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Coupled Oscillations

The preceding chapters have shown in some detail how a single vibrating system will

behave. Oscillators, however, rarely exist in complete isolation; wave motion owes its

existence to neighbouring vibrating systems which are able to transmit their energy to each

other.

Such energy transfer takes place, in general, because two oscillators share a common

component, capacitance or stiffness, inductance or mass, or resistance. Resistance coupling

inevitably brings energy loss and a rapid decay in the vibration, but coupling by either of

the other two parameters consumes no power, and continuous energy transfer over many

oscillators is possible. This is the basis of wave motion.

We shall investigate first a mechanical example of stiffness coupling between two

pendulums. Two atoms set in a crystal lattice experience a mutual coupling force and

would be amenable to a similar treatment. Then we investigate an example of mass, or

inductive, coupling, and finally we consider the coupled motion of an extended array of

oscillators which leads us naturally into a discussion on wave motion.

Stiffness (or Capacitance) Coupled Oscillators

Figure 4.1 shows two identical pendulums, each having a mass m suspended on a light rigid

rod of length l. The masses are connected by a light spring of stiffness s whose natural

length equals the distance between the masses when neither is displaced from equilibrium.

The small oscillations we discuss are restricted to the plane of the paper.

If x and y are the respective displacements of the masses, then the equations of

motion are

m€xx ¼ �mg
x

l
� sðx� yÞ

and

m€yy ¼ �mg
y

l
þ sðx� yÞ
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These represent the normal simple harmonic motion terms of each pendulum plus a coup-

ling term sðx� yÞ from the spring. We see that if x > y the spring is extended beyond its

normal length and will act against the acceleration of x but in favour of the acceleration of y.

Writing !2
0 ¼ g=l, where !0 is the natural vibration frequency of each pendulum, gives

€xxþ !2
0 x ¼ � s

m
ðx� yÞ ð4:1Þ

€yyþ !2
0 y ¼ � s

m
ðy� xÞ ð4:2Þ

Instead of solving these equations directly for x and y we are going to choose two new

coordinates

X ¼ xþ y

Y ¼ x� y

The importance of this approach will emerge as this chapter proceeds. Adding equations

(4.1) and (4.2) gives

€xxþ €yyþ !2
0ðxþ yÞ ¼ 0

that is

€XX þ !2
0X ¼ 0

and subtracting (4.2) from (4.1) gives

€YY þ ð!2
0 þ 2s=mÞY ¼ 0

The motion of the coupled system is thus described in terms of the two coordinates X and Y,

each of which has an equation of motion which is simple harmonic.

If Y ¼ 0, x ¼ y at all times, so that the motion is completely described by the equation

€XX þ !2
0X ¼ 0

then the frequency of oscillation is the same as that of either pendulum in isolation and the

stiffness of the coupling has no effect. This is because both pendulums are always swinging

in phase (Figure 4.2a) and the light spring is always at its natural length.

y

s

l l

x

Figure 4.1 Two identical pendulums, each a light rigid rod of length l supporting a mass m and
coupled by a weightless spring of stiffness s and of natural length equal to the separation of the
masses at zero displacement
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If X ¼ 0, x ¼ �y at all times, so that the motion is completely described by

€YY þ ð!2
0 þ 2s=mÞY ¼ 0

The frequency of oscillation is greater because the pendulums are always out of phase

(Figure 4.2b) so that the spring is either extended or compressed and the coupling is

effective.

Normal Coordinates, Degrees of Freedom and Normal Modes
of Vibration

The significance of choosing X and Y to describe the motion is that these parameters give a

very simple illustration of normal coordinates.

� Normal coordinates are coordinates in which the equations of motion take the form of a

set of linear differential equations with constant coefficients in which each equation

contains only one dependent variable (our simple harmonic equations in X and Y ).

� A vibration involving only one dependent variable X (or Y ) is called a normal mode of

vibration and has its own normal frequency. In such a normal mode all components of

the system oscillate with the same normal frequency.

� The total energy of an undamped system may be expressed as a sum of the squares of

the normal coordinates multiplied by constant coefficients and a sum of the squares of

the first time derivatives of the coordinates multiplied by constant coefficients. The

energy of a coupled system when the X and Y modes are both vibrating would then be

expressed in terms of the squares of the velocities and displacements of X and Y.

� The importance of the normal modes of vibration is that they are entirely independent

of each other. The energy associated with a normal mode is never exchanged with

another mode; this is why we can add the energies of the separate modes to give the

total energy. If only one mode vibrates the second mode of our system will always be at

rest, acquiring no energy from the vibrating mode.

� Each independent way by which a system may acquire energy is called a degree of

freedom to which is assigned its own particular normal coordinate. The number of such

l l l l

(a) (b)

Figure 4.2 (a) The ‘in phase’ mode of vibration given by €XX þ !2
0 X ¼ 0, where X is the normal

coordinate X ¼ x þ y and ! 2
0 ¼ g=l. (b) ‘Out of phase’ mode of vibration given by €YY þ ð!2

0 þ 2s=mÞ
where Y is the normal coordinate Y ¼ x � y
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different ways in which the system can take up energy defines its number of degrees of

freedom and its number of normal coordinates. Each harmonic oscillator has two

degrees of freedom, it may take up both potential energy (normal coordinate X) and

kinetic energy (normal coordinate _XX). In our two normal modes the energies may be

written

EX ¼ a _XX 2 þ bX 2 ð4:3aÞ
and

EY ¼ c _YY 2 þ dY 2 ð4:3bÞ
where a, b, c and d are constant.

Our system of two coupled pendulums has, then, four degrees of freedom and four

normal coordinates.

Any configuration of our coupled system may be represented by the super-position of the

two normal modes

X ¼ xþ y ¼ X0 cos ð!1t þ �1Þ

and

Y ¼ x� y ¼ Y0 cos ð!2t þ �2Þ

where X0 and Y0 are the normal mode amplitudes, whilst !2
1 ¼ g=l and !2

2 ¼ ðg=lþ 2s=mÞ
are the normal mode frequencies. To simplify the discussion let us choose

X0 ¼ Y0 ¼ 2a

and put

�1 ¼ �2 ¼ 0

The pendulum displacements are then given by

x ¼ 1
2
ðX þ YÞ ¼ a cos!1t þ a cos!2t

and

y ¼ 1
2
ðX � YÞ ¼ a cos!1t � a cos!2t

with velocities

_xx ¼ �a!1 sin!1t � a!2 sin!2t

and

_yy ¼ �a!1 sin!1t þ a!2 sin!2t
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Now let us set the system in motion by displacing the right hand mass a distance x ¼ 2a

and releasing both masses from rest so that _xx ¼ _yy ¼ 0 at time t ¼ 0.

Figure 4.3 shows that our initial displacement x ¼ 2a, y ¼ 0 at t ¼ 0 may be seen as a

combination of the ‘in phase’ mode ðx ¼ y ¼ a so that xþ y ¼ X0 ¼ 2aÞ and of the ‘out of
phase’ mode ðx ¼ �y ¼ a so that Y0 ¼ 2aÞ. After release, the motion of the right hand

pendulum is given by

x ¼ a cos!1t þ a cos!2t

¼ 2a cos
ð!2 � !1Þt

2
cos

ð!1 þ !2Þt
2

and that of the left hand pendulum is given by

y ¼ a cos!1t � a cos!2t

¼ �2a sin
ð!1 � !2Þt

2
sin

ð!1 þ !2Þt
2

¼ 2a sin
ð!2 � !1Þt

2
sin

ð!1 þ !2Þt
2

If we plot the behaviour of the individual masses by showing how x and y change with time

(Figure 4.4), we see that after drawing the first mass aside a distance 2a and releasing it x

follows a consinusoidal behaviour at a frequency which is the average of the two normal

mode frequencies, but its amplitude varies cosinusoidally with a low frequency which is

half the difference between the normal mode frequencies. On the other hand, y, which

started at zero, vibrates sinusoidally with the average frequency but its amplitude builds up

to 2a and then decays sinusoidally at the low frequency of half the difference between the

normal mode frequencies. In short, the y displacement mass acquires all the energy of the x

displacement mass which is stationary when y is vibrating with amplitude 2a, but the

energy is then returned to the mass originally displaced. This complete energy exchange is

only possible when the masses are identical and the ratio ð!1 þ !2Þ=ð!2 � !1Þ is an

integer, otherwise neither will ever be quite stationary. The slow variation of amplitude at

half the normal mode frequency difference is the phenomenon of ‘beats’ which occurs

between two oscillations of nearly equal frequencies. We shall discuss this further in the

section on wave groups in Chapter 5.

y = 0 a2a a

YX

− a a

+

+

Figure 4.3 The displacement of one pendulum by an amount 2a is shown as the combination of the
two normal coordinates X þ Y
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The important point to recognize, however, is that although the individual pendulums

may exchange energy, there is no energy exchange between the normal modes. Figure 4.3

showed the initial configuration x ¼ 2a, y ¼ 0, decomposed into the X and Y modes. The

higher frequency of the Y mode ensures that after a number of oscillations the Y mode will

have gained half a vibration (a phase of � rad) on the X mode; this is shown in Figure 4.5.

The combination of the X and Y modes then gives y the value of 2a and x ¼ 0, and the

process is repeated. When Y gains another half vibration then x equals 2a again. The

pendulums may exchange energy; the normal modes do not.

To reinforce the importance of normal modes and their coordinates let us return to

equations (4.3a) and (4.3b). If we modify our normal coordinates to read

Xq ¼ m

2

� �1=2

ðxþ yÞ and Yq ¼ m

2

� �1=2

ðx� yÞ

t

t

y 
  d

is
pl
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  d
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t

2a

2a

0

0

Figure 4.4 Behaviour with time of individual pendulums, showing complete energy exchange
between the pendulums as x decreases from 2a to zero whilst y grows from zero to 2a

x = 0 a2a a

YX

a − a

+

−

Figure 4.5 The faster vibration of the Y mode results in a phase gain of � rad over the X mode of
vibration, to give y ¼ 2a, which is shown here as a combination of the normal modes X � Y

84 Coupled Oscillations



then we find that the kinetic energy in those equations becomes

Ek ¼ T ¼ a _XX 2 þ c _YY 2 ¼ 1

2
_XX 2
q þ

1

2
_YY 2
q ð4:4aÞ

and the potential energy

V ¼ bX 2 þ dY 2 ¼ 1

2

g

l

� �
X 2

q þ
1

2

g

l
þ 2s

m

� �
Y 2
q

¼ 1

2
!2

0 X
2
q þ

1

2
!2

s Y
2
q ;

ð4:4bÞ

where !2
0 ¼ g=l and !2

s ¼ g=lþ 2s=m.
Note that the coefficients of X 2

q and Y 2
q depend only on the mode frequencies and that the

properties of individual parts of the system are no longer explicit.

The total energy of the system is the sum of the energies of each separate excited mode

for there are no cross products XqYq in the energy expression of our example, i.e.,

E ¼ T þ V ¼ 1

2
_XX 2
q þ

1

2
!2

0 X
2
q

� �
þ 1

2
_YY 2
q þ

1

2
!2

s Y
2
q

� �

Atoms in polyatomic molecules behave as the masses of our pendulums; the normal

modes of two triatomic molecules CO2 and H2O are shown with their frequencies in

Figure 4.6. Normal modes and their vibrations will occur frequently throughout this book.

O

O C O

C

C

O

H H H H

O O

H H

O

OO

H2O

105°

ω1 = 11 × 1013 sec−1 ω2 = 11.27 × 1013 sec−1 ω3 = 4.78 × 1013 sec−1

ω3 = 2 × 1013 sec−1

ω2 = 7.05 × 1013 sec−1

ω1 = 4.16 × 1013 sec−1

CO2

Figure 4.6 Normal modes of vibration for triatomic molecules CO2 and H2O
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The General Method for Finding Normal Mode Frequencies,
Matrices, Eigenvectors and Eigenvalues

We have just seen that when a coupled system oscillates in a single normal mode each

component of the system will vibrate with frequency of that mode. This allows us to adopt

a method which will always yield the values of the normal mode frequencies and the

relative amplitudes of the individual oscillators at each frequency.

Suppose that our system of coupled pendulums in the last section oscillates in only one

of its normal modes of frequency !.
Then, in the equations of motion

m€xxþ mgðx=lÞ þ sðx� yÞ ¼ 0

and
m€yyþ mgðy=lÞ � sðx� yÞ ¼ 0

If the pendulums start from test, we may assume the solutions

x ¼ A ei!t

y ¼ B ei!t

where A and B are the displacement amplitudes of x and y at the frequency !. Using these

solutions, the equations of motion become

½�m!2Aþ ðmg=lÞAþ sðA� BÞ� ei!t ¼ 0

½�m!2Bþ ðmg=lÞB� sðA� BÞ� ei!t ¼ 0
ð4:5Þ

The sum of these expressions gives

ðAþ BÞð�m!2 þ mg=lÞ ¼ 0

which is satisfied when !2 ¼ g=l, the first normal mode frequency. The difference between

the expressions gives

ðA� BÞð�m!2 þ mg=lþ 2sÞ ¼ 0

which is satisfied when !2 ¼ g=lþ 2s=m, the second normal mode frequency.

Inserting the value !2 ¼ g=l in the pair of equations gives A ¼ B (the ‘in phase’

condition), whilst !2 ¼ g=lþ 2s=m gives A ¼ �B (the antiphase conditon).

These are the results we found in the previous section.

We may, however, by dividing through by m ei!t, rewrite equation (4.5) in matrix form as

!2
0 þ !2

s �!2
s

�!2
s !2

0 þ !2
s

� �
A

B

� �
¼ !2 A

B

� �
ð4:6Þ

where

!2
0 ¼

g

l
and !2

s ¼
s

m
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This is called an eigenvalue equation. The value of !2 for which non-zero solutions exist

are called the eigenvalues of the matrix. The column vector with components A and B is an

eigenvector of the matrix.

Equation (4.6) may be written in the alternative form

ð!2
0 þ !2

s � !2Þ �!2
s

�!2
s ð!2

0 þ !2
s � !2Þ

� �
A

B

� �
¼ 0 ð4:7Þ

and these equations have a non-zero solution if and only if the determinant of the matrix

vanishes; that is, if

ð!2
0 þ !2

s � !2Þ2 � !4
s ¼ 0

or

ð!2
0 þ !2

s � !2Þ ¼ �!2
s

i.e.

!2
1 ¼ !2

0 or !2
2 ¼ !2

0 þ 2!2
s

as we expect.

The solution !2
1 ¼ !2

0 in equation (4.6) yields A ¼ B as previously and !2
2 ¼ !2

0 þ 2!2
s

yields A ¼ �B.

Because the system started from rest we have been able to assume solutions of the

simple form

x ¼ A ei!t

y ¼ B ei!t

When the pendulums have an initial velocity at t ¼ 0, the boundary conditions require

solutions of the form

x ¼ Aeið!tþ�xÞ

y ¼ Beið!tþ�yÞ

where each normal mode frequency ! has its own particular value of the phase constant �.
The number of adjustable constants then allows the solutions to satisfy the arbitrary values

of the initial displacements and velocities of both pendulums.

(Problems 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11)

Mass or Inductance Coupling

In a later chapter we shall discuss the propagation of voltage and current waves along a

transmission line which may be considered as a series of coupled electrical oscillators

having identical values of inductance and of capacitance. For the moment we shall consider

the energy transfer between two electrical circuits which are inductively coupled.
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A mutual inductance (shared mass) exists between two electrical circuits when the

magnetic flux from the current flowing on one circuit threads the second circuit. Any

change of flux induces a voltage in both circuits.

A transformer depends upon mutual inductance for its operation. The power source is

connected to the transformer primary coil of np turns, over which is wound in the same

sense a secondary coil of ns turns. If unit current flowing in a single turn of the primary coil

produces a magnetic flux �, then the flux threading each primary turn (assuming no flux

leakage outside the coil) is np� and the total flux threading all np turns of the primary is

Lp ¼ n2
p�

where Lp is the self inductance of the primary coil. If unit current in a single turn of the

secondary coil produces a flux �, then the flux threading each secondary turn is ns� and the

total flux threading the secondary coil is

Ls ¼ n2
s�;

where Ls is the self inductance of the secondary coil.

If all the flux lines from unit current in the primary thread all the turns of the secondary,

then the total flux lines threading the secondary defines the mutual inductance

M ¼ nsðnp�Þ ¼
ffiffiffiffiffiffiffiffiffiffi
LpLs

p
In practice, because of flux leakage outside the coils, M <

ffiffiffiffiffiffiffiffiffiffi
LpLs

p
and the ratio

Mffiffiffiffiffiffiffiffiffiffi
LpLs

p ¼ k; the coefficient of coupling:

If the primary current Ip varies with e i!t, a change of Ip gives an induced voltage

�LpdIp= dt ¼ �i!LIp in the primary and an induced voltage �M dIp=dt ¼ �i!MIp in the

secondary.

If we consider now the two resistance-free circuits of Figure 4.7, where L1 and L2 are

coupled by flux linkage and allowed to oscillate at some frequency ! (the voltage and

current frequency of both circuits), then the voltage equations are

i!L1I1 � i
1

!C1

I1 þ i!MI2 ¼ 0 ð4:8Þ

C2L 2L1C 1

M = Mutual Inductance

M

Figure 4.7 Inductively (mass) coupled LC circuits with mutual inductance M
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and

i!L2I2 � i
1

!C2

I2 þ i!MI1 ¼ 0 ð4:9Þ

where M is the mutual inductance.

Multiplying (4.8) by !=iL1 gives

!2I1 � I1

L1C1

þ M

L1

!2I2 ¼ 0

and multiplying (4.9) by !=iL2 gives

!2I2 � I2

L2C2

þ M

L2

!2I1 ¼ 0;

where the natural frequencies of the circuit !2
1 ¼ 1=L1C1 and !2

2 ¼ 1=L2C2 give

ð!2
1 � !2ÞI1 ¼ M

L1

!2I2 ð4:10Þ

and

ð!2
2 � !2ÞI2 ¼ M

L2

!2I1 ð4:11Þ

The product of equations (4.10) and (4.11) gives

ð!2
1 � !2Þð!2

2 � !2Þ ¼ M 2

L1L2

!4 ¼ k 2!4; ð4:12Þ

where k is the coefficient of coupling.

Solving for ! gives the frequencies at which energy exchange between the circuits

allows the circuits to resonate. If the circuits have equal natural frequencies !1 ¼ !2 ¼ !0,

say, then equation (4.12) becomes

ð!2
0 � !2Þ2 ¼ k 2!4

or

ð!2
0 � !2Þ ¼ � k!2

that is

! ¼ � !0ffiffiffiffiffiffiffiffiffiffiffi
1� k

p

The positive sign gives two frequencies

! 0 ¼ !0ffiffiffiffiffiffiffiffiffiffiffi
1þ k

p and ! 00 ¼ !0ffiffiffiffiffiffiffiffiffiffiffi
1� k

p

at which, if we plot the current amplitude versus frequency, two maxima appear (Figure 4.8).
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In loose coupling k and M are small, and ! 0 � ! 00 � !0, so that both systems behave

almost independently. In tight coupling the frequency difference ! 00 � ! 0 increases, the
peak values of current are displaced and the dip between the peaks is more pronounced. In

this simple analysis the effect of resistance has been ignored. In practice some resistance is

always present to limit the amplitude maximum.

(Problems 4.12, 4.13, 4.14, 4.15, 4.16)

Coupled Oscillations of a Loaded String

As a final example involving a large number of coupled oscillators we shall consider a light

string supporting n equal masses m spaced at equal distance a along its length. The string is

fixed at both ends; it has a length ðnþ 1Þa and a constant tension T exists at all points and

all times in the string.

Small simple harmonic oscillations of the masses are allowed in only one plane and the

problem is to find the frequencies of the normal modes and the displacement of each mass

in a particular normal mode.

This problem was first treated by Lagrange, its particular interest being the use it makes

of normal modes and the light it throws upon the wave motion and vibration of a

continuous string to which it approximates as the linear separation and the magnitude of the

masses are progressively reduced.

Figure 4.9 shows the displacement yr of the r th mass together with those of its two

neighbours. The equation of motion of this mass may be written by considering the

components of the tension directed towards the equilibrium position. The r th mass is

pulled downwards towards the equilibrium position by a force T sin �1, due to the tension

C
ur

re
nt

 a
m

pl
itu

de

Coupling

(a) k large

            (b) k intermediate

(c) k small

ω0 ω

(a) (b) (c)

Figure 4.8 Variation of the current amplitude in each circuit near the resonant frequency. A small
resistance prevents the amplitude at resonance from reaching infinite values but this has been
ignored in the simple analysis. Flattening of the response curve maximum gives ‘frequency band pass’
coupling

90 Coupled Oscillations



on its left and a force T sin �2 due to the tension on its right where

sin �1 ¼ yr � yr�1

a

and

sin �2 ¼ yr � yrþ1

a

Hence the equation of motion is given by

m
d2yr

dt 2
¼ �T ðsin �1 þ sin �2Þ

¼ �T
yr � yr�1

a
þ yr � yrþ1

a

� �
so

d2yr

dt 2
¼ €yyr ¼ T

ma
ðyr�1 � 2yr þ yrþ1Þ ð4:13Þ

If, in a normal mode of oscillation of frequency !, the time variation of yr is simple

harmonic about the equilibrium axis, we may write the displacement of the r th mass in this

mode as

yr ¼ Ar e
i!t

where Ar is the maximum displacement. Similarly yrþ1 ¼ Arþ1 e
i!t and yr�1 ¼ Ar�1 e

i!t.

Using these values of y in the equation of motion gives

�!2Ar e
i!t ¼ T

ma
ðAr�1 � 2Ar þ Arþ1Þ ei!t

or

�Ar�1 þ 2� ma! 2

T

� �
Ar � Arþ1 ¼ 0 ð4:14Þ

This is the fundamental equation.

m

m

m

a a

yr + 1yr − 1 yr

yr − yr  − 1 yr − yr + 1

1θ
2θ

Figure 4.9 Displacements of three masses on a loaded string under tension T giving equation of
motion m€yyr ¼ Tðy rþ1 � 2y rþ y r�1Þ=a
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The procedure now is to start with the first mass r ¼ 1 and move along the string, writing

out the set of similar equations as r assumes the values r ¼ 1; 2; 3; . . . ; n remembering that,

because the ends are fixed

y0 ¼ A0 ¼ 0 and ynþ1 ¼ Anþ1 ¼ 0

Thus, when r ¼ 1 the equation becomes

2� ma!2

T

� �
A1 � A2 ¼ 0 ðA0 ¼ 0Þ

When r ¼ 2 we have

�A1 þ 2� ma!2

T

� �
A2 � A3 ¼ 0

and when r ¼ n we have

�An�1 þ 2� ma!2

T

� �
An ¼ 0 ðAnþ1 ¼ 0Þ

Thus, we have a set of n equations which, when solved, will yield n different values of !2,

each value of ! being the frequency of a normal mode, the number of normal modes being

equal to the number of masses.

The formal solution of this set of n equations involves the theory of matrices. However,

we may easily solve the simple cases for one or two masses on the string (n ¼ 1 or 2) and,

in additon, it is possible to show what the complete solution for n masses must be without

using sophisticated mathematics.

First, when n ¼ 1, one mass on a string of length 2a, we need only the equation for r ¼ 1

where the fixed ends of the string give A0 ¼ A2 ¼ 0.

Hence we have

2� ma!2

T

� �
A1 ¼ 0

giving

!2 ¼ 2T

ma

a single allowed frequency of vibration (Figure 4.10a).

When n ¼ 2, string length 3a (Figure 4.10b) we need the equations for both r ¼ 1 and

r ¼ 2; that is

2� ma!2

T

� �
A1 � A2 ¼ 0
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and

�A1 þ 2� ma!2

T

� �
A2 ¼ 0 ðA0 ¼ A3 ¼ 0Þ

Eliminating A1 or A2 shows that these two equations may be solved (are consistent)

when

2� ma!2

T

� �2

�1 ¼ 0

that is

2� ma!2

T
� 1

� �
2� ma!2

T
þ 1

� �
¼ 0

Thus, there are two normal mode frequencies

!2
1 ¼

T

ma
and !2

2 ¼
3T

ma

aa
m

(a)

(b)

m m

m

m

A1

A1 A2
A1 = −A2

A2

ω2
2 3T

ma=

A1 = A2

ω1
2 T

ma=

ω2 2T
ma=

n = 1

n = 2

Figure 4.10 (a) Normal vibration of a single mass m on a string of length 2a at a frequency
!2 ¼ 2T=ma. (b) Normal vibrations of two masses on a string of length 3a showing the loose coupled
‘in phase’ mode of frequency ! 2

1 ¼ T=ma and the tighter coupled ‘out of phase’ mode of frequency
!2

2 ¼ 3T=ma. The number of normal modes of vibration equals the number of masses

Coupled Oscillations of a Loaded String 93



Using the values of !1 in the equations for r ¼ 1 and r ¼ 2 gives A1 ¼ A2 the slow ‘in

phase’ oscillation of Figure 4.10b, whereas !2 gives A1 ¼ �A2 the faster ‘anti-phase’

oscillation resulting from the increased coupling.

To find the general solution for any value of n let us rewrite the equation

�Ar�1 þ 2� ma!2

T

� �
Ar � Arþ1 ¼ 0

in the form

Ar�1 þ Arþ1

Ar

¼ 2!2
0 � !2

!2
0

where !2
0 ¼

T

ma

We see that for any particular fixed value of the normal mode frequency !ð!j say) the

right hand side of this equation is constant, independent of r, so the equation holds for all

values of r. What values can we give to Ar which will satisfy this equation, meeting the

boundary conditions A0 ¼ Anþ1 ¼ 0 at the end of the string?

Let us assume that we may express the amplitude of the rth mass at the frequency !j as

Ar ¼ C eir�

where C is a constant and � is some constant angle for a given value of !j. The left hand

side of the equation then becomes

Ar�1 þ Arþ1

Ar

¼ Cðeiðr�1Þ� þ eiðrþ1Þ�Þ
C eir�

¼ ðe�i� þ ei�Þ
¼ 2 cos �

which is constant and independent of r.

The value of �j (constant at !j) is easily found from the boundary conditions

A0 ¼ Anþ1 ¼ 0

which, using sin r� from eir� gives

A0 ¼ C sin r� ¼ 0 ðautomatically at r ¼ 0Þ

and

Anþ1 ¼ C sin ðnþ 1Þ� ¼ 0

when

ðnþ 1Þ � j ¼ j� for j ¼ 1; 2; . . . ; n
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Hence

� j ¼ j�

nþ 1

and

Ar ¼ C sin r�j ¼ C sin
rj�

nþ 1

which is the amplitude of the rth mass at the fixed normal mode frequency ! j.

To find the allowed values of ! j we write

Ar�1 þ Arþ1

Ar

¼ 2!2
0 � !2

j

!2
0

¼ 2 cos � j ¼ 2 cos
j�

nþ 1

giving

!2
j ¼ 2!2

0 1� cos
j�

nþ 1

� �
ð4:15Þ

where j may take the values j ¼ 1; 2; . . . ; n and !2
0 ¼ T=ma.

Note that there is a maximum frequency of oscillation !j ¼ 2!0. This is called the ‘cut

off’ frequency and such an upper frequency limit is characteristic of all oscillating systems

composed of similar elements (the masses) repeated periodically throughout the structure

of the system. We shall meet this in the next chapter as a feature of wave propagation in

crystals.

To summarize, we have found the normal modes of oscillation of n coupled masses on

the string to have frequencies given by

!2
j ¼

2T

ma
1� cos

j�

nþ 1

� �
ð j ¼ 1; 2; 3 . . . nÞ

At each frequency !j the r th mass has an amplitude

Ar ¼ C sin
rj�

nþ 1

where C is a constant.

(Problems 4.17, 4.18, 4.19, 4.20, 4.21, 4.22)

The Wave Equation

Finally, in this chapter, we show how the coupled vibrations in the periodic structure of our

loaded string become waves in a continuous medium.

The Wave Equation 95



We found the equation of motion of the r th mass to be

d2yr

dt 2
¼ T

ma
ðyrþ1 � 2yr þ yr�1Þ ð4:13Þ

We know also that in a given normal mode all masses oscillate with the same mode

frequency !, so all yr’s have the same time dependence. However, as we see in Fig-

ure 4.10(b) where A1 and A2 are anti-phase, the transverse displacement yr also depends

upon the value of r ; that is, the position of the r th mass on the string. In other words, yr is a

function of two independent variables, the time t and the location of r on the string.

If we use the separation a � �x and let �x ! 0, the masses become closer and we can

consider positions along the string in terms of a continuous variable x and any transverse

displacement as yðx; tÞ, a function of both x and t.

The partial derivative notation @yðx; tÞ=@t expresses the variation with time of yðx; tÞ
while x is kept constant.

The partial derivative @yðx; tÞ=@x expresses the variation with x of yðx; tÞ while the time t

is kept constant. (Chapter 5 begins with an extended review of this process for students

unfamiliar with this notation.)

In the same way, the second derivative @ 2yðx; tÞ=@t 2 continues to keep x constant and

@ 2yðx; tÞ=@x2 keeps t constant.

For example, if

y ¼ eið!tþkxÞ

then

@y

@t
¼ i! eið!tþkxÞ ¼ i!y and

@ 2y

@t 2
¼ �!2y

while

@y

@x
¼ ik eið!tþkxÞ ¼ iky and

@ 2y

@x2
¼ �k 2y

If we now locate the transverse displacement yr at a position x ¼ xr along the string,

then the left hand side of equation (4.13) becomes

@ 2yr

@t 2
! @ 2y

@t 2
;

where y is evaluated at x ¼ xr and now, as a ¼ �x ! 0, we may write xr ¼ x; xrþ1 ¼
xþ �x and xr�1 ¼ x� �x with yrðtÞ ! yðx; tÞ; yrþ1ðtÞ ! yðxþ �x; tÞ and yr�1ðtÞ !
yðx� �x; tÞ.
Using a Taylor series expansion to express yðx� �x; tÞ in terms of partial derivates of y

with respect to x we have

yðx� �x; tÞ ¼ yðxÞ � �x
@y

@x
þ 1

2
ð��xÞ2 @

2y

@x2
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and equation (4.13) becomes after substitution

@ 2y

@t 2
¼ T

m

yrþ1 � yr

a
� yr � yr�1

a

� �

¼ T

m

�x
@y

@x
þ 1

2
ð�xÞ2 @

2y

@x2

�x
�
�x

@y

@x
� 1

2
ð�xÞ2 @

2y

@x2

�x

0
BB@

1
CCA

so

@ 2y

@t 2
¼ T

m

ð�xÞ2
�x

@ 2y

@x2
¼ T

m
�x

@ 2y

@x2

If we now write m ¼ � � x where � is the linear density (mass per unit length) of the

string, the masses must �!0 as �x�!0 to avoid infinite mass density. Thus, we have

@ 2y

@t 2
¼ T

�

@ 2y

@x2

This is the Wave Equation.

T=� has the dimensions of the square of a velocity, the velocity with which the waves;

that is, the phase of oscillation, is propagated. The solution for y at any particular point

along the string is always that of a harmonic oscillation.

(Problem 4.23)

Problem 4.1
Show that the choice of new normal coordinates Xq and Yq expresses equations (4.3a) and (4.3b) as

equations (4.4a) and (4.4b).

Problem 4.2
Express the total energy of Problem 4.1 in terms of the pendulum displacements x and y as

E ¼ ðEkin þ EpotÞ x þ ðEkin þ EpotÞ y þ ðEpotÞ xy;

where the brackets give the energy of each pendulum expressed in its own coordinates and ðEpotÞ xy
is the coupling or interchange energy involving the product of these coordinates.

Problem 4.3
Figures 4.3 and 4.5 show how the pendulum configurations x ¼ 2a; y ¼ 0 and x ¼ 0; y ¼ 2a result

from the superposition of the normal modes X and Y. Using the same initial conditions
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ðx ¼ 2a; y ¼ 0; _xx ¼ _yy ¼ 0Þ draw similar sketches to show how X and Y superpose to produce

x ¼ �2a; y ¼ 0 and x ¼ 0; y ¼ �2a.

Problem 4.4
In the figure two masses m1 and m2 are coupled by a spring of stiffness s and natural length l. If x is

the extension of the spring show that equations of motion along the x axis are

m1€xx 1 ¼ sx

and

m 2€xx2 ¼ �sx

and combine these to show that the system oscillates with a frequency

!2 ¼ s

�
;

where

� ¼ m1m 2

m 1 þ m2

is called the reduced mass.

The figure now represents a diatomic molecule as a harmonic oscillator with an effective mass
equal to its reduced mass. If a sodium chloride molecule has a natural vibration frequency
¼ 1:14� 1013 Hz (in the infrared region of the electromagnetic spectrum) show that the interatomic
force constant s ¼ 120Nm�1 (this simple model gives a higher value for s than more refined
methods which account for other interactions within the salt crystal lattice)

Mass of Na atom¼ 23 a.m.u.

Mass of Cl atom¼ 35 a.m.u.

1 a.m.u.¼ 1.67�10�27 kg

m1
m2

x1
x2

l

Problem 4.5
The equal masses in the figure oscillate in the vertical direction. Show that the frequencies of the

normal modes of oscillation are given by

!2 ¼ ð3�
ffiffiffi
5

p
Þ s

2m

and that in the slower mode the ratio of the amplitude of the upper mass to that of the lower mass is
1
2
ð ffiffiffi

5
p � 1Þ whilst in the faster mode this ratio is � 1

2
ð ffiffiffi

5
p þ 1Þ.

98 Coupled Oscillations



m

m

s

s

In the calculations it is not necessary to consider gravitational forces because they play no part in
the forces responsible for the oscillation.

Problem 4.6
In the coupled pendulums of Figure 4.3 let us write the modulated frequency !m ¼ ð!2 � !1Þ=2 and
the average frequency !a ¼ ð!2 þ !1Þ=2 and assume that the spring is so weak that it stores a

negligible amount of energy. Let the modulated amplitude

2a cos!mt or 2a sin!mt

be constant over one cycle at the average frequency !a to show that the energies of the masses may

be written

Ex ¼ 2ma 2! 2
a cos

2 !mt

and

Ey ¼ 2ma 2!2
a sin

2 !mt

Show that the total energy E remains constant and that the energy difference at any time is

Ex � Ey ¼ E cos ð! 2 � !1Þt
Prove that

Ex ¼ E

2
½1þ cos ð!2 � !1Þt�

and

Ey ¼ E

2
½1� cos ð!2 � !1Þt�

to show that the constant total energy is completely exchanged between the two pendulums at the

beat frequency ð!2 � !1Þ.

Problem 4.7
When the masses of the coupled pendulums of Figure 4.1 are no longer equal the equations of

motion become

m 1€xx ¼ �m1ðg=lÞx� sðx� yÞ
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and

m 2€yy ¼ �m2ðg=lÞyþ sðx� yÞ

Show that we may choose the normal coordinates

X ¼ m 1xþ m2y

m 1 þ m2

with a normal mode frequency !2
1 ¼ g=l and Y ¼ x� y with a normal mode frequency

!2
2 ¼ g=lþ sð1=m1 þ 1=m 2Þ.
Note that X is the coordinate of the centre of mass of the system whilst the effective mass in the Y

mode is the reduced mass � of the system where 1=� ¼ 1=m 1 þ 1=m2.

Problem 4.8
Let the system of Problem 4.7 be set in motion with the initial conditions x ¼ A; y ¼ 0; _xx ¼ _yy ¼ 0 at

t ¼ 0. Show that the normal mode amplitudes are X 0 ¼ ðm 1=MÞA and Y 0 ¼ A to yield

x ¼ A

M
ðm1 cos!1t þ m 2 cos!2tÞ

and

y ¼ A
m1

M
ðcos!1t � cos!2tÞ;

where M ¼ m 1 þ m2.
Express these displacements as

x ¼ 2A cos!mt cos! at þ 2A

M
ðm1 � m 2Þ sin!mt sin!at

and

y ¼ 2A
m 1

M
sin!mt sin!at;

where !m ¼ ð!2 � !1Þ=2 and !a ¼ ð!1 þ !2Þ=2.

Problem 4.9
Apply the weak coupling conditions of Problem 4.6 to the system of Problem 4.8 to show that the

energies

Ex ¼ E

M 2
½m 2

1 þ m2
2 þ 2m1m 2 cos ð!2 � !1Þt�

and

Ey ¼ E
2m1m 2

M 2

� �
½1� cos ð!2 � !1Þt�

Note that Ex varies between a maximum of E (at t ¼ 0) and a minimum of ½ðm 1 � m2Þ=M� 2E, whilst
Ey oscillates between a minimum of zero at t ¼ 0 and a maximum of 4ðm1m2=M

2ÞE at the beat

frequency of ð!2 � !1Þ.
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Problem 4.10
In the figure below the right hand pendulum of the coupled system is driven by the horizontal force

F0 cos!t as shown. If a small damping constant r is included the equations of motion may be written

m€xx ¼ �mg

l
x� r _xx� sðx� yÞ þ F0 cos!t

and

m€yy ¼ �mg

l
y� r _yyþ sðx� yÞ

Show that the equations of motion for the normal coordinates X ¼ xþ y and Y ¼ x� y are those
for damped oscillators driven by a force F0 cos!t.
Solve these equations for X and Y and, by neglecting the effect of r, show that

x � F0

2m
cos!t

1

!2
1 � ! 2

þ 1

!2
2 � !2

� �

and

y � F0

2m
cos!t

1

!2
1 � ! 2

� 1

!2
2 � !2

� �

where

!2
1 ¼

g

l
and ! 2

2 ¼
g

l
þ 2s

m

Show that

y

x
� !2

2 � ! 2
1

!2
2 þ !2

1 � 2!2

and sketch the behaviour of the oscillator with frequency to show that outside the frequency range

!2 � !1 the motion of y is attenuated.

m

s

y

ll

m

x

F0 cos ωt

Problem 4.11
The diagram shows an oscillatory force Fo cos!t acting on a mass M which is part of a simple

harmonic system of stiffness k and is connected to a mass m by a spring of stiffness s. If all
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oscillations are along the x axis show that the condition for M to remain stationary is !2 ¼ s=m.
(This is a simple version of small mass loading in engineering to quench undesirable oscillations.)

mM

F0 cos ωt

Problem 4.12
The figure below shows two identical LC circuits coupled by a common capacitance C with the

directions of current flow indicated by arrows. The voltage equations are

V1 � V2 ¼ L
d I a

d t

and

V2 � V3 ¼ L
d I b

d t

whilst the currents are given by

dq1

d t
¼ �I a

dq2

d t
¼ I a � I b

and

dq3

d t
¼ I b

Solve the voltage equations for the normal coordinates ðI a þ I bÞ and ðI a � I bÞ to show that the
normal modes of oscillation are given by

I a ¼ I b at !2
1 ¼

1

LC

and

I a ¼ �I b at !2
2 ¼

3

LC

Note that when I a ¼ I b the coupling capacitance may be removed and q 1 ¼ �q2. When I a ¼ �I b,

q 2 ¼ �2q1 ¼ �2q3.

C CC

q1

V1
Ia Ib

q3q2

V2

V3L L
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Problem 4.13
A generator of e.m.f. E is coupled to a load Z by means of an ideal transformer. From the diagram,

Kirchhoff’s Law gives

E ¼ �e1 ¼ i!LpI 1 � i!MI2

and

I 2Z2 ¼ e2 ¼ i!MI1 � i!LsI2:

Show that E=I1, the impedance of the whole system seen by the generator, is the sum of the primary

impedance and a ‘reflected impedance’ from the secondary circuit of !2M 2=Zs where

Zs ¼ Z 2 þ i!Ls.

E

M

I2I1

Z2e1

Lp Ls

e2

Problem 4.14
Show, for the perfect transformer of Problem 4.13, that the impedance seen by the generator consists

of the primary impedance in parallel with an impedance ðnp=nsÞ 2Z 2, where np and ns are the

number of primary and secondary transformer coil turns respectively.

Problem 4.15
If the generator delivers maximum power when its load equals its own internal impedance show how

an ideal transformer may be used as a device to match a load to a generator, e.g. a loudspeaker of a

few ohms impedance to an amplifier output of 103 � impedance.

Problem 4.16
The two circuits in the diagram are coupled by a variable mutual inductance M and Kirchhoff’s Law

gives

Z 1I1 þ ZMI2 ¼ E

and

ZMI1 þ Z 2I2 ¼ 0;

where

ZM ¼ þi!M

M is varied at a resonant frequency where the reactance X1 ¼ X2 ¼ 0 to give a maximum value

of I2. Show that the condition for this maximum is !M ¼ ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p
and that this defines a
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‘critical coefficient of coupling’ k ¼ ðQ1Q 2Þ�1=2
, where the Q’s are the quality factors of the

circuits.

E

M R2R1

L1

C1 C2

L2

Problem 4.17
Consider the case when the number of masses on the loaded string of this chapter is n ¼ 3. Use

equation (4.15) to show that the normal mode frequencies are given by

!2
1 ¼ ð2�

ffiffiffi
2

p
Þ!2

0; !2
2 ¼ 2!2

0

and

!2
3 ¼ ð2þ

ffiffiffi
2

p
Þ! 2

0

Repeat the problem using equation (4.14) (with !2
0 ¼ T=ma) in the matrix method of equation (4.7),

where the eigenvector components are Ar�1, Ar and Arþ1.

Problem 4.18
Show that the relative displacements of the masses in the modes of Problem 4.17 are 1 :

ffiffiffi
2

p
: 1,

1 : 0 : �1, and 1 : � ffiffiffi
2

p
: 1. Show by sketching these relative displacements that tighter coupling

increases the mode frequency.

Problem 4.19

η2 η3η1

Mm m

The figure represents a triatomic molecule with a heavy atom mass M bound to equal atoms of

smaller mass m on either side. The binding is represented by springs of stiffness s and in equilibrium

the atom centres are equally spaced along a straight line. Simple harmonic vibrations are considered

only along this linear axis and are given by

� J ¼ � 0
J e

i!t

where � J is the displacement from equilibrium of the j th atom.

Set up the equation of motion for each atom and use the matrix method of equation (4.7) to show
that the normal modes have frequencies

!2
1 ¼ 0; !2

2 ¼
s

m
and !2

3 ¼
sðM þ 2mÞ

mM

Describe the motion of the atoms in each normal mode.
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Problem 4.20
Taking the maximum value of

! 2
J ¼

2T

ma
1� cos

j�

nþ 1

� �

at j ¼ n as that produced by the strongest coupling, deduce the relative displacements of

neighbouring masses and confirm your deduction by inserting your values in consecutive difference

equations relating the displacements y rþ1; y r and yr�1. Why is your solution unlikely to satisfy the

displacements of those masses near the ends of the string?

Problem 4.21
Expand the value of

! 2
J ¼

2T

ma
1� cos

j�

nþ 1

� �

when j � n in powers of ð j=nþ 1Þ to show that in the limit of very large values of n, a low

frequency

! J ¼ j�

l

ffiffiffiffi
T

�

s
;

where � ¼ m=a and l ¼ ðnþ 1Þa.

Problem 4.22
An electrical transmission line consists of equal inductances L and capacitances C arranged as

shown. Using the equations

L d I r�1

d t
¼ Vr�1 � Vr ¼ qr�1 � qr

C

and

I r�1 � I r ¼ dqr

d t
;

show that an expression for I r may be derived which is equivalent to that for yr in the case of the

mass-loaded string. (This acts as a low pass electric filter and has a cut-off frequency as in the case of

the string. This cut-off frequency is a characteristic of wave propagation in periodic structures and

electromagnetic wave guides.)

C C CIrIr −1

qr −1

Vr −1

qr +1

Vr +1Vr 

qr 
LL

Problem 4.23
Show that

y ¼ e i!t e ikx

satisfies the wave equation

@ 2y

@t 2
¼ c2

@ 2y

@x 2
; if ! ¼ ck
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Summary of Important Results

In coupled systems each normal coordinate defines a degree of freedom, each degree of

freedom defines a way in which a system may take up energy. The total energy of the

system is the sum of the energies in its normal modes of oscillation because these remain

separate and distinct, and energy is never exchanged between them.

A simple harmonic oscillator has two normal coordinates [velocity (or momentum) and

displacement] and therefore two degrees of freedom, the first connected with kinetic

energy, the second with potential energy.

n Equal Masses, Separation a, Coupled on a String under Constant Tension T

Equation of motion of the rth mass is

m€yyr ¼ ðT=aÞðyr�1 � 2yr þ yrþ1Þ

which for yr ¼ Ar e
i!t gives

�Arþ1 þ 2� ma!2

T

� �
Ar � Ar�1 ¼ 0

There are n normal modes with frequencies !J given by

!2
J ¼

2T

ma
1� cos

j�

nþ 1

� �

In a normal mode of frequency !J the rth mass has an amplitude

Ar ¼ C sin
rj�

nþ 1

where C is a constant.

Wave Equation

In the limit, as separation a ¼ �x ! 0 equation of motion of the rth mass on a loaded

string m€yyr ¼ ðT=aÞðyr�1 � 2yr þ yrþ1Þ becomes the wave equation

@ 2y

@t 2
¼ T

�

@ 2y

@x2
¼ c2

@ 2y

@x2

where � is mass per unit length and c is the wave velocity.
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