CHAPTER 10

ELECTROSTATIC SYSTEMS

§10.01 Introduction

We now propose to study the thermodynamic properties of substances in
an electrostatic field. For this purpose it will suffice to consider the field
in a parallel-plate capacitor neglecting any edge effect. Thus when we
refer to the extensive properties of a parallel-plate capacitor of area A,
we really mean the difference between those of a capacitor of area o7 + A4
and those of a similar capacitor of area &7, where &/ > 4.

§10.02 Parallel-plate capacitor in vacuo

Consider a parallel-plate capacitor of area A, the distance between the plates
being d. Let the charges on the two plates be +Q and — Q. The capacitor
being in vacuo let the work required to transfer an elementary charge
dQ from the negative plate « to the positive plate p be (Y?—y*)dQ. Then
YyP—y* is called the potential difference between the two plates and
E=—(yP—y*)/d is called the electric field strength between the plates.
Then the ratio ¢, defined by

Qd|A(Y*—y*)=Q[AE=¢, 10.02.1
is a universal constant called the rationalized permittivity of a vacuum.
The value of ¢, is given by

£,=8.854x10"12C*) ' m~?!

4mey=1.113x10"1°C*J " Im™!
=1.113x 1071 AsV Im™!

§10.03 Parallel-plate capacitor in fluid

Now consider the same parallel-plate capacitor completely immersed in a
homogeneous fluid. If the charges on the plates are again +Q and —Q,
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and if the potential difference between the plates, defined as before, is again
denoted by yP—y" then the ratio e, defined by

Qd/A(W*—y*)=Q/AE=¢ 10.03.1

is called the rationalized permittivity of the fluid. The value of ¢ depends on
the nature of the fluid, on its temperature, and possibly also on E, but is
independent of the size and shape of the capacitor. ¢ has of course the same
dimensions as &,. The ratio ¢, =¢/¢, is called the relative permittivity or the
dielectric coefficient of the fluid.

§10.04 Work of charging a capacitor
According to (10.03.1) we have
WP —y*=Qdled 10.04.1

and so the work required to bring an element of charge dQ from the negative
plate o to the positive plate B is

(QdeA)dQ. 10.04.2

From (10.03.1) we have also
Q=A¢E 10.04.3
dQ=Ad(¢E). 10.04.4

Substituting (3) and (4) into (2) we obtain for the work w required to
increase the field strength from E to E+dE

w=AdEd(¢E)=V,Ed(¢E) 10.04.5

where ¥V, denotes the volume between the plates of the capacitor and is
assumed independent of temperature and pressure.

Formula (5) is valid for any infinitesimal change, including in particular
an adiabatic change and an isothermal change, but the dependence of ¢E on E
will in general not be the same in these two cases. The quantity ¢E is called
the electric displacement.

§10.05 Characteristic functions

If we now consider the system consisting of the whole fluid of volume V
surrounding and including the capacitor, we obtain by using (10.04.5)
the relations

dU=TdS—PdV +V,Ed(¢E)+) wdn 10.05.1
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dF =—SdT—PdV +V,Ed(¢éE)+Y, wdn;. 10.05.2

Formulae (1) and (2) are the extensions of (1.28.6), (1.28.7) respectively
including the extra term (10.04.5) representing the work required to change
the field E between the plates of the capacitor.

We now define the characteristic function G by

G=U—-TS+PV—V,E? 10.05.3
Differentiating (3) and substituting into (1), we obtain

dG=—SdT+VdP-V,eEJdE+Y p,dn,. 10.05.4

In all the above formulae ¥ denotes the total volume of fluid in which the
capacitor is immersed and P denotes the pressure acting on the outside
boundary of the fluid in which the capacitor is completely immersed.
We have carefully avoided reference to any pressure within the fluid between
the plates of the capacitor, for the definition of such a pressure would require
special caution and its use as an independent variable would lead to more
complicated formulae.

§10.06 Analogues of Maxwell’s relations

By forming the second differential coefficients of the characteristic functions
we can obtain several relations analogous to Maxwell’s relations obtained
in §1.47. In particular from (10.05.4) we derive

(0S/E)r, p=V(O[¢E]/OT)p, g=V,E(0e/0T)p g 10.06.1
(0V/OE);, p= — V,(0[¢E]/OP)y, g= — V. E(0¢/oP); g.  10.06.2

This change in volume accompanying change in field strength at constant
temperature and pressure is called electrostriction.

§10.07 Constant permittivity. Dielectric constant

For the sake of generality we have hitherto made no assumption concerning
the dependence of the permittivity ¢ on the field strength E. For almost all
substances at field strengths met in an ordinary laboratory the permittivity ¢
is for a given temperature and pressure independent of the field strength.
We shall from here onwards assume this to be the case. The relative
permittivity or dielectric coefficient ¢, = &/¢, is then called the dielectric constant.
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Formula (10.06.1) may now be written more simply as
(0S/0E);, p=V, E(0¢/0T)p 10.07.1
and the electrostriction formula (10.06.2) as

(a V/aE)T, P=— V;E(aﬁ/ap)T . 10.07. 2

§10.08 Integrated formulae

When we assume that ¢ is independent of E we can integrate (10.05.4) at
constant T, P, n; obtaining

G=G"—14¢E*V, 10.08.1

where the superscript ° denotes the value at zero field at the given tempera-
ture, pressure, and composition.
By differentiation of (1) we obtain

S =5°+14(3¢/0T)E?Y, 10.08.2
V =V°—4(0¢/0P)E?V, 10.08.3
= —%(defon,)E*V, 10.08.4

from which we deduce
H=H"+3}{e+ T(3¢/0T)}E*V, 10.08.5
U=U°+14{e+T(3¢/dT)+ P(3¢/OP)}E*V,. 10.08.6

We must point out that the statement occurring in text-books on electricity
that the energy density due to the field is 3¢E? is false.

§10.09 Application to perfect gas

We shall illustrate the use of the relation (10.08.4) by its application to the
simplest case of a single perfect gas.

The rationalized permittivity ¢ of a perfect gas is related to the rationalized
permittivity &, of a vacuum by

e—¢go=(Ln/V)(a+B|T) 10.09.1
where o is equal to the molecular polarizability and g is given by
B=u*3k 10.09.2

where u is the electric moment of the molecule and k the Boltzmann constant.
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Substituting (1) into (10.08.4) we obtain
p=u’—3E*L(e+B|T)
=u® 4+ RT In(nRT/P°V)—3E*L(a+ B/T). 10.09.3
Let us now consider the equilibrium distribution of a gas between the
region, denoted by the superscript /, inside a capacitor where the field

strength is E and the region, denoted by the superscript °, exterior to this
field. We have then

p'=u®+RT In(n'RT/V'P®)—3E*L(a+ B/ T) 10.09.4
p°=u® +RT In(n°RT/V°P®). 10.09.5
The equilibrium distribution is determined by
w=pu. 10.09.6
Substituting (4) and (5) into (6), we obtain, writing ¢ for n/V,
RT In(c'jc®)—3E*L(a+ B/ T)=0 10.09.7
> c'|c®=exp{(3E*/RT)(a+B/T)}. 10.09.8

Since « is always positive and f is either positive or zero, it follows that ¢
is always greater inside the field than outside it. Thus every perfect gas is
attracted into an electric field.



