
Real Numbers 

 

Euclids Division Lemma 

What is a dividend? Let us understand it with the help of a simple example. 

Can you divide 14 by 6? 

 

After division, we get 2 as the quotient and 2 as the remainder. 

Thus, we can also write 14 as 6 × 2 + 2. 

A dividend can thus be written as: 

Dividend = Divisor × Quotient + Remainder 

Can you think of any other number which, when multiplied with 6, gives 14 as the 
dividend and 2 as the remainder? 

Let us try it out with some other sets of dividends and divisors. 

(1) Divide 100 by 20: 100 = 20 × 5 + 0 

(2) Divide 117 by 15: 117 = 15 × 7 + 12 

(3) Divide 67 by 17: 67 = 17 × 3 + 16 

Thus, if we have a dividend and a divisor, then there will be a unique pair of a quotient and 
a remainder that will fit into the above equation. 

This brings us to Euclid’s division lemma. 

If a and b are positive integers, then there exist two unique integers, q and r, 



such that a = bq + r 

This lemma is very useful for finding the H.C.F. of large numbers where breaking them into 
factors is difficult. This method is known as Euclid’s Division Algorithm. 

Let us look at some more examples. 

Example 1:  Find the H.C.F. of 4032 and 262 using Euclid’s division algorithm.  

Solution: 

Step 1: 

First, apply Euclid’s division lemma on 4032 and 262. 

4032 = 262 × 15 + 102 

Step 2: 

As the remainder is non-zero, we apply Euclid’s division lemma on 262 and 102. 

262 = 102 × 2 + 58 

Step 3: 

Apply Euclid’s division lemma on 102 and 58. 

102 = 58 × 1 + 44 

Step 4: 

Apply Euclid’s division lemma on 58 and 44. 

58 = 44 × 1 + 14 

Step 5: 

Apply Euclid’s division lemma on 44 and 14. 

44 = 14 × 3 + 2 

Step 6: 



Apply Euclid’s division lemma on 14 and 2. 

14 = 2 × 7 + 0 

In the problem given above, to obtain 0 as the remainder, the divisor has to be taken as 2. 
Hence, 2 is the H.C.F. of 4032 and 262. 

Note that Euclid’s division algorithm can be applied to polynomials also. 

Example 2: A rectangular garden of dimensions 190 m × 60 m is to be divided in 
square blocks to plant different flowers in each block. Into how many blocks can this 
garden be divided so that no land is wasted?  

Solution: 

If we do not want to waste any land, we need to find the largest number that completely 
divides both 190 and 60 and gives the remainder 0, i.e., the H.C.F. of (190, 60). 

To find the H.C.F., let us apply Euclid’s algorithm. 

190 = 60 × 3 + 10 

60 = 10 × 6 + 0 

Therefore, the H.C.F. of 190 and 60 is 10. 

Therefore, there will be = 19 square blocks along the length of the garden and = 6 
blocks along its breadth. 

Hence, the total number of blocks in the garden will be 19 × 6 = 114. 

Example 3: Find the H.C.F. of 336 and 90 using Euclid’s division algorithm. 

Solution: 

As 336 > 90, we apply the division lemma to 336 and 90. 

336 = 90 × 3 + 66 

Applying Euclid’s division lemma to 90 and 66: 

90 = 66 × 1 + 24 



Applying Euclid’s division lemma to 66 and 24: 

66 = 24 × 2 + 18 

Applying Euclid’s division lemma to 24 and 18: 

24 = 18 × 1 + 6 

Applying Euclid’s division lemma to 18 and 6: 

18 = 6 × 3 + 0 

As the remainder is zero, we need not apply Euclid’s division lemma anymore. The divisor 
(6) is the required H.C.F. 

Example 4: Find the H.C.F. of 45, 81, and 117 using Euclid’s division algorithm. 

Solution: 

Let us begin by choosing any two out of the three given numbers, say 45 and 81. 

As 81 > 45, we apply Euclid’s division lemma to 81 and 45. 

81 = 45 × 1 + 36 

Applying Euclid’s division lemma to 45 and 36: 

45 = 36 × 1 + 9 

Applying Euclid’s division lemma to 36 and 9: 

36 = 9 × 4 + 0 

As the remainder is zero, the H.C.F. of 45 and 81 is 9. 

Now, we again need to apply Euclid’s division algorithm on the H.C.F. of the two numbers 
and the remaining number. 

Since the H.C.F. of 45 and 81 is 9 and the third number is 117, we apply Euclid’s division 
lemma to 117 and 9. 

117 = 9 × 13 + 0 

As the remainder is zero, the H.C.F. of 9 and 117 is 9. 



Here, the second H.C.F. (the H.C.F. of the H.C.F. of the first two numbers and the third 
number) is the H.C.F. of the three numbers. 

Thus, we can say that the H.C.F. of the three numbers is 9. 

Example 5: In an inter-school essay writing competition, the numbers of participants 
from schools A, B, and C are 20, 16, and 28 respectively. If the participants in each 
room are from the same school, then find the minimum number of rooms required 
such that each room has the same number of participants. 

Solution: 

If we need to find the minimum number of rooms, then we need to keep the maximum 
number of participants in each room i.e., we need to find the largest number that 
completely divides 20, 16, and 28. 

Thus, we start by choosing any two out of the given three numbers, say 20 and 16. 

Applying Euclid’s division lemma to 20 and 16: 

20 = 16 × 1 + 4 

Applying Euclid’s division lemma to 16 and 4: 

16 = 4 × 4 + 0 

Hence, 4 is the H.C.F. of 20 and 16. 

Applying Euclid’s division algorithm to 28 and 4: 

28 = 4 × 7 + 0 

Hence, 4 is the H.C.F. of 28 and 4. 

∴H.C.F. of 20, 16, 28 = 4 

Therefore, each room would have 4 participants. 

The number of rooms in which the participants from schools A, B, and C can be 

accommodated is = 5, = 4, and = 7 respectively. 

Therefore, a total of 5 + 4 + 7 =16 rooms are required. 



The Use Of Euclids Division Lemma To Prove Mathematical Relationships 

Whenever we divide 32 by 5, we will get 6 as the quotient and 2 as the remainder. 
Therefore, we can also write 32 as 6  5 + 2. 

We can thus write this rule about the dividend as 

Dividend = Divisor   Quotient + Remainder 

This expression is unique, i.e., whenever we divide an integer (dividend) by another integer 
(divisor), we always get a fixed quotient and a fixed remainder. 

The above statement can be proven by taking an example. 

Whenever we divide 54 by 11, we will get 4 as the quotient and 10 as the remainder. We 
will never get a quotient other than 4 and a remainder other than 10 when we divide 54 by 
11. 

This brings us to Euclid’s division lemma. 

If a and b are positive integers, then there exist integers q and r such that 

a = bq + r, where 0  r < b 

This lemma has several applications, one of which is to prove mathematical relationships 
among numbers. 

Let us discuss this concept with the help of a few examples. 

Example 1: Prove that every positive integer is of the form 3p, 3p + 1, or 3p + 2, 
where p is any integer. 

Solution: 

Let a be any positive integer and let b = 3. 

Applying Euclid’s algorithm to a and 3: 



a = 3p + r; for some integer p and 0 ≤ r < 3 

Therefore, a can be 3p, 3p + 1, or 3p + 2. 

As a is a positive integer, we can say that any positive integer is of the form 3p, 3p + 1, or 
3p + 2. 

Example 2: Prove that every positive even integer is of the form 2m and every 
positive odd integer is of the form 2m + 1, where m is any integer. 

Solution: 

Let a be any positive integer and let b = 2. 

According to Euclid’s division lemma, there exist two unique integers m and r such that 

a = bm + r = 2m + r, where 0 ≤ r < 2. 

Thus, r = 0 or 1 

If r = 0, i.e., if a = 2m, then the expression is divisible by 2. Thus, it is an even number. 

If r = 1, i.e., if a = 2m + 1, then the expression is not divisible by 2. Thus, it is an odd number. 

Thus, every positive even integer is of the form 2m and every positive odd integer is of the 
form 2m + 1. 

Example 3: Prove that the expression y(y + 1) always represents an even number, 
where y is any positive integer. 

Solution: 

Let y be an integer. Thus, it may be either odd or even. 

When y is an odd number, i.e., when y is of the form 2p + 1, where p is an integer: 

y(y + 1) = (2p + 1)(2p + 1 + 1) = (2p + 1)(2p + 2) = 2(2p + 1)(p + 1) 

The above expression is a multiple of 2. Thus, the expression y(y + 1) represents an even 
number. 

When y is an even number, i.e., when y is of the form 2q, where q is an integer: 

y(y + 1) = (2q)(2q + 1) = 2q(2q + 1) 



The above expression is a multiple of 2. Thus, the expression y(y + 1) represents an even 
number. 

Thus, for a positive integer y, the expression y(y + 1) always represents an even number. 

Example 4:  

Show that 

(a) The sum, the difference, and the product of two even numbers is always  

even. 

(b) The sum and the difference of two odd numbers is always even, whereas  

their product is always odd. 

Solution: 

(a) Let there be two even numbers, x and y, such that x = 2m and y = 2n, where m and n are 
two positive integers. 

Now, x + y = 2m + 2n = 2(m + n) = 2p, where p = m + n is an integer. 

Thus, x + y is always even. 

Similarly, x − y = 2m − 2n = 2(m − n) = 2q, where q = m − n is an integer. 

Thus, x − y is always even. 

Likewise, xy = 2m × 2n = 4mn = 2(2mn) = 2t, where t = 2mn is an integer. 

Thus, xy is always even. 

Hence, the sum, the difference, and the product of two even numbers is always even. 

(b) Let there be two odd numbers x and y such that x = 2m + 1 and y = 2n + 1, 
where m and n are two positive integers. 

Now, x + y = (2m + 1) + (2n + 1) = 2(m + n + 1) = 2p, where p = m + n + 1 is an integer. 

Thus, x + y is even. 

Similarly, x − y = (2m + 1) − (2n + 1) = 2(m − n) = 2q, where q = m − n is an integer. 



Thus, x − y is even. 

Likewise, xy = (2m + 1)(2n + 1) = 2(2mn + m + n) + 1 = 2t + 1, where t = 2mn + m + n is an 
integer. 

Thus, xy is always odd. 

Hence, the sum and the difference of two odd numbers is always even, whereas their 
product is always odd. 

Prime Factorisation of Numbers Using Fundamental Theorem of Arithmetic 

We know that all composite numbers can be represented as the product of two or more 
prime numbers. Let us understand this concept by taking the example of 36 and factorising 
it in different ways. 

 

We can see that whichever way we factorise the number 36, it will be broken down as the 
product of the same prime numbers, which is unique. The only difference is that the 
ordering of the prime numbers will be different for different ways of factorising the 
number. In fact, this is true for all numbers. We can check this by taking the example of a 
larger number, say 21560, which can be uniquely broken down into its prime factors as 

23 × 5 × 72 × 11 

Hence, we can say that any composite number can be written in the form of the product of 
prime numbers, which is unique, except the order in which they occur. By this, we mean 
that 2 × 3 × 7 × 11 is the same as 7 × 11 × 2 × 3. 

This is the fundamental theorem of arithmetic. It can be formally stated as: 



Every composite number can be factorised as the product of certain prime numbers 
and this factorisation is unique for that composite number although the order in 
which the prime numbers occur may be changed. 

Thus, this theorem can be used to write the prime factorisation of any number. Let us try to 
build on this concept with the help of some examples. 

Example 1: 

Write the prime factorization of 31250. What are its prime factors? 

Solution: 

31250 = 2 × 15625 

= 2 × 5 × 3125 

= 2 × 5 × 5 × 625 

= 2 × 5 × 5 × 5 × 125 

= 2 × 5 × 5 × 5 × 5 × 25 

= 2 × 5 × 5 × 5 × 5 × 5 × 5 

= 2 × 56 

Hence, 2 × 56 is the prime factorisation of 31250. Its prime factors are 2 and 5. 

Example 2: If it is given that 13125 = 2a ×3b× 5c× 7d, then find the value of a +2b +7c 
+ 11d. 

Solution: 

2a × 3b × 5c × 7d = 13125 

= 3 × 4375 

= 3 × 5 × 875 

= 3 × 5 × 5 ×175 



= 3 × 5 × 5 × 5 × 35 

= 3 × 5 × 5 × 5 × 5 × 7 

= 31 × 54 × 71 

∴ 2a × 3b × 5c × 7d = 20 × 31 × 54 × 71 

Comparing exponents of the bases (integers): a = 0, b = 1, c = 4, and d =1 

Hence, a +2b +7c +11d = 0 + 2 ×1 + 7 × 4 + 11 × 1 

= 0 + 2 + 28 + 11 

= 41 

Example 3: Show that the expressions given below are composite numbers. 

(a) 3 × 5 × 7 × 23 + 2 × 7 × 11 × 13 

(b) 29 × 35 + 14 

(c) 34 + 63 

Solution: 

(a) 3 × 5 × 7 × 23 + 2 × 7 × 11 × 13 = 7( 3 × 5 × 23 + 2 × 11 × 13) 

= 7(345 + 286) 

= 7 × 631 

Since both 7 and 631 are prime numbers, we have expressed the given expression as the 
product of two prime numbers. We know that according to the fundamental theorem of 
arithmetic, every composite number can be uniquely written as the product of its prime 
factors. Thus, the given expression represents a composite number. 

(b) 29 × 35 + 14 = 29 × 5 × 7 + 2 × 7 

= 7(29 × 5 + 2) 

= 7 × 147 

= 7 × 3 × 7 × 7 



= 3 × 73 

Since both 3 and 7 are prime numbers, we have expressed the given expression as the 
product of its prime factors. We know that according to the fundamental theorem of 
arithmetic, every composite number can be uniquely written as the product of its prime 
factors. Thus, the given expression represents a composite number. 

(c) 34 + 63 = 34 + (2 × 3) 3 

= 34 + 23 × 33 

= 33(3 + 23) 

= 33 × 11 

Since both 3 and 11 are prime numbers, we have expressed the given expression as the 
product of its prime factors. It is known that according to the fundamental theorem of 
arithmetic, every composite number can be uniquely written as the product of its prime 
factors. Thus, the given expression represents a composite number. 

Application Of The Fundamental Theorem Of Arithmetic To Find The HCF And LCM 

Of Numbers 

All composite numbers can be written as the product of two or more prime numbers. For 
example, 20 can be written as 22 × 5; 54 can be written as 2 × 33, and so on. 

Note that if we do not consider the way in which the prime factors are written, then we can 
prime factorise every number in only one way. This applies to other numbers as well. 

This leads to the fundamental theorem of arithmetic, which states that: 

Every composite number can be factorised as the product of certain prime 
numbers and this factorisation is unique, although the order in which the prime 
factors occur may be changed. 

Even though we did not notice it before, whenever we prime factorise a number, we use the 
fundamental theorem of arithmetic to do so. 

For example, the prime factorisation of 980 is represented as 

980 = 2 × 490 

= 2 × 2 × 245 



= 2 × 2 × 5 × 49 

= 2 × 2 × 5 × 7 × 7 

= 22 × 51 × 72 

Hence, 22 × 51 × 72 is the prime factorisation of 980; and 2, 5, and 7 are its prime factors. 

By applying the fundamental theorem of arithmetic to the prime factorized numbers, we can 
also find their HCF and LCM. 

This is known as the prime factorisation method, which states that: 

For any two positive integers a and b: 

HCF (a, b) = Product of the smallest power of each common prime factor in the prime 
factorisation of numbers 

LCM (a, b) = Product of the greatest power of each prime factor in the prime 
factorisation of numbers 

 

Let us understand this method with the help of some examples. 

Example 1: Find the LCM and the HCF of 432 and 676 using the prime factorization 
method. 

Solution: 

We can write these numbers as 

432 = 24 × 33 

676 = 22 × 132 

To calculate the HCF 

We observe that the only common prime factor is 2 and the smallest power of this prime 
factor is also 2. 

Thus, HCF (432, 676) = 22 = 4 



To calculate the LCM 

We observe that the prime factors of 432 and 676 are 2, 3, and 13. The greatest powers of 
these factors are 4, 3, and 2 respectively. 

LCM is the product of the greatest power of each prime factor. 

Thus, LCM (432, 676) = 24 × 33 × 132 = 73008 

Example 2: Find the HCF and the LCM of 28, 42, and 64 using the prime factorization 
method. 

Solution: 

We can write these numbers as 

28 = 22 × 71 

42 = 2 × 31 × 71 

64 = 26 

HCF is the product of the smallest power of each common prime factor. 

Here, the only common prime factor is 2 and its power is 1. 

Thus, HCF (28, 42, 64) = 21 = 2 

LCM is the product of the greatest power of each prime factor. 

Thus, LCM (28, 42, 64) = 26 × 31 × 71 = 1344 

Example 3: Find the HCF and the LCM of 1080 and 900 using the prime factorization 
and show that HCF × LCM = Product of two numbers. 

Solution: 

1080 = 23 × 33 × 5 

900 = 22 × 32 × 52 

Hence, HCF (1080, 900) = 22 × 32 × 5 = 180 

LCM (1080, 900) = 23 × 33 × 52 = 5400 



HCF × LCM = 180 × 5400 = 972000 

Product of numbers = 1080 × 900 = 972000 

Hence, HCF × LCM = Product of two numbers 

Example 4: The HCF of 273 and another number is 7, while their LCM is 3003. Find the 
other number. 

Solution: 

Let the first number (a) be 273 and the second number be b. 

It is given that HCF (a, b) = 7 and LCM (a, b) = 3003. 

We know that HCF LCM = Product of two numbers. 

⇒ HCF (a, b) × LCM (a, b) = a × b 

⇒ 7 × 3003 = 273 × b 

 

⇒ b = 77 

Hence, the other number is 77. 

Example 5: Anurag takes 6 minutes to complete one round of jogging around the 
circular track of a park, while Twinkle takes 8 minutes to do the same. If both of them 
start jogging at the same time from the same point, then how much time will they take 
before they meet at the point from which they started? 

Solution: 

Since Anurag and Twinkle take 6 minutes and 8 minutes respectively to complete one round 
of the circular track, the time after which they will meet at the starting point will be the 
lowest multiple of 6 and 8, i.e., their LCM. 

6 = 2 × 3 

8 = 23 

∴ LCM (6, 8) = 23 × 3 = 24 



Thus, they will meet at the starting point after 24 minutes. 

Example 6: There are 120 students in a class. When the students were arranged 
according to their roll numbers, it was observed that every second student got 
distinction in Mathematics, every third student got distinction in Science, and every 
fifth student got distinction in English. How many students got distinction in all three 
subjects? 

Solution: 

As every second, third, and fifth student got distinction in Math, Science, and English 
respectively, the roll numbers of the students who got distinction in all three subjects will be 
equal to the multiples of the LCM of 2, 3, and 5. 

LCM (2, 3, 5) = 2 × 3 × 5 = 30 

Thus, every 30th student got distinction in all three subjects. 

Thus, a total of   students got distinction in all three subjects. 

Properties Of Prime Numbers 

Consider the number 8n, where n is a natural number. 

Is there any value of n for which 8n ends with zero? 

It is difficult to answer this question directly. However, we can answer this question by 
making use of the fundamental theorem of arithmetic. It states that 

“Every composite number can be factorized as a product of primes and this 
factorization is unique, apart from the order in which the prime factors occur”. 

This means that if we are given a composite number, then that number can be written as a 
product of prime numbers in only one way (except for the order of prime numbers). 

For example: the composite number 255 can be written as the product of primes as follows. 

255 = 3 × 5 × 17 

Also, 255 can be written as 3 × 17 × 5 or 5 × 3 × 17 or 5 × 17 × 3 or 17 × 3 × 5 or 17 × 5 × 3. 



Thus, we can see that 255 can be expressed as a product of unique prime numbers 3, 5, and 
17 but the order of representation may differ. 

Now, by making use of the above theorem, we can answer the question which we were 
discussing in the beginning. Let us see how. 

Suppose the number 8n ends with zero for some value of n. 

Since the number ends with zero, it should be divisible by 10. 

Now, 10 = 2 × 5 

Thus, this number should be divisible by 2 and 5 also. 

Therefore, the prime factorization of 8n should contain both the prime numbers 2 and 5. 

We have, 8n = (23)n = 23n 

⇒ The only prime in the factorization of 8n is 2. 

Thus, by fundamental theorem of arithmetic, there is no other prime in the factorization of 
8n. 

Hence, there is no natural number n for which 8n ends with the digit zero. 

In this way, we can make use of the above theorem. 

Let us now look at some more examples to understand this concept better. 

Example 1: Prove that the number 9n, where n is a natural number, cannot end with a 
zero. 

Solution: 

Suppose the number 9n ends with a zero for some value of n. 

Since the number ends with zero, it should be divisible by 10. 

Now, 10 = 2 × 5 

Thus, this number should be divisible by 2 and 5 also. 

Therefore, the prime factorization of 9n should contain both the prime numbers 2 and 5. 



We have, 9n = (32)n = 32n 

⇒ The only prime in the factorization of 9n is 3. 

Thus, by fundamental theorem of arithmetic, there is no other prime in the factorization of 
9n. 

Hence, there is no natural number n for which 9n ends with the digit zero. 

Example 2: Check whether the numbers 49n, where n is a natural number, can end 
with a zero. 

Solution: 

Suppose the number 49n ends with a zero for some value of n. 

Since the number ends with zero, it should be divisible by 10. 

Now, 10 = 2 × 5 

Thus, this number should be divisible by 2 and 5 also. 

Therefore, the prime factorization of 49n should contain both the prime numbers 2 and 5. 

We have, 49n = (72)n = 72n 

⇒ The only prime in the factorization of 49n is 7. 

Thus, by fundamental theorem of arithmetic, there is no other prime in the factorization of 
49n. 

Thus, there is no natural number n for which 49n ends with the digit zero. 

Irrational Numbers 

We know that a number which cannot be written in the form of , where p and q are 
integers and q ≠ 0, is known as an irrational number. 

For example: all numbers of the form , where p is a prime number such as

etc., are irrational numbers. 



How can we prove that these are irrational numbers? 

We can prove this by making use of a theorem which can be stated as follows. 

“If p divides a2, then p divides a (where p is a prime number and a is a positive 
integer)”. 

 

 

So go through the given video to understand the application of the above stated property. 

Similarly, we can prove that square roots of other prime numbers like , etc. are 
irrational numbers. 

Besides these irrational numbers, there are some other irrational numbers like 
etc. 

We can also prove why these numbers are irrational. Before this, let us first see what 
happens to irrational numbers, when we apply certain mathematical operations on them. 

 Addition or subtraction of two irrational numbers gives a rational or an irrational 
number. 

 Addition or subtraction of a rational and an irrational number gives an irrational 
number. 

 Multiplication of a non-zero rational number and an irrational number gives an 
irrational number. 

 Multiplication of two irrational numbers gives a rational or an irrational number. 



We will now prove that is irrational. 

We know that  is irrational (as proved before). 

Now, the multiplication of a rational and an irrational number gives an irrational number. 

Therefore,  is an irrational number. 

Let us now try to understand the concept further through some more examples. 

Example 1: Prove that is irrational. 

Solution: 

Let us assume that is not irrational, i.e. is a rational number. 

Then we can write , where a and b are integers andb ≠ 0. 

Let a and b have a common factor other than 1. 

After dividing by the common factor, we obtain 

, where c and d are co-prime numbers. 

 

 

 

As c, d and 2 are integers,  and  are rational numbers. 

Thus, is rational. 



is rational as the difference of two rational numbers is again a rational number. 

This is a contradiction as  is irrational. 

Therefore, our assumption that is rational is wrong. 

Hence,  is irrational. 

Example 2: Prove that  is irrational. 

Solution: 

Let us assume  is rational. Then, we can write 

, 

where a and b are co-prime and b ≠ 0. 

⇒  

Now, as a and b are integers, is rational or  is a rational number. 

This means that is rational. 

This is a contradiction as  is irrational. 

Therefore, our assumption that  is rational is wrong. 

Hence,  is an irrational number. 

Decimal Expansions of Rational Numbers 

The Need for Converting Rational Numbers into Decimals  

A carpenter wishes to make a point on the edge of a wooden plank at 95 mm from any end. 
He has a centimeter tape, but how can he use that to mark the required point?  



 

Simple! He should convert 95 mm into its corresponding centimeter value, i.e., 9.5 cm and 
then measure and mark the required length on the wooden plank.  

This is just one of the many situations in life when we face the need to convert numbers 
into decimals. In this lesson, we will learn to convert rational numbers into decimals, 
observe the types of decimal numbers, and solve a few examples based on this concept.  

Know More 

Two rational numbers and are equal if and only if ad = bc. 

Take, for example, the rational numbers and . Let us see if they are equal or not. 

Here, a = 2, b = 4, c = 3 and d = 6 

Now, we have: 

ad = 2 × 6 = 12 

bc = 4 × 3 = 12 

Since ad = bc, we obtain = .  

We know that the form  represents the division of integer p by the integer q. By solving 

this division, we can find the decimal equivalent of the rational number .  Now, let us 

convert the numbers , and into decimals using the long division method. 



            

While the remainder is zero in the division of 5 by 8, it is not so in case of the other two 
divisions. Thus, we can get two different cases in the decimal expansions of rational 
numbers.  

Observing the Decimal Expansions of Rational Numbers 

We can get the following two cases in the decimal expansions of rational numbers.  

Case I: When the remainder is zero 

In this case, the remainder becomes zero and the quotient or decimal expansion terminates 
after a finite number of digits after the decimal point. For example, in the decimal 

expansion of , we get the remainder as zero and the quotient as 0.625. 

Case II: When the remainder is never zero 

In this case, the remainder never becomes zero and the corresponding decimal expansion 

is non-terminating. For example, in the decimal expansions of and , we see that the 
remainder never becomes zero and their corresponding quotients are non-terminating 
decimals. 

When we divide 4 by 3 and 2 by 7, we get 1.3333… and 0.285714285714… as the 
respective quotients. In these decimal numbers, the digit ‘3’ and the group of digits 



‘285714’ get repeated. Therefore, we can write and

. Here, the symbol  indicates the digit or group of digits 
that gets repeated. 

Solved Examples 

Example 1: Write the decimal expansion of  and find if it is terminating or non-
terminating and repeating. 

Solution: 

Here is the long division method to find the decimal expansion of . 

 

Hence, the decimal expansion of is 49.48. Since the remainder is obtained as zero, the 
decimal numberis terminating. 

Example 2: Write the decimal expansion of  and find if it is terminating or non-
terminating and repeating. 

Solution: 



Here is the long division method to find the decimal expansion of . 

 

Hence, the decimal expansion of is 87.33.... Since the remainder 9 is obtained again 
and again, the decimal numberis non-terminating and repeating. The decimal number can 

also be written as .  

Medium 

Example 1: Find the decimal expansion of each of the following rational numbers and 
write the nature of the same. 

1.  

2.  

3.  

4.  

Solution: 



 

We have  = 0.64356435... =  

The group of digits ‘6435’ repeats after the decimal point. Hence, the decimal expansion of 
the given rational number is non-terminating and repeating. 

 

We have  = 2.3075 



Hence, the given rational number has a terminating decimal expansion. 

 

We have  = 0.3737... =  

The pair of digits ‘37’ repeats after the decimal point. Hence, the decimal expansion of the 
given rational number is non-terminating and repeating. 

 

We have  = 0.67 

Hence, the given rational number has a terminating decimal expansion. 

Terminating and Non-terminating Repeating Decimal Expansions of Rational 

Numbers 

We can find the decimal expansion of rational numbers using long division method. 

However, it is possible to check whether the decimal expansion is terminating or non-

terminating without actually carrying out long division also. 

Let us start by taking a few rational numbers in the decimal form. 



(a) 

 

(b) 

0.275  

On prime factorizing the numerator and the denominator, we obtain 

 

Can you see a pattern in the two examples? 

We notice that the given examples are rational numbers with terminating decimal 

expansions. When they are written in the form, where p and q are co-prime 

(the HCF of p and q is 1), the denominator, when written in the form of prime factors, has 2 
or 5 or both. 

The above observation brings us to the given theorem. 

If x is a rational number with terminating decimal expansion, then it can be expressed 

in the form, where p and q are co-prime (the HCF of p and q is 1) and the prime 

factorisation of q is of the form 2n5m, where n and m are non-negative integers. 

Contrary to this, if the prime factorisation of q is not of the form 2n5m, 

where n and m are non-negative integers, then the decimal expansion is a  

non-terminating one. 

Let us see a few examples that will help verify this theorem. 



(a)  

(b)  

(c)  

(d)  

Note that in examples (b) and (d), each of the denominators is composed only of the prime 
factors 2 and 5, because of which, the decimal expansion is terminating. However, in 
examples (a) and (c), each of the denominators has at least one prime factor other than 2 
and 5 in their prime factorisation, because of which, the decimal expansion is non-
terminating and repetitive. 

To summarize the above results, we can say that: 

Let x = be any rational number. 
If the prime factorization of q is of the form 2m5n, where m and n are non-negative 
integers, then x has a terminating decimal expansion. 
If the prime factorisation of q is not of the form 2m5n, where m and n are non-
negative integers, then x has a non-terminating and repetitive decimal expansion. 

Let us solve a few examples to understand this concept better. 

Example 1: Without carrying out the actual division, find if the following rational 
numbers have a terminating or a non-terminating decimal expansion. 

(a)  

(b)  

Solution: 



(a)  

As the denominator can be written in the form 2n5m, where n = 6and m = 2 are non-negative 
integers, the given rational number has a terminating decimal expansion. 

(b)  

As denominator cannot be written in the form 2n5m, where n and m are non-negative 
integers, the given rational number has a non-terminating decimal expansion. 

Example 2: Without carrying out the actual division, find if the expression  has a 
terminating or a non-terminating decimal expansion.  

Solution:  =  

As the denominator can be written in the form 2n5m, where n = 7and m = 0 are non-negative 
integers, the given rational number has a terminating decimal expansion. 

 

 

Hence, 5.5859375 is the decimal expansion of the given rational number. 

 


