Photometry

Exercise Solutions

Solution 1:

Radiant flux of the source = [total energy emitted)/time

= 45/15 = 3 W

Solution 2:

To record the sufficiently intense lines, energy should be same.

=> Energy = time x radiant flux

=> 10W x 12sec = 12 W x t

=> t = 10 sec

The photographic plate should be exposed for 10 s to get equally intense lines.

Solution 3:

From the graph,

- (a) The relative luminosity of wavelength 480 nm = 0.14.
- (b) The relative luminosity of wavelength 520 nm = 0.68.
- (c) The relative luminosity of wavelength 580 nm = 0.92.
- (d) The relative luminosity of wavelength 600 nm = 0.66.

Solution 4:

Relative luminosity is the ratio of "luminous flex of source of given wavelength" to the "luminous flex of source of 555 nm of sample power"

Relative luminosity = 0.6 (given) Let "P" be the radiant flux of the source. So, Luminous flux = 685P

=> 0.6 = [luminous flex of source of P watt]/685 P

=> 685 P x 0.6 = 120 x 685

=> P = 200 W

Solution 5:

Relative luminosity is the ratio of "luminous flex of source of given wavelength" to the "luminous flex of source of 555 nm of sample power"

=> Relative luminosity = 450/685 = 66%

Solution 6:

(a) the total radiant flux = radiant flux of 555 nm part of light + radiant flux of 600 nm part of light = 40 W + 30 W = 70 W

(b) Total luminous flux = luminous flux of 555 nm part of light + luminous flux of 600 nm part of light = $1 \times 40 \times 685 + 0.6 \times 30 \times 685 = 39730$ lumen

(c) the luminous efficiency.

We know, Luminous efficiency = [total luminous flux]/[total radiant flux]

= 39730/70 = 567.6 lumen/W

Solution 7:

We know, overall luminous efficiency = [total luminous flux]/[power input]

= [35x685]/100

= 239.75 lumen/W

Solution 8:

Luminous intensity = [luminous flex]/[solid angle] ...(1)

From question, Radiant flux = 31.4, since the radiant flux is distributed uniformly in all directions, the solid angle will be Luminous efficiency = 60 lumen/W

luminous flux = luminous efficiency × radiant flux= 60 × 31.4 lumen

(1)=> Luminous intensity = $[60x31.4]/4\pi$

= 150 candela

Solution 9:

We know, Luminous intensity = [luminous flex]/[solid angle] ...(1)

Given: Luminous flux = 628 lumen Distance of point, r = 1 m Angle made by the normal with x-axis = 37 degrees

Since the radiant flux is distributed uniformly in all directions, the solid angle will be 4π .

(1)=> Luminous intensity = $628/4\pi = 50$ candela

So, Illuminance, E = I cos (θ/r^2)

=> E = 50 x [cos 37°]/1²

= 40 lux

Solution 10:

Let I be Luminous intensity of source. Let E_A = Initial illuminance = 900 lm/m² and

 E_B = Final illuminance = 400 lumen/m²

Now, Illuminance on the initial position = $E_A = [I \cos \theta]/x^2 ...(1)$

Illuminance at final position = $E_B = [I \cos\theta]/(x+10)^2 ...(2)$

```
Now, (1) = (2)
=> I = [E_A x^2]/\cos\theta = [E_B (x+1)^2]/\cos\theta
=> 900 x<sup>2</sup> = 400(x + 10)<sup>2</sup>
=> x = 20 cm
```

The distance between the source and the area at the initial position is 20 cm.

 $E_A = 15 lux = I_0/60^2$

And, $E_B = [I_o \cos\theta] / (OB)^2$

= [5.4 x 3/5]/1²

= 3.24 lux

Solution 12:

The illuminance will not change.

Solution 13:

Let the height of the source be h and the luminous intensity in the normal direction be $I_{\text{o}}. \label{eq:loss}$

The illuminance on book, $E = [I_o \cos\theta] / (r)^2$

From diagram, $\cos\theta = h/r$

=>E = $[I_0 h] / (r)^3$ But r = $V[R^2+h^2]$

```
=> E = [I_o h] / (R^2 + h^2)^{3/2}
```

For maximum illuminance, dE/dh = 0

Now,

$$\frac{dE}{dH} = \frac{I_o \left[(r^2 + h^2)^{\frac{3}{2}} - \frac{3}{2}h \times (R^2 + h^2)^{\frac{1}{2}} \times 2h \right]}{(R^2 + h^2)^3} = 0$$

=>R² - 2h² = 0
Or h = R/v/2

Solution 14:

Given: Illuminance at A = 25 lux. Form figure, AS = 2.4 m and AB = 1.8 m.

BS = $V[(2.4)^2 + (1.8)^2] = 3 \text{ m}$

Let angle ASB is θ

 $\Rightarrow \cos \theta = 2.4/3 = 0.8$

We know, $E = I \cos\theta/r^2$

=> $25 = I_0 \cos 0^{\circ} / (2.4)^2$ Where I_0 is the intensity along SA => $I_0 = 25 \times 5.76 = 144$ cd

Now, from Lambert's cosine law, the intensity along SB: $I = I_0 \cos \theta$

= 144 x 0.8

= 115.2 cd The angle between SB and normal at B is also θ . Illuminance at B is E = (I cos θ)/3² = 10.24 Lux

Solution 15:

 $I_1/I_2 = (80/20)^2 = 16$

Here I_1 = Intensity when placed at a distance 80 cm and I_2 = Intensity when placed at a distance 20 cm apart from the screen.

Let the new distance between the lamp and the screen be x

0.49I₁/I₂ = (x/20)² => 0.49 x 16 x 400 = x² => x = 56 cm

The lamp has to be moved by 80 cm - 56 cm = 24 cm.

Solution 16:

Total intensity of the 8 Cd and the 12 Cd light source is (8+12) = 20 Cd. Illuminance due to the 20 Cd source E_1 is:

 $E_1 = 20/(0.4)^2$ (1)

Illuminance due to the 80 Cd source E_2 is:

 $E_2 = 80/(d)^2$ (1) where d is the distance of the 80 Cd source. Now, $E_1 = E_2$

 $20/(0.4)^2 = 80/(d)^2$

=> d = 0.8 m = 80 cm