CBSE Test Paper 01

Chapter 10 Vector Algebra

- 1. Find the angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 2, respectively, having $ec{a}$. $ec{b} = \sqrt{6}$.

 - a. $\frac{\pi}{5}$ b. $\frac{\pi}{3}$ c. $\frac{\pi}{2}$ d. $\frac{\pi}{4}$
- 2. Find the angle between two vectors $\hat{i}-2\hat{j}+3\hat{k}$ and $3\,\hat{i}-2\,\hat{j}+\hat{k}$.

 - a. $\cos^{-1}\left(\frac{4}{7}\right)$ b. $\cos^{-1}\left(\frac{6}{7}\right)$ c. $\cos^{-1}\left(\frac{5}{9}\right)$
 - d. $\cos^{-1}\left(\frac{5}{7}\right)$
- 3. Vector has
 - a. direction
 - b. None of these
 - c. magnitude
 - d. magnitude as well as direction
- 4. Find the sum of the vectors $ec{a}=\hat{i}-2\hat{j}+\hat{k},\ ec{b}=-2\hat{i}+4\hat{j}+5\hat{k}$ and $ec{c}=\hat{i}-6\hat{j}-7\hat{k}.$
 - a. $-\hat{i}+4\hat{j}-\hat{k}$
 - b. $-4\hat{j}-\hat{k}$
 - c. $-\hat{i}-4\hat{j}-\hat{k}$
 - d. $\hat{i}-4\hat{j}-\hat{k}$
- 5. Find the direction cosines of the vector $\hat{i}+2\hat{j}+3\hat{k}$.

a.
$$\frac{1}{\sqrt{14}}$$
, $\frac{2}{\sqrt{14}}$, $\frac{3}{\sqrt{14}}$

a.
$$\frac{1}{\sqrt{14}}$$
, $\frac{2}{\sqrt{14}}$, $\frac{3}{\sqrt{14}}$
b. $\frac{1}{\sqrt{14}}$, $\frac{2}{\sqrt{14}}$, $-\frac{3}{\sqrt{14}}$
c. $\frac{1}{\sqrt{14}}$, $-\frac{2}{\sqrt{14}}$, $\frac{3}{\sqrt{14}}$

c.
$$\frac{1}{\sqrt{14}}$$
, $-\frac{2}{\sqrt{14}}$, $\frac{3}{\sqrt{14}}$

d.
$$-\frac{1}{\sqrt{14}}$$
, $\frac{2}{\sqrt{14}}$, $\frac{3}{\sqrt{14}}$

- 6. The values of k which $|k\vec{a}|<|\vec{a}|$ and $k\vec{a}+\frac{1}{2}\vec{a}$ is parallel to \vec{a} holds true are _____.
- 7. If $ec{r}$. $ec{a}=0$, $ec{r}$. $ec{b}=0$, and $ec{r}$. $ec{c}=0$ for some non-zero vector $ec{r}$, then the value of $\vec{a}(\vec{b} imes \vec{c})$ is _____.
- 8. The angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 4, respectively, $\vec{a} \cdot \vec{b} = 2\sqrt{3}$ is _____
- 9. Find $\vec{a} imes \vec{b}$ if $\vec{a}=2\hat{i}+\hat{j}+3\hat{k}, \vec{b}=3\hat{i}+5\hat{j}-2\hat{k}.$
- 10. Find the projection of \vec{a} on \vec{b} , if $\vec{a} \cdot \vec{b} = 8$ and $\vec{b} = 2\hat{i} + 6\hat{j} + 3\hat{k}$.
- 11. \vec{a} Is unit vector and $(\vec{x}-\vec{a})(\vec{x}+\vec{a})=8$, Then find $|\vec{x}|$.
- 12. Find the position vector of the mid-point of the vector joining the points P (2, 3, 4) and Q(4,1, -2)
- 13. Find sine of the angle between the vectors. $\vec{a}=2\hat{i}-\hat{j}+3\hat{k}, \vec{b}=\hat{i}+3\hat{j}+2\hat{k}$.
- 14. Find the projection of the vector $\hat{i}+3\hat{j}+7\hat{k}$ on the vector $7\hat{i}-\hat{j}+8\hat{k}$
- 15. Let $ec{a}=\hat{i}+\hat{j}+\hat{k}, ec{b}=4\hat{i}-2\hat{j}+3\hat{k}$ and $ec{c}=\hat{i}-2\hat{j}+\hat{k}.$ Find a vector of magnitude 6 units, which is parallel to the vector $2\vec{a}-\vec{b}+3\vec{c}.$
- 16. Let $ec{a}=\hat{i}+4\hat{j}+2\hat{k}, ec{b}=3\hat{i}-2\hat{j}+7\hat{k}$ and $ec{c}=2\hat{i}-\hat{j}+4\hat{k}$.Find a vector $ec{d}$ which is perpendicular to both \vec{a} and \vec{b} and \vec{c} . $\vec{d}=15$.
- 17. A girl walks 4 km towards west, then she walks 3 km in a direction 30^{0} east of north and stops. Determine the girl's displacement from her initial point of departure.
- 18. Find a vector $ec{d}$ which is ot to both $ec{a}$ and $ec{b}$ and $ec{c}$. $ec{d}=15$ Let $ec{a}=\hat{i}+4\hat{j}+2\hat{k}, ec{b}=3\hat{i}-2\hat{j}+7\hat{k}$ and $ec{c}=2\hat{i}-\hat{j}+4\hat{k}.$

CBSE Test Paper 01 Chapter 10 Vector Algebra

Solution

1. d.
$$\frac{\pi}{4}$$
, Explanation: $|\overrightarrow{a}| = \sqrt{3}$, $|\overrightarrow{b}| = 2$, $|\overrightarrow{a}|$, $|\overrightarrow{b}| = \sqrt{6}$

$$\Rightarrow \overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cos \theta \Rightarrow \sqrt{6}$$

$$= 2\sqrt{3} \cos \theta$$

$$\Rightarrow \cos \theta = \frac{1}{\sqrt{2}} \Rightarrow \theta = \frac{\pi}{4}$$

- 2. d. $\cos^{-1}\left(\frac{5}{7}\right)$, Explanation: $\overrightarrow{a} = \hat{i} 2\hat{j} + 3\hat{k}$, $\overrightarrow{b} = 3\hat{i} 2\hat{j} + \hat{k}$ $\Rightarrow |\overrightarrow{a}| = \sqrt{14}, |\overrightarrow{b}| = \sqrt{14}, \overrightarrow{a}. \overrightarrow{b} = 10$ $\Rightarrow \frac{\overrightarrow{a}.\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|} = \cos\theta \Rightarrow \frac{10}{14} = \cos\theta$ $\Rightarrow \cos\theta = \frac{5}{7} \Rightarrow \theta = \cos^{-1}\frac{5}{7}$
- 3. d. magnitude as well as direction, **Explanation:** A vector has both magnitude as well as direction.

4. b.
$$-4\hat{j}-\hat{k}$$
, **Explanation:** We have: vectors $\vec{a}=\hat{i}-2\hat{j}+\hat{k}$, $\vec{b}=-2\hat{i}+4\hat{j}+5\hat{k}$ and

5. a.
$$\frac{1}{\sqrt{14}},\ \frac{2}{\sqrt{14}},\ \frac{3}{\sqrt{14}}$$
, **Explanation:** Let $\overrightarrow{a}=\hat{i}+2\hat{j}+3\hat{k}$,

Then,
$$\widehat{a}=rac{\overrightarrow{a}}{\left|\overrightarrow{a}
ight|}=rac{\widehat{i}+2\widehat{j}+3\widehat{k}}{\sqrt{1^2+2^2+3^2}}=rac{\widehat{i}+2\widehat{j}+3\widehat{k}}{\sqrt{14}}$$

Therefore, the D.C.'s of vector a are:

$$\frac{1}{\sqrt{14}}, \ \frac{2}{\sqrt{14}}, \ \frac{3}{\sqrt{14}}.$$

6.
$$k \in]-1, 1 [k \neq -\frac{1}{2}]$$

8.
$$\frac{\pi}{3}$$

9.
$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 3 \\ 3 & 5 & -2 \end{vmatrix}$$

$$= \hat{i} (-2 - 15) - \hat{j} (-4 - 9) + \hat{k} (10 - 3)$$

$$= -17\hat{i} + 13\hat{j} + 7\hat{k}$$

- 10. We are given that, $ec{a}\cdotec{b}=8$ and $ec{b}=2\hat{i}+6\hat{j}+3\hat{k}$
 - ... The projection of \vec{a} on \vec{b} is given as = $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$

$$= \frac{8}{\sqrt{2^2 + 6^2 + 3^2}}$$

$$= \frac{8}{\sqrt{4 + 36 + 9}}$$

$$= \frac{8}{\sqrt{49}} = \frac{8}{7}$$

11.
$$|\vec{a}| = 1$$

 $(\vec{x} - \vec{a}) \cdot (\vec{x} + \vec{a}) = 8$
 $|\vec{x}|^2 - |\vec{a}|^2 = 8$
 $|\vec{x}|^2 - 1 = 8$
 $|\vec{x}|^2 = 9$
 $|\vec{x}| = 3$

$$dapprox$$
 . Position vector of point P is $ec{a}=2\,\hat{i}+3\,\hat{j}+4\hat{k}$

And Position vector of point Q is $ec{b}=4\hat{i}+\hat{j}-2\hat{k}$

And Position vector of mid-point R of PQ is $\frac{\vec{a}+\vec{b}}{2}=\frac{2\hat{i}+3\hat{j}+4\hat{k}+4\hat{i}+\hat{j}-2\hat{k}}{2}$

$$=rac{6\hat{i}+4\hat{j}+2\hat{k}}{2}=3\hat{i}+2\hat{j}+\hat{k} \ ig|\hat{i} \ \hat{j} \ \hat{k}ig|$$

And Position vector of mid-position
$$=\frac{6\hat{i}+4\hat{j}+2\hat{k}}{2}=3\hat{i}+2\hat{j}+\hat{k}$$
13. $\vec{a}\times\vec{b}=\begin{vmatrix}\hat{i}&\hat{j}&\hat{k}\\2&-1&3\\1&3&2\end{vmatrix}$
 $=-11\hat{i}-\hat{j}+7\hat{k}$

$$egin{aligned} \left| ec{a} imes ec{b}
ight| &= \sqrt{\left(-11
ight)^2 + \left(-1
ight)^2 + \left(7
ight)^2} \ &= \sqrt{171} = 3\sqrt{19} \end{aligned}$$

$$\sin heta=rac{\left|ec{a} imesec{b}
ight|}{\left|ec{a}
ight|ec{b}
ight|}=rac{3\sqrt{19}}{\sqrt{14}\sqrt{14}}=rac{3}{14}\sqrt{19}$$

14. Let
$$ec{a}=\hat{i}+3\hat{j}+7\hat{k}$$
 and $ec{b}=7\hat{i}-\hat{j}+8\hat{k}$

Projection of vector
$$\vec{a}$$
 on $\vec{b} = \frac{\vec{a}.\vec{b}}{\left|\vec{b}\right|}$

$$= \frac{(1)(7)+(3)(-1)+7(8)}{\sqrt{(7)^2+(-1)^2+(8)^2}}$$

$$= \frac{7-3+56}{\sqrt{49+61+64}} = \frac{60}{\sqrt{114}}$$

15. According to the question,

$$ec{a} = \hat{i} + \hat{j} + \hat{k}, \ ec{b} = 4\hat{i} - 2\hat{j} + 3\hat{k} ext{ and } \ ec{c} = \hat{i} - 2\hat{j} + \hat{k} \ ext{Now }, 2ec{a} - ec{b} + ec{3}ec{c} \ = 2(\hat{i} + \hat{j} + \hat{k}) - (4\hat{i} - 2\hat{j} + 3\hat{k}) + 3(\hat{i} - 2\hat{j} + \hat{k}) \ = 2\hat{i} + 2\hat{j} + 2\hat{k} - 4\hat{i} + 2\hat{j} - 3\hat{k} + 3\hat{i} - 6\hat{j} + 3\hat{k} \ = \hat{i} - 2\hat{j} + 2\hat{k} \ \Rightarrow 2ec{a} - ec{b} + 3ec{c} = \hat{i} - 2\hat{j} + 2\hat{k}$$

Now, a unit vector in the direction of vector is $2\vec{a}-\vec{b}+3\vec{c}=rac{2\vec{a}-\vec{b}+3\vec{c}}{|2\vec{a}-\vec{b}+3\vec{c}|}$

$$= \frac{\hat{i} - 2\hat{j} + 2\hat{k}}{\sqrt{(1)^2 + (-2)^2 + (2)^2}}$$

$$= \frac{\hat{i} - 2\hat{j} + 2\hat{k}}{\sqrt{9}}$$

$$= \frac{\hat{i} - 2\hat{j} + 2\hat{k}}{3}$$

$$= \frac{1}{3}\hat{i} - \frac{2}{3}\hat{j} + \frac{2}{3}\hat{k}$$

Vector of magnitude 6 units parallel to the vector is,

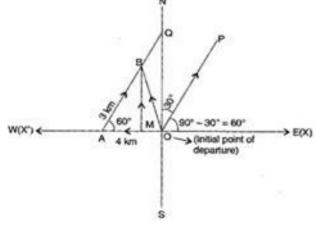
$$egin{aligned} &= 6 \left(rac{1}{3} \hat{i} - rac{2}{3} \hat{j} + rac{2}{3} \hat{k}
ight) \ &= 2 \hat{i} - 4 \hat{j} + 4 \hat{k} \end{aligned}$$

16. Given: Vectors $ec{a}=\hat{i}+4\hat{j}+2\hat{k}$ and $ec{b}=3\,\hat{i}-2\,\hat{j}+7\hat{k}$

We know that the cross-product of two vectors, $ec{a} imesec{b}$ is a vector perpendicular to both $ec{a}$ and $ec{b}$

Hence, vector \vec{d} which is also perpendicular to both \vec{a} and \vec{b} is $\vec{d}=\lambda\left(\vec{a}\times\vec{b}\right)$ where $\lambda=1$ or some other scalar.

Therefore,
$$ec{d}=\lambdaegin{vmatrix} ec{i} & ec{j} & ec{k} \ 1 & 4 & 2 \ 3 & -2 & 7 \ \end{bmatrix}$$


$$\begin{split} &=\lambda\left[\hat{i}\left(28+4\right)-\hat{j}\left(7-6\right)+\hat{k}\left(-2-12\right)\right]\\ &\Rightarrow\vec{d}=32\lambda\hat{i}-\lambda\hat{j}-14\lambda\hat{k}...\text{(i)}\\ &\text{Now given }\vec{c}=2\hat{i}-\hat{j}+4\hat{k}\text{ and }\vec{c}.\vec{d}=15\\ &\vec{c}.\vec{d}=15\\ &=2\left(32\lambda\right)+\left(-1\right)\left(-\lambda\right)+4\left(-14\lambda\right)=15\\ &\Rightarrow64\lambda+\lambda-56\lambda=15\\ &\Rightarrow9\lambda=15\\ &\Rightarrow\lambda=\frac{15}{9}\\ &\Rightarrow\lambda=\frac{5}{3}\\ &\text{Putting }\lambda=\frac{5}{3}\text{ in eq. (i), we get}\\ &\vec{d}=\frac{5}{3}\left[32\hat{i}-\hat{j}-14\hat{k}\right]\\ &\Rightarrow\vec{d}=\frac{1}{3}\left[160\hat{i}-5\hat{j}-70\hat{k}\right] \end{split}$$

17. Let the initial point of departure is origin (0, 0) and the girl walks a distance OA = 4 km towards west.

Through the point A, draw a line AQ parallel to a line OP, which is 30^{0} East of North, i.e., in East-North quadrant making an angle of 30^{0} with North.

Again, let the girl walks a distance AB = 3 km along this direction \overrightarrow{OQ}

$$arphi$$
 , $\overrightarrow{OA} = 4\left(-\overrightarrow{i}
ight) = -4\hat{i}$...(i) [' $arphi$ Vector \overrightarrow{OA} is along OX']

Now, draw BM perpendicular to x - axis.

In ΔAMB by Triangle Law of Addition of vectors,

$$\overrightarrow{AB} = \overrightarrow{AM} + \overrightarrow{MB} = (AM) \ \hat{i} + (MB) \ \hat{i}$$

Dividing and multiplying by AB in R.H.S.,

$$\overrightarrow{AB} = AB \frac{AM}{AB} \hat{i} + AB \frac{MB}{AB} \hat{j} = 3\cos 60^{o} \hat{i} + 3\sin 60^{o} \hat{j}$$

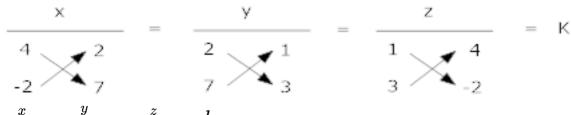
 $\Rightarrow AB = 3\frac{1}{2} \hat{i} + 3\frac{\sqrt{3}}{2} \hat{i} = \frac{3}{2} \hat{i} + \frac{3\sqrt{3}}{2} j$...(ii)

.:. Girl's displacement from her initial point O of departure to final point B,

$$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = -4\hat{i} + \left(\frac{3}{2}\hat{i} + \frac{3\sqrt{2}}{2}\hat{j}\right) = \left(-4 + \frac{3}{2}\right)\hat{i} + \frac{3\sqrt{3}}{2}\hat{j} \ \Rightarrow \overrightarrow{OB} = \frac{-5}{2}\hat{i} + \frac{3\sqrt{3}}{2}\hat{j}$$

18.
$$ec{a}=\hat{i}+4\hat{j}+2\hat{k}, ec{b}=3\hat{i}-2\hat{j}+7\hat{k}$$
 and $ec{c}=2\hat{i}-\hat{j}+4\hat{k}$

Let
$$ec{d} = x\,\hat{i} + y\,\hat{j} + z\hat{k}$$


ATQ,
$$ec{d}$$
 . $ec{a}=0, ec{d}$. $ec{b}=0$ and $ec{c}$. $ec{d}=15$, then,

$$x + 4y + 2z = 0 ...(1)$$

$$3x - 2y + 7z = 0 \dots (2)$$

$$2x - y + 4z = 15 ...(3)$$

On solving equation (1) and (2)

$$\frac{x}{28+4} = \frac{y}{6-7} = \frac{z}{-2-12} = k$$

$$x = 32k, y = -k, z = -14k$$

Put x, y, z in equation (3)

$$2(32k) - (-k) + 4(-14k) = 15$$

$$64k + k - 56k = 15$$

$$9k = 15$$

$$k = \frac{15}{9}$$

$$k = \frac{5}{3}$$

$$x = 32 \times \frac{5}{3} = \frac{160}{3}$$

$$y = -\frac{5}{3}$$

$$z = -14 \times \frac{5}{3} = -\frac{70}{3}$$

$$\vec{d} = \frac{160}{3}\hat{i} - \frac{5}{3}\hat{j} - \frac{70}{3}\hat{k}$$