Representing 3-D in 2-D

• We see a few shapes in our day- to-day life which are not flat. Some of these shapes are solids.

• A prism is a polyhedron whose base and top are congruent polygons and whose lateral faces are parallelograms in shape.

For example:

• A pyramid is a polyhedron whose base is a polygon (of any number of sides) and whose lateral faces are triangles with a common vertex.

For example:

Note: A prism or a pyramid is named subsequent to the shape of its base. For instance, pentagonal prism and pentagonal pyramid are named after their base, pentagon.

• Each side of a cuboid is flat, called a **flat surface** (or surface). Two faces meet at a line segment called an **edge**. Three edges meet at a point called the **vertex**.

Solid	Figure	Properties
Cube		6 faces 12 edges 8 vertices (corners)
Cuboid		6 faces 12 edges 8 vertices
Cylinder		2 flat faces (circles)

	 1 curved face
Cone	1 flat surface 1 curved surface 1 vertex
Triangular Pyramid	4 faces 6 edges 4 vertices
Square pyramid	5 faces 8 edges 5 vertices
Triangular prism	5 faces 9 edges 6 vertices

• For any polyhedron, F + V - E = 2, where F is the number of faces, V is the number of vertices and E is the number of edges.

This relationship is called Euler's formula.

Example:Verify Euler's formula for the given solid.

Solution:

The given figure is a cube.

We have

Number of vertices, V = 8

Number of edges, E = 12

Number of faces, F = 6

Thus, F + V - E = 6 + 8 - 12 = 14 - 12 = 2

Hence, Euler's formula is verified.