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w', k' * Raman scattering (generic term): 
Brillouin scattering when acoustic 
phonon is involved; polariton 
scattering when optical phonon 
is involved. 

w = w ' f C l  + for phonon emission (Stokes process) 
k = k ' * K  sials  { _ for phonon absorption (anti-Stokes) 

Two phonon creation. 

Electron spectroscopy with x-rays (XPS): 
incident x-ray photon ejects valence or 
core electron from solid. 

Figure 1 There are many types of experiments in which light interacts with wavelike excitations 
in a crystal. Scvcral absorptio~i proccsscs arc illustrated Irere. 



CHAPTER 15: OPTICAL PROCESSES AND EXCITONS 

The dielectric function r(o,K) was introduced in the preceding chapter to 
describe the response of a crystal to an electromagnetic field (Fig. 1). The di- 
electric function depends sensitively on the electronic hand structure of a 
crystal, and studies of the dielectric function by optical spectroscopy are very 
useful in the determination of the ovcrall hand structure of a crystal. Indeed, 
optical spectroscopy has developed into the most important experimental tool 
for band structure determination. 

In the infrared, visible, and ultraviolet spectral regions the wavevcctor of 
the radiation is very small compared wit11 the shortest reciprocal lattice vector, 
and therefore it may usually be taken as zero. We are conccmed then with the 
real r '  and imaginary e" parts of the dielectric fi~nction at zero wavevector; 
E(W) = el(w) + ~E"(w), also written as q (w)  + ir,(w). 

However, the dielectric function is not directly accessible experimentally 
from optical measurcmcnts: the dlrectly accessible functions are the reflect- 
ance R(w), thc rcfractive index n(w), and the extinction coefficient K(w). Our 
first objective is to relate the experimentally observable quantities to the real 
and imaginary parts of the dielectric function. 

OPTICAL REFLECTANCE 

The optical measurements that give the fullest information on the elec- 
tronic system are mcasurcments of the reflectivity of light at norrrial incidence 
on single crystals. The reflectivity coefficient r(w) is a complex function de- 
fined at the crystal surface as the ratio of the reflected electric field E(rcf1) to 
the incident electric field E(inc): 

where we have separated the a n ~ ~ l i t u d e  p(w) and phase O(w) components of 
the reflectivity coefficient. 

The refractive index n(o)  and the extinction coefficient K(o) in the 
crystal are related to the reflectivity at normal incidence by 

as derived in Problern 3 by elementary consideration of the continuity of the 
components of E and B parallel to the crystal surface. By definition, n(o)  and 
K(w) are related to the dielectric functior~ r(w) by - n(w) + iK(w) = N(w) , (3) 



where N(w) is the complex refractive index. Do not confuse K(w) as used here 
with the symbol for a wavevector. 

If the incident traveling wave has the wavevector k, thcn the y component 
of a wave traveling in the x direction is 

The transmitted wave in the ~riedium is attenuated because, by the dispersion 
relation for electromagnetic waves, the wavevector in the medium is related to 
the incident k in vacuum by (n + i K ) k :  

Ey(trans) exp ([i[(n + iK)kx - w t ] )  = exp(-Kkx) exp[i(nkx - wt)] . ( 5 )  

One quantity measured in experiments is the reflectance R, defined as 
the ratio of the reflected intensity to the incident intensity: 

R = E*(refl)E(refl)/Ea(inc)E(inc) = rir = P2 . (6) 

It is difficult to measure the phase O(w) of the reflected wave, but we show 
below that it can be calculated from the measured reflectance R(o) if this is 
known at all frequencies. 

Once we know hoth R(o) and O(w), we can proceed by (2) to obtain n(w) 
and K(w). We use these in (3) to obtain ~ ( w )  = E'(o) + iel'(w), where ~ ' ( w )  and 
~ " ( w )  are the real and imagnary parts of the &electric fnnction. The inversion 
of (3) gives 

E'(w) = nL &? ; ;"(w) = 2nK . (7 )  

We now show how to find the phase O ( o )  as an integral over the re- 
flectance R(w); by a similar method we relate the real and imaginary parts of 
the dielectric function. In this way we can find everything from the experi- 
mental R(w). 

Kramers-Kronig Relations 

The Kramers-Kronig relations enable us to find the real part of the re- 
sponse of a linear passive system if we know the imaginary part of the response 
at all frequencies, and vice versa. They are central to the analysis of optical 
experiments on solids. 

The response of any linear passive system can be represented as the su- 
perposition of the responses of a collection of damped harmonic oscillators 
with masses M,. Let the response function a(w) = a '(w) + iuu(w) of the col- 
lection of oscillators be defined by 

where the applied force field is the real part of F, exp(-iwt) and the total dis- 
placement x = x, is the real part of x, exp(-iwt). From the equation of motion, 

I 



15 Optical Processes and Excitons 431 

we have the coniplex response function of the oscillator system: 

where the constaritsJ; = 1/M, and relaxation frcqllencies p, are all positive for 
a passive systern. 

If a(w) is the dielectric polarizahility of atoms in concentration n, then f 
has the form of an oscillator strength times ne'vm; s u d ~  a dielectric response 
function is said to be of the Kramers-Heisenberg form. The relations wc de- 
velop also apply to the electrical conductivity u(w) in Ohm's law, j, = u(o)E,. 

\C7e need not assume the specific form (9), but wc make ilse of three prop- 
erties of the response function viewed as a f~inction of the complex variable o .  
Any function wit11 the following propcrtics will satisfy the Kramers-Kronig 
relations (11): 

(a) The poles of a(w) are all helow the rcal axis. 
(b) The integral of a(w)/w vanishes when taken around an infinite semi- 

circle in the upper half of the complcx w-plane. It suffices that a(w) -+ 0 uni- 
for~nly as Iwl -+ m. 

(c) The function a'(@) is even and a"(@) is odd with respect to real w. 

Consider the Cauchy integral in thc form 

where P denotes the principal part of the integral, as discussed in the mathe- 
matical note that follows. The right-hand side is to he colnpleted by an integral 
over the semicircle at infinity in the upper half-plane, but urc have seen in (b) 
that this integral vanishes. 

We equate the real parts of (10) to ohtain 

In the last integral \VP s~ihstitute s for -p and use property (c) that a " ( - s )  = 

-aU(s);  this integral then becomes 

and we have, with 

1 1 - 2 s --+-------- 
s - w  s + w  s Z w 2  ' 



the result 

This is one of the Kramers-Kronig relations. The other relation follows on 
equating the imaginary parts of Eq. (10):  

1 " a"" '+ = -kP fff(s) - J ~ E U ~ ~ ]  a"(o) = -- p --- 
I - 2 - w  s - w  , s + o  

whence 

These relations are applied below to the analysis of optical reflectance data; 
this is their most important application. 

Let us apply the Kramers-Kronig relations to r ( w )  klewed as a response func- 
tion between the incident and reflected waves in (1) and (6). We apply (11) to 

to obtain the phase in terms of the reflectance: 

We integrate by parts to obtain a form that gives insight into the contribu- 
tions to the phase angle: 

Spectral regions in which the reflectance is constant do not contribute to the 
integral; further, spectral regions s 9 w and s w do not contribute milch be- 
cause the furictior~ 111 I(s + w)/(s - w)l is small in these regions. 

Mathematical Note. To obtain the Cauclly integral (10)  we take the inte- 
gral Ja(s)(s - w)-'rls over the contour in Fig. 2. The function a ( s )  is analytic in 
the tipper half-plane, so that thc value of the integral is zero. The contribution 
of segment (4) to the integral vanishes if the integrand a(s ) l s  + 0 is faster than 
1st-I as Is1 + m. For the response function (9) the integrand + 0 as Is13; and 
for the conductivity a ( s )  the integrand + 0 as ~ S I - ~ .  The segment (2) con- 
tributes, in the liriiit as u + 0, 
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to the integral, where s = w + u el0. The segments (1) and (3) are by definition 
the principal part of the  integral between -w and m. Because the  integral 
over (1) + (2) + (3) + (4) must vanish, 

EXAMPLE: Conductivity of Collisionless Electron Gas. Consider a gas of free 
electrons in the lirr~it as the collision frequency goes to zero. From (9) the response 
function is, with f = llrrb, 

by the Dirac identity. We confir111 that the delta function in (16) satisfies the Kramers- 
Kronig relation ( l l a ) ,  by which 

in agreement ~ r~ i th  (16). 
M7e obtain the electrical conductivity u(w) from the dielectric function 

where a ( ~ )  = xJ( - e )E ,  is thc response function. We use the equivalence 

for the Maxwell equation can be written either as c curl H = 4nu(o)E - iwE or as 
c curl H = -iue(o)E. We combine (16), (18), anrl (19) to find the conductivity of a 
collisionless electron gas: 

For collisionless electrons the real part of the conductivity has a delta function at o = 0. 



Electronic Interband Transitions 

It came as a sl~rprisc that optical spectroscopy developed as an important 
experimental tool for the determination of hand stmctl~re. First, the absorp- 
tion and reflection bands of crystals are broad and apparently featureless func- 
tions of the photon energy when this is greater than the band gap. Second, 
direct interband absorption of a photon fiw will occur at all points in the Bril- 
louin zone for which e n e r u  is consewed: 

where c is an empty band and v is a filled hand. The total ahsorption at givcn o 
is an integral over all transitions in the zone that satisfy (21). 

Three factors unraveled the spectra: 

The broad bands are not like a spectral line greatly broadened by damping, 
but the bands convey much intelligence which emerges when derivatives are 
taken of the rcflcctance (Fig. 3 ) ;  derivatives with respect to wavelength, 
electric field, temperature, prcssurc, or uniaxial stress, for example. The 
spectroscopy of derivatives is called modulation spectroscopy. 

I / fio. in e\' 

Figure 3 Comparison of (a) reflectance, (h) wavelength derivative reflectance (first derivative), 
and ( c )  electroreflectance (third derivative), of the spectral region in germanium between 3.0 and 
3.6 eV. iACLcr data by D. D. Scll, E. 0. Ka~ie, and D. E. .lspr~es.) 
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The relation (21) does not exclude spectral structure in a crystal, because 
transitions accumulate at frequencies for which the bands c, v are parallel- 
that is, at frequencies where 

At these critical points in k space the joint density of states D,(E, + 
ho)D,(~ , )  is singular, according to the same argument we used in (5.37) to 
show that the density of phonon modes D ( o )  is singular when V k o  is zero. 
The pseudopotential method for calculating energy bands helps identify the 
positions in the Brillouin zone of the critical points found in modulation 
spectra. Band-band energy differences can be calculated with an accuracy as 
good as 0.1 eV. The experimental results can then be fed back to give im- 
provements in the pseudopotential calculations. 

EXCITONS 

Reflectance and absorption spectra often show structure for photon 
energies just below the energy gap, where we might expect the crystal to be 
transparent. This structure is caused by the absorption of a photon with the 
creation of a bound electron-hole pair. An electron and a hole may be bound 
together by their attractive coulomb interaction, just as an electron is bound to 
a proton to form a neutral hydrogen atom. 

The bound electron-hole pair is called an exciton, Fig. 4. An exciton can 
move through the crystal and transport energy; it does not transport charge 

Figure 4a An exciton is a bound electron-hole pair, 
' usually free to move together through the crystal. In . . . . some respects it is similar to an atom of positronium, 

formed from a positron and an electron. The exciton . . . shown is a Mott-Wannier exciton: it is weakly bound, 
with an average electron-hole distance large in com- 

e . parison with the lattice constant. 

Figure 4b A tightly-bound or Frenkel exciton shown local- 
ized on one atom in an alkali halide crystal. An ideal Frenkel 
exciton will travel as a wave throughout the crystal, but the 
electron is always close to the hole. 



because it is electrically neutral. It is similar to positronillm, which is formed 
from an electron and a positron. 

Excitoris can be forrned in every insulating crystal. When the band gap is 
indirect, excitons near the direct gap may be unstable with respect to decay 
into a free electron and free hole. All excitons are unstabIe with respect to the 
illtimate recombination process in which the electron drops into the hole. Ex- 
citons can also form complexes, snch as a hiexciton from two excitons. 

We have seen that a free electron and free hole are created whenever a 
photon of energy greater than the energy gap is absorbed in a crystal. The 
threshold for this process is fcw > Eg in a direct process. In the indirect 
phonon-assisted process of Chapter 8 the threshold is lower by the phonon en- 
ergy h0.  But in the formation of excitons the energy is lowered with respect to 
these thresholds by the binding energy of the exciton, which may be in the 
range 1 meV to 1 eV, as in Table 1. 

Excitons can be formed by photon absorption at any critical point (22), for 
if Vke, = Vkec the group velocities of electron and hole are equal and the parti- 
cles may be bound by their coulomb attraction. Transitions leading to the 
formation of excitons below the energy gap are indicated in Figs. 5 and 6. 

The binding cncrgy of the exciton can be measured in three ways: 

In optical transitions from the valcncc band, by the difference between the 
energy required to create an exciton and the energy to create a free electron 
and free hole, Fig. 7. 
In recombination luminescence, by comparison of the energy of the free 
electron-hole recombination line with the energy of the exciton recombina- 
tion line. 
By photo-ionization of excito~ls, to form free carriers. This experinrent re- 
quires a high concentration of excitons. 

\Ye discuss excitons in two different limiting approximations, one by Frenkel 
in which the exciton is small and tightly hoiind, and the other by Mott and 
LYannier in which the exciton is weakly bound, w l t h  an electron-hole separation 
large in comparison with a lattice constant. Intermediate examples are known. 

Table 1 Binding energy of excitons, in meV 

Si 14.7 BaO 56. RbCl 440. 
Ge 4.15 InP 4.0 LiF (1000) 
GaAs 4.2 InSb (0.4) AgBr 20. 
Gap 3.5 KT 480. Ag Cl 30. 
CdS 29. KC1 400. TIC1 11. 
CdSe 15. KBr 400. TlBr 6. 

Data asscmblcd by Frcdcrick C. Brown and Arnold Schmidt. 
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Figure 5 Exciton levels in relation to the conduction band edge, for a simple band structure with 
both conduction and valence band edges at k = 0. An exciton can have translational kinetic en- 
ergy. Excitons are unstable with respect to radiative recombination in which the electron drops 
into the hole in the valence band, accompanied by the emission of a photon or phonons. 

Figure 6 Energy levels of an exciton created in a direct process. Optical transitions from the top 
of the valence band are shown by the arrows: the longest arrow corresponds to the energy gap. 
The binding energy of the exciton is E,, referred to a free electron and fiee hole. The lowest fre- 
quency absorption line of the crystal at absolute zero is not E,, but is Eg - E,. 

Frenkel Excitons 

In a tightly bound exciton (Fig. 4b) the excitation is localized on or near a 
single atom: the hole is usually on the same atom as the electron although the 
pair may be anywhere in the crystal. A Frenkel exciton is essentially an excited 
state of a single atom, but the excitation can hop from one atom to another by 
virtue of the coupling between neighbors. The excitation wave travels through 
the crystal much as the reversed spin of a magnon travels through the crystal. 

The crystalline inert gases have excitons which in their ground states cor- 
respond somewhat to the Frenkel model. Atomic krypton has its lowest strong 



~ E x c i t o n  absorption 
4 I . . . . . . 

I I I 
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1.50 1.51 1.52 1.53 1.54 1.55 1.56 
Photon energy in eV 

Figure 7 Effect of an exciton level on the optical ahsnrptinn of a semiconductor for photons of 
energy near the band gap E p  in gallium arsenide at 21 K. The vertical scale is the intensity absorp- 
tion coefficient a ,  as in I(r) = I ,  exp(-ax). Thc cnergy gap and exciton binding energy are 
dcduced fro111 the shape of the ahsorptinn cnrvo: the gap E, is 1.521 eV and the exciton binding 
energy i s  0.0034 eV (After M. D. Sturge,) 

atomic transition at 9.99 eV. Thc corresponding transition in the crystal is 
closely equal and is at 10.17 e\7, Fig. 8. The encrgygap in the crystal is 11.7 eV, 
so the exciton ground state energy is 11.7 - 10.17 = 1.5 eV, referred to a free 
electron and free hole separated and at rest in the crystal. 

The trar~slational states of Frenkel excitons have the form of propagating 
waves, like all other excitations i ~ i  a structure. Consider a crystal of 
N atoms on a line or ring. If uj is the ground state of atomj, the ground state of 
the crystal is 

if interactions between the atoms arc ncglected. If a single atom j is in an 
excited state u,, the system is described by 

This function has the same energy as the function cpi with any other atom I ex- 
cited. However, the functions cp that describe a single excited atom and 
N - 1 atoms in their ground state are not the stationary quantum states of the 
prohlem. If there is any interaction between an excited atom and a nearby 
atom in its ground state, the excitation energy will be passed from atom to 
atom. The eigenstates will have a wavelike form, as we now show. 
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Figure 8 Absorption spectrum of solid krypton at 20 K. (Atter G. Balhnl.) 

\he11 the ha~niltonian of the systcm operates on the function (oJ with the 
jtf~ atom excited, we obtain 

where E is the free atom excitation energy-; the interaction T measures the rate 
of transfer of the excitation from j to its nearest neighbors, j - 1 and 
j + 1. The solutions 01 (25) are waves of the Bloch form: 

$k = 2 exp(qka) q 
j 

To see this we let X operate on qhk: 

from (25). We rearrange the right-hand sidc to ohtain 

XJI, = 2 eqk"[c + ~(e"'  + e-'b)]q = ( E  + 2T cos ka)$k , 
J 

(28) 

so that the energy cigenvalues of the problem are 

Ek=e+2Tcoskn , 



Energy 
I 

0 

Wavevector k + 

Figure 9 Energy versus wavevector for a Frenkel exciton, calculated with pos~t~vc nearest- 
neighbor tra~lsfcr illteractio~l 'I: 

as in Fig. 9. The application of periodic boundary conditions determines the 
allowed values of the wavevector k: 

Alkali Halides. In alkali halide crystals the lowest-enera excitons are local- 
ized on the negative halogen ions, as in Fig. 4b. The negative ions have lower 
electronic excitation levels than do the positive ions. Pure alkali halide crystals 
are transparent in the visible spectral region, which means that the exciton en- 
ergies do not lie in the visible, but the crystals show considerable excitonic 
absorption structure in the vacuum ultraviolet. 

A doublet structure is particiilarly e\.ident in sodium bromide, a structure 
similar to that of the lowest excited state of the krypton atom-which is iso- 
electronic with the Br- ion of KBr. The splitting is caused by the spin-orbit in- 
teraction. These excitons are Frenkel excitons. 

Molecular Crystals. In lnolecular crystals the covalent binding within a 
molecule is strong in comparison with the van der Waals binding between mol- 
ecules, so that thc excitons are Frenkel excitons. Electronic excitation lines of 
an inchvidual molecule appear in the crystalline solid as an cxciton, oftcn with 
little shift in frequency. At low temperatures the lines in the solid are qnite 
sharp, although there may be more structure to the lines in the solid than in 
the molecule because of the Davydov splitting, as discussed in Problem 7. 
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Weakly Bound (Mott-Wannier) Excitons 

Consider an electron in the conduction band and a hole in the valence 
band. The electron and hole attract each other by the coulomb potential 

(CGS) U(r) = -e%r , (31) 

where r is the distance between the particles and E is the appropriate dielec- 
tric constant. (The lattice polarization contribution to the dielectric constant 
should not be included if the frequency of motion of the exciton is higher than 
the optical phonon frcqucncies.) There will be bound states of the exciton sys- 
tem having total energies lower than the bottom of the conduction band. 

The problem is the hydrogen atom problem if the energy surfaces for the 
electron and hole are spherical and nondegenerate. The energy levels referred 
to the top of the valence band are given by a modified Rydberg equation 

(CGS) 

Here n is the principal quantu~n number and p is the reduced mass: 

formed from the effective Inasses m,, inh of the electron and hole. 
The excitor~ ground state energy is obtained on setting n = 1 in (32); this 

is the ionization energy of the exciton. Studies of the optical absorption lines 
in cuprous oxide, Cu20, at low tcmpcratures give results for the exciton level 
spacing in good agrcement with the Rydberg equation (32) except for transi- 
tions to the state n = 1. An empirical fit to the lines of Fig. 10 is obtained with 
the relation v(cm-') = 17,508 - (8001n". Taking c = 10, we find p -0.7 m 
from the coefficient of lln2. The constant term 17,508 cm-' corresponds to an 
energy gap E,, = 2.17 eV. 

Ezciton Condensation into Electron-Hole Drops (EHD) 

A condensed phase of an electron-hole plasma forrris in Ge and Si when 
maintained at a low temperature and irradiated by light. The following sequence 
of events takes place when an electron-hole drop (EHD) is formed in Ge: The 
absorption of a photon of energy hw > Eg produces a free electron and free hole, 
with hug11 efficiency These combine rapidly, pcrhaps in 1 ns, to form an exciton. 
The exciton inay decay with annihilation of the e-h pair with a lifetime of 8 ps. 

If the exciton conccntration is s~ifficiently high-over 1013 cm-3 at 2 K- 
most of thc cxcitons will condense into a drop. The drop lifetime is 40 ps, but 
in strained Ge may be as long as 600 ps. \\'ithi11 the drop the excitons dissolve 
into a degenerate Fermi gas of electrons and holes, with metallic properties: 
this state was predicted by L. V. Keldysh. 



Figure 10 Logarithm of the optical transmission versus photon energy in cuprous oxide at 77 K, 
showing a series oT exciton lincs. Notc that 011 t l~e  vertical axis the logarithm is plotted decreasing 
upward; thus a peak cnrresponds to absorption. The hand gap Ep is 2.17 el'. (After l'. W. Uaumeister.) 

FE 
EHD 

I I I I I 

Figure 11 Recombination radiation of free electrons uith holes and of electron-hole drops in Ge 
at 3.04 K .  The Fermi energy in the drop is E ,  and the cohesive energy of the drop with respect to a 
frcc cxciton is 9,. (After T. K. Lo.) 

Figure 11 sliows the reconibination radiation in Ge from free excitons 
(714 meV) and from the EHD phase (709 meV). The of the 714 meV 
line is accounted for by Doppler broadening, and the width of the 709 meV 
line is compatible with the kinetic cncrgy distribution of electrons and holes in 
a Fermi gas of concentration 2 x 10" Figure 12 is a photograph of a 
large EHD. 
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Figure 12 Photograph of an electron-hole drop in a 4 mm disk of pure germanium. The drop is 
the intense spot adjacent to the set screw on the left of the disk. The photograph is the image of 
the drop obtained by focusing its electron-hole recombination luminescence onto the surface of 
an infrared-sensitive camera. (After J. P. Wolfe et al.) 

'4verage concentration, all phases, p;~irs/cm3 

Figure 13 Phase diagram for photoexcited electrons and holes in unstressed silicon. The diagram 
shows, for example, that with an average concentration near 1017 cm-3 at 15 K, a free-exciton gas 
with saturated-gas concentration of 1016 cm-3 coexists with a (variable) volume of liquid droplets, 
each with a density of 3 X 10'' cm-! The liquid critical temperature is about 23 K. Theoretical and 
experimental values for the metal-insulator transition for excitons are also shown. (From J. P. Wolfe.) 



Table 2 Electron-hole liquid parameters 

Crystal Binding energy relative Concentration, Critical 
(unstressed) to free exciton, in meV n orp, in cm-3 temperature in K 

Conrtesy of D. Bimberg. 

The exciton phase dlagram for silicon is plotted in the temperature- 
concentration plane in Fig. 13. The exciton gas is insulating at low pressures. 
At high pressures (at the right of the diagram) the exciton gas breaks up into a 
conducting plasma of unpaired electrons and holes. The transition from exci- 
tons to the plasma is an example of the Mott transition, Chapter 14. Further 
data arc givcn in Tahle 2. 

RAMAN EFFECT IN CRYSTALS 

Raman scattering involves two photons-one in, one out-and is one step 
more complex tlran the one  hoto on processes treated earlier in this chapter. In 
the Haman effect a is scattered inelastically by a crystal, with creation 
or annihilation of a phonon or magnon (Fig. 14). The process is identical to the 
inelastic scattering of x-rays and it is similar to the inelastic scattering of 
neutrons by a crystal. 

The selection rules for the first-order Raman effect are 

where w, k refer to the inciderit photon; w', k' refer to the scattered photon; 
and a, K refer to the phonon created or destroyed in the scattering event. In 
the second-order Raman effect, hvo phonons are involved in the inelastic 
scattering of the photon. 

The Raman effect is made possible by the strain-dependence of the elec- 
tronic polarizahility. To show this, we suppose that the ~olarizability cr associ- 
ated with a phonon mode may he written as a power series in the phonon 
amplitude u: 

If u(t) = u, cos Ot and the incident clcctric field is E ( t )  = E ,  cos wt, then the 
induced elcctric dipole moment has a component 

aiEouo cos wt cos Ot = ~ a , ~ , u ~ [ c o s ( w  + O)t + cos(w - O)t] . (36) 
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Stokes 

Figure 14 Raman scattering of a 
photon with emission or absorp- 
tion of a phonon. Similar processes 
occur with Inagnons (spin waves). 

Thus photons at freq~iencies o + 0 and o - 0 can be emitted, accompanied 
by absorption or emission of a phonon of frequency 0. 

Thc photon at o - 0 is called the Stokes line and that at w + 0 is the 
anti-Stokes line. The intensity of the Stokes line involves the matrix element 
for phonon creation, which is just the matrix element for the harmonic oscilla- 
tor, as in Appendix C: 

where nK is the initial l~opi~lation of phonon niode K. 
The anti-Stokes line involves phonon annihilation, with a photon intensity 

proportional to 

~ ( o  + a) a J(nK - 1 Ju InK) l2 YLK (38) 

If the phonon population is initially in thermal equilibrium at temperature 
T, the intensity ratio of the two lines is 

with ( 7 1 ~ )  given by the Planck distribution function ll[exp(fiO/kBT) - I]. We 
see that the relativc intensity of the anti-Stokes lines vanishes as T + 0, be- 
cause here therc are no thermal phonorls available to be annihilated. 

Observations on the K = 0 optical phonon in silicon are shown in Figs. 15 
and 16. Silicon has two identical atoms in the primitive cell, and there is no 
electric dipole momerlt associated with the primitive cell in the absence of 
deformation by phonons. But a f l~  does not vanish for silicon at K = 0, so that 
we can observe the mode by first-order Raman scattering of light. 

The second-ordcr Raman effect arises f ro~n the term a2u2 in the polariz- 
ability. Inelastic scattering of light in this order is accompanied by the creation 
or two phonons, or the absorption of two phonons, or the creation of one and 
tbc absorption of another phonon. The phonons may have different frequen- 
cies. The intensity distribution in thc scattered photon spectrum may be quite 
complicated if there are sevcral atoms in the primitive cell because of the 



Raman shift, cm-' 
Figure 15 First-order Raman spectra of the K = 0 
optical mode of a silicon crystal observed at three 
temperatures. The incident photon has a wavelength 
of 5145 A. The optical phonon frequency is equal to 
the frequency shift; it depends slightly on the temper- 
ature. (After T. R. Hart, R. L. Aggarwal, and B. Lax.) 
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Figure 16 Intensity ratio of anti-Stokes to Stokes 
lines as a function of temperature, for the obser- 
vations of Fig. 15 on the optical m ~ d e  of silicon. 
The observed temperature dependence is in good 
agreement with the prediction of Eq. (39): the 
solid curve is a plot of the function exp(-Afl/kBT). 

P .- 
B + 
H 

4 0 0  -700 -600 5 0 0  4 0 0  3 0 0  -200 -100 0 
Raman shift, cm" 

Figure 17 Raman spectrum of Gap at 20 K. The two highest peaks are the first-order Raman 
lines associated with the excitation of an LO phonon at 404 cm-I and a TO phonon at 366 cm-'. 
All the other peaks involve two phonons. (After M. V. Hohden and J. P. Russell.) 
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corresponding number of optical phonon modes. Second-ordcr Raman spectra 
have been observed and analyzed in numerous crystals. Measurements on 
gallinm phosphide (Gap) are shown in Fig. 17. 

Electron Spectroscopy with X-Rays 

The next degree of complexity in optical processes involves a photon in 
and an electron out of the solid, as in Fig. 1. Two important techniques are 
x-ray photoemission from solids (XPS) and ultraviolet photoemission (UPS). In 
solid state physics they are used in band structure studies and surface physics, 
including catalysis and adsorption. 

XPS and UPS spectra can be compared directly with valence band densi- 
ties of states D(E) .  The specimen is irradiated with highly monochromatic 
x-rays or ultraviolet photons. The photon is absorbed, with the emission of a 
photoelectron whose kinetic energy is equal to the energy of the incident pho- 
ton minus the binding energy of the electron in dle solid. The electrons come 
from a thin layer near the surface, typically 50 A in depth. The resolution of 
thc best XPS spectrometer systems is less than 10 me\', which permits refined 
studies of band structure. 

The valence band structure of silver is shown by Fig. 18, with the zero of 
energy set at the Fermi lel~el. Electrons in the first 3 eV below the Fermi level 
come from the 5s conduction band. The strong peak with structure below 3 eV 
is from the 4d valencc electrons. 

Excitations are also seen from deeper levels, often accompanied by excita- 
tion of plasmons. For example, in silicon the 2p electron with a binding energy 
close to 99.2 eV is observed in replica at 117 eV with single plasmon excitation 
and at 134.7 eV with two plas~non excitation. The plasmon energy is 18 eV. 

9 5 0 Figure 18 Valence-band elcctron emission from 
Binding energy, eV silver, after S~egbahn and co-workers 



ENERGY LOSS OF FAST PARTICLES IN A SOLID 

So far we have nsed photons as probes of the electronic structure of solids. 
We can also use electron beams for the same pilrpose. Thc rcsults also involve 
the dielectric function, now through the imaginary part of 1/e(w). The dielcc- 
tric function enters as Im{~(w)]  into the energy loss by an electromagnetic 
wave in a solid, but as -In~{l/e(w)] into the energy loss by a charged particle 
that penetrates a solid. 

Consider this diffcrence. The general result from electromagnetic theory 
for the power dissipation density by diclcctric losses is 

per unit volume. With a transverse electromagnetic wave Ee-'"' in the crystal, 
we have dD/dt = -iw ~(w)Ee-"', whence the time-average power is 

1 1 = - WE~((E"COS wt - e'sin wt)cos o t )  = - we"(w)E2 , 
471 87r (41) 

proportional to e"(w). The tangential component of E is continuous across the 
boundary of the solid. 

If a particle of charge e and velocity 1; enters a crystal, the dielectric dis- 
place~nerit is, by standard texts, 

because by the Poisson equation it is D, and not E, that is related to the free 
charge. In an isotropic medium the Fourier component E(w,k) is related to 
the Fourier conlponent D(w,k) of D(r,t) by E(w,k) = D(w,k)/e(w,k). 

The time-average power dissipatiorl associated with this Fourier compo- 
nent is 

-- - 47r I w D2(w,k)([(t)' cos wt + ( t )  sin wt],-sin wll) , 

whence 
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Figure 19 t"(o) for Cu and Au; the bold lines are from energy loss r~~easurcrncnts by J. Daniels, and 
the other lines were dau l a t ed  from optical measurements by D. Beaglehole, and L. R. Cm~firld ct d. 

The result is the motivation for the introduction of the energy loss function 
-I~n(l/c(w,k)} and it i s  also a motivation for experinlents on energy losscs hy 
fast electrons in thin films. 

If thc dielectric function is indepelldellt of k: the power loss is 

where fiko is the maximum possible lllolnentum transfcr from the primary par- 
ticle to an electron of the crystal. Figure 19 shows the excellent experimental 
agreement between values of E"(w) deduced from optical reflectivit\. measure- 
ments with values deduced from electron energy loss measure~nents. 

SUMMARY 

The Kramers-Kronig relations connect the real and imagnay parts of a 
responsc fi~nction: 

The complex refractive index N(w) = n(o )  + iK(w), where n is the refrac- 
tive index and K is the extinction coefficient; further, ~ ( w )  = N2(w), whence 
e f (u )  = 71' - f? and ~ " ( 0 )  = 2nK. 

The reflectance at normal incidcncc is 



The  energy loss function - In~{l /e(w))  gives the  energy loss by a charged 
particlc moving in a solid. 

Problems 

1 .  Causality and the response function. The Kramers-Kronig relations are consis- 
tent with the principle that an effect not precede its cause. Consider a delta- 
function force applied at time t = 0: 

whence F ,  = 112.x. (a) Show by direct irrtegration or by use of the KK relations that 
the oscillator response fur~ctiorr 

gives zero displacernent, r( t)  = 0, for t < 0 under the above force. For t < 0 
the contour integral rnay be completed by a semicircle in the upper half-plane. 
(h) Evahrate x(t) for t > 0. Note that a ( w )  has poles at - $p2)"2 - iiP, both 
in the lower half-plane. 

2. Dissipation sum rule. B y  comparison of cr'(w) from (9) and from (114 in the limit 
w + m ,  shou~ that the following sum rule for the oscillator strengths must hold: 

3. Rejlection at normul incidence. Consider an electromagnetic wave in vacuum, 
with field components of the form 

Let the wave be incident upon a medium of dielectric constant E and permeability 
r = 1 that fills the half-space x > 0. Show that the reflecthltp coefficient r(w) as 
defined by E(refl) - r(o)E(inc) is given by 

where n + iK = E"', with n and K rcal. Show further that the reflectance is 

'4. Conductioity sum rule and superconductioity. We write the electrical con- 
ductivity as u(w) = u'(w) + iu"(w), where a', u" are real. (a) Show by a Kramers- 
Kronig relation that 

'This problem is somewhat difficult. 
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This result is used m the theory of ~~~pcrconductivity. If at very high frequencies 
(such as x-ray frequencies) u " ( w )  is identical for the superconducting and normal 
states, then we must have 

But at frequencies 0 < w < w, within the supcrconducting energy gap the real part 
of the conductivity of a superconductor vanishes, so that in this region the integral 
on the left-hand side is lower by = rrbwr. Thcrc must be an additional contribution 
to aj to balance this deficiency. (b) Show that if ul(w < wg) < uh(w < mg), as is ob- 
served experimentally, then c:(w) car1 lrave a dclta function contribution at w = 0, 
and from the delta function there is a contribution uC(o) = ub o$w. The delta 
fnnction corresponds to infinite conductivity at zero frequency. ( c )  By elementary 
consideration of the classical motion of corrdl~ction clcctrons at very high frequen- 
cies, show that 

(CGS) I,: uf(w) tiw = me2/zm , 

a rrs~llt round by Ferrell and Glover. 

5.  Dielectric constant and the semiconductor energy gap. Thc effect on ~ " ( w )  
of an energy gap wg in a semiconductor may be approximated very roughly by 
sobstitnting $S(w - wg) for B(w) in the response function (Ifi); that is, we take 
E"(w) = (2me2/mw)nS(w - wg). This is crude because it puts all the absorption at 
tlir gall freqnency. The factor 1W enters as soon as we move the delta function 
away fro111 the origin, bccause the integral in the sum rule of Problem 2 starts at the 
origin. Show that thc rcal part of the dielectric constant on this irrodel is 

It follows that the ~ta t ic  dielectric constant is ~ ' ( 0 )  = 1 + wk/w;, widcly used as a 
rule of tliurrrh. 

6.  Hagen-Rubenn relation for infrared reflectivity of metols. The complex refrac- 
tive index n + iK of a rnctal for w~ < 1 is given by 

where ug is the conductivity for static fields. \.Vc assume here that intraband 
currents are dominant; interband transitions are neglected. Using the result of 
Problem 3 for the reflection coefficient at norn~al incidence, show that 

~~rovirled that uo S w.  This is the Hagen-Rubens relation. For sodium at room 
temperai~irc, uo = 2.1 X 10" sC1 in CGS and T = 3.1 X 10-14 s, as deduced from 



T = uOrn/neZ. Radiation of 10 pm has w = 1.88 X 1014 s-', so that the Hagen- 
Rubens result should apply: R = 0.976. The result calculated from experimental val- 
ues of n and K is 0.987. Hint: If uo * w ,  then n2 = Kt. This simplifies the algebra. 

'7. Daoydoo splitting of exciton lines. The Frenkel exciton band of Fig. 9 is doubled 
when there are two atoms A, B in a primitive cell. Extend the theory of Eqs. (25) to 
(29) to a linear crystal AB.AB.AB.AB. with transfer integrals T ,  between AB and T, 
between B.A. Find an equation for the two bands as functions of the wavevector. 
The splitting between the bands at k = 0 is called the Daydov splitting. 

'This problem is somewhat difficult. 


