}{t} \cdot \frac{t}{\log(1 + t)} = \lim_{t \to 0} \frac{\sin(e^t - 1)}{e^t - 1} \left(\frac{1}{1!} + \frac{t}{2!} + \frac{t}{2!}\right)$) $\left[\frac{1}{\left(1 - \frac{1}{2}t + \frac{1}{3}t^2 - \dots \right)} \right]$
	= 1.1.1 = 1 $[:: As \ t \to 0, e^t - 1 \to 0, $	$\therefore \frac{\sin(e^t - 1)}{(e^t - 1)} = 1$
Example: 39	$\lim_{x \to \pi/2} \frac{a^{\cot x} - a^{\cos x}}{\cot x - \cos x} =$	[Kerala (Engg.) 2001]
	(a) log <i>a</i> (b) log 2 (c)	a (d) log x
Solution: (a)	$\lim_{x \to \pi/2} \left(\frac{a^{\cot x} - a^{\cos x}}{\cot x - \cos x} \right) = \lim_{x \to \pi/2} a^{\cos x} \left(\frac{a^{\cot x - \cos x} - 1}{\cot x - \cos x} \right)$	
	$= a^{\cos(\pi/2)} \lim_{x \to \pi/2} \left(\frac{a^{\cot x - \cos x} - 1}{\cot x - \cos x} \right) = 1 \log a = \log a .$	
Example: 40	If $f(x) = \begin{vmatrix} \sin x & \cos x & \tan x \\ x^3 & x^2 & x \\ 2x & 1 & 1 \end{vmatrix}$, then $\lim_{x \to 0} \frac{f(x)}{x^2}$ is	[Karnataka CET 2002]

(i)
$$\log(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$$
 ... to ∞ where $-1 < x \le 1$ and expansion is true only if base is e .
(ii) $\lim_{x \to 0} \frac{\log(1 + x)}{x} = 1$
(iii) $\lim_{x \to 0} \log_e x = 1$
(iv) $\lim_{x \to 0} \frac{\log(1 - x)}{x} = -1$
(v) $\lim_{x \to 0} \frac{\log_a (1 + x)}{x} = \log_a e, a > 0, \neq 1$

Example: 44 $\lim_{h \to 0} \frac{\log_e (1 + 2h) - 2\log_e (1 + h)}{h^2}$
(IIT Screening 1997)
(a) -1
(b) 1
(c) 2
(d) -2
(d) -2

Solution: (a) $\lim_{h \to 0} \frac{\log_e (1 + 2h) - 2\log_e (1 + h)}{h^2} = \lim_{x \to 0} \frac{h^2(-1 + 2h - \dots)}{h^2} = \lim_{h \to 0} (-1 + 2h + \dots) = -1$.
Example: 45 $\lim_{x \to 0} \frac{-h^2 + 2h^3 - \dots}{(x - a)} =$
(a) -1
(b) 1
(c) 1
(c) 1
(c) 1
(c) 1
(d) -2

Solution: (c) Let $x - a = y$, when $x \to a, y \to 0$.
 \therefore The given limit $= \lim_{y \to 0} \frac{\log(1 + y)}{y} = 1$.
Example: 46 $\lim_{h \to 0} \frac{\log(a(1 + h)}{h} =$
(a) 1
(b) $\log_1 e$
(c) $\log_e 10$
(d) None of these

Solution: (b) $\lim_{h \to 0} \frac{\log(a + x) - \log(3 - x)}{x} = k$, then the value of k is
(AIEEE 2003)
(a) 0
(b) $-\frac{1}{3}$
(c) $\frac{2}{3}$
(d) $-\frac{2}{3}$

Solution: (c) $\lim_{x \to 0} \frac{\log(3 + x) - \log(3 - x)}{x} = \lim_{x \to 0} \frac{\log(\frac{3 + x}{2}) - \log(3 - x)}{x} = \lim_{x \to 0} \frac{\log(\frac{3 + x}{2}) - \log(3 - x)}{x} = \lim_{x \to 0} \frac{\log(\frac{2 + x}{2})}{x} = \lim_{x \to 0} \frac{\log(\frac{1 + (x/3)}{2})}{x} = \frac{1}{3} - (-\frac{1}{3}) = \frac{2}{3}$.

(i) **Based on series expansion :** We use $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \infty$

To evaluate the exponential limits we use the following results –

- (a) $\lim_{x \to 0} \frac{e^x 1}{x} = 1$ (b) $\lim_{x \to 0} \frac{a^x 1}{x} = \log_e a$ (c) $\lim_{x \to 0} \frac{e^{\lambda x} 1}{x} = \lambda$ ($\lambda \neq 0$)
- (ii) **Based on the form 1^{\infty}:** To evaluate the exponential form 1^{∞} we use the following results.
- (a) If $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$, then $\lim_{x \to a} \{1 + f(x)\}^{1/g(x)} = e^{\lim_{x \to a} \frac{f(x)}{g(x)}}$, or

when
$$\lim_{x\to 0} f(x) = 1$$
 and $\lim_{x\to 0} g(x) = \infty$. Then $\lim_{x\to 0} [f(x)]^{4(x)} = \lim_{x\to 0} [1+f(x)-1]^{x(x)} = e^{\lim_{x\to 0} [1/(x-1)h(x)}$
(b) $\lim_{x\to 0} (1+x)^{1/x} = e^{-(x)}$ (c) $\lim_{x\to 0} (1+\frac{1}{x})^{2} = e^{-(x)}$ (d) $\lim_{x\to 0} (1+\lambda x)^{1/x} = e^{\lambda}$ (e) $\lim_{x\to 0} (1+\frac{\lambda}{x})^{2} = e^{\lambda}$
Med: $\Box = \lim_{x\to 0} e^{\lambda} = \left\{ \begin{bmatrix} 0, \text{ if } a > 1 \\ 0, \text{ if } a < 1 \end{bmatrix} \text{ i.e., } a^{\alpha} = \infty, \text{ if } a > 1 \text{ and } a^{\alpha} = 0 \text{ if } a < 1.$
Example: 48 $\lim_{x\to 0} \frac{e^{\alpha} - e^{\beta \lambda}}{x} = \lim_{x\to 0} \frac{(e^{\alpha} - 1) - (e^{\beta \lambda} - 1)}{x} = \lim_{x\to 0} \frac{e^{\beta \lambda} - 1}{x} - \lim_{x\to 0} \frac{e^{\beta \lambda} - 1}{x} = a - \beta$.
Example: 49 The value of $\lim_{x\to 0} \frac{e^{\lambda} - (1+\lambda)}{x^{2}} = \lim_{x\to 0} \frac{(1+x+\frac{x^{2}}{x^{2}} + \dots) - (1+x)}{x^{2}} = \lim_{x\to 0} \frac{x^{2} \left(\frac{1}{2} + \frac{x}{3} + \frac{x^{2}}{4} + \dots\right)}{x^{2}} = \frac{1}{2!} - \frac{1}{2!}.$
Example: 50 $\lim_{x\to 0} \frac{e^{\lambda} - (1+x)}{\sqrt{1+x-1}} = \lim_{x\to 0} \frac{a^{\lambda} - (1+x)}{\sqrt{1+x+1}} = \lim_{x\to 0} \frac{a^{\lambda} \left(\frac{1}{2} + \frac{x}{3} + \frac{x^{2}}{4} + \dots\right)}{x^{2}} = \frac{1}{2!} - \frac{1}{2!}.$
Example: 50 $\lim_{x\to 0} \frac{a^{\lambda} - (1+x)}{\sqrt{1+x-1}} = \lim_{x\to 0} \frac{a^{\lambda} - (1+x)}{\sqrt{1+x+1}} = \lim_{x\to 0} \frac{(a^{\lambda} - 1)(\sqrt{1+x+1})}{1+x-1} = \lim_{x\to 0} \left(\frac{a^{\lambda} - 1}{x}\right) (\sqrt{1+x} + 1)$
 $= \left(\lim_{x\to 0} \frac{a^{\lambda} - 1}{\sqrt{1+x-1}}\right) \left(\lim_{x\to 0} \sqrt{1+x} - \frac{1}{\sqrt{1+x}} + 1\right) = (\log_{\alpha} a) (2) = 2\log_{\alpha} a.$
Example: 51 The value of $\lim_{x\to 0} \frac{a^{\lambda} - 1}{\sqrt{1+x}} + \frac{1}{2!} \frac{\sqrt{1+x}}{\sqrt{1+x}} + 1} = \lim_{x\to 0} \frac{(a^{\lambda} - 1)(\sqrt{1+x} + 1)}{1+x-1} = \lim_{x\to 0} \left(\frac{a^{\lambda} - 1}{x}\right) (\sqrt{1+x} + 1)$
 $= \left(\lim_{x\to 0} \frac{a^{\lambda} - 1}{\sqrt{1+x}}\right) \left(\lim_{x\to 0} \sqrt{1+x} + \frac{1}{2!}\right)^{1+2} (\log_{\alpha} a) (2) = 2\log_{\alpha} a.$
Example: 51 The value of $\lim_{x\to \infty} (x+\frac{x}{x+1})^{1+2}$ is $(1+\frac{2}{x+1})^{2} \left(\lim_{x\to 0} \frac{1}{\sqrt{1+x}}\right)^{1+2} = \lim_{x\to 0} (1+\frac{2}{x+1})^{2} \left(\lim_{x\to 0} \frac{1}{\sqrt{1+x}}\right)^{1+2} = e^{\lambda}$
(a) e^{λ} (b) 0 (c) 1 (c) 1 (d) e^{λ}
Solution: (d) $\lim_{x\to 0} (\frac{x+3}{x+1})^{1+2} = \lim_{x\to 0} (\frac{x+3}{x+1})^{1+2} = \lim_{x\to 0} (\frac{1+\frac{2}{x+1}})^{1+2} = e^{\lambda}$
Example: 52 II $a, b, c, d ace positive, then $\lim_{x\to \infty} (1+\frac{2}{a+x})^{1+2}$ (c) $(b) e^{1/a}$ (c) $e^{0+ab/(a-b)}$ (d) $e^{\lambda}$$

82 Functions	, Limits, Continuity and
Solution: (a)	$\lim_{x \to \infty} \left(1 + \frac{1}{a + bx} \right)^{c + dx} = \lim_{x \to \infty} \left\{ \left(1 + \frac{1}{a + bx} \right)^{a + bx} \right\}^{\frac{c + dx}{a + bx}} = e^{d/b} \left\{ \because \lim_{x \to \infty} \left(1 + \frac{1}{a + bx} \right)^{a + bx} = e \text{ and } \lim_{x \to \infty} \frac{c + dx}{a + bx} = \frac{d}{b} \right\}$
	Alternative method : $e^{\lim_{x\to\infty} \left(\frac{1}{a+bx}\right)\left(\frac{c+dx}{1}\right)} = e^{d/b}$.
Example: 53	$\lim_{x \to 0} x^x =$ [Roorkee 198
	(a) 0 (b) 1 (c) <i>e</i> (d) None of these
Solution: (b)	Let $y = x^x \Rightarrow \log y = x \log x$; $\therefore \lim_{y \to 0} \log y = \lim_{x \to 0} x \log x = 0 = \log 1 \Rightarrow \lim_{x \to 0} x^x = 1$
Example: 54	The value of $\lim_{x \to 0} \frac{(1+x)^{1/x} - e + \frac{1}{2}ex}{x^2}$ is [DCE 200
	(a) $\frac{11e}{24}$ (b) $\frac{-11e}{24}$ (c) $\frac{e}{24}$ (d) None of these
Solution: (a)	$(1+x)^{1/x} = e^{\frac{1}{x}\log(1+x)} = e^{\frac{1}{x}\left(x-\frac{x^2}{2}+\frac{x^3}{3}-\dots\right)} = e^{1-\frac{x}{2}+\frac{x^2}{3}-\dots} = e^{\frac{x}{2}+\frac{x^2}{3}-\dots}$
	$= e \left[1 + \left(-\frac{x}{2} + \frac{x^2}{3} - \dots \right) + \frac{1}{2!} \left(-\frac{x}{2} + \frac{x^2}{3} - \dots \right)^2 + \dots \right] = e \left[1 - \frac{x}{2} + \frac{11}{24} x^2 - \dots \right]$
	$\therefore \lim_{x \to 0} \frac{(1+x)^{1/x} - e + \frac{ex}{2}}{x^2} = \frac{11e}{24}$
Example: 55	$\lim_{x \to 0} \frac{(1+x)^{1/x} - e}{x} $ equals [UPSEAT 200
	(a) $\pi/2$ (b) o (c) $2/e$ (d) $-e/2$
Solution: (d)	$(1+x)^{\overline{x}} = e^{\frac{1}{x}[\log(1+x)]} = e^{\frac{1}{x}\left(x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots\right)} = e^{\left(1 - \frac{x}{2} + \frac{x^2}{3} - \frac{x^3}{4} + \dots\right)} = e^{\left(-\frac{x}{2} + \frac{x^2}{3} - \frac{x^3}{4} + \dots\right)}$
	$= e \left[1 + \frac{\left(-\frac{x}{2} + \frac{x^2}{3} - \frac{x^3}{4} + \dots\right)}{1!} + \frac{\left(-\frac{x}{2} + \frac{x^2}{3} - \frac{x^3}{4} + \dots\right)^2}{2!} + \dots \right] = \left[e - \frac{ex}{2} + \frac{11e}{24} x^2 - \dots \right]$
	$\therefore \lim_{x \to 0} \frac{(1+x)^{1/x} - e}{x} = \lim_{x \to 0} \left[\frac{e - \frac{ex}{2} + \frac{11e}{24} x^2 \dots - e}{x} \right] \Rightarrow \lim_{x \to 0} \left(-\frac{e}{2} - \frac{11e}{24} x + \dots \right) = -\frac{e}{2}.$
Example: 56	$\lim_{m \to \infty} \left(\cos \frac{x}{m} \right)^m =$ [AMU 200
	(a) 0 (b) e (c) $1/e$ (d) 1
Solution: (d)	$\lim_{m \to \infty} \left(\cos \frac{x}{m} \right)^m = \lim_{m \to \infty} \left[1 + \left(\cos \frac{x}{m} - 1 \right) \right]^m = \lim_{m \to \infty} \left[1 - \left(-\cos \frac{x}{m} + 1 \right) \right]^m$
	$= \lim_{m \to \infty} \left[1 - 2\sin^2 \frac{x}{2m} \right]^m = e^{\lim_{m \to \infty} -\left(2\sin^2 \frac{x}{2m}\right)m} = e^{\lim_{m \to \infty} -2\left(\frac{\sin \frac{x}{2m}}{\frac{x}{2m}}\right)^2 \left(\frac{x^2}{4m^2}\right)m} = e^{-2\lim_{m \to \infty} \frac{x^2}{4m}} = e^0 = 1.$
Example: 57	$\lim_{n \to \infty} \left(\frac{n^2 - n + 1}{n^2 - n - 1} \right)^{n(n-1)} = $ [AMU 200]

Functions, Limits, Continuity and Differentiability

(a)
$$e$$
 (b) e^2 (c) e^{-1} (d) 1
Solution: (b) $\lim_{n \to \infty} \left(\frac{n^2 - n + 1}{n^2 - n - 1} \right)^{n(n-1)} = \lim_{n \to \infty} \left(\frac{n(n-1) + 1}{n(n-1) - 1} \right)^{n(n-1)} = \lim_{n \to \infty} \frac{\left(1 + \frac{1}{n(n-1)} \right)^{n(n-1)}}{\left(1 - \frac{1}{n(n-1)} \right)^{n(n-1)}} = \frac{e}{e^{-1}} = e^2$.
Alternative Method: $\lim_{n \to \infty} \left(1 + \frac{2}{2} \right)^{n(n-1)} = e^{\lim_{n \to \infty} \frac{2n(n-1)}{n^2 - n - 1}} = e^2$.

(5) **L' Hospital's rule :** If f(x) and g(x) be two functions of x such that

- (i) $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$
- (ii) Both are continuous at x = a
- (iii) Both are differentiable at x = a.

(iv) f'(x) and g'(x) are continuous at the point x = a, then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$ provided that $g'(a) \neq 0$

Note: \Box The above rule is also applicable if $\lim_{x \to a} f(x) = \infty$ and $\lim_{x \to a} g(x) = \infty$.

□ If $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ assumes the indeterminate form $\frac{0}{0}$ or $\frac{\infty}{\infty}$ and f'(x), g'(x) satisfy all the condition embodied in L' Hospital rule, we can repeat the application of this rule on $\frac{f'(x)}{g'(x)}$ to get, $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ = $\lim_{x \to a} \frac{f''(x)}{g''(x)}$. Sometimes it may be necessary to repeat this process a number of times till our goal of evaluating limit is achieved.

Example: 58
$$\lim_{x \to 0} \frac{1 - \cos mx}{1 - \cos nx} =$$
[Kerala (Engg.) 2002]
(a) m/n (b) n/m (c) $\frac{m^2}{n^2}$ (d) $\frac{n^2}{m^2}$
Solution: (c) $\lim_{x \to 0} \frac{1 - \cos mx}{1 - \cos nx} = \lim_{x \to 0} \left\{ \frac{2 \sin^2 \frac{mx}{2}}{2 \sin^2 \frac{nx}{2}} \right\} = \lim_{x \to 0} \left\{ \frac{\sin \frac{mx}{2}}{\frac{mx}{2}} \right\}^2 \frac{m^2 x^2}{4} \cdot \frac{1}{\left\{\frac{\sin \frac{mx}{2}}{\frac{mx}{2}}\right\}^2} \cdot \frac{4}{n^2 x^2}}{\left[\frac{\sin \frac{mx}{2}}{\frac{mx}{2}}\right]^2} = \frac{m^2}{n^2} \times 1 = \frac{m^2}{n^2}$
Trick : Apply L-Hospital rule ,
 $\lim_{x \to 0} \frac{1 - \cos mx}{1 - \cos nx} = \lim_{x \to 0} \frac{m \sin mx}{n \sin nx} = \lim_{x \to 0} \frac{m^2 \cos mx}{n^2 \cos nx} = \frac{m^2}{n^2}.$

Example: 59 The integer *n* for which $\lim_{x\to 0} \frac{(\cos x - 1)(\cos x - e^x)}{x^n}$ is a finite non-zero number is [IIT Screening 2002] (a) 1 (b) 2 (c) 3 (d) 4

Solution: (c) *n* cannot be negative integer for then the limit = 0Limit = $\lim_{x \to 0} \frac{2 \sin^2 \frac{x}{2}}{2^2 (x/2)^2} \frac{e^x - \cos x}{x^{n-2}} = \frac{1}{2} \lim_{x \to 0} \frac{e^x - \cos x}{x^{n-2}}$ ($n \neq 1$ for then the limit = 0) $=\frac{1}{2}\lim_{x\to 0}\frac{e^x+\sin x}{(n-2)x^{n-3}}$. So, if n=3, the limit is $\frac{1}{2(n-2)}$ which is finite. If n=4, the limit is infinite. Let $f: R \to R$ be such that f(1) = 3 and f'(1) = 6. Then $\lim_{x \to 0} \left\{ \frac{f(1+x)}{f(1)} \right\}^{\frac{1}{x}}$ equals Example: 60 [IIT Screening 2002] (a) 1 (b) $e^{1/2}$ (d) e^{3} $\lim_{x \to 0} \left\{ \frac{f(1+x)}{f(1)} \right\}^{\frac{1}{x}} = e^{\lim_{x \to 0} \frac{1}{x} \left[\log f(1+x) - \log f(1) \right]} = e^{\lim_{x \to 0} \frac{f'(1+x)}{1}} = e^{\frac{f'(1)}{f(1)}} = e^{\frac{f'(1)}$ **Solution:** (c) $\lim_{\alpha \to \pi/4} \frac{\sin \alpha - \cos \alpha}{\alpha - \pi/4} =$ Example: 61 [IIT Screening 1997; AMU 1997] (a) $\sqrt{2}$ (b) $1/\sqrt{2}$ (c) 1 (d) None of these $\lim_{\alpha \to \pi/4} \frac{\sin \alpha - \cos \alpha}{\alpha - \pi/4} \left(\frac{0}{0} \text{ form} \right) = \lim_{\alpha \to \pi/4} \frac{\cos \alpha + \sin \alpha}{1}$ **Solution:** (a) (By 'L' Hospital rule) $=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}$. $\lim_{x \to a} \frac{x^3 - a^3}{x^2 - a^2} =$ Example: 62 (d) $\frac{3a}{2}$ (a) o (b) Not defined (c) 2a $\lim_{x \to a} \frac{x^3 - a^3}{x^2 - a^2} \qquad \left(\frac{0}{0} \text{ form}\right) = \lim_{x \to a} \frac{3x^2}{2x} \qquad (By `L' \text{ Hospital rule}) = \frac{3a^2}{2a} = \frac{3a}{2}.$ Solution: (d) $\lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} =$ Example: 63 [Roorkee 1983] (a) $1/2\sqrt{x}$ (b) $1/2\sqrt{h}$ (c) Zero (d) None of these $\lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} \times \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}} = \lim_{h \to 0} \frac{(x+h) - x}{h(\sqrt{x+h} + \sqrt{x})} = \lim_{h \to 0} \frac{h}{h(\sqrt{x+h} + \sqrt{x})} = \frac{1}{2\sqrt{x}}$ Solution: (a) Trick : Applying 'L' Hospital's rule, [Differentiating N^r and D^r with respect to h] We get, $\lim_{h \to 0} \frac{\frac{1}{2\sqrt{x+h}} - 0}{1} = \frac{1}{2\sqrt{x}}$. $\lim_{\alpha \to \beta} \frac{\sin^2 \alpha - \sin^2 \beta}{\alpha^2 - \beta^2}$ Example: 64 [MP PET 2001] (c) $\frac{\sin\beta}{\beta}$ (d) $\frac{\sin 2\beta}{2\beta}$ (a) o (b) 1 $\lim_{\alpha \to \beta} \frac{\sin^2 \alpha - \sin^2 \beta}{\alpha^2 - \beta^2} = \lim_{\alpha - \beta \to 0} \frac{\sin(\alpha + \beta)\sin(\alpha - \beta)}{(\alpha + \beta)(\alpha - \beta)} = \lim_{\alpha - \beta \to 0} \frac{\sin(\alpha - \beta)}{(\alpha - \beta)} \lim_{\alpha - \beta \to 0} \frac{\sin(\alpha + \beta)}{(\alpha + \beta)} = \lim_{\alpha \to \beta} \frac{\sin(\alpha + \beta)}{(\alpha + \beta)} = \frac{\sin 2\beta}{2\beta}.$ Solution: (d) **Trick :** By L' Hospital's rule, $\lim_{\alpha \to \beta} \frac{2 \sin \alpha \cos \alpha}{2\alpha} = \frac{\sin 2\beta}{2\beta}$.

				^
Example: 65	$\lim_{x \to 0} \frac{\tan 2x - x}{3x - \sin x} $ equa	ls		[IIT 1971]
	(a) 2/3	(b) 1/3	(c) 1/2	(d) o
Solution: (c)	$\lim_{x \to 0} \frac{\tan 2x - x}{3x - \sin x} = \lim_{x \to 0} \frac{1}{\sqrt{2}}$	$\left\{\frac{2\tan 2x}{2x} - 1\\3 - \frac{\sin x}{x}\right\} = \frac{1}{2}.$		
Example: 66	If $G(x) = -\sqrt{25 - x^2}$,	then $\lim_{x \to 1} \frac{G(x) - G(1)}{x - 1}$ eq	uals	[IIT 1983]
	(a) 1/24	(b) 1/5	(c) $-\sqrt{24}$	(d) None of these
Solution: (d)	$\lim_{x \to 1} \frac{G(x) - G(1)}{x - 1} = \lim_{x \to \infty} \frac{G(1)}{x - 1} = \lim_{x \to \infty$	$\frac{-\sqrt{25-x^2}+\sqrt{24}}{x-1}$	[Multiply both numerator	and denominator by $(\sqrt{24} + \sqrt{25 - x^2})$]
	$= \lim_{x \to 1} \frac{x+1}{\sqrt{24} + \sqrt{25 - x}}$	$\frac{1}{2} = \frac{1}{\sqrt{24}}$		
	Alternative metho	d: By L'-Hospital rule, l_x	$\lim_{x \to 1} \frac{G'(x)}{1} = \lim_{x \to 1} \frac{-1(-2x)}{2\sqrt{25 - x^2}} = \frac{1}{\sqrt{2}}$	<u>1</u> 24
Example: 67	If $f(a) = 2, f'(a) = 1, g(a)$	(a) = 1, g'(a) = 2, then lim	$\int_{a} \frac{g(x)f(a) - g(a)f(x)}{x - a}$ equals	
				5; DCE 1999; Karnataka CET 1999, 2003]
	(a) –3	(b) $\frac{1}{3}$	(c) 3	(d) $-\frac{1}{2}$
		3		3
Solution: (c)	Applying <i>L</i> – Hospita	l's rule, we get, $\lim_{x \to a} \frac{g(x)}{x}$	$\frac{g'(x) - g(a) f(x)}{x - a} = \lim_{x \to a} \frac{g'(x) f(a)}{x - a}$	$\frac{-g(a)f'(x)}{1}$
			=g'(a)f(a)-g(a)j	$f'(a) = 2 \times 2 - 1 \times (1) = 3.$
Example: 68	$\lim_{x\to 0}\frac{(1+x)^n-1}{x} =$			[Kurukshetra CEE 2002]
	(a) <i>n</i>	(b) 1	(c) –1	(d) None of these
Solution: (a)	$\lim_{x \to 0} \frac{(1 + nx + {}^{n}C_{2}x^{2} + nx)}{(1 + nx)^{2}}$	$\frac{1}{x}$ higher pow ers of x to	$\frac{(n-1)(n-1)}{n} = n$	
	Trick : Apply L- Hos	-		
Example: 69	$\lim_{x \to 0} \frac{\sin x + \log(1 - x)}{x^2}$	is equal to		[Roorkee 1995]
	(a) o	2	(c) $-\frac{1}{2}$	(d) None of these
Solution: (c)	Apply L- Hospital rul	e, we get, $\lim_{x \to 0} \frac{\cos x1}{2x}$	$\frac{1}{\frac{1}{x}} = \lim_{x \to 0} \frac{-\sin x - \frac{1}{(1-x)^2}}{2} =$	$-\frac{1}{2}$
	Alternative metho	$\mathbf{d}: \lim_{x \to 0} \frac{\sin x + \log(1-x)}{x^2}$	$= \lim_{x \to 0} \frac{\left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots \right)}{x^2} + $	$\lim_{x \to 0} \frac{\left(-x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots\right)}{x^2}$
			,	and $\log(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3}$)

86 Functions	, Limits, Continuity and			
	Hence, $\lim_{x \to 0} \frac{\frac{-x^2}{2} - x^3 \left(\frac{1}{3!} + \frac{1}{3!} + \frac{1}{3!}\right)}{x^2}$	$\frac{1}{3}$) $-\frac{x^4}{4}$ $= -\frac{1}{2}$.		
Example: 70	$\lim_{x \to 0} \frac{xe^x - \log(1+x)}{x^2} $ equal	s		[Rajasthan PET 1996]
	(a) $\frac{2}{3}$	(b) $\frac{1}{3}$	(c) $\frac{1}{2}$	(d) $\frac{3}{2}$
Solution: (d)	Let $y = \lim_{x \to 0} \frac{xe^x - \log(1 + x)}{x^2}$	<u>;)</u>	$\left(\frac{0}{0} \text{ form}\right)$	
	Applying L–Hospital's rule	e, $y = \lim_{x \to 0} \frac{e^x + xe^x - \frac{1}{1+x}}{2x}$	$\left(\frac{0}{0} \text{ form}\right)$	
	$y = \lim_{x \to 0} \frac{1}{2} \left[e^{x} + e^{x} + xe^{x} - \frac{1}{2} \right]$	$\left(\frac{1}{(1+x)^2}\right) = \lim_{x \to 0} \frac{1}{2} [1+1+0]$	$(+1] = \frac{3}{2}$	
Example: 71	$\lim_{x \to 0} \frac{\sin^{-1} x - \tan^{-1} x}{x^3} \text{ is eq}$	ual to		[Rajasthan PET 2000]
	(a) o	(b) 1	(c) – 1	(d) $\frac{1}{2}$
Solution: (d)	$\lim_{x \to 0} \frac{\sin^{-1} x - \tan^{-1} x}{x^3}$	$\left(\frac{0}{0} \text{ form}\right)$		
	Applying L-Hospital's rule			
	$= \lim_{x \to 0} \frac{\frac{1}{\sqrt{1 - x^2}} - \frac{1}{1 + x^2}}{3x^2}$	$\left(\frac{0}{0} \text{ form}\right)$		
	$= \lim_{x \to 0} \frac{\frac{-1}{2} \times \frac{-2x}{(1-x^2)^{3/2}} + \frac{-2x}{(1-x^2)^{3/2}}}{6x}$	$\frac{2x}{1+x^2)^2} = \lim_{x \to 0} \frac{1}{6} \left[\frac{1}{(1-x^2)^3} \right]$	$\frac{1}{\sqrt{2}} + \frac{2}{(1+x^2)^2} = \frac{1}{2}$.	
Example: 72	$\lim_{x \to 1} \frac{1 + \log x - x}{1 - 2x + x^2} =$	_	_	[Karnataka CET 2000]
	(a) 1	(b) – 1	(c) o	(d) $-\frac{1}{2}$
Solution: (d)		$\lim_{x \to 1} \frac{1 + \log x - x}{1 - 2x + x^2} = \lim_{x \to 1} \frac{1}{x - 1}$		
	Again applying L-Hospital	's rule, we get $\lim_{x \to 1} \frac{-1}{4x - 2} =$	$-\frac{1}{2}$	
Example: 73	$\lim_{x \to 0} \frac{4^x - 9^x}{x(4^x + 9^x)} =$			[EAMCET 2002]
	(a) $\log\left(\frac{2}{3}\right)$	(b) $\frac{1}{2}\log\left(\frac{3}{2}\right)$	(c) $\frac{1}{2}\log\left(\frac{3}{2}\right)$	(d) $\log\left(\frac{3}{2}\right)$
Solution: (a)	$y = \lim_{x \to 0} \frac{4^{x} - 9^{x}}{x(4^{x} + 9^{x})} \qquad \left($	· · · · · ·		-
	Using L-Hospital's rule, y	$= \lim_{x \to 0} \frac{4^x \log 4 - 9^x}{(4^x + 9^x) + x(4^x \log 4)}$	$\frac{\log 9}{4+9^x \log 9} \Longrightarrow y = \frac{\log 4 - \log 9}{2}$	$\frac{9}{2} \Rightarrow y = \frac{\log\left(\frac{2}{3}\right)^2}{2} = \log\frac{2}{3}.$

Functions, Limits, Continuity and Differentiability

			its, Continuity and Differentiability
If $f(a) = 2$, $f'(a) = 1$, $g(a) = 1$	$= -3$, $g'(a) = -1$, then $\lim_{x \to a} \frac{1}{x} = -3$	$\lim_{x \to a} \frac{f(a)g(x) - f(x)g(a)}{x - a} =$	[Karnataka CET 2003]
(a) 1	(b) 6	(c) -5	(d) – 1
$\lim_{x \to a} \frac{f(a)g(x) - f(x)g(a)}{x - a} \left(-\frac{1}{2}\right)$	$\left(\frac{0}{0} \text{ form}\right)$		
Using L-Hospital's rule, $\lim_{x \to x^{-1}}$	$\lim_{x \to a} \frac{f(a) g'(x) - f'(x) g(a)}{1 - 0} =$	$f(a) \times g'(a) - f'(a) \times g(a) = 2 \times da$	$(-1) - 1 \times (-3) = 1$.
The value of $\lim_{x \to 7} \frac{2 - \sqrt{x - x}}{x^2 - 49}$	$\frac{\overline{3}}{\overline{3}}$ is		[MP PET 2003]
(a) $\frac{2}{9}$	(b) $-\frac{2}{49}$	(c) $\frac{1}{56}$	(d) $-\frac{1}{56}$
Applying L-Hospital's rule	$\lim_{x \to 7} \frac{0 - \frac{1}{2\sqrt{x - 3}}}{2x} = \lim_{x \to 3} \frac{1}{2x}$	$\int_{7}^{1} \frac{-1}{4x\sqrt{x-3}} = \frac{-1}{4.7\sqrt{7-3}} =$	$\frac{-1}{56}$.
Let $f(a) = g(a) = k$ and	their <i>n</i> th derivative	es $f^n(a), g^n(a)$ exist an	d are not equal for some <i>n</i> . If
$\lim_{x \to a} \frac{f(a)g(x) - f(a) - g(a)f(a)}{g(x) - f(x)}$	$\frac{x}{a} + g(a) = 4$, then the value of $\frac{x}{a} + \frac{y}{a} + \frac{y}$	alue of <i>k</i> is	[AIEEE 2003]
(a) 4	(b) 2	(c) 1	(d) o
$\lim_{x \to a} \frac{k g(x) - k f(x)}{g(x) - f(x)} = 4$			
By L-Hospital' rule, $\lim_{x \to a} k$	$\left[\frac{g'(x) - f'(x)}{g'(x) - f'(x)}\right] = 4 , \therefore k$	= 4 .	
The value of $\lim_{x \to 0} \left(\frac{\int_0^{x^2} \sec^2 x}{x \sin^2 x} \right)$	$\left(\frac{2^2 t dt}{x}\right)$ is		[AIEEE 2003]
(a) 3	(b) 2	(c) 1	(d) o
$\lim_{x \to 0} \frac{\frac{d}{dx} \int_0^{x^2} \sec^2 t dt}{\frac{d}{dx} (x \sin x)} = \lim_{x \to 0}$	$\frac{\sec^2 x^2 . 2x}{\sin x + x \cos x}$	(By L' –Hospita	l's rule)
$= \lim_{x \to 0} \frac{2 \sec^2 x^2}{\left(\frac{\sin x}{x} + \cos x\right)} = \frac{2 x^2}{1 + 1}$	$\frac{1}{1} = 1$.		
$\lim_{x \to \pi/6} \left[\frac{3\sin x - \sqrt{3}\cos x}{6x - \pi} \right]$			[EAMCET 2003]
(a) $\sqrt{3}$	(b) $\frac{1}{\sqrt{3}}$	(c) $-\sqrt{3}$	(d) $-\frac{1}{\sqrt{3}}$
Using L–Hospital's rule,	$\lim_{x \to \pi/6} \frac{3\cos x + \sqrt{3}\sin x}{6} =$	$=\frac{3.\frac{\sqrt{3}}{2}+\sqrt{3}.\frac{1}{2}}{6}=\frac{1}{\sqrt{3}}.$	
	(a) 1 $\lim_{x \to a} \frac{f(a) g(x) - f(x) g(a)}{x - a} \qquad (.1)$ Using L-Hospital's rule, $\lim_{x \to 7} \frac{2 - \sqrt{x - x}}{x^2 - 49}$ (a) $\frac{2}{9}$ Applying L-Hospital's rule Let $f(a) = g(a) = k$ and $\lim_{x \to a} \frac{f(a) g(x) - f(a) - g(a) f(x)}{g(x) - f(x)} = 4$ By L-Hospital' rule, $\lim_{x \to a} k$ The value of $\lim_{x \to 0} \left(\frac{\int_{0}^{x^2} \sec^2 x}{x \sin^2} \right)$ (a) 3 (a) 3 $\lim_{x \to 0} \frac{\frac{d}{dx} \int_{0}^{x^2} \sec^2 t dt}{\frac{d}{dx} (x \sin x)} = \lim_{x \to 0} \frac{2 \sec^2 x^2}{(\frac{\sin x}{x} + \cos x)} = \frac{2x}{1 + x}$ $\lim_{x \to \pi/6} \left[\frac{3 \sin x - \sqrt{3} \cos x}{6x - \pi} \right]$ (a) $\sqrt{3}$	(a) 1 (b) 6 $\lim_{x \to a} \frac{f(a)g(x) - f(x)g(a)}{x - a} \left(\frac{0}{0} \text{ form}\right)$ Using L-Hospital's rule, $\lim_{x \to 7} \frac{f(a)g'(x) - f'(x)g(a)}{1 - 0} =$ The value of $\lim_{x \to 7} \frac{2 - \sqrt{x - 3}}{x^2 - 49}$ is (a) $\frac{2}{9}$ (b) $-\frac{2}{49}$ Applying L-Hospital's rule, $\lim_{x \to 7} \frac{0 - \frac{1}{2\sqrt{x - 3}}}{2x} = \lim_{x \to 7} \frac{1}{2\sqrt{x - 3}} = \frac{1}{1 + 1} = 1$. $\lim_{x \to \pi/6} \left[\frac{3 \sin x - \sqrt{3} \cos x}{6x - \pi}\right]$ (a) $\sqrt{3}$ (b) $\frac{1}{\sqrt{3}}$	$\lim_{x \to a} \frac{f(a)g(x) - f(x)g(a)}{x - a} \left(\frac{0}{0} \text{ form}\right)$ Using L-Hospital's rule, $\lim_{x \to 7} \frac{f(a)g'(x) - f'(x)g(a)}{1 - 0} = f(a) \times g'(a) - f'(a) \times g(a) = 2x$ The value of $\lim_{x \to 7} \frac{2 - \sqrt{x - 3}}{x^2 - 49}$ is (a) $\frac{2}{9}$ (b) $-\frac{2}{49}$ (c) $\frac{1}{56}$ Applying L-Hospital's rule, $\lim_{x \to 7} \frac{0 - \frac{1}{2\sqrt{x - 3}}}{2x} = \lim_{x \to 7} \frac{-1}{4x\sqrt{x - 3}} = \frac{-1}{4.7\sqrt{7 - 3}} =$ Let $f(a) = g(a) = k$ and their n^{th} derivatives $f^{a}(a), g''(a)$ exist and $\lim_{x \to a} \frac{f(a)g(x) - f(a) - g(a)f(x) + g(a)}{g(x) - f(x)} = 4$, then the value of k is (a) 4 (b) 2 (c) 1 $\lim_{x \to a} \frac{k}{g(x) - k}f(x) = 4$ By L-Hospital' rule, $\lim_{x \to a} k \left[\frac{g'(x) - f'(x)}{g'(x) - f'(x)} \right] = 4, \therefore \ k = 4.$ The value of $\lim_{x \to 0} \left(\frac{\int_{0}^{x^2} \sec^2 t dt}{x \sin x} \right)$ is (a) 3 (b) 2 (c) 1 $\lim_{x \to 0} \frac{d}{dx} \int_{0}^{x^2} \sec^2 t dt}{x \sin x}$ (By L'-Hospital $= \lim_{x \to 0} \frac{2 \sec^2 x^2}{(x + \cos x)} = \frac{2 \times 1}{1 + 1} = 1.$ $\lim_{x \to \pi/6} \left[\frac{3 \sin x - \sqrt{3} \cos x}{6x - \pi} \right]$

Example: 79 Given that
$$f'(2) = 6$$
 and $f'(1) = 4$, then $\lim_{h \to 0} \frac{f(2h+2+h^2) - f(2)}{f(h-h^2+1) - f(1)} =$
(a) Does not exist (b) $-\frac{3}{2}$ (c) $\frac{3}{2}$ (d) 3
Solution: (d) $\lim_{h \to 0} \frac{f(2h+2+h^2) - f(2)}{f(h-h^2+1) - f(1)} = \lim_{h \to 0} \frac{f'(2h+2+h^2)(2+2h)}{f'(h-h^2+1)(1-2h)} = \frac{6 \times 2}{4 \times 1} = 3$.

					Basic Limits
			Basic Leve		
1.	$\lim_{x \to \infty} \frac{(3x-1)(2x+5)}{(x-3)(3x+7)}$ is equa	al to			
	(a) 3	(b) 2	(c)	-2	(d) 1
2.	$ \lim_{x \to \infty} \frac{2x^2 + 3x + 4}{3x^2 + 3x + 4} \text{ is equal} $	to	[SCRA 1990	5; Rajasthan PET	' 1987 ; BIT Ranchi 1998; MP PET 1993
	(a) $\frac{2}{3}$	(b) 1	(c)	0	∞ (d)
3.	$\lim_{x \to a} f(x).g(x)$ exists if				[Rajasthan PET 199
	(a) $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$	exists	(b)	$\lim_{x \to a} f(x)^{g(x)} $ exi	sts
	(c) $\lim_{x \to a} \frac{f(x)}{g(x)}$ exists		(d)	$\lim_{x \to a} f(x)g\left(\frac{1}{x}\right) e$	xists
4.	$\lim_{x \to \infty} \left[x - \sqrt{x^2 + x} \right] =$				[IIT 197
	(a) $\frac{1}{2}$	(b) 1	(c)	$-\frac{1}{2}$	(d) o
5.	If $\lim_{x \to a} \frac{f(x)}{g(x)}$ exists then				
	(a) Both $\lim_{x \to a} f(x)$ and $\lim_{x \to a} f(x)$	g(x) must exist	(b)	$\lim_{x \to a} f(x) \text{ not ex}$	tist but $\lim_{x \to a} g(x)$ exists
	(c) Neither $\lim_{x \to a} f(x)$ nor	$\lim_{x \to a} g(x) \text{ exists}$	(d)	$\lim_{x \to a} f(x) \text{ exist}$	but $\lim_{x \to a} g(x)$ does not exist
6.	Which of the following st (a) $\lim_{x \to c} [f(x) + g(x)] = \lim_{x \to c} f(x)$		(b)	$\lim_{x \to c} \left[f(x) - g(x) \right] =$	$= \lim_{x \to c} f(x) - \lim_{x \to c} g(x)$
	(c) $\lim_{x \to c} [f(x).g(x)] = \lim_{x \to c} f(x).$	$\lim_{x \to c} g(x)$	(d)	$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} \frac{1}{x \to c}}{\lim_{x \to c} \frac{1}{x \to c}}$	$\frac{f(x)}{g(x)}$
7.	$\lim_{x \to 3^{-}} \frac{ x-3 }{ x-3 } =$				
	(a) 1	(b) -1	(c)	0	(d) Does not exist
8.	$\lim_{x \to 3^+} \frac{ x-3 }{ x-3 } =$				
	(a) 1	(b) -1	(c)	0	(d) Does not exist
9.	If $\lim_{x \to a} \phi(x) = a^3, a \neq 0$ then	$\lim_{x \to a} \phi \left(\frac{x}{a} \right)$ is equal to			
	(a) a^2	(b) $\frac{1}{a^2}$	(c)	$\frac{1}{a^3}$	(d) <i>a</i> ³
		<i>a</i> ⁻		a	

10.	If $\lim_{x \to a} \frac{a^x - x^a}{x^x - a^a} = -1$, then			[EAMCET 2003]
	(a) $a=1$	(b) $a = 0$	(c) $a = e$	(d) None of these
11.	$\lim_{x \to 4} \left[\frac{x^{3/2} - 8}{x - 4} \right] =$			[DCE 1999]
	(a) $\frac{3}{2}$	(b) 3	(c) $\frac{2}{3}$	(d) $\frac{1}{3}$
12.	$\lim_{x \to 0} \left[\frac{\sqrt{a+x} - \sqrt{a-x}}{x} \right] =$		[Karnataka	CET 2001; Roorkee 1979; MP PET 1987]
	(a) 1	(b) o	(c) \sqrt{a}	(d) $\frac{1}{\sqrt{a}}$
13.	$\lim_{x \to \infty} \frac{\sqrt{4x^2 + 5x + 8}}{4x + 5}$ is equal	to		
	(a) -1/2	(b) 0	(c) 1/2	(d) 1
14.	$\lim_{x \to 4} \frac{3 - \sqrt{5 + x}}{x - 4}$ is equal to			[Orissa JEE 1996]
	(a) $1/6$	(b) -1/6	(c) 0	(d) 1
15.	$\lim_{x \to \infty} \frac{\sqrt{x^2 - 1}}{2x + 1}$ is equal to			[BIT Ranchi 1992]
	(a) 1	(b) 0	(c) -1	(d) $\frac{1}{2}$
16.	$\lim_{x \to 2} \frac{x^2 - 3x + 2}{x^2 + x - 6}$ equals			- [IIT 1970; IIT 1976)]
	(a) 1/5	(b) 2/5	(c) 1	(d) 5
17.	The value of $\lim_{\theta \to 0} \left(\frac{\sin \theta / 4}{\theta} \right)$	is		
	(a) 0	(b) $\frac{1}{4}$	(c) 1	(d) Note in existence
18.	$\lim_{x \to 0} \frac{x^2 - 2x}{2\sin x} $ equals			[Rajasthan PET 1985]
	(a) 1	(b) -1	(c) 0	(d) None of these
19.	$\lim_{x \to 0} \frac{\sin(2+x) - \sin(2-x)}{x} =$			
	(a) sin 2	(b) 2 sin 2	(c) 2 cos 2	(d) 2
20.	$\lim_{n \to \infty} (3^n + 4^n)^{\frac{1}{n}} =$			[Karnataka CET 2003]
	(2)	(b) 4	(c) ∞	(d) <i>e</i>
21.	True statement for $\lim_{x\to 0} \frac{x}{\sqrt{2}}$	$\frac{\sqrt{1+x}-\sqrt{1-x}}{2+3x}$ is		[Ranchi BIT 1982; Haryana 1996)]
	(a) Does not exist	(b) Lies between 0 and $\frac{1}{2}$	(c)	Lies between $\frac{1}{2}$ and 1
22.	$\lim_{x \to 1} \frac{(2x-3)(\sqrt{x}-1)}{2x^2 + x - 3} =$			[IIT 1977]
	(a) $-\frac{1}{10}$	(b) $\frac{1}{10}$	(c) $-\frac{1}{8}$	(d) None of these
23.	$\lim_{x \to \infty} (\sqrt{x^2 + 8x + 3} - \sqrt{x^2 + 4x})$			[MP PET 1997; Rajasthan PET 1995)]

90	Functions,	Limits,	Continuity	and				
	(a) O		(b) ∞		(c)	2	(d) $\frac{1}{2}$	
24.	$\lim_{x \to 0} \left(\frac{x^o}{\sin x^o} \right) equ$	uals						[AMU 1991]
	(a) 1		(b) $\frac{\pi}{180}$		(c)	$\frac{180}{\pi}$	(d) None o	of these
				Advance	Lev	el		
25.	$\lim_{n \to \infty} \left[\frac{1^3 + 2^3 + 3}{n} \right]$	$\frac{3}{4} + \dots + n^3$]=					
	(a) $\frac{1}{2}$		(b) $\frac{1}{3}$		(c)	$\frac{1}{4}$	(d) None o	of these
26.	$\lim_{n \to \infty} \left[\frac{1}{n} + \frac{1}{n+1} + \right]$	$\frac{1}{n+2} + \dots$	$+\frac{1}{3n} \bigg] =$				[Ka	rnataka CET 1999]
	(a) 0		(b) $\log_e 4$		(c)	$\log_e 3$	(d) $\log_e 2$	
27.	$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{n^2 + k^2}$	=						[Roorkee 1999]
	(a) $\left(\frac{1}{2}\right)\log 2$		(b) log 2		(c)	$\frac{\pi}{4}$	(d) $\frac{\pi}{2}$	
28.	The $\lim_{x \to 0} (\cos x)^{6}$	^{cot x} is					[Ra	jasthan PET 1999]
	(a) 0		(b) 1		(c)	$\frac{1}{3}$	(d) $\frac{2}{3}$	
29.	$\lim_{x \to 0} \frac{x \tan 2x - 2}{(1 - \cos 2x)}$	$\frac{x \tan x}{x^2} =$						[IIT 1999]
	(a) 2		(b) - 2		(c)	$\frac{1}{2}$	(d) $-\frac{1}{2}$	
30.	If $f(x) = \sqrt{\frac{x - \sin x}{x + \cos x}}$	$\frac{\ln x}{x^2}$, then	$\lim_{x\to\infty} f(x) $ is				[DCE 200	o; EAMCET 1997)]
	(a) O	<i>x</i> < 0	(b) ∞		(c)	1	(d) Not ex	ist
31.	If $f(x) = \begin{cases} x & ; \\ 1 & ; \\ x^2 & ; \end{cases}$	x = 0, then, x > 0	$\lim_{x \to 0} f(x) =$					[DCE 2000]
	(a) 0		(b) 1		(c)		(d) Does n	ot exist
32.	If $f(x) = \begin{cases} \sin x \\ 0 \end{cases}$,	$, x \neq n\pi$ other wise, <i>n</i>	$n \in Z g(x) = \begin{cases} x \\ z \\ z \end{cases}$	$\begin{array}{c} +1 & , & x \neq 0, 2 \\ + & , & x = 0 \\ 5 & , & x = 2 \end{array}$	then	$\lim_{x\to 0} g\{f(x)\} =$	[Ka	nataka CET 2000]
	(a) 1		(b) o		(c)	$\frac{1}{2}$	(d) $\frac{1}{4}$	
33.	$\lim_{n \to \infty} \frac{1^p + 2^p + 3^p}{n}$	$\frac{p}{p+1} + \dots + n^p$	- =					[AIEEE 2002]
	(a) $\frac{1}{p+1}$		(b) $\frac{1}{1-p}$		(c)	$\frac{1}{p} - \frac{1}{(p-1)}$	(d) $\frac{1}{p+2}$	

54 .	$\lim_{n \to \infty} \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^3}$	$\frac{1}{2^n}$ equals		[Rajasthan PET 1996]
	(a) 2	(b) -1	(c) 1	(d) 3
5.	$ \lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{\sin^{-1} x} = $			
	(a) 2	(b) 1	(c) -1	(d) None of these
5.	$\lim_{x \to 0} \cos \frac{1}{x}$			[UPSEAT 2002]
		0 (b) Differentiable at $x = 0$		(d) None of these
7.		$\frac{1}{2} + \dots + \frac{1}{2} - 1$, then $\lim_{n \to \infty} x_n$ is equal	to	
	(a) $\frac{1}{3}$	5	(c) $\frac{2}{3}$	(d) 1
3.		$\frac{1}{n} + \dots + \frac{1}{\sqrt{n^2 + (n-1)n}}$ is equal to		[Rajasthan PET 2000]
	(a) $2+2\sqrt{2}$		(c) $2\sqrt{2}$	(d) 2
).	$\lim_{n \to \infty} \frac{1}{1^3 + n^3} + \frac{4}{2^3 + n^3} + \dots +$			[Rajasthan PET 199
	(a) $\frac{1}{3}\log_e 3$	5	(c) $\frac{1}{3}\log_e \frac{1}{3}$	(d) None of these
).	The value of $\lim_{n \to \infty} \left \frac{n}{1+n^2} \right $	$+\frac{n}{4+n^2}+\frac{n}{9+n^2}+\dots+\frac{1}{2n}$] is equ	al to	
	(a) <i>e</i>	(b) $\frac{1}{e}$	(c) $\frac{\pi}{4}$	(d) $\frac{4}{\pi}$
•	$\lim_{x \to \infty} \frac{x^n}{e^x} = 0 \text{ for }$			
	(a) No value of <i>n</i>	(b) <i>n</i> is any whole number	(c) $n = 0$ only	(d) $n = 2$ only
			Exponent	
			-	tal and Logarithmic Limits
		Basic	Level	iai and Logarithmic Limits
i.	$\lim_{x \to 0} \left[\tan \left(\frac{\pi}{4} + x \right) \right]^{1/x} is equ$		Level	
•	$\lim_{x \to 0} \left[\tan\left(\frac{\pi}{4} + x\right) \right]^{1/x} \text{ is equ}$ (a) e^{-1}		Level (c) e^2	
		ual to		[Rajasthan PET 200 (d) \sqrt{e}
	(a) e^{-1}	ual to		[Rajasthan PET 200 (d) \sqrt{e}
2. 3.	(a) e^{-1} $\lim_{x \to 0} \left(\frac{3^x - 1}{x}\right)$ equals (a) log 3	ual to (b) e	(c) <i>e</i> ²	[Rajasthan PET 200 (d) \sqrt{e} [Rajasthan PET 199 (d) None of these
•	(a) e^{-1} $\lim_{x \to 0} \left(\frac{3^x - 1}{x}\right)$ equals	ual to (b) e	(c) <i>e</i> ²	[Rajasthan PET 200 (d) \sqrt{e} [Rajasthan PET 199 (d) None of these
;.	(a) e^{-1} $\lim_{x \to 0} \left(\frac{3^x - 1}{x} \right) \text{ equals}$ (a) $\log 3$ $\lim_{x \to 0} \frac{\cos(\sin x) - 1}{x^2} =$	ual to (b) <i>e</i> (b) 3 log 3	(c) e^2 (c) 2 log 3	[Rajasthan PET 199 (d) None of these [Orissa JEE 2003]

92	Functions,	Limits,	Continuity	and	
46.	$\lim_{x \to 0} \frac{a^{\sin x} - 1}{b^{\sin x} - 1} =$				[Karnataka CET 2000]
	(a) $\frac{a}{b}$		(b) $\frac{b}{a}$	(c) $\frac{\log a}{\log b}$	(d) $\frac{\log b}{\log a}$
47.	$\lim_{x \to 0} \left(\frac{e^x - 1}{x} \right) =$				[Karnataka CET 2001]
	(a) $\frac{1}{2}$		(b) ∞	(C) 1	(d) o
48.	$\lim_{x \to \infty} \left(\frac{x+3}{x+1} \right)^{x+1} =$:			[Rajasthan PET 2003]
	(a) e^2		(b) e^{3}	(c) <i>e</i>	(d) e^{-1}
49.	$\lim_{x \to 0} (1 - ax)^{\frac{1}{x}} =$				[Karnataka CET 2003]
	(a) <i>e</i>		(b) e^{-a}	(c) 1	(d) e^a
				Advance Level	
50.	$\lim_{x \to \infty} \left(\frac{x-3}{x+2} \right)^x \text{ is e}$	equal to			[IIT 2000]
	(a) e		(b) e^{-1}	(c) e^{-5}	(d) e^5
51.	$\lim_{x \to 0} \left(\frac{1+5x^2}{1+3x^2} \right)^{1/x^2}$	is			[IIT 1996]
	(a) e^2		(b) e	(c) e^{-1}	(d) None of these
52.	The value of $\lim_{x \to x} x \to x$	$\int_{\infty}^{\infty} \left(\frac{x^2 - 2x + x}{x^2 - 4x + x} \right)$	$\left(\frac{1}{2}\right)^{x}$ is equal to	0	
	(a) e^2		(b) e^{-2}	(c) e^{6}	(d) None of these
53.	$\lim_{x \to \infty} \left[1 + \frac{1}{mx} \right]^x \text{ ec}$	lual to			[Haryana CEE 1998]
	(a) $e^{1/m}$	\ r	(b) $e^{-1/m}$	(c) e^{m}	(d) m^e
54.	$\lim_{x \to \infty} \left(\frac{x^2 + 5x + 3}{x^2 + x + 3} \right)$	$)^{x} =$			[AIEEE 2002]
	(a) e^4		(b) e^2	(c) e^{3}	(d) <i>e</i>
55.	$\lim_{x \to 0} \frac{x \cdot 2^x - x}{1 - \cos x}$ is e	equal to		TII]	[1980; BIT Ranchi 1983; Rajasthan PET 1999, 2001]
	(a) $\log 2$		(b) log 4	(c) O	(d) None of these
56.	$\lim_{x \to 0} \left(\frac{a^x - b^x}{x} \right) =$				[EAMCET 1988; Rajasthan PET 1995]

			F	unctions, Limits, Continuity and
	(a) $\log\left(\frac{b}{a}\right)$	(b) $\log\left(\frac{a}{b}\right)$	(c) $\frac{a}{b}$	(d) $\log a^b$
57.	$\lim_{x \to \infty} \frac{\log x^n - [x]}{[x]}, n \in N, ([x]$	denotes greatest integer less	than or equal to <i>x</i>)	[AIEEE 2002]
	(a) Has value -1	(b) Has value o	(c) Has value 1	(d) Does not exist
				Trigonometric Limits
		Basic L	level	
58.	$\lim_{x \to 0} \frac{\sin(\pi \cos^2 x)}{x^2} =$		[MP PET 20	002; UPSEAT 2001; IIT Screening 2001]
	(a) -π	(b) <i>π</i>	(c) $\frac{\pi}{2}$	(d) 1
59.	$\lim_{x \to 0} \left\{ \frac{\sin x - x + \frac{x^3}{6}}{x^5} \right\} =$			[MNR 1985; MNR 1986)]
	(a) $\frac{1}{120}$	(b) $-\frac{1}{120}$	(c) $\frac{1}{20}$	(d) None of these
60.	$\lim_{x \to 0} \frac{\sqrt{\frac{1}{2}(1 - \cos 2x)}}{x} =$			[Rajasthan PET 2001; AIEEE 2002]
	(a) 1	(b) – 1	(c) 0	(d) Does not exist
61.	$\lim_{x \to \pi/4} \frac{\sqrt{2} \cos x - 1}{\cot x - 1} =$			[BIT Ranchi 1989; IIT 1990]
	(a) $\frac{1}{\sqrt{2}}$	(b) $\frac{1}{2}$	(c) $\frac{1}{2\sqrt{2}}$	(d) 1
62.	$\lim_{x \to a} \frac{\cos x - \cos a}{\cot x - \cot a} =$			[BIT Ranchi 1987]
	(a) $\frac{1}{2}\sin^3 a$	(b) $\frac{1}{2} \csc^2 a$	(c) $\sin^3 a$	(d) $\operatorname{cosec}^3 a$
		Advance	Level	
63.	$\lim_{x \to \infty} \sqrt{\frac{x + \sin x}{x - \cos x}} =$			[Roorkee 1994]
	(a) O	(b) 1	(c) -1	(d) None of these
64.	The value of $\lim_{n \to \infty} \cos\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right)$	$\cos\left(\frac{x}{4}\right)\cos\left(\frac{x}{8}\right)\cos\left(\frac{x}{2^n}\right)$ is		
	(a) 1	(b) $\frac{\sin x}{x}$	(c) $\frac{x}{\sin x}$	(d) None of these
65.	If x is a real number in [0	,1], then the value of $\lim_{m\to\infty} \lim_{n\to\infty}$	$[1 + \cos^{2m}(n!\pi x)]$ is given by:	iven by
	(a) 2 or 1 according as x i(c) 1 for all x	s rational or irrational	(b) 1 or 2 accordin (d) 2 or 1 for all <i>x</i>	g as x is rational or irrational

66.	$\lim_{x \to 0} \frac{1 - \cos 5x}{2^x - 3^x}$ is equal to			
	(a) 0	(b) 1	(c) 5	(d) None of these
67.	If $\lim_{x \to 0} \frac{x^n - \sin x^n}{x - \sin^n x}$ is non ze	ro definite, then <i>n</i> must be		
	(a) 1	(b) 2	(c) 3	(d) None of these
68.	The values of <i>a</i> and <i>b</i> such	that $\lim_{x \to 0} \frac{x(1 + a\cos x) - b\sin x}{x^3} =$	-1, are	
	(a) $\frac{5}{2}, \frac{3}{2}$	(b) $\frac{5}{2}, -\frac{3}{2}$	(c) $-\frac{5}{2}, -\frac{3}{2}$	(d) None of these
69.	$\lim_{h \to 0} \frac{2\left[\sqrt{3}\sin\left(\frac{\pi}{6} + h\right) - \cos\left(\frac{\pi}{6}\right) - \cos\left(\frac{\pi}{6}\right)\right]}{\sqrt{3}h(\sqrt{3}\cos h - \sin h)}$	$\left(+h\right)$ =		[BIT Ranchi 1987]
	(a) $-\frac{2}{3}$		(c) $-2\sqrt{3}$	(d) $\frac{4}{3}$
7 0.	If $f(x) = \int \frac{2\sin x - \sin 2x}{x^3} dx,$	then $\lim_{x \to 0} f'(x)$ equals		[IIT Screening 1997]
	(a) 0	(b) 1	(c) -1	(d) 1/2
				L'- Hospital Rule
		Basic	Level	
71.	$\lim_{x \to 0} \frac{x}{\tan^{-1}(2x)}$ is equal to			[IIT 1992; Rajasthan PET 2001]
	(a) 0	(b) 1	(c) $\frac{1}{2}$	(d) None of these
72.	$\lim_{x \to 0} \frac{e^{\tan x} - e^x}{\tan x - x}$ is equal to			[Rajasthan PET 2001]
	(a) 0	(b) 1	(c) e	(d) $\frac{1}{e}$
73.	$\lim_{x \to \pi/2} (\sec x - \tan x) \text{ equals}$			[Rajasthan PET 1998]
	(a) 0	(b) 1	(c) -1	(d) None of these
74.	$\lim_{x \to 0} \frac{2\sin^2 3x}{x^2} =$			[Roorkee 1982; DCE 1999]
	(a) 0	(b) 1	(c) 18	(d) 36
75.	$\lim_{x \to 0} \frac{\sin 2x}{x} =$			[MNR 1990; UPSEAT 2000]
	(a) 0	(b) 1	(c) 1/2	(d) 2
76.	If $f(1) = 1$ and $f'(1) = 4$, the	In the value of $\lim_{x \to 1} \frac{\sqrt{f(x)} - 1}{\sqrt{x} - 1}$ is		[DCE 2001]
	(a) 9	(b) 4	(c) 12	(d) 1
77.	$\lim_{x \to 0} \frac{\log_e(1+x)}{3^x - 1} =$			[MP PET 2002]
	(a) $\log e 3$	(b) O	(c) 1	(d) $\log_3 e$
78.	$\lim_{x \to 0} \frac{e^x - e^{-x}}{\sin x} =$			[Haryana CEE 2002]
	(a) 0	(b) 1	(c) 2	(d) Non existent

				, , , ,
79.	$\lim_{x \to -2} \frac{\sin^{-1}(x+2)}{x^2 + 2x} =$			[Orissa JEE 2002]
	(a) 0	(b) ∞	(c) $-\frac{1}{2}$	(d) None of these
80.	$\lim_{x \to a} \frac{(x^{-1} - a^{-1})}{x - a} =$			[MP PET 1994]
	(a) $\frac{1}{a}$	(b) $-\frac{1}{a}$	(c) $\frac{1}{a^2}$	(d) $-\frac{1}{a^2}$
81.	$\lim_{x \to 1} \frac{\log x}{x-1}$ is equal to		[Ra	jasthan PET 1996; MP PET 1996]
	$x \to 1 x - 1$ (a) 1	(b) O	(c) -1	(d) 1/2
82.	$\lim_{x \to 1} \frac{1 - x^{-1/3}}{1 - x^{-2/3}} =$			
	(a) $\frac{1}{3}$	(b) $\frac{1}{2}$	(c) $\frac{2}{3}$	(d) $-\frac{2}{3}$
		Advance	Level	
		(1		
83.	The value of $\lim_{x \to 0} \frac{x \cos x - \ln x}{x^2}$	$\frac{\log(1+x)}{\log(1+x)}$ is		[Rajasthan PET 1999]
	(a) $\frac{1}{2}$	(b) o	(c) 1	(d) None of these
84.	$\lim_{x \to \frac{\pi}{4}} \left(\frac{1 - \tan x}{1 - \sqrt{2} \sin x} \right) \text{ equals}$			[SCRA 1999]
	(a) 0	(b) 1	(c) - 2	(d) 2
85.	$\lim_{x \to 0} \frac{2^x - 1}{\sqrt{1 + x} - 1}$ equals			[Karnataka CET 1999, IIT 1983]
	(a) $\log 2$	(b) log 4	(c) log 3	(d) None of these
86.	$\lim_{x \to 0} \left[\frac{\sin(x+a) + \sin(a-x) - 2s}{x \sin x} \right]$	$\left \frac{\ln a}{\ln a}\right $ is equal to		[UPSEAT 1998]
	(a) sin <i>a</i>	(b) $-\sin a$	(c) 1	(d) 0
87.	$\lim_{x \to \pi/2} \frac{\int_{\pi/2}^{x} t dt}{\sin(2x - \pi)} \text{ is equal to}$	D		[MP PET 1998]
	(a) ∞	(b) $\frac{\pi}{2}$	(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{8}$
88.	$\lim_{y \to 0} \frac{(x+y)\sec(x+y) - x \sec x}{y} =$	=	7	0
	(a) $\sec x(x \tan x + 1)$	(b) $x \tan x + \sec x$	(c) $x \sec x + \tan x$	(d) None of these
89.	$\lim_{x \to \frac{\pi}{3}} \frac{\sin\left(\frac{\pi}{3} - x\right)}{2\cos x - 1}$ is equal to			[AMU 1991]
	(a) $\frac{1}{2}$	(b) $\frac{1}{\sqrt{3}}$	(c) $\sqrt{3}$	(d) $\frac{2}{\sqrt{3}}$
90.	$\lim_{x \to 0} \frac{e^{x^2} - \cos x}{x^2}$ is equal to			[AMU 1990]

96	Functions, Limits,	Continuity and		
	(a) $\frac{3}{2}$	(b) $\frac{1}{2}$	(c) $\frac{2}{3}$	(d) None of these
91.	$\lim_{x \to 0} \frac{x \cos x - \sin x}{x^2 \sin x}$ equals			[SCRA 1999]
	(a) $\frac{1}{3}$	(b) $-\frac{1}{3}$	(c) 3	(d) -3

Answer Sheet

							Assig	Inme	nt (B	asic 8	& Adv	ance	Level)					()
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
b	a	a	с	a	d	b	a	d	a	b	d	с	b	d	a	b	b	с	b
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
b	a	с	a	с	с	a	b	с	с	d	a	a	с	b	с	b	b	b	с
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
b	с	a	d	d	с	с	a	b	с	a	a	a	a	b	b	a	b	a	d
61	62	63	64	65	66	67	68	69	7 0	71	72	73	74	75	76	77	78	79	80
b	с	b	b	a	a	a	с	d	b	с	b	a	с	d	b	d	с	с	d
81	82	83	84	85	86	87	88	89	90	91									
a	b	a	d	b	b	с	a	b	a	b									

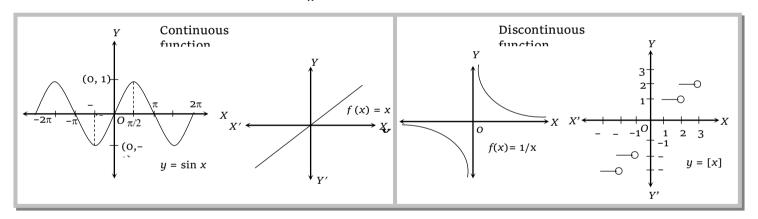
2.3 Continuity

Introduction

The word 'Continuous' means without any break or gap. If the graph of a function has no break, or gap or jump, then it is said to be continuous.

A function which is not continuous is called a discontinuous function.

While studying graphs of functions, we see that graphs of functions $\sin x$, x, $\cos x$, e^x etc. are continuous but greatest integer function [x] has break at every integral point, so it is not continuous. Similarly $\tan x$, $\cot x$, $\sec x$, $\frac{1}{x}$ etc. are also discontinuous function.



2.3.1 Continuity of a Function at a Point

A function f(x) is said to be continuous at a point x = a of its domain iff $\lim_{x \to a} f(x) = f(a)$. *i.e.* a function f(x) is continuous at x = a if and only if it satisfies the following three conditions :

(1) f(a) exists. ('a' lies in the domain of f)

- (2) $\lim_{x \to 1} f(x)$ exist *i.e.* $\lim_{x \to 1} f(x) = \lim_{x \to 1} f(x)$ or R.H.L. = L.H.L.
- (3) $\lim f(x) = f(a)$ (limit equals the value of function).

Cauchy's definition of continuity : A function f is said to be continuous at a point a of its domain D if for every $\varepsilon > 0$ there exists $\delta > 0$ (dependent on ε) such that $|x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon$.

Comparing this definition with the definition of limit we find that f(x) is continuous at x = aif $\lim_{x \to a} f(x)$ exists and is equal to f(a) *i.e.*, if $\lim_{x \to a^-} f(x) = f(a) = \lim_{x \to a^+} f(x)$.

Heine's definition of continuity : A function f is said to be continuous at a point a of its domain D, converging to a, the sequence $\langle a_n \rangle$ of the points in D converging to a, the sequence $\langle f(a_n) \rangle$ converges to f(a)i.e. $\lim a_n = a \Rightarrow \lim f(a_n) = f(a)$. This definition is mainly used to prove the discontinuity to a function.

Note : Continuity of a function at a point, we find its limit and value at that point, if these two exist and are equal, then function is continuous at that point.

Formal definition of continuity : The function f(x) is said to be continuous at x = a, in its domain if for any arbitrary chosen positive number $\epsilon > 0$, we can find a corresponding number δ depending on ϵ such that $|f(x) - f(a)| < \epsilon \quad \forall x$ for which $0 < |x - a| < \delta$.

2.3.2 Continuity from Left and Right

Function f(x) is said to be

- (1) Left continuous at x = a if $\lim_{x \to a^{-0}} f(x) = f(a)$
- (2) Right continuous at x = a if $\lim_{x \to a} f(x) = f(a)$.

Thus a function f(x) is continuous at a point x = a if it is left continuous as well as right continuous at x = a.

	$\int x + \lambda, x < 3$				
Example: 1	If $f(x) = \begin{cases} 4, & x = 3 \end{cases}$ is	s continuous at	$x = 3$, then $\lambda =$		
	If $f(x) = \begin{cases} x + \lambda, \ x < 3 \\ 4, \ x = 3 \\ 3x - 5, \ x > 3 \end{cases}$ is				
	(a) 4	(b) 3	(c) 2	(d) 1	
Solution: (d)	L.H.L. at $x = 3$, $\lim_{x \to 3^{-}} f(x)$	$\lim_{x \to 3^{-}} (x + \lambda)$	$= \lim_{h \to 0} (3 - h + \lambda) = 3 + \lambda$	(i)	
	(a) 4 L.H.L. at $x = 3$, $\lim_{x \to 3^{-}} f(x)$ R.H.L. at $x = 3$, $\lim_{x \to 3^{+}} f(x)$	$x = \lim_{x \to 3^+} (3x - 5)$	$= \lim_{h \to 0} \{3(3+h) - 5\} = 4$	(ii)	
	Value of function $f(3)$ =			(iii)	
	For continuity at $x = 3$				
	Limit of function = va	lue of function	$3 + \lambda = 4 \Longrightarrow \lambda = 1.$		
Example: 2	If $f(x) = \begin{cases} x \sin \frac{1}{x}, x \neq 0 \\ k, x = 0 \end{cases}$ is	s continuous at	x = 0, then the value of	<i>k</i> is [MP PET 1999; AMU 1999; Rajasthan P	ET 20
	(a) 1		(c) 0	(d) 2	
Solution: (c)	If function is continuo	us at $x = 0$, the	n by the definition of co	ntinuity $f(0) = \lim_{x \to 0} f(x)$	
	since $f(0) = k$. Hence, j	$f(0) = k = \lim_{x \to 0} (x) \left(\frac{1}{x + 1} \right)$	$\left(\sin\frac{1}{x}\right)$	x 70	
	\Rightarrow <i>k</i> = 0 (a finite quant	ity lies betwee	n -1 to 1) $\Rightarrow k = 0.$		
	$\int 2x + 1$ when $x + 1$	< 1			
Example: 3	If $f(x) = \begin{cases} k & \text{when } x = \end{cases}$	1 is continuou	as at $x = 1$, then the value	e of k is [Rajasthan PET 2001]	
	5x-2 when $x=$	> 1			
	(a) 1	(b) 2	(c) 3	(d) 4	
Solution: (c)	Since $f(x)$ is continuous	s at $x = 1$,			
	$\Rightarrow \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) =$	<i>f</i> (1)		(i)	
	Now $\lim_{x \to 1^-} f(x) = \lim_{h \to 0} f(1)$	$(-h) = \lim_{h \to 0} 2(1-h)$	$i+1=3$ <i>i.e.</i> , $\lim_{x\to 1^-} f(x)=3$		

	Similarly, $\lim_{x \to 1^+} f(x) = \lim_{h \to \infty} f(x) = \lim_{x \to 1^+} f(x) = \lim_$	$\int_{0}^{h} f(1+h) = \lim_{h \to 0} 5(1+h) - 2 i$.e., $\lim_{x \to 1^+} f(x) = 3$					
	So according to equation	on (i), we have <i>k</i> = 3.						
Example: 4	The value of <i>k</i> which m	akes $f(x) = \begin{cases} \sin\left(\frac{1}{x}\right), & x = \\ k, & x \end{cases}$	e^{0} continuous at $x = 0$ is $= 0$	[Rajasthan PET 1993; UPSEAT 19				
	(a) 8	(b) 1	(c) -1	(d) None of these				
Solution: (d)	We have $\lim_{x \to 0} f(x) = \lim_{x \to 0} s$	$ in \frac{1}{x} $ = An oscillating numbers	mber which oscillates betw	veen –1 and 1.				
	Hence, $\lim_{x \to 0} f(x)$ does not	t exist. Consequently f	(x) cannot be continuous a	t $x = 0$ for any value of k .				
Example: 5	The value of <i>m</i> for which	ch the function $f(x) = \begin{cases} n \\ n \\ n \end{cases}$	$ax^2, x \le 1$ is continuous at x^2	a = 1, is				
	(a) 0	(b) 1	(c) 2	(d) Does not exist				
Solution: (c)	LHL = $\lim_{x \to 1^{-}} f(x) = \lim_{h \to 0} m(1)$	$(-h)^2 = m$						
	RHL = $\lim_{x \to 1^+} f(x) = \lim_{h \to 0} 2(1+h) = 2$ and $f(1) = m$							
	Function is continuous	at $x = 1$, \therefore LHL = RHL	f = f(1)					
	Therefore $m = 2$.							
Example: 6	If the function $f(x) = \begin{cases} (c \\ k \end{cases}$	$(\cos x)^{1/x}, x \neq 0$ is continu , $x = 0$	ous at $x = 0$, then the valu	e of <i>k</i> is				
	(a) 1	(b) -1	(c) 0	(d) <i>e</i>				

2.3.3 Continuity of a Function in Open and Closed Interval

Open interval : A function f(x) is said to be continuous in an open interval (*a*, *b*) iff it is continuous at every point in that interval.

Note: \Box This definition implies the non-breakable behavior of the function f(x) in the interval (a, b).

Closed interval : A function f(x) is said to be continuous in a closed interval [a, b] iff,

(1) f is continuous in (a, b)

(2) *f* is continuous from the right at 'a' i.e. $\lim_{x \to a^+} f(x) = f(a)$

(3) *f* is continuous from the left at '*b*' *i.e.* $\lim_{x \to a} f(x) = f(b)$.

Example: 7 If the function
$$f(x) = \begin{cases} x + a^2 \sqrt{2} \sin x & , & 0 \le x < \frac{\pi}{4} \\ x \cot x + b & , & \frac{\pi}{4} \le x < \frac{\pi}{2} \\ b \sin 2x - a \cos 2x & , & \frac{\pi}{2} \le x \le \pi \end{cases}$$
 is continuous in the interval [0, π] then the values

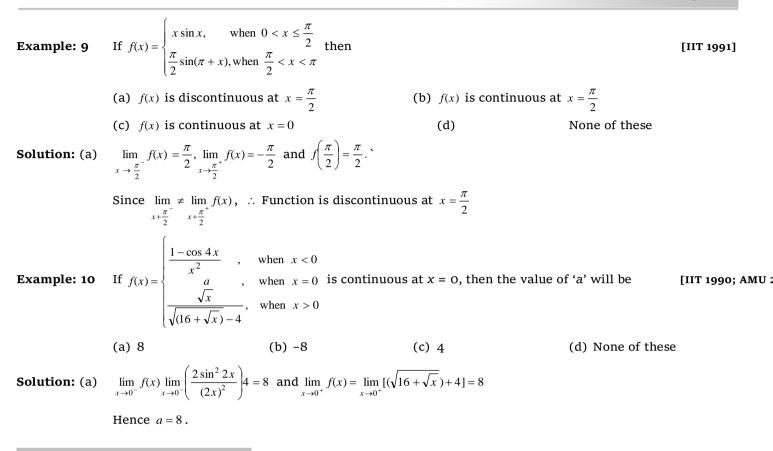
of (*a*, *b*) are

[Roorkee 1998]

(a)
$$(-1, -1)$$
 (b) $(0, 0)$ (c) $(-1, 1)$ (d) $(1, -1)$
Solution: (b) Since *f* is continuous at $x = \frac{\pi}{4}$; $\therefore f(\frac{\pi}{4}) = \int_{h \to 0}^{f} (\frac{\pi}{4} + h) = \int_{h \to 0}^{f} (\frac{\pi}{4} - h) \Rightarrow \frac{\pi}{4} (1) + b = (\frac{\pi}{4} - 0) + a^2 \sqrt{2} \sin(\frac{\pi}{4} - 0)$
 $\Rightarrow \frac{\pi}{4} + b = \frac{\pi}{4} + a^2 \sqrt{2} \sin \frac{\pi}{4} \Rightarrow b = a^2 \sqrt{2} \cdot \frac{1}{\sqrt{2}} \Rightarrow b = a^2$
Also as *f* is continuous at $x = \frac{\pi}{2}$; $\therefore f(\frac{\pi}{2}) = \lim_{x \to \frac{\pi}{2} \to 0} f(x) = \lim_{h \to 0} f(\frac{\pi}{2} - h)$
 $\Rightarrow b \sin 2\frac{\pi}{2} - a \cos 2\frac{\pi}{2} = \lim_{h \to 0} [(\frac{\pi}{2} - h) \cot(\frac{\pi}{2} - h) + b] \Rightarrow b \cdot 0 - a(-1) = 0 + b \Rightarrow a = b$.
Hence (0, 0) satisfy the above relations.
Example: 8 If the function $f(x) = \begin{cases} 1 + \sin \frac{\pi}{2} & for -\infty < x \le 1 \\ 6 \tan \frac{x\pi}{2} & for -3 \le x < 6 \end{cases}$ (MP PET 1998]
(a) 0, 2 (b) 1, 1 (c) 2, 0 (d) 2, 1
Solution: (c) \therefore The turning points for $f(x)$ are $x = 1, 3$.
So, $\lim_{x \to 1^+} f(x) = \lim_{h \to 0} f(1 - h) = \lim_{h \to 0} a(1 + h) + b = a + b$
 $\therefore f(x) is continuous at $x = 1$, so $\lim_{x \to 1^+} f(x) = f(1)$
 $\Rightarrow 2 = a + b$ (1)
Again, $\lim_{x \to 1^+} f(x) = \lim_{h \to 0} f(3 - h) = \lim_{h \to 0} a(3 - h) + b = 3a + b$ and $\lim_{x \to 3^+} f(x) = \lim_{h \to 0} f(3 + h) = \lim_{h \to 0} \tan \frac{\pi}{12}(3 + h) = 6$
 $f(x)$ is continuous at $(-\alpha, 6)$, so it is continuous at $x = 3$ also, so $\lim_{x \to 3^+} f(x) = \lim_{h \to 0} f(x) = 6$
 $f(x)$ is continuous in $(-\alpha, 6)$, so it is continuous at $x = 3$ also, so $\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} f(x) + b = 0$
 $\Rightarrow 3a + b = 6$ (ii)
Solving (i) and (ii) $a = 2, b = 0$.
Trick : In above type of questions first find out the turning points. For example in above question the function is i.e., in above problem.$

$$f(x) = \begin{cases} 1 + \sin\frac{\pi}{2}x \; ; \; -\infty < x \le 1, & f(1) = 2\\ ax + b \; ; \; 1 < x < 3 \; f(1) = a + b, f(3) = 3a + b\\ 6 \tan\frac{\pi x}{12} \; ; \; 3 \le x < 6 \; f(3) = 6 \end{cases}$$

Which gives 2 = a + b and 6 = 3a + b after solving above linear equations we get a = 2, b = 0.



2.3.4 Continuous Function

(1) A list of continuous functions :

Function $f(x)$	Interval in which $f(x)$ is continuous
(i) Constant <i>K</i>	(<i>−∞</i> , ∞)
(ii) x^n , (<i>n</i> is a positive integer)	(<i>−∞</i> , ∞)
(iii) x^{-n} (<i>n</i> is a positive integer)	$(-\infty, \infty) - \{0\}$
(iv) $ x - a $	(<i>−∞</i> , ∞)
(V) $p(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n$	(−∞, ∞)
(vi) $\frac{p(x)}{q(x)}$, where $p(x)$ and $q(x)$ are polynomial in	$(-\infty,\infty)$ - $\{x:q(x)=0\}$
x	
(vii) $\sin x$	(<i>−</i> ∞ <i>,</i> ∞)
(viii) $\cos x$	$(-\infty, \infty)$
(ix) $\tan x$	$(-\infty, \infty) - \{(2n + 1)\pi/2 : n \in I\}$
(x) $\cot x$	$(-\infty, \infty) - \{n\pi : n \in I\}$
(xi) $\sec x$	$(-\infty, \infty) - \{(2n+1)\pi/2 : n \in I\}$

(xii) cosec x	$(-\infty, \infty) - \{n\pi : n \in I\}$
(xiii) e^x	$(-\infty, \infty)$
(xiv) $\log_e x$	(0,∞)

(2) **Properties of continuous functions :** Let f(x) and g(x) be two continuous functions at x = a. Then

(i) cf(x) is continuous at x = a, where c is any constant

(ii) $f(x) \pm g(x)$ is continuous at x = a.

(iii) f(x). g(x) is continuous at x = a.

(iv) f(x)/g(x) is continuous at x = a, provided $g(a) \neq 0$.

Important Tips

- $\overset{\circ}{=}$ A function f(x) is said to be continuous if it is continuous at each point of its domain.
- *[∞]* A function f(x) is said to be everywhere continuous if it is continuous on the entire real line R i.e. $(-\infty, \infty)$. eg. polynomial function e^x , $\sin x$, $\cos x$, constant, x^n , |x-a| etc.
- *The second second a continuous function is a continuous function.*
- The formula of the formula f(x) is continuous at x = g(a) then (fog) (x) is continuous at x = a.
- *Therefore For the second se*
- ^{*s*} *If* f(x) *is* a continuous function defined on [*a*, *b*] such that f(a) and f(b) are of opposite signs, then there is atleast one value of *x* for which f(x) vanishes. *i.e. if* f(a)>0, $f(b) < 0 \Rightarrow \exists c \in (a, b)$ such that f(c) = 0.

Therefore f(x) is continuous on [a, b] and maps [a, b] into [a, b] then for some $x \in [a, b]$ we have f(x) = x.

(3) **Continuity of composite function :** If the function u = f(x) is continuous at the point x = a, and the function y = g(u) is continuous at the point u = f(a), then the composite function y = (gof)(x) = g(f(x)) is continuous at the point x = a.

2.3.5 Discontinuous Function

(1) **Discontinuous function :** A function 'f' which is not continuous at a point x = a in its domain is said to be discontinuous there at. The point 'a' is called a point of discontinuity of the function.

The discontinuity may arise due to any of the following situations.

(i) $\lim_{x \to a^+} f(x)$ or $\lim_{x \to a^-} f(x)$ or both may not exist

(ii) $\lim_{x \to \infty} f(x)$ as well as $\lim_{x \to \infty} f(x)$ may exist, but are unequal.

(iii) $\lim_{x \to a^+} f(x)$ as well as $\lim_{x \to a^-} f(x)$ both may exist, but either of the two or both may not be equal to f(a).

Important Tips

A function *f* is said to have removable discontinuity at x = a if $\lim_{x+a^+} f(x) = \lim_{x+a^-} f(x)$ but their common value is not equal to f(x).

[Roorkee 1988]

Such a discontinuity can be removed by assigning a suitable value to the function f at x = a.

- The $\int_{x \to a}^{\infty} f(x)$ does not exist, then we can not remove this discontinuity. So this become a non-removable discontinuity or essential discontinuity.
- If f is continuous at x = c and g is discontinuous at x = c, then
 (a) f+g and f g are discontinuous
 (b) f.g may be continuous
- The f and g are discontinuous at x = c, then f + g, f g and fg may still be continuous.
- Point functions (domain and range consists one value only) is not a continuous function.

The points of discontinuity of $y = \frac{1}{u^2 + u - 2}$ where $u = \frac{1}{x - 1}$ is Example: 11 (b) $\frac{-1}{2}$, 1, -2 (c) $\frac{1}{2}$, -1, 2 (a) $\frac{1}{2}$, 1, 2 (d) None of these **Solution:** (a) The function $u = f(x) = \frac{1}{x-1}$ is discontinuous at the point x = 1. The function $y = g(x) = \frac{1}{u^2 + u - 2} = \frac{1}{(u + 2)(u - 1)}$ is discontinuous at u = -2 and u = 1when $u = -2 \Rightarrow \frac{1}{x-1} = -2 \Rightarrow x = \frac{1}{2}$, when $u = 1 \Rightarrow \frac{1}{x-1} = 1 \Rightarrow x = 2$. Hence, the composite y = g(f(x)) is discontinuous at three points $= \frac{1}{2}, 1, 2$. The function $f(x) = \frac{\log(1 + ax) - \log(1 - bx)}{x}$ is not defined at x = 0. The value which should be assigned to Example: 12 f at x = 0 so that it is continuous at x = 0, is (a) *a*−*b* (b) a+b(c) $\log a + \log b$ (d) $\log a - \log b$ **Solution:** (b) Since limit of a function is a+b as $x \to 0$, therefore to be continuous at x=0, its value must be a+bat $x = 0 \Rightarrow f(0) = a + b$.

Example: 13 If $f(x) = \begin{cases} \frac{x^2 - 4x + 3}{2}, \text{ for } x \neq 1 \\ 2 \end{cases}$, for $x = 1 \end{cases}$, then [IIT 1972] (a) $\lim_{x \to 1^+} f(x) = 2$ (b) $\lim_{x \to 1^-} f(x) = 3$ (c) f(x) is discontinuous at x = 1 (d) None of these

Solution: (c) $f(1) = 2, f(1+) = \lim_{x \to 1+} \frac{x^2 - 4x + 3}{x^2 - 1} = \lim_{x \to 1+} \frac{(x-3)}{(x+1)} = -1$

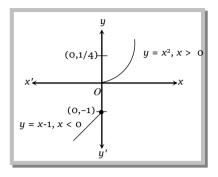
 $f(1-) = \lim_{x \to 1-} \frac{x^2 - 4x + 3}{x^2 - 1} = -1 \Rightarrow f(1) \neq f(1-).$ Hence the function is discontinuous at x = 1.

Example: 14 If $f(x) = \begin{cases} x - 1, x < 0 \\ \frac{1}{4}, x = 0 \end{cases}$, then

(a)
$$\lim_{x \to 0^+} f(x) = 1$$

(b) $\lim_{x \to 0^-} f(x) = 1$
(c) $f(x)$ is discontinuous at $x = 0$
(d) None of these

Solution: (c) Clearly from curve drawn of the given function f(x), it is discontinuous at x = 0.



Let $f(x) = \begin{cases} (1+|\sin x|)^{\frac{a}{|\sin x|}}, & -\frac{\pi}{6} < x < 0\\ b, & x = 0 \end{cases}$, then the values of a and b if f is continuous at x = 0, are $e^{\frac{\tan 2x}{\tan 3x}}, & 0 < x < \frac{\pi}{6} \end{cases}$ Example: 15

respectively

(a)
$$\frac{2}{3}, \frac{3}{2}$$
 (b) $\frac{2}{3}, e^{2/3}$ (c) $\frac{3}{2}, e^{3/2}$ (d) None of these
(a) $f(x) = \begin{cases} (1+|\sin x|)^{\frac{a}{|\sin x|}} ; -\left(\frac{\pi}{6}\right) < x < 0 \\ b ; x = 0 \\ \frac{\tan 2x}{e^{\frac{\tan 2x}{\tan 3x}}} ; 0 < x < \left(\frac{\pi}{6}\right) \end{cases}$

Solution: ()

For f(x) to be continuous at x = 0

$$\Rightarrow \lim_{x \to 0^{-}} f(x) = f(0) = \lim_{x \to 0^{+}} f(x) \Rightarrow \lim_{x \to 0} (1 + |\sin x|)^{\frac{a}{|\sin x|}} = e^{\lim_{x \to 0^{-}} \left(|\sin x| \frac{a}{|\sin x|} \right)} = e^{a}$$

Now, $\lim_{x \to 0^{+}} e^{\tan 2x / \tan 3x} = \lim_{x \to 0^{+}} e^{\left(\frac{\tan 2x}{2x} \cdot 2x\right) / \left(\frac{\tan 3x}{3x} \cdot 3x\right)} = \lim_{x \to 0^{+}} e^{2/3} = e^{2/3}.$
 $\therefore e^{a} = b = e^{2/3} \Rightarrow a = \frac{2}{3} \text{ and } b = e^{2/3}.$

Example: 16 Let f(x) be defined for all x > 0 and be continuous. Let f(x) satisfy $f\left(\frac{x}{y}\right) = f(x) - f(y)$ for all x, y and f(e) = 1, then

(a)
$$f(x) = \text{In } x$$
 (b) $f(x)$ is bounded (c) $f\left(\frac{1}{x}\right) \to 0$ as $x \to 0$ (d) $xf(x) \to 1$ as $x \to 0$
Solution: (a) Let $f(x) = \text{In } (x), x > 0$ $f(x) = \text{In } (x)$ is a continuous function of x for every positive value of x .

$$f\left(\frac{x}{y}\right) = \operatorname{In}\left(\frac{x}{y}\right) = \operatorname{In}(x) - \operatorname{In}(y) = f(x) - f(y).$$

Let $f(x) = [x] \sin\left(\frac{\pi}{[x+1]}\right)$, where [.] denotes the greatest integer function. The domain of f is and Example: 17 the points of discontinuity of f in the domain are (a) $\{x \in R \mid x \in [-1, 0)\}, I - \{0\}$ (b) $\{x \in R \mid x \notin [1,0)\}, I - \{0\}$ (c) { $x \in R | x \notin [-1, 0)$ }, $I - \{0\}$ (d) None of these Solution: (c) Note that [x + 1] = 0 if $0 \le x + 1 < 1$ *i.e.* [x+1] - 0 if $-1 \le x < 0$. Thus domain of *f* is $R - [-1, 0] = \{x \notin [-1, 0)\}$ We have $\sin\left(\frac{\pi}{|x+1|}\right)$ is continuous at all points of R - [-1, 0) and [x] is continuous on R - I, where Idenotes the set of integers. Thus the points where f can possibly be discontinuous are....., $-3, -2, -1, 0, 1, 2, \dots$. But for $0 \le x < 1, [x] = 0$ and $\sin\left(\frac{\pi}{[x+1]}\right)$ is defined. Therefore f(x) = 0 for $0 \le x < 1$. Also f(x) is not defined on $-1 \le x < 0$. Therefore, continuity of f at 0 means continuity of f from right at 0. Since f is continuous from right at 0, f is continuous at 0. Hence set of points of discontinuities of f is $I - \{0\}$. If the function $f(x) = \frac{2x - \sin^{-1} x}{2x + \tan^{-1} x}, (x \neq 0)$ is continuous at each point of its domain, then the value of Example: 18 *f*(0) is [Rajasthan PET 2000] (b) 1/3 (c) 2/3 (d) - 1/3 **Solution:** (b) $f(x) = \lim_{x \to 0} \left(\frac{2x - \sin^{-1} x}{2x + \tan^{-1} x} \right) = f(0)$, $\left(\frac{0}{0} \text{ form} \right)$ Applying L-Hospital's rule, $f(0) = \lim_{x \to 0} \frac{\left(2 - \frac{1}{\sqrt{1 - x^2}}\right)}{\left(2 + \frac{1}{2}\right)} = \frac{2 - 1}{2 + 1} = \frac{1}{3}$ **Trick**: $f(0) = \lim_{x \to 0} \frac{2x - \sin^{-1} x}{2x + \tan^{-1} x} \Rightarrow \lim_{x \to 0} \frac{2 - \frac{\sin^{-1} x}{x}}{2 + \frac{\tan^{-1} x}{x}} = \frac{2 - 1}{2 + 1} = \frac{1}{3}.$ The values of A and B such that the function $f(x) = \begin{cases} -2\sin x, & x \le -\frac{\pi}{2} \\ A\sin x + B, & -\frac{\pi}{2} < x < \frac{\pi}{2} \\ \cos x, & x \ge \frac{\pi}{2} \end{cases}$, is continuous everywhere Example: 19 are

106 Func	tions, Limits, Continu	ity and		
	(a) $A = 0, B = 1$	(b) $A = 1, B = 1$	(c) $A = -1, B = 1$	(d) $A = -1, B = 0$
Solution: (c)	For continuity at all $x \in R$,	we must have $f\left(-\frac{\pi}{2}\right) = \frac{\pi}{2}$	$\lim_{x \to (-\pi/2)^{-}} (-2\sin x) = \lim_{x \to (-\pi/2)^{-}} (-\pi/2)^{-1}$	$(A\sin x + B)$
	$\Rightarrow 2 = -A + B$		(i)	
	and $f\left(\frac{\pi}{2}\right) = \lim_{x \to (\pi/2)^-} (A \sin x +$	$B) = \lim_{x \to (\pi/2)^+} (\cos x)$		
	$\Rightarrow 0 = A + B$		(ii)	
	From (i) and (ii), $A = -1$ as			
Example: 20	If $f(x) = \frac{x^2 - 10x + 25}{x^2 - 7x + 10}$ for x	$f \neq 5$ and f is continuous	at $x = 5$, then $f(5) =$	[EAMCET 2001]
	(a) 0	(b) 5	(c) 10	(d) 25
Solution: (a)	$f(5) = \lim_{x \to 5} f(x) = \lim_{x \to 5} \frac{x^2 - 10x}{x^2 - 7x}$	$\frac{+25}{+10} = \lim_{x \to 5} \frac{(x-5)^2}{(x-2)(x-5)} =$	$\frac{5-5}{5-2} = 0$.	
Example: 21	In order that the function	$f(x) = (x+1)^{\cot x}$ is continu	ious at $x = 0$, $f(0)$ must	be defined as
			[UPSE	AT 2000; Haryana CEE 2001]
	(a) $f(0) = \frac{1}{e}$	(b) $f(0) = 0$	(c) $f(0) = e$	(d) None of these
Solution: (c)	For continuity at 0, we mu	st have $f(0) = \lim_{x \to 0} f(x)$		
		$x \rightarrow 0$		
	$= \lim_{x \to 0} (x+1)^{\cot x} = \lim_{x \to 0} \left\{ (1+x)^{\frac{1}{x}} \right\}$	$\int_{x \to 0}^{x \cot x} = \lim_{x \to 0} \left\{ (1+x)^{\frac{1}{x}} \right\}^{\lim_{x \to 0}}$	$=e^1=e.$	
Example: 22	The function $f(x) = \sin x $	is		[DCE 2002]
	(a) Continuous for all <i>x</i>		(b) Continuous only a	t certain points
	(c) Differentiable at all po	ints	(d)	None of these
Solution: (a)	It is obvious.			
Example: 23	If $f(x) = \begin{cases} \frac{1-\sin x}{\pi-2x}, & x \neq \frac{\pi}{2} \\ \lambda, & x = \frac{\pi}{2} \end{cases}$ b	e continuous at $x = \frac{\pi}{2}$, t	hen value of λ is	[Rajasthan PET 2002]
	(a) -1	(b) 1	(c) 0	(d) 2
Solution: (c)	$f(x)$ is continuous at $x = \frac{\pi}{2}$, then $\lim_{x \to \pi/2} f(x) = f(0)$ or	$\lambda = \lim_{x \to \pi/2} \frac{1 - \sin x}{\pi - 2x} , \left(\frac{0}{0} \text{ for}\right)$	orm)
	Applying L-Hospital's rule,	$\lambda = \lim_{x \to \pi/2} \frac{-\cos x}{-2} \implies \lambda =$	$\lim_{x \to \pi/2} \frac{\cos x}{2} = 0.$	
Example: 24	If $f(x) = \frac{2 - \sqrt{x+4}}{\sin 2x}$; $(x \neq 0)$,	is continuous function a	t $x = 0$, then $f(0)$ equals	[MP PET 2002]
	(a) $\frac{1}{4}$	(b) $-\frac{1}{4}$	(c) $\frac{1}{8}$	(d) $-\frac{1}{8}$
Solution: (d)	If $f(x)$ is continuous at $x =$	0, then, $f(0) = \lim_{x \to 0} f(x) =$	$\lim_{x \to 0} \frac{2 - \sqrt{x+4}}{\sin 2x} \qquad , \left(\frac{0}{0} \text{ form}\right)$	n)

Using L-Hospital's rule,
$$f(0) = \lim_{x \to 0} \frac{\left(-\frac{1}{2\sqrt{x+4}}\right)}{2\cos 2x} = -\frac{1}{8}$$
.
Example: 25 If function $f(x) = \begin{cases} x & \text{if } x \text{ is rational} \\ 1-x & \text{if } x \text{ is rational} \end{cases}$, then $f(x)$ is continuous at number of points
(a) ∞ (b) 1 (c) \circ (d) None of these
Solution: (c) At no point, function is continuous.
Example: 26 The function defined by $f(x) = \begin{cases} \left(x^2 + e^{\frac{1}{2-x}}\right)^{-1} & x \neq 2, \text{ is continuous from right at the point } x = 2, \text{ then } x = 2 \end{cases}$
(a) \circ (b) 1/4 (c) -1/4 (d) None of these
Solution: (b) $f(x) = \left[x^2 + e^{\frac{1}{2-x}}\right]^{-1}$ and $f(2) = k$
If $f(x)$ is continuous from right at $x = 2$ then $\lim_{x \to 2^2} f(x) = f(2) = k$
If $f(x)$ is continuous from right at $x = 2$ then $\lim_{x \to 2^2} f(x) = f(2) = k$
 $x = \lim_{x \to 2^2} \left[x^2 + e^{\frac{1}{2-x}}\right]^{-1} = k \Rightarrow k = \lim_{k \to 0} f(2+h) \Rightarrow k = \lim_{k \to 0} \left[(2+h)^2 + e^{\frac{1}{2-(2+h)}}\right]^{-1}$
 $\Rightarrow k = \lim_{k \to 0} \left[4+h^2+4h+e^{-1/h}\right]^{-1} \Rightarrow k = [4+0+0+e^{-x}]^{-1} \Rightarrow k = \frac{1}{4}$.
Example: 27 The function $f(x) = \frac{1-\sin x + \cos x}{1+\sin x + \cos x}$ is not defined at $x = \pi$. The value of $f(\pi)$, so that $f(\pi)$ is continuous at $x = \pi$, is
(a) $-\frac{1}{2}$ (b) $\frac{1}{2}$ (c) -1 (d) 1

Solution: (c) $\lim_{x \to \pi} f(x) = \lim_{x \to \pi} \frac{2 \cos^2 \frac{x}{2} - 2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \cos^2 \frac{x}{2} + 2 \sin \frac{x}{2} \cos \frac{x}{2}} = \lim_{x \to \pi} \frac{\cos \frac{x}{2} - \sin \frac{x}{2}}{\cos \frac{x}{2} + \sin \frac{x}{2}} = \lim_{x \to \pi} \tan\left(\frac{\pi}{4} - \frac{x}{2}\right)$ $\therefore \text{ At } x = \pi, \ f(\pi) = -\tan \frac{\pi}{4} = -1.$ Example: 28 If $f(x) = \begin{cases} \frac{\sqrt{1 + kx} - \sqrt{1 - kx}}{x} & \text{, for } -1 \le x < 0\\ 2x^2 + 3x - 2 & \text{, for } 0 \le x \le 1 \end{cases}$ is continuous at x = 0, then k =[EAMCET 2003]

(a) -4 (b) -3 (c) -2 (d) -1
(c) L.H.L.
$$= \lim_{x \to 0^{-}} \frac{\sqrt{1+kx} - \sqrt{1-kx}}{x} = k$$

Solution:

R.H.L. =
$$\lim_{x \to 0^+} (2x^2 + 3x - 2) = -2$$

Since it is continuous, hence L.H.L = R.H.L \Rightarrow k = -2.

| **v** |

Example: 29 The function
$$f(x) = |x| + \frac{|x|}{x}$$
 is

[Karnataka CET 2003]

- (a) Continuous at the origin
- (b) Discontinuous at the origin because |x| is discontinuous there
- (c) Discontinuous at the origin because $\frac{|x|}{x}$ is discontinuous there
- (d) Discontinuous at the origin because both |x| and $\frac{|x|}{x}$ are discontinuous there

Solution: (c) |x| is continuous at x = 0 and $\frac{|x|}{x}$ is discontinuous at x = 0

 $\therefore f(x) = |x| + \frac{|x|}{x}$ is discontinuous at x = 0.

Continuity

Basic Level

If the function $f(x) = \begin{cases} 5x - 4 & \text{, if } 0 < x \le 1 \\ 4x^2 + 3bx, \text{ if } 1 < x < 2 \end{cases}$ is continuous at every point of its domain, then the value of *b* is 1. [Rajasthan PET 2000] (a) -1 (c) 1 (d) None of these If $f(x) = \begin{cases} \frac{\log(1+2ax) - \log(1-bx)}{x}, & x \neq 0\\ k & x = 0 \end{cases}$ is continuous at x = 0, then k equals 2. [Rajasthan PET 1998] (b) 2a - b(c) b - 2a(a) 2a + b(d) b+aIf $f(x) = \begin{cases} x & \text{, when } 0 \le x < 1 \\ k - 2x & \text{, when } 1 \le x \le 2 \end{cases}$ is continuous at x = 1, then value of *k* is 3. [Rajasthan PET 1993] (a) 1 (b) -1 (c) 3 (d) 2 If $f(x) = \begin{cases} x \ , \ x < 0 \\ 1 \ , \ x = 0 \\ x^2 \ , \ x > 0 \end{cases}$, then true statement is 4. [Rajasthan PET 1992; DCE 2001] (b) $\lim_{x \to 0} f(x) = 0$ (c) f(x) is continuous at x = 0 (d) $\lim_{x \to 0} f(x)$ does not exist (a) $\lim_{x \to 0} f(x) = 1$ If $f(x) = \frac{x-a}{\sqrt{x}-\sqrt{a}}$ is continuous at x = a, then f(a) equals 5٠ (a) \sqrt{a} (b) 2√*a* (c) a (d) 2a If f(x) = |x - b|, then function 6. [Roorkee 1984] (a) Is continuous $\forall x$ (b) Is continuous at $x = \infty$ (c) Is discontinuous at x = b (d) None of these If $f(x) = \begin{cases} \frac{x^4 - 16}{x - 2}, & \text{when } x \neq 2\\ 16, & \text{when } x = 2 \end{cases}$ then 7. (a) f(x) is continuous at x = 2(b) f(x) is discontinuous at x = 2(c) $\lim_{x \to 2} f(x) = 16$ (d) None of these In the following discontinuous function is 8. [Rajasthan PET 1984] (c) $\frac{1}{1-2r}$ (d) $\frac{1}{1+r^2}$ (b) x^2 (a) $\sin x$ If $f(x) = \begin{cases} x^2 & \text{, when } x \le 1 \\ x + 5 & \text{when } x > 1 \end{cases}$ then 9. [MP PET 1996]

(a) f(x) is continuous at x = 1(b) f(x) is discontinuous at x = 1(c) $\lim_{x \to 1} f(x) = 1$ (d) None of these If $f(x) = \begin{cases} 1+x, \text{ when } x \le 2\\ 5-x, \text{ when } x > 2 \end{cases}$ then 10. (a) f(x) is continuous at x=2 (b) f(x) is discontinuous at x=2(c) f(x) is discontinuous at (d) None of these x = 0The point of discontinuity of the function $f(x) = \frac{1 + \cos 5x}{1 - \cos 4x}$ is 11. (a) x = 0(b) $x = \pi$ (c) $x = \pi/2$ (d) All of these Function $f(x) \neq x$ is [Rajasthan PET 1992] 12. (c) Continuous (a) Discontinuous at x = 0(b) Discontinuous at x = 1at all points (d) Discontinuous at all points If $f(x) = \begin{cases} x^2 & \text{, when } x \neq 1 \\ 2 & \text{, when } x = 1 \end{cases}$ then (a) $\lim_{x \to 1} f(x) = 2$ (b) f(x) is continuous at x = 1 (c) 13. (a) $\lim_{x \to 1} f(x) = 2$ f(x) is discontinuous at x = 1 (d) None of these Let $f(x) = \begin{cases} \frac{\sin \pi x}{5x} , x \neq 0 \\ k , x = 0 \end{cases}$. If f(x) is continuous at x = 0, then k = 014. (a) $\frac{\pi}{5}$ (b) $\frac{5}{\pi}$ (c) 1 (d) 0 Function f(x) = x - |x| is 15. (a) Discontinuous at x = 0Discontinuous at x = 1(c) Continuous (b) at all points (d) Discontinuous at all points 16. Function f(x) = x + |x| is (a) Continuous at all points (b) Discontinuous at x = 0(c) Discontinuous at x = 1(d) Discontinuous at all points If f(x) is continuous function and g(x) is discontinuous function, then correct statement is 17. (a) f(x) + g(x) is continuous function (b) f(x) - g(x) is continuous function (c) f(x) + g(x) is discontinuous function (d) f(x).g(x) is discontinuous function Function $f(x) = \begin{cases} -1 & \text{, when } x < -1 \\ -x & \text{, when } -1 \le x \le 1 \end{cases}$ is continuous 18. [Rajasthan PET 1986] 1. when x > 1(a) Only at x = 1(b) Only at x = -1 (c) At both x = 1 and x = -1(d) Neither at x=1 nor at x = -1Advance Level

Functions, Limits, Continuity and

Let $f(x) = \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{x}$ the value which should be assigned to f at x = 0 so that it is continuous 19. everywhere is [MP PET 1992]

(a)
$$\frac{1}{2}$$
 (b) -2 (c) 2 (d) 1

The value of f(0) so that the function $f(x) = \frac{\sqrt{1+x} - (1+x)^{1/3}}{x}$ becomes continuous is equal to 20.

	, ,	y					
	(a) $\frac{1}{6}$	(b) $\frac{1}{4}$	(c)	2	(d) $\frac{1}{3}$		
21.	If $f(x) = \begin{cases} \frac{ x-a }{ x-a } & \text{when } x \neq \\ 1 & \text{when } x = \end{cases}$	^a then				I	[AI CBSE 1983]
	(a) $f(x)$ is continuous at		f(x) is discontinuous at x=a (c) $\lim f(x)$)=1 (d) None of
thes					$x \rightarrow a$		
22.	If $f(x) = \begin{cases} \frac{x}{e^{1/x} + 1}, \text{ when } \\ 0, \text{ when } \end{cases}$ (a) $\lim_{x \to 0^+} f(x) = 1$	$\begin{array}{l} x \neq 0 \\ x = 0 \end{array} \text{then} $				[B	IT Rnchi 1999]
	(a) $\lim_{x \to +} f(x) = 1$	(b) $\lim_{x \to 0^{-1}} f(x) = 1$	(c)	f(x) is continuous at $x = 0$	(d) No	ne of th	ese
23.	If the function $f(x) = \begin{cases} \frac{k}{\pi} \\ 3 \end{cases}$	$\frac{\cos x}{-2x}$, when $x \neq \frac{\pi}{2}$ be continue , when $x = \frac{\pi}{2}$	ous at	$x = \frac{\pi}{2}$, then $k=$			
	(a) 3	(b) 6	(c)		(d) No	ne of th	ese
24.	A function $f(x)$ is define	ed in [0,1] as follows $f(x) = \begin{cases} 1 \\ 1 \end{cases}$	x, if $-x$, if	f(x) is rational , then correct $f(x)$ is irrational	stateme	ent is	
	(a) $f(x)$ is continuous at	t x = 0		(b)	f(x) is	continu	ous at $x = 1$
	(c) $f(x)$ is continuous at	$t x = \frac{1}{2}$		(d)	f(x)	is	everywhere
disco	ontinuous	-					
25.	If $f(x) = \begin{cases} \frac{e^{1/x} - 1}{e^{1/x} + 1}, & x \neq 0\\ 1, & x = 0 \end{cases}$,	then at $x = 0, f(x)$ is				[BITS	(Mesra) 1998]
	(a) Continuous	(b) Left continuous	(c)	Right continuous	(d) No	ne of th	ese
26.	The function $f(x) = \begin{cases} x+2\\ 4\\ 3x \end{cases}$	2 , $1 \le x \le 2$, $x = 2$ is continuous x - 2 , $x > 2$					[DCE 1999]
	(a) $x = 2$ only		(c)	$1 \le x$	(d) No	ne of th	ese
27.	If $f(x) = \begin{cases} 1, \text{ when } 0 \\ 2\sin\frac{2x}{9}, \text{ when } \end{cases}$	$0 < x \le \frac{3\pi}{4}$ then $\frac{3\pi}{4} < x < \pi$					[IIT 1991]
	(a) $f(x)$ is continuous at			(b)	f(x) is	continu	ous at $x = \pi$
	(c) $f(x)$ is continuous at	$t x = \frac{3\pi}{4}$		(d)	f(x) i	s disco	ontinuous at
$x = \frac{2}{2}$		-					
28.	If $f(x) = \begin{cases} 1/2 - x , & 0 < x < 0 \\ 0 , & x = 0 \\ 1/2 , & x = 1/2 \\ 3/2 - x , & 1/2 < x \\ 1 , & x = 1 \end{cases}$	< 1/2 2 , then false statement is < 1	3	[Rajasthan PET 1	984 (Sin	nilar to I	MP PET 1996)]
	(a) $f(x)$ is discontinuou			(b)	<i>f</i> (<i>x</i>) is	continu	ous at $x = \frac{1}{2}$
	(c) $f(x)$ is discontinuou	s at $x = 1$		(d)			ous at $x = \frac{1}{4}$

29.
$$f(x) = \frac{\sqrt{1+px}}{x} - \sqrt{1-px}}, -1 \le x < 0 = \frac{2x+1}{x-2}, 0 \le x \le 1$$
 is continuous in the interval [-1,1] then *p* equals
(a) -1 (b) $-\frac{1}{2}$ (c) $\frac{1}{2}$ (d) 1
30. The function $f(x) = a$ (b) $x < \sqrt{2}$ is continuous for $0 \le x < x$, then the most suitable values of *a* and *b* $\left[(2b^2 - 4b)/x^2, \sqrt{2} \le x < \infty \right]$
are [BT Ranchi 1984]
(a) $a = 1, b = -1$ (b) $a = -1, b = 1 + \sqrt{2}$ (c) $a = -1, b = 1$ (d) None of these
31. Let $f(x) = \left\{ \frac{x^2 + x^2 - 16x + 20}{(x-2)^2}, & \text{if } x = 2 \\ (x - 1)^2, & \text{if } x = 2 \\ (x - 1)^2, & \text{if } x = 2 \\ (x - 1)^2, & \text{if } x = 2 \\ (x - 1)^2, & \text{if } x = 2 \\ (x - 1)^2, & \text{if } x = 2 \\ (x - 1)^2, & \text{if } x = 2 \\ (x - 1)^2, & \text{when } x = -5 \\ (a) \frac{3}{2}$ (b) $\frac{7}{8}$ (c) $\frac{8}{7}$ (d) $\frac{2}{3} \\ (b) \frac{7}{8}$ (c) $\frac{8}{7}$ (d) $\frac{2}{3} \\ (c) \frac{3}{2}$ (d) $\frac{7}{3} \\ (d) \frac{3}{2}$ (b) $\frac{7}{8}$ (c) $\frac{8}{7}$ (d) $\frac{2}{3} \\ (d) \frac{2}{3} \\ (d) \frac{3}{2} \\ (d) \frac{1}{2}(x - 1)^2 \right] (when $x \le -3$ is continuous at $x = -5$, then the value of 'a' will be
(a) $\frac{3}{2}$ (b) $\frac{7}{8}$ (c) $\frac{8}{7}$ (c) $\frac{8}{7}$ (d) $\frac{2}{3} \\ (d) \frac{2}{3} \\ (d) \frac{2}{3} \\ (d) \frac{1}{4}(x) = \frac{1}{4}x^{-1} - 1, \text{ then on the interval $[0, \pi]$
(a) $\tan f(x) = \ln \frac{1}{2}x^{-1}$, then on the interval $[0, \pi]$
(a) $\tan f(x) = \ln \frac{1}{2}x^{-1}$, then on the interval $[0, \pi]$
(a) $\tan f(x) = \ln \frac{1}{2}x^{-1}$, (b) end to continuous (b) $\tan f(x) = \ln \frac{1}{f(x)}$ are both discontinuous
(c) $\tan f(x) = \ln \frac{1}{2}x^{-1}$, (c) $\tan e = both continuous (d) $\tan f(x) = \tan \frac{1}{f(x)}$ is not continuous on R
(c) $f(x)$ is continuous on $R - Z$ (d) None of these
36. Let $f(x) = [2x^3 - 5)$, [.] denotes the greatest integer function. Then,
(a) $f(x) = \tan (x + 1)x = \frac{1}{2}x^{-1}$, [.] denotes the greatest integer function is (x) 2 (c) 3 (d) None of these
37. The number of points at which the function $f(x) = \frac{1}{x-[3]}$ [.] denotes, the greatest integer function is not continuous is
(a) 1 (b) 2 (c) 3 (c) 10 (d) 3
37. The number of points at which the function $f(x) = \frac{1}{x-[3]}$ [.] denotes, the greatest in$$$

41.	Function $f(x) = \left(1 + \frac{x}{a}\right)^{1/x}$ is contained.	nuous at $x = 0$, if $f(0)$ equals	
	(a) e^a (b) e^-	(c) 0	(d) $e^{1/a}$
42.	Let [.] denote the greatest integ	er function and $f(x) = [\tan^2 x]$. Then	[IIT 1993]
	(a) $\lim_{x\to 0} f(x)$ does not exist	(b)	f(x) is continuous at $x = 0$
	(c) $f(x)$ is not differentiable at	c = 0 (d) $f'(0) = 1$	
43.	$a\cos 2x - b\sin b$		$x \le \pi$ then <i>a</i> , <i>b</i> are
	(a) $\frac{\pi}{6}, \frac{\pi}{12}$ (b) $\frac{\pi}{3}$	$\frac{\pi}{6}$ (c) $\frac{\pi}{6}, -\frac{\pi}{12}$	(d) None of these
44.	Let $f : R \to R$ be any function. De	fine $g: R \to R$ by $g(x) \neq f(x)$ for all x	r, Then g is [IIT 2000]
	(a) Onto if <i>f</i> is onto	(b) One-one if j	f is one-one
diffe	(c) Continuous if <i>f</i> is continuous if <i>f</i> is continuous	(d)	Differentiable if f is

	Assignment (Basic & Advance Level)																		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
a	a	с	b	b	a,b	b	с	b	a	d	с	с	a	с	a	с	d	d	a
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
b	с	b	с	с	с	с	b	b	с	a	b	d	b	b	b	d	с	с	b
41	42	43	44																
d	b	с	с																

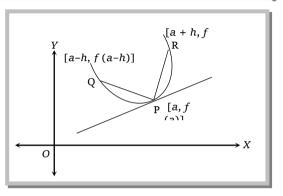
2.4 Differentiability

2.4.1 Differentiability of a Function at a Point

(1) Meaning of differentiability at a point : Consider the function f(x) defined on an open interval (b,c) let P(a, f(a)) be a point on the curve y = f(x) and let Q(a-h, f(a-h)) and R(a+h, f(a+h)) be two neighbouring points on the left hand side and right hand side respectively of the point P.

Then slope of chord $PQ = \frac{f(a-h) - f(a)}{(a-h) - a} = \frac{f(a-h) - f(a)}{-h}$

and, slope of chord $PR = \frac{f(a+h) - f(a)}{a+h-a} = \frac{f(a+h) - f(a)}{h}$.



 \therefore As $h \rightarrow 0$, point Q and R both tends to P from left hand and right hand respectively. Consequently, chords PQ and PR becomes tangent at point P.

Thus, $\lim_{h \to 0} \frac{f(a-h) - f(a)}{-h} = \lim_{h \to 0}$ (slope of chord *PQ*)= $\lim_{Q \to P}$ (slope of chord *PQ*)

Slope of the tangent at point *P*, which is limiting position of the chords drawn on the left hand side of point *P* and $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = \lim_{h\to 0} (\text{slope of chord } PR) = \lim_{R\to P} (\text{slope of chord } PR).$

 \Rightarrow Slope of the tangent at point *P*, which is the limiting position of the chords drawn on the right hand side of point *P*.

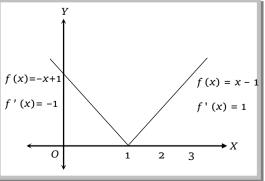
Now,
$$f(x)$$
 is differentiable at $x = a \iff \lim_{h \to 0} \frac{f(a-h) - f(a)}{-h} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

 \Leftrightarrow There is a unique tangent at point *P*.

Thus, f(x) is differentiable at point *P*, iff there exists a unique tangent at point *P*. In other words, f(x) is differentiable at a point *P* iff the curve does not have *P* as a corner point. *i.e.*, "the function is not differentiable at those points on which function has jumps (or holes) and sharp edges."

Let us consider the function f(x) = |x-1|, which can be graphically shown,

Which show f(x) is not differentiable at x = 1. Since, f(x) has sharp edge at x = 1.



Mathematically : The right hand derivative at x = 1 is 1 and left-hand derivative at x = 1 is -1. Thus, f(x) is not differentiable at x = 1.

(2) **Right hand derivative :** Right hand derivative of f(x) at x = a, denoted by f'(a+0) or f'(a+), is the $\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$.

(3) Left hand derivative : Left hand derivative of f(x) at x = a, denoted by f'(a - 0) or f'(a-), is the $\lim_{h \to 0} \frac{f(a-h) - f(a)}{-h}$.

(4) A function f(x) is said to be differentiable (finitely) at x = a if f'(a+0) = f'(a-0) = finite

i.e., $\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{f(a-h) - f(a)}{-h}$ = finite and the common limit is called the derivative

of f(x) at x = a, denoted by f'(a). Clearly, $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ { $x \to a$ from the left as well as from the right}.

Example: 1 Consider $f(x) = \begin{cases} \frac{x^2}{|x|}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ [EAMCET 1994]

(a) f(x) is discontinuous everywhere

(b) f(x) is continuous everywhere but not differentiable at x = 0

(c) f'(x) exists in (-1, 1)

(d) f'(x) exists in (-2, 2)

Solution: (b) We have, $f(x) = \begin{cases} \frac{x^2}{|x|}, & x \neq 0 \\ 0, & x = 0 \end{cases} = \begin{cases} \frac{x^2}{x} = x, & x > 0 \\ 0, & x = 0 \\ \frac{x^2}{-x} = -x, & x < 0 \end{cases}$ $\Rightarrow \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} -x = 0, \quad \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x = 0 \text{ and } f(0) = 0.$

So f(x) is continuous at x = 0. Also f(x) is continuous for all other values of x. Hence, f(x) is everywhere continuous.

Also,
$$Rf'(0) = f'(0+0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h - 0} = \lim_{h \to 0} \frac{h - 0}{h} = 1$$

i.e. $Rf'(0) = 1$ and $Lf'(0) = f'(0-0) = \lim_{h \to 0} \frac{f(-h) - f(0)}{-h} = \lim_{h \to 0} \frac{h}{-h} = -1$
i.e. $Lf'(0) = -1$ So, $Lf'(0) \neq Rf'(0)$ *i.e.*, $f(x)$ is not differentiable at $x = 0$.

Example: 2 If the function *f* is defined by $f(x) = \frac{x}{1+|x|}$, then at what points *f* is differentiable

(a) Everywhere (b) Except at $x = \pm 1$ (c) Except at x = 0 (d) Except at x = 0 or ± 1 Solution: (a) We have, $f(x) = \frac{x}{1+|x|} = \begin{cases} \frac{x}{1+x} & , x > 0 \\ 0 & , x = 0 ; Lf'(0) = \lim_{h \to 0} \frac{f(-h) - f(0)}{-h} = \lim_{h \to 0} \frac{\frac{-h}{1+h} - 0}{-h} = 1 \\ \frac{x}{1-x} & , x < 0 \end{cases}$

	$Rf'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \frac{\lim_{h \to 0} \frac{h}{1+h} - 0}{h} = \lim_{h \to 0} \frac{1}{1+h} = 1$
	So, $Lf'(0) = Rf'(0) = 1$
	So, $f(x)$ is differentiable at $x = 0$; Also $f(x)$ is differentiable at all other points. Hence, $f(x)$ is everywhere differentiable.
Example: 3	The value of the derivative of $ x-1 + x-3 $ at $x = 2$ is
1 . 5	(a) -2 (b) 0 (c) 2 (d) Not defined
Solution: (b)	Let $f(x) \neq x-1 \mid + \mid x-3 \mid = \begin{cases} -(x-1)-(x-3) , x < 1 \\ (x-1)-(x-3) , 1 \le x < 3 \\ (x-1)+(x-3) , x \ge 3 \end{cases} = \begin{cases} -2x+4 , x < 1 \\ 2 , 1 \le x < 3 \\ 2x-4 , x \ge 3 \end{cases}$
	Since, $f(x) = 2$ for $1 \le x < 3$. Therefore $f'(x) = 0$ for all $x \in (1,3)$.
	Hence, $f'(x) = 0$ at $x = 2$.
Example: 4	The function <i>f</i> defined by $f(x) = \begin{cases} \frac{\sin x^2}{x}, & x \neq 0\\ 0, & x = 0 \end{cases}$
	(a) Continuous and derivable at $x = 0$ (b) Neither continuous nor derivable at $x = 0$
	(c) Continuous but not derivable at $x = 0$ (d) None of these
Solution: (a)	We have, $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sin x^2}{x} = \lim_{x \to 0} \left(\frac{\sin x^2}{x^2} \right) x = 1 \times 0 = 0 = f(0)$
	So, $f(x)$ is continuous at $x = 0$, $f(x)$ is also derivable at
	$x = 0$, because $\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\sin x^2}{x^2} = 1$ exists
	finitely.
Example: 5	If $f(x) = \log x $, then $f(x) = \log x $
	(a) $f(x)$ is continuous and differentiable for all x in its domain $X' \xleftarrow{V} \bigvee X' \xleftarrow{(-1, 0)} O$ (1, (1, (-1, 0)) (1, (1, 0))
	(b) $f(x)$ is continuous for all x in its domain but not differentiable at $x = \pm 1$.
	(c) $f(x)$ is neither continuous nor differentiable at
	$x = \pm 1$
Solution: (b)	(d) None of these It is evident from the graph of $f(x) = \log x $ that $f(x)$ is everywhere continuous but not
Solution: (0)	differentiable at $x = \pm 1$.
Example: 6	The left hand derivative of $f(x) = [x] \sin(\pi x)$ at $x = k$ (k is an integer), is
	(a) $(-1)^k (k-1)\pi$ (b) $(-1)^{k-1} (k-1)\pi$ (c) $(-1)^k k\pi$ (d) $(-1)^{k-1} k\pi$
Solution: (a)	$f(x) = [x] \sin(\pi x)$
Solution (u)	If x is just less than k, $[x] = k - 1$. $\therefore f(x) = (k - 1)\sin(\pi x)$, when $x < k \forall k \in I$
	Now L.H.D. at $x = k$,

$\lim_{x \to k} \frac{(k-1)\sin(\pi x) - k\sin(\pi k)}{x-k} = \lim_{x \to k} \frac{(k-1)\sin(\pi x)}{(x-k)} \text{ [as } \sin(\pi k) = 0, k \in \text{ integer]}$ $\lim_{h \to 0} \frac{(k-1)\sin(\pi(k-h))}{-h}$ [Let x = (k - h)] $\lim_{h \to 0} \frac{(k-1)(-1)^{k-1} \sin h\pi}{-h} = \lim_{h \to 0} (k-1)(-1)^{k-1} \frac{\sin h\pi}{h\pi} \times (-\pi) = (k-1)(-1)^k \pi = (-1)^k (k-1)\pi.$ Example: 7 The function $f(x) \neq |x| + |x-1|$ is (a) Continuous at x = 1, but not differentiable (b) Both continuous and differentiable at x = 1(c) Not continuous at x = 1None of these (d) We have, $f(x) = |x| + |x-1| = \begin{cases} -2x+1, & x < 0 \\ 1, & 0 \le x < 1 \\ 2x-1, & x \ge 1 \end{cases}$ **Solution:** (a) Since, $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} 1 = 1$, $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (2x - 1) = 1$ and $f(1) = 2 \times 1 - 1 = 1$ $\therefore \lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = f(1)$. So, f(x) is continuous at x = 1. Now, $\lim_{x \to 1^-} \frac{f(x) - f(1)}{x - 1} = \lim_{h \to 0} \frac{f(1 - h) - f(1)}{-h} = \lim_{h \to 0} \frac{1 - 1}{-h} = 0$, and $\lim_{x \to 1^+} \frac{f(x) - f(1)}{x - 1} = \lim_{h \to 0} \frac{f(1 + h) - f(1)}{h} = \lim_{h \to 0} \frac{2(1 + h) - 1 - 1}{h} = 2$. y=2x-1u = u=1:. (LHD at x = 1) \neq (RHD at x = 1). So, f(x) is not differentiable at x

and

116

Example: 8

Functions,

Limits,

Continuity

Trick : The graph of $f(x) \neq x \mid + \mid x - 1 \mid i.e. f(x) = \begin{cases} -2x + 1 & , x < 0 \\ 1 & , 0 \le x < 1 i \\ 2x - 1 & , x \ge 1 \end{cases}$

By graph, it is clear that the function is not differentiable at x = 0, 1 as there it has sharp edges. Let f(x) = |x-1| + |x+1|, then the function is

	(a) Continuous	(b) Differentiable except $x = \pm 1$
	(c) Both (a) and (b)	(d) None of these
Solution: (c)	Here $f(x) = x - 1 + x + 1 \implies f(x) = \langle x - 1 + x + 1 \implies x = 1 \rangle$	$\begin{cases} 2x & \text{, when } x > 1 \\ 2 & \text{, when } -1 \le x \le 1 \\ -2x & \text{, when } x < -1 \end{cases}$

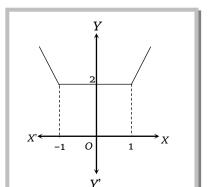
Graphical solution : The graph of the function is shown alongside,

From the graph it is clear that the function is continuous at all real x, also differentiable at all real x except at $x = \pm 1$; Since sharp edges at x = -1 and x = 1.

At x = 1 we see that the slope from the right *i.e.*, R.H.D. = 2, while slope from the left *i.e.*, L.H.D.= 0

Similarly, at x = -1 it is clear that R.H.D. = 0 while L.H.D. = -2

Trick : In this method, first of all, we differentiate the function and on the derivative equality sign should be removed from doubtful points.



Here, $f'(x) = \begin{cases} -2 & , x < -1 \\ 0 & , -1 < x < 1 \end{cases}$ (No equality on -1 and +1) 2 , x > 1Now, at x = 1, $f'(1^+) = 2$ while $f'(1^-) = 0$ and at x = -1, $f'(-1^+) = 0$ while $f'(-1^-) = -2$ Thus, f(x) is not differentiable at $x = \pm 1$. *Note* : **D** This method is not applicable when function is discontinuous. If the derivative of the function $f(x) = \begin{cases} ax^2 + b & , x < -1 \\ bx^2 + ax + 4 & , x \ge -1 \end{cases}$ is everywhere continuous and differentiable Example: 9 at x = 1 then (b) a = 3, b = 2 (c) a = -2, b = -3 (d) a = -3, b = -2(a) a = 2, b = 3 $f(x) = \begin{cases} ax^2 + b &, x < -1 \\ bx^2 + ax + 4 &, x \ge -1 \end{cases}$ Solution: (a) $\therefore f'(x) = \begin{cases} 2ax , & x < -1 \\ 2bx + a, & x \ge -1 \end{cases}$ To find a, b we must have two equations in a, b Since f(x) is differentiable, it must be continuous at x = -1. \therefore R = L = V at x = -1 for $f(x) \Longrightarrow b - a + 4 = a + b$ $\therefore 2a = 4$ *i.e.*, a = 2Again f'(x) is continuous, it must be continuous at x = -1. $\therefore R = L = V$ at x = -1 for f'(x)-2b + a = -2a. Putting a = 2, we get -2b + 2 = -4 $\therefore 2b = 6$ or b = 3. Let *f* be twice differentiable function such that f''(x) = -f(x) and f'(x) = g(x), $h(x) = \{f(x)\}^2 + \{g(x)\}^2$. If Example: 10 h(5) = 11, then h(10) is equal to (c) 0 (a) 22 (d) None of these (b) 11 Differentiating the given relation $h(x) = [f(x)]^2 + [g(x)]^2$ w.r.t x, we get h'(x) = 2f(x)f'(x) + 2g(x)g'(x)(i) Solution: (b) But we are given f''(x) = -f(x) and f'(x) = g(x) so that f''(x) = g'(x). Then (1) may be re-written as h'(x) = -2f''(x)f'(x) + 2f'(x)f''(x) = 0. Thus h'(x) = 0Whence by intergrating, we get h(x) = constant = c (say). Hence h(x) = c, for all x. In particular, h(5) = c. But we are given h(5) = 11. It follows that c = 11 and we have h(x) = 11 for all x. Therefore, h(10) = 11. The function $f(x) = \begin{cases} 2x - 3 | [x], x \ge 1 \\ \sin\left(\frac{\pi x}{2}\right), x < 1 \end{cases}$ Example: 11 (a) Is continuous at x = 2(b) Is differentiable at x = 1(c) Is continuous but not differentiable at x = 1 (d) None of these [2+h] = 2, [2-h] = 1, [1+h] = 1, [1-h] = 0**Solution:** (c)

At x = 2, we will check R = L = V $R = \lim_{h \to 0} |4 + 2h - 3| [2 + h] = 2, V = 1.2 = 2$ $L = \lim_{h \to 0} |4 - 2h - 3| [2 - h] = 1, R \neq L$, \therefore not continuous At $x = 1, R = \lim |2 + 2h - 3| [1 + h] = 1.1 = 1$, V = -1| [1] = 1 $L = \lim_{h \to 0} \sin \frac{\pi}{2} (1 - h) = 1$ Since R = L = V \therefore continuous at x = 1. R.H.D. $= \lim_{h \to 0} \frac{|2 + 2h - 3| [1 + h] - 1}{h} = \lim_{h \to 0} \frac{|-1| \cdot 1 - 1}{h} = \lim_{h \to 0} \frac{1 - 1}{h} = 0$ L.H.D. $= \lim_{h \to 0} \frac{|2 - 2h - 3| [1 - h] - 1}{-h} = \lim_{h \to 0} \frac{1.0 - 1}{-h} = \lim_{h \to 0} \frac{1}{h} = \infty$ Since R.H.D. \neq L.H.D. \therefore not differentiable. at x = 1.

2.4.2 Differentiability in an Open Interval

A function f(x) defined in an open interval (a, b) is said to be differentiable or derivable in open interval (a, b) if it is differentiable at each point of (a, b).

Differentiability in a closed interval : A function $f:[a,b] \rightarrow R$ is said to be differentiable in [a, b] if

(1) f'(x) exists for every x such that a < x < b i.e. f is differentiable in (a, b).

(2) Right hand derivative of f at x = a exists.

(3) Left hand derivative of f at x = b exists.

Everywhere differentiable function : If a function is differentiable at each $x \in R$, then it is said to be everywhere differentiable. *e.g.*, A constant function, a polynomial function, $\sin x, \cos x$ etc. are everywhere differentiable.

Some standard results on differentiability

(1) Every polynomial function is differentiable at each $x \in R$.

- (2) The exponential function $a^x, a > 0$ is differentiable at each $x \in R$.
- (3) Every constant function is differentiable at each $x \in R$.
- (4) The logarithmic function is differentiable at each point in its domain.

(5) Trigonometric and inverse trigonometric functions are differentiable in their domains.

(6) The sum, difference, product and quotient of two differentiable functions is differentiable.

(7) The composition of differentiable function is a differentiable function.

Important Tips

If f is derivable in the open interval (a, b) and also at the end points 'a' and 'b', then f is said to be derivable in the closed interval [a, b].

A function f is said to be a differentiable function if it is differentiable at every point of its domain.

If a function is differentiable at a point, then it is continuous also at that point.

i.e. Differentiability \Rightarrow Continuity, but the converse need not be true.

If a function 'f' is not differentiable but is continuous at x = a, it geometrically implies a sharp corner or kink at x = a.
If f(x) is differentiable at x = a and g(x) is not differentiable at x = a, then the product function f(x).g(x) can still be differentiable at x = a.

The formula of f(x) and g(x) both are not differentiable at x = a then the product function f(x).g(x) can still be differentiable at x = a.

The formula of f(x) is differentiable at x = a and g(x) is not differentiable at x = a then the sum function f(x) + g(x) is also not differentiable at x = a

 \mathcal{F} If f(x) and g(x) both are not differentiable at x = a, then the sum function may be a differentiable function.

Example: 12 The set of points where the function $f(x) = \sqrt{1 - e^{-x^2}}$ is differentiable (a) $(-\infty, \infty)$ (b) $(-\infty, 0) \cup (0, \infty)$ (c) $(-1, \infty)$ (d) None of these

Solution: (b) Clearly, f(x) is differentiable for all non-zero values of x, For $x \neq 0$, we have $f'(x) = \frac{xe^{-x^2}}{\sqrt{1-x^2}}$

Now, (L.H.D. at x = 0)

$$= \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{h \to 0} \frac{f(0 - h) - f(0)}{-h} = \lim_{h \to 0} \frac{\sqrt{1 - e^{-h^2}}}{-h} = \lim_{h \to 0^{-}} -\frac{\sqrt{1 - e^{-h^2}}}{h} = -\lim_{h \to 0^{-}} \sqrt{\frac{e^{h^2} - 1}{h^2}} \times \frac{1}{\sqrt{e^{h^2}}} = -1$$

and, (RHD at
$$x = 0$$
) = $\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{h \to 0} \frac{\sqrt{1 - e^{-h^2}} - 0}{h} = \lim_{h \to 0} \sqrt{\frac{e^{h^2} - 1}{h^2}} \times \frac{1}{\sqrt{e^{h^2}}} = 1$.

So, f(x) is not differentiable at x = 0, Hence, the points of differentiability of f(x) are $(-\infty,0) \cup (0,\infty)$.

Example: 13 The function $f(x) = e^{-|x|}$ is

- (a) Continuous everywhere but not differentiable at x = 0
- (b) Continuous and differentiable everywhere
- (c) Not continuous at x = 0
- (d) None of these
- **Solution:** (a) We have, $f(x) = \begin{cases} e^{-x}, x \ge 0 \\ e^{x}, x < 0 \end{cases}$

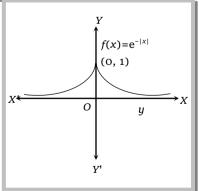
Clearly, f(x) is continuous and differentiable for all non-

Now,
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0} e^{x} = 1$$
 and $\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0} e^{-x} = 1$
Also, $f(0) = e^{0} = 1$
So, $f(x)$ is continuous for all x.
(LHD at $x = 0$) = $\left(\frac{d}{dx}(e^{x})\right)_{x=0} = [e^{x}]_{x=0} = e^{0} = 1$
(RHD at $x = 0$) = $\left(\frac{d}{dx}(e^{-x})\right)_{x=0} = [-e^{-x}]_{x=0} = -1$

So, f(x) is not differentiable at x = 0.

Hence, $f(x) = e^{+|x|}$ is everywhere continuous but not differentiable at x = 0. This fact is also evident from the graph of the function.

Example: 14 If $f(x) = \sqrt{1 - \sqrt{1 - x^2}}$, then f(x) is



120 Functions, Limits, Continuity and (a) Continuous on [-1, 1] and differentiable on (-1, 1) (b) Continuous on [-1,1] and differentiable on $(-1, 0) \cup (0, 1)$ (c) Continuous and differentiable on [-1, 1] (d) None of these We have, $f(x) = \sqrt{1 - \sqrt{1 - x^2}}$. The domain of definition of f(x) is [-1, 1]. Solution: (b) For $x \neq 0, x \neq 1$, $x \neq -1$ we have $f'(x) = \frac{1}{\sqrt{1 - x^2}} \times \frac{x}{\sqrt{1 - x^2}}$ Since f(x) is not defined on the right side of x = 1 and on the left side of x = -1. Also, $f'(x) \rightarrow \infty$ when $x \rightarrow -1^+$ or $x \rightarrow 1^-$. So, we check the differentiability at x = 0. Now, (LHD at x = 0) = $\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{h \to 0} \frac{f(0 - h) - f(0)}{-h}$ $= \lim_{h \to 0} \frac{\sqrt{1 - \sqrt{1 - h^2}} - 0}{-h} = -\lim_{h \to 0} \frac{\sqrt{1 - \{1 - (1/2)h^2 + (3/8)h^4 + \dots\}}}{h} = -\lim_{h \to 0} \sqrt{\frac{1}{2} - \frac{3}{8}h^2 + \dots} = -\frac{1}{\sqrt{2}}$ Similarly, (RHD at x = 0) = $\frac{1}{\sqrt{2}}$ Hence, f(x) is not differentiable at x = 0. Let f(x) be a function differentiable at x = c. Then $\lim_{x \to c} f(x)$ equals Example: 15 (c) $\frac{1}{f(c)}$ (a) f'(c) **(b)** *f*"(*c*) (d) None of these Solution: (d) Since f(x) is differentiable at x = c, therefore it is continuous at x = c. Hence, $\lim f(x) = f(c)$. The function $f(x) = (x^2 - 1)|x^2 - 3x + 2| + \cos(|x|)$ is not differentiable at Example: 16 [IIT Screening 1999] (a) - 1 (b) o (c) 1 (d) 2 **Solution:** (d) $(x^2 - 3x + 2) = (x - 1)(x - 2) = +ive$ When x < 1 or > 2, *-ive* when $1 \le x \le 2$ (since $\cos(-x) = \cos x$) Also $\cos |x| = \cos x$: $f(x) = -(x^2 - 1)(x^2 - 3x + 2) + \cos x, \quad 1 \le x \le 2$:. $f(x) = (x^2 - 1)(x^2 - 3x + 2) + \cos x, \quad x > 2$(i) Evidently f(x) is not differentiable at x = 2 as $L' \neq R'$ **Note:** \Box For all other values like $x < 0, 0 \le x < 1, f(x)$ is same as given by (i). If $f(x) = \begin{cases} xe^{-\left(\frac{1}{|x|} + \frac{1}{x}\right)}, & x \neq 0 \text{, then } f(x) \text{ is} \end{cases}$ Example: 17 [AIEEE 2003] (a) Continuous as well as differentiable for all x (b) Continuous for all x but not differentiable at x = 0(c) Neither differentiable nor continuous at x = 0(d) Discontinuous every where f(0) = 0 and $f(x) = xe^{-\left(\frac{1}{|x|} + \frac{1}{x}\right)}$ Solution: (b) **R.H.L.** = $\lim_{h \to 0} (0+h)e^{-2/h} = \lim_{h \to 0} \frac{h}{e^{2/h}} = 0$ L.H.L. = $\lim_{h \to 0} (0 - h)e^{-\left(\frac{1}{h} - \frac{1}{h}\right)} = 0$ \therefore f(x) is continuous.

$$Rf(x) \text{ at } (x=0) = \lim_{h\to 0} \frac{R(0+h) - f(0)}{h} = \lim_{h\to 0} \frac{he^{-2h}}{h} = e^{-x} = 0$$

$$lf(x) \text{ at } (x=0) = \lim_{h\to 0} \frac{R(0-h) - f(0)}{-h} = \lim_{h\to 0} \frac{-he^{-\frac{1}{h}}}{-h} = +1 \Rightarrow lf'(x) \neq Rf'(x)$$
f(x) is not differentiable at x = 0.

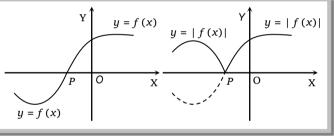
Example: 18 The function $f(x) = x^2 \sin \frac{1}{x}$, x = 0, f(0)=0 at x = 0 [MP PET 2003]
(a) Is continuous but not differentiable (b) Is discontinuous
(c) Is having continuous derivative (d) Is continuous and differentiable
Solution: (d) $\lim_{x\to 0} R(x) = x^2 \sin \frac{1}{x}$ but $-1 \le \sin \frac{1}{x} = 1$ and $x \to 0$
 $\therefore \lim_{x\to 0^+} R(x) = x^2 \sin \frac{1}{x}$ but $-1 \le \sin \frac{1}{x} = 1$ and $x \to 0$
 $\therefore \lim_{x\to 0^+} R(x) = a \lim_{x\to 0} f(x) = f(0)$
Therefore $f(x)$ is continuous at x = 0. Also, the function $f(x) = x^2 \sin \frac{1}{x}$ is differentiable because
 $Rf(x) = \frac{h^2 \sin \frac{1}{h} = 0}{h} = 0 \cdot Lf(x) = \frac{h^2 \sin \frac{1}{h} = b}{1-h} = 0$.
Example: 19 Which of the following is not true
(a) A polynomial function is always continuous (d) e^x is continuous for all x
Solution: (b) A continuous but not derivable at $x = 0$ (b) $f(0^2) = 2$
(c) $f(0^-) = 1$ (d) fis not derivable at $x = 0$
Solution: (c) Here, $f(x) = \sup_{x\to 0^+} x^2 = \left\{ \begin{vmatrix} \frac{1}{x} & f(x - x^3 \neq 0) \\ 0 & f(x - x = 0) \\ \frac{1}{1-x} < 0 \\ 0 & f(x - x = 0) \\ \frac{1}{1-x} < 0 \\$

Example: 21 A function $f(x) = \begin{cases} 1+x, & x \le 2 \\ 5-x, & x > 2 \end{cases}$ is [AMU 2001] (a) Not continuous at x = 2 (b) Differentiable at x = 2(c) Continuous but not differentiable at x = 2 (d) None of the above

 $\lim_{h \to 0^{-}} 1 + (2 - h) = 3 , \lim_{h \to 0^{+}} 5 - (2 + h) = 3 , f(2) = 3$ Solution: (c) Hence, *f* is continuous at x = 2Now $Rf'(x) = \lim_{h \to 0} \frac{5 - (2 + h) - 3}{h} = -1$ $Lf'(x) = \lim_{h \to 0} \frac{1 + (2 - h) - 3}{-h} = 1$ $\therefore Rf'(x) \neq Lf'(x)$ \therefore *f* is not differentiable at x = 2. Example: 22 Let $f: R \to R$ be a function. Define $g: R \to R$ by g(x) = |f(x)| for all x. Then g is (a) Onto if *f* is onto (b) One-one if *f* is one-one (c) Continuous if *f* is continuous (d) Differentiable differentiable **Solution:** (c) $g(x) = |f(x)| \ge 0$. So g(x) cannot be onto. If f(x) is one-one and $f(x_1) = -f(x_2)$ then Y $g(x_1) = g(x_2)$. So, 'f(x) is one-one' does not

> ensure that g(x) is one-one. If f(x) is continuous for $x \in R$, |f(x)| is also continuous for $x \in R$. This is obvious from the following graphical

consideration.



if

f

is

So the answer (c) is correct. The fourth answer (d) is not correct from the above graphs y = f(x) is differentiable at *P* while y = |f(x)| has two tangents at *P*, *i.e.* not differentiable at *P*.

				Differentiability
			Basic Level	
1.	If $f(x) = \begin{cases} 1 & , x \\ 1 + \sin x & , 0 \end{cases}$	<0 $\leq x \leq \pi/2$ then at $x = 0$, then	he value of $f'(x)$ is equal to	[Rajasthan PET 1990]
	(a) 1	(b) 0	(c) ∞	(d)Derivative does not
exi				
2.	If $f(x) = x-3 $, then f'			
	(a) 0	(b) 1	(c) -1	(d) Does not exist
3.	If $f(x) = \begin{cases} x \sin(1/x), & x \\ 0, & x \end{cases}$	$\neq 0$ then at $x = 0$, the fun	action is	
	(a) Discontinuous		(b) Continuous but not diffe	rentiable
	(c) Both continuous a	nd differentiable	(d) None of these	
4.	If $f(x) = x-3 $, then f	is		[Rajasthan PET 1994]
	(a) Discontinuous at 2	x = 2	(b)	Not differentiable at $x = 2$
	(c) Differentiable at <i>x</i>	x = 3	(d)	Continuous but not
dif	ferentiable at $x = 3$			
5.	If $f(x) = \begin{cases} x+1 & \text{, when } x \\ 2x-1 & \text{, when } x \end{cases}$	x < 2, then $f'(x)$ at $x = 2$ e	quals [Rajasthar	1 PET 1992; Karnataka CET 2002]
	(a) 0	(b) 1	(c) 2	(d) Does not exist
6.	If $f(x) = \begin{cases} x^2 \sin(1/x), & w \\ 0, & w \end{cases}$	when $x \neq 0$, then at $x = 0$, when $x = 0$	value of $f'(x)$ equals	[Rajasthan PET 1991]
	(a) 1	(b) O	(c) ∞	(d) Does not exist
7.	If $\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ exists	finitely, then		
	(a) $\lim_{x \to a} f(x) = f(c)$	(b) $\lim f'(x) = f'(c)$	(c) $\lim_{x \to c} f(x)$ does not exist	(d) $\lim f(x) \max$ or may not
exi		$x \rightarrow c$	$x \rightarrow c$	$x \rightarrow c$
		nd $f(1) = 1$. Then which of	the following statement is true	
9.			x = 1 (c) Differentiable at $x = 1f(4) = 4$, then $f'(4)$ equal to	(d) Discontinuous for $x > 1$
	(a) 4	(b) 1	(c) $\frac{1}{2}$	(d) 2
10.	The derivative of $f(x)$	$\neq x$ at $x = 0$ is		
	(a) 1	(b) o	(c) -1	(d) Does not exist

If $f(x) = \begin{cases} e^x + ax, & x < 0\\ b(x-1)^2, & x \ge 0 \end{cases}$ is differentiable at x = 0 then (a,b) is 11. (a) (-3, -1)(b) (-3,1) (c) (3.1) (d) (3, -1)At the point x = 1, the function $f(x) = \begin{cases} x^3 - 1; & 1 < x < \infty \\ x - 1; & -\infty < x \le 1 \end{cases}$ 12. (a) Continuous and differentiable (b) Continuous and not differentiable (c) Discontinuous and differentiable (d) Discontinuous and not differentiable The function $|x^3|$ is 13. (a) Differentiable everywhere (b) Continuous but not differentiable at x = 0(c) Not a continuous function (d) A function with range [0, ∞] For the function $f(x) \neq x^2 - 5x + 6$ the derivative from the right f'(2+); and the derivative from left f'(2-) are 14. respectively (c) 0, 2 (a) 1, - 1 (d) None of these (b) -1, 1 Let f(x) be an even function. Then f'(x)15. (a) Is an even function (b) Is an odd function (c) May be even or odd (d) None of these Let f(x) be an odd function. Then f'(x)16. (a) Is an even function (b) Is an odd function (d) None of these (c) May be even or odd Let g(x) be the inverse of the function f(x) and $f'(x) = \frac{1}{1+x^3}$. Then g'(x) is equal to 17. (b) $\frac{1}{1+(f(x))^3}$ (a) $\frac{1}{1+(g(x))^3}$ (c) $1 + (g(x))^3$ (d) $1 + (f(x))^3$ Let g(x) be the inverse of an invertible function f(x) which is differentiable at x = c, then g'(f(c)) equals 18. (b) $\frac{1}{f'(c)}$ (a) f'(c) (c) f(c) (d) None of these If $f(x) = \begin{cases} x+2 & , -1 < x < 3 \\ 5 & , x = 3 \\ 8-x & , x > 3 \end{cases}$ then at x = 3, f'(x) =19. [MP PET 2001] (a) 1 (c) 0 (d) Does not exist If $f(x) = (x - x_0) g(x)$, where g(x) is continous at x_0 , then $f'(x_0)$ is equal to 20. (a) 0 (b) *x*₀ (c) $g(x_0)$ (d) None of these Function f(x) = |x| + |x-1| is not differentiable at 21. [Rajasthan PET 1996] (c) x = 0, 1(a) x = 1, -1(b) x = 0, -1(d) x = 1, 2If $f(x) = \begin{cases} e^x ; x \le 0 \\ |1-x|; x > 0 \end{cases}$, then 22. [Roorkee 1995] (a) f(x) is differentiable at x = 0(b) f(x) is continuous at x = 0f(x) is continuous at x = 1(c) f(x) is differentiable at x = 1(d) The function which is continuous for all real values of x and differentiable at x = 0, is 23. (d) $x^{1/2}$ (a) | x | (b) $\log x$ (c) $\sin x$

Advance Level

24. The number of points at which the function $f(x) \neq x - 0.5 |+|x-1| + \tan x$ does not have a derivative in the interval (0, 2) is

$$|| UP SEAT 1995| \\ || UP SEAT$$

Functions, Limits, Continuity and Differentiability

	(a) Continuous at $x = 0$	(b) Derivable at $x = 0$	(c) $\frac{dy}{dx} = \frac{1}{2}$ for all x	(d) None of these
87.	The set of point where t	the function $f(x) = x x $ is d	ifferentiable is	
	(a) (−∞,∞)	(b) $(-\infty,0)\cup(0,\infty)$	(c) $(0,\infty)$	(d) $[0,\infty)$
8.	If $f(x) = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$ the	en $f(x)$ is differentiable on		
		(b) $R-\{-1,1\}$	(c) R - (-1, 1)	(d) None of these
9.	Let $f(x) = x $ and $g(x) =$	$ x^3 $, then		
			(b) $f(x)$ and $g(x)$ both are different difference of $f(x)$ and $g(x)$ both are difference of $f(x)$ and $g(x)$ and $g(x)$ both are difference of $g(x)$ and $g(x)$ are difference of $g(x)$ and $g(x)$ and $g(x)$ are difference of $g(x)$ and $g(x)$ and $g(x)$ are difference of $g(x)$ are differe	ferentiable at $x = 0$
	(c) $f(x)$ is differentiable	e but $g(x)$ is not differential	ble at $x = 0$ (d)	f(x) and $g(x)$ both are not
iffe	rentiable at $x = 0$			
о.	The function $f(x) = \sin^{-1} (x)$	$(\cos x)$ is		
-	(a) Discontinuous at $x =$		Continuous at $x = 0$	(c) Differentiable at $x = 0$ (
1.	Let $f(x) = (x+ x) x $. Th			
	(a) <i>f</i> is continuous	(b) <i>f</i> is differentiable for		(c) f' is continuous (d)
2.	The set of all those poin	its, where the function $f(x)$:	$=\frac{x}{1+ x }$ is differentiable, is	
	(a) $(-\infty,\infty)$	(b) [0,∞]	(c) $(-\infty, 0) \cup (0, \infty)$	(d) $(0,\infty)$
3.	f(x) and $g(x)$ are two	differentiable function on	[0,2] such that $f''(x) - g''(x) = 0, f$	f'(1) = 2, g'(1) = 4, f(2) = 3, g(2) = 9,
	then $f(x) - g(x)$ at $x = \frac{3}{2}$	is		
	(a) 0	(b) 2	(C) 10	(d) ⁻⁵
4.	The set of points of diff	erentiability of the $f(x) = \left(\frac{\sqrt{x}}{x}\right)$	$\frac{\overline{x+1}-1}{\sqrt{x}}, \text{ for } x \neq 0 \text{is} \\ 0, \text{ for } x = 0$	
	(a) <i>R</i>		(C) (0, ∞)	(d) $R - \{0\}$
5.	If $f(r) = a \sin r + b e^{ r }$	$ +c x ^3$ and if $f(x)$ is differ	centicable at $r = 0$ then	
.5•	(a) $a=b=c=0$			(d) $a=0$ $a=0$ $b=0$
			(c) $b = c = 0, a \in R$	(d) $c = 0, a = 0, b \in R$
ļ 6 .	If $f(x) = \begin{cases} \frac{x-1}{2x^2 - 7x + 5}, & x \\ -\frac{1}{3}, & x \end{cases}$	= 1		[IIT 1979]
	(a) $\frac{2}{9}$	(b) $\frac{-2}{9}$	(c) 0	(d) Does not exist
7.	Function $f(x) = 1 + \sin x $	is		
		re (b) Differentiable no whe	ere (c)	Every where continuous (d)
	$\int x^2$,	$x \leq 0$		-
8.	Function $f(x) = \begin{cases} x^2, \\ 1, & 0 < \\ 1 / x, \end{cases}$	$x \leq 1$ is		
	1 / x,	<i>x</i> > 1		
	(a) Differentiable at x		Differentiable only at $x = 0$	(c) Differentiable at only
	x = 1	(d) Not differentiable at 2		· · · · · · · · · · · · · · · · · · ·
!9 .	Function $f(x) = \begin{cases} x^2 \end{cases}$, if $x < 0$, if $0 \le x \le 1$, is differentiab 1, if $x > 1$	le at	
	$\left(x^{3}-x+x\right)$	1, if $x > 1$		
	(a) $x = 0$ but not at $x =$	1 (b) $x = 1$ but not at $x = 0$	(c) $x = 0$ and $x = 1$	(d) Neither $x = 0$ nor $x = 1$

50. If
$$g(x) = x f(x)$$
 where $f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x = 0 \end{cases}$ then at $x = 0$
(a) g is differentiable but g' is discontinuous function (b) Both f and g are differentiable
(c) g is differentiable and g' is continuous function (d) None of these
51. The set of points where $f(x) = x |x|$ is differentiable two times is
(a) R_0 (b) R_+ (c) R (d) None of these
52. If $f(x) = \begin{cases} \frac{x(3e^{1/x} + 4)}{2 - e^{1/x}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$, then [Roorkee 1995]
(a) $\lim_{x \to 0} f(x) = 1$ (b) $f(x)$ is continuous at $x = 0$ (c) $f(x)$ is differentiable at $x = 0$ (d) $f(0 + 0) = 3$

Answer Sheet

	Assignment (Basic and Advance Level)																		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
d	d	b	d	d	b	a	b	d	d	b	b	a,d	a	b	a	с	b	d	с
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
с	b,d	С	с	a	b	b	d	d	с	a	a	a	a	d	a	a	b	a	b
41	42	43	44	45	46	47	48	49	50	51	52								
a,c	a	d	с	b	b	d	b	b	b	a	b								