
CHAPTER XXIII.

Partial Fractions.

315. In elementary Algebra, a group of fractions connected

by the signs of addition and subtraction is reduced to a more
simple form by being collected into one single fraction whose
denominator is the lowest common denominator of the given

fractions. But the converse process of separating a fraction into

a group of simpler, or jwtial, fractions is often required. For
3 — 5a;

example, if we wish to expand ^--„ in a series of ascend-
1 — iX -r OXT

ing powers of x, we might use the method of Art. 314, Ex. 1, and
so obtain as many terms as we please. But if we wish to find the

general term of the series this method is inapplicable, and it is

simpler to express the given fraction in the equivalent form
1 2

1- — . Each of the expressions (1 —a;)
-1 and (1 — 3aj)

-1

I — x l — ox

can now be expanded by the Binomial Theorem, and the general

term obtained.

316. In the present chapter we shall give some examples

illustrating the decomposition of a rational fraction into partial

fractions. For a fuller discussion of the subject the reader is

referred to Serret's Cours d'Algebre Superieure, or to treatises on

the Integral Calculus. In these works it is proved that any
rational fraction may be resolved into a series of partial fractions;

and that to any linear factor x — a in the denominator there cor-

responds a partial fraction of the form — - ; to any linear
X — cc

factor x - b occurring twice in the denominator there correspond
7? 7?

two partial fractions, —l

-j and -.—*__
. If x — b occurs three

x — b (x — by

times, there is an additional fraction . hnl aud so on - To
(x-b)"
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any quadratic factor x2 +px + q there corresponds a partial

Px + Q
fraction of the form — : if the factor x2 + vx + q occurs

x' +])x + q
P x + Q

twice, there is a second partial fraction y—~ L—

s

; and so on.
' r (x-+2)x + q)

Here the quantities A v B
lt
P

2 , B3 ,
P, Q, Pv Q x

are all

independent of x.

We shall make use of these results in the examples that

follow.

5x — 11
Example 1. Separate =-^ ^ into partial fractions.

Since the denominator 2.r2 + x - 6 = (x + 2) (2x - 3), we assume

5.r-ll A B
+

2x2 +x-§ x + 2 2.c-3'

where A and B are quantities independent of x whose values have to be
determined.

Clearing of fractions,

5x-ll = A (2x-S) + B(x + 2).

Since this equation is identically true, we may equate coefficients of like

powers of x ; thus
2A+B = 5, ~SA + 2B=-U;

whence A = 3, B= -1.

5.r-ll 3 1
'"'

2x2 +x-6~ x + 2 2x-B'

Example 2. Resolve ; r~. r, into partial fractions.
. (x - a) (x + b)

mx + n A B
Assume -. z-. =-r = h

(x-a)(x + b) x-a x + b'

.' . mx + n=A {x + b) +B (x-a) (1).

We might now equate coefficients and find the values of A and B, but it

is simpler to proceed in the following manner.

Since A and B are independent of x, we may give to x any value we please.

In (1) put x-a= 0, ov x= a; then

ma + n
A = r-

;

a + b

t n , -r,
nib-n

putting x + b = 0, or x— - b, B— —
.

CI "T*

mx + n

(x - a) (x + b)

1 /ma + n mb-ii\
~ a + b \ x-a x + b J
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23 v - 11 r'
2

Example 3. Resolve 7^7—-.-rrx- —^ mto partial fractions.
y£x — I) (J — x

j

23x-ll.r2 ABC
Assume = ^-^ rm r = n r+ 5 H 5 i

1
) 5

(2.c-l) (3 + x)(3-.r) 2.c-l 3 + x 3-x w
.

• . 23x - lLc2= .1 (3 + x) (3 -x)+B (2x - 1) (3 - x) + G (2x - 1) (3 + x).

By putting in succession 2^-1 = 0, 3 + x— 0, 3 - # = 0, we find that

4 = 1, B = i, C= -1.

23.c - lis2 1 4 1_
•'•

(2.c-l)(9-x2)~2x-l + 3+x 3 -a:'

3.t2 + x — 2
Example 4. Resolve -.—'

,

'—^—: into partial fractions.
[x — &)" (J. — &x\

3s2 + s-2 ^ B G
Assume z-^-n—s-7 — ~k

—k~ H « +
(x - 2)- (1 - 2x) "

1 - 2x x-2 (x - 2)
2 '

.• . %x- + x-2= A (x - 2)
2 +£ (1 - 2x) {x - 2) + C (1 - 2x).

Let 1 - 2x= 0, then A= - -

;

o

let a; -2 = 0, then C=-4.

To find B, equate the coefficients of x2
; thus

3 =A - 2B ; whence B = - ^

.

o

3.r- + x - 2
' ' (x- 2)

a
(1 - 2x) 3(1- 2x) 3 {x - 2) (x - 2)

2 '

42 - 19a;
Example 5. Resolve ——-r-, -r into partial fractions.1

[x2 +l)(x-4] L

42-19.C Ax + B C
Assume -7-3

—

tt, r; = —3—

r

- +
(.^ + 1)^-4) x-+l .i--4'

.-. 42 - 19.r = (Ax +B) (x- 4) + C (x*+ l).

Let x = 4, then C=-2;
equating coefficients of x'

2
, = A + C, and .4=2;

equating the absolute terms, 42 = - 4Z? + C, and B = - 11,

42 - 19a 2s -11 2
•'" p+l)(x-4)"^TT *-4*

317. The artifice employed in the following example will

sometimes be found useful.
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9x* — 24rc2 + 48#
Example. Resolve -;

7̂ t~. =rr- into partial fractions.r (a:-2) 4 (a:+l)

9z3 -24;r2 +48;c A f(x)
Assume —. ^tx~?

—rrv — —n +
(x-2)*(x + l) x+1 {x-2)4 '

where A is some constant, and / (x) a function of x whose value remains to

he determined.

.-. 9x3 -24£2 + 48x= ,l (x-2)*+(x + l)f{x).

Let x= - 1, then A = - 1.

Substituting for ^4 and transposing,

(x + 1)/ (a) = [x - 2)
4+ 9a3 - 24s3 + 48x= x4 + x* + 16* + 16

;

.'./(*) = £3 + 16.

•r
3 + 16

To determine the partial fractions corresponding to -—— , put x-2= 2;
\x—2)

.r
3 +16 (2 + 2)

3 + 16 23 + 6^2 +122 + 24
then

(x-2)4 Z* z*

1 6 12 24

~z +
z^
+

~z^
+

~z
4
~

1 6 12 24
+ /. nva + /_ n\n +~ x-2^(x-2)'2 ' (x-2f^ (x-2f

9x-3 -24j;2 + 48* 1,1, 6 , 12 24=
-i

-\ « + / Z Svi + TZ ^-J +" (x-2) 4 (x + l)
" x + 1 x-2 (x-2)" (x-2f (x-2) 4

*

318. In all the preceding examples the numerator has been

of lower dimensions than the denominator ; if this is not the case,

we divide the numerator by the denominator until a remainder is

obtained which is of lower dimensions than the denominator.

6r3 + 5#2 -7
Example. Resolve -zr-=—- =- into partial fractions.* ox- - 2x - 1

By division,

v- = 2x + 3 +

,

3a:2 - 2.x - 1 Sx2 - 2x - 1

8a; -4 5 1
and ^-=—pr ^ = s = +

3x2 -2x-l 3.c + l x-1'

6^ + 5^-7 5 1= 2.r + 3 + - - +'* 3x2 -2x-l 3.T+1 *-l'

319. We shall now explain how resolution into partial

fractions may be used to facilitate the expansion of a rational

fraction in ascending powers of x.
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;;
,'-

-|- ;• _ 2
Example 1. Find the general term of —-——— —

. when expanded in a
(*- 2)-(l - 2x) l

series of ascending powers of x.

By Ex. 4, Art. 316, we have

3.r2 + .r-2 15 4

(*-2)2 (l-2*) 3(1-2*) 3(*-2) (*-2) 215 4
+

3(1-2*) 3(2-*) (2-a?)a

Hence the general term of the expansion is

/ r 6 1 r+l\

V 3
+

6 • 2r sr y

7 + *
Example 2. Expand r-^r— . in ascending powers of * and find

(1 + *) (I + *~)

the general term.

. 7 + * .4 JB* + C
Assume H -— - = -— + -

;

(1 + *) (1+*J
) 1+x 1 + *2

.\ 7 + *= J(l + *2
) + (E*+C)(l + *).

Lctl + *=:0, then A = 3;

equating the absolute terms, 7 = A + C, whence C= i
;

equating the coefficients of *2
, = A + B, whence B— - 3.

7 + * 3 4-3*
+

(1 + *)(1+*2
)

_
1 + *^ 1+*2

= 3(1 + .r)-1 + (4 - 3*) (1 + x 2

)~l

= 3{l-* + *2 - + (_l)P;CP + ...j

+ (4-3*) {l-.r2 + *-»- + (-1)p*'^+...}.

To find the coefficient of xr :

r

(1) If /• is even, the coefficient of *r in the second series is 4(-l) 2
;

r

therefore in the expansion the coefficient of xr is 3 + 4 ( - 1)
2

.

r-l

(2) If r is odd, the coefficient of *r in the second series is - 3 ( - 1)
'-

r+l

and the required coefficient is 3 (
- 1)

2 - 3.

EXAMPLES. XXIII.

Resolve into partial fractions :

, lx-\ 46+13.r l+3. r+ 2.r2

l-bj;+ 6jf- ' 12.t2 -lU--15' (1 -2.r) (1 -.//-')'



266 HIGHER ALGEBRA.

.y
2 - 10a;+13 2x*+x2-x-3

' (x-l)(x2 -5x+6)' x(x-l)(2x+ 3)'

9 „ x*- 3x* -3a;2 + 10
6

* (a;-l)(^+ 2)
2

' 7
* (#+l)2 (#-3)

26^2+ 208o; Q
2^2 -lLr+ 5

(a;
2+ l)(^+ 5)' (^--3) (^

2 + 2^- 5)

3^-8x2+10 ,, 5^ + 6.r2+ 5.r

(07-1)* * (^
2 -l)(^+l)3

'

Find the general term of the following expressions when expanded
in ascending powers of x.

l + 3# 5a;+ 6 u #2 + 7;f + 3
12#

l + llo;+ 28^* ' (2+a?)(l-#)' tf
2+ 7a-+ uy

2#-4 .« 4+ 3^+2a'2

15. t^ 5tt^—^ • 16.
(1 - x2

) (1 - 2.r)
*

(1 - x)
( 1 + x - 2x2

)

3 + 2x-x2
no 4+ 7x

17. 7, . w ,
—

ttx* • 18.
(l+a?)(l-4a?)2

*

(2 + 3a;)(l+.r)2
'

19.
*"* 20.

1 -*+i*
3(^-1)(^2 +1)" (1-tf)

21 . „ 1 22.
»-«•

(1 - cw?) (1 - te) (1 - co;)
*

'
(2 - 3.r+ a2)

2
'

23. Find the sum of n terms of the series

(l) I + - + — +
[

}

(i+^)(i+^2
)

(i+^2)(n-^) (i+^)(i+^4
)

. . x (1 - ax) ax (1 - a2x)

^ ' (1 +x) (l + ax) (1 + a%)
+

(1 + ax) (1 +a%) (1 + a3
.r)
+

24. When a? < 1, find the sum of the infinite series

1 x2 xA

(l-x) (l-x3
)

+
(1 -a?) (1 -.r5)

+
(1-tf5) (1 -^) +

25. Sum to n terms the series whose p
th term is

xp(1+xp + 1
)

(l-^)(l-.^ + 1)(l-^ + 2)'

26. Prove that the sum of the homogeneous products of n dimen-
sions which can be formed of the letters a, b, c and their powers is

an + 2 (b -c) + bn + 2 (c- a)+ cn + 2 (a-b)

a2 (b-c) + b2 (c-a) + c2 (a-b)
*
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Recurring Series.

320. A series u + u
l

+ u2 + u3
+

in which from and after a certain term each term is equal to the

sum of a fixed number of the preceding terms multiplied respec-

tively by certain constants is called a recurring series.

321. In the series

1 + 2x + 3ar + 4a? + 5a;
4 + ,

each term after the second is equal to the sum of the two
preceding terms multiplied respectively by the constants 2x, and
- x2

j these quantities being called constants because they are

the same for all values of n. Thus

5x4 = 2x . 4a;
3 + (- x2

)
. 3a;

2

;

that is,

u
4
= 2xn

3
— x2u

2 ;

and generally when n is greater than 1, each term is connected
with the two that immediately precede it by the equation

u — 2xii ,
— x2u . ,h n— 1 n—2*

or u — 2xu , + x2u „ = 0.
H n — 1 ii — 2

In this equation the coefficients of u
n , «*,_,, and l*,_

a , taken

with their proper signs, form what is called the scale of relation.

Thus the series

1 + 2x + 3a;
2 + 4a;

3 + 5x4 +

is a recurring series in which the scale of relation is

1 - 2x + x2
.

322. If the scale of relation of a recurring series is given,

any term can be found when a sufficient number of the preceding
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terms are known. As the method of procedure is the same

however many terms the scale of relation may consist of, the

following illustration will be sufficient.

If 1 - px - qx2 - rx3

is the scale of relation of the series

a + a<x + aax
2 + ajc

3 +

we have

anx*=px - an -ix
"~ 1

+ <l
x"

- an - 2
x'l

~ 2
+ rx3 • an -3

x'l
~ 3

i

or a
m
=pan_, + &».- + m«- 3 5

thus any coefficient can be found when the coefficients of the

three preceding terms are known.

323. Conversely, if a sufficient number of the terms of a

series be given, the scale of relation may be found.

Example. Find the scale of relation of the recurring series

2 + 5x + 13x2 + 35x3 +

Let the scale of relation be 1 -px - qx*-, then to obtain p and q we have

the equations 13 - 5p - 2q = 0, and 35 - 13p - 5q = ;

whence p = 5, and q= - 6, thus the scale of relation is

1 - 5x + 6a;2 .

324. If the scale of relation consists of 3 terms it involves

2 constants, p and q ; and we must have 2 equations to de-

termine p and q. To obtain the first of these we must know
at least 3 terms of the series, and to obtain the second we
must have one more term given. Thus to obtain a scale of

relation involving two constants we must have at least 4 terms
'O

given.

If the scale of relation be 1 — px — qx2 - rx3
, to find the

3 constants we must have 3 equations. To obtain the first of

these we must know at least 4 terms of the series, and to obtain

the other two we must have two more terms given ; hence to find

a scale of relation involving 3 constants, at least G terms of the

series must be given.

Generally, to find a scale of relation involving m constants,

we must know at least 2m consecutive terms.

Conversely, if 2m consecutive terms are given, we may assume

for the scale of relation

1 ~ l\x ~ l\x* ~ lhx* ~ -PJ**
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325. To find the sum ofn terms of a recurring series.

The method of finding the sum is the same whatever be the
scale of relation ; for simplicity we shall suppose it to contain

only two constants.

Let the series be

a
u
+ a

x
x + a

2
x2 + aj£ + (1)

and let the sum be S ; let the scale of relation be 1 — px — qx*
;

so that for every value of n greater than 1, we have

Now S—a
it
+ a.x + a,x

2 + ...+ a ,x"~\
1 2 /»— 1 '

— px S= — pa x —pa
x
x* — ... — 2^>ci

H _ 2
xn~ l —pa x*

t

- qa? S= - qajt? - ... -qa
H _ 3

x*-
1 -qa

H _ i
xn-qa

H _ l
xu +

\

... (i -px _ qtf) S - a + {a
x
-pa ) x - {pan_ x

+ qa
n_a)

xn - qa^x** 1

,

for the coefficient of every other power of x is zero in consequence

of the relation

an-Pan-l-<2a«-2= '

. s _ % + («, -P<-Q x (Pa,t -, + qa
n- 3 )

x" + qa
n _ }

xH+l

1 -px— qx2
1 - px — qx2

Thus the sum of a recurring series is a fraction whose de-

nominator is the scale of relation.

32G. If the second fraction in the result of the last article

decreases indefinitely as n increases indefinitely, the sum of an

infinite number of terms reduces to —\—

—

!—-—^— .

1 — px — qx"

If we develop this fraction in ascending powers of x as

explained in Art. 314, we shall obtain as many terms of the

original series as we please; for this reason the expression

1 —px — qx2

is called the generatingfunction of the series.

327. From the result of Art. 325, we obtain

an + (a , —Pa.) X o .xi
-°,

v
'—£—%— = a

lt
+ a.x + ax- + ... +a xn + l

1 -px — qx' ° '
2 " -1

1 - px— qx
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from which we see that although the generating function

1 — px — qx2

may be used to obtain as many terms of the series as we please,

it can be regarded as the true equivalent of the infinite series

a + a
l
x + a

2
x2 + ,

only if the remainder

(I**,.-, +qan- 2)
xn + (2an-^"

+l

1 — poj — qx2

vanishes when n is indefinitely increased ; in other words only

when the series is convergent.o v

328. When the generating function can be expressed as a

group of partial fractions the general term of a recurring series

may be easily found. Thus, suppose the generating function

can be decomposed into the partial fractionsABC
h h

1— ax 1 + bx (I— ex)
2

'

Then the general term is&
{Aar + (- l)

rMr + (r + 1) Ccr

} x\

In this case the sum of n terms may be found without using

the method of Art. 325.

Example. Find the generating function, the general term, and the sum
to n terms of the recurring series

1 - Ix - x 2 - 43.-C
3 -

Let the scale of relation be 1 -px - </.r
2

; then

-l + 7j>-<z = 0, -43 + 2> + 7</ = 0;

whence p = l, 5 = 6; and the scale of relation is

1 - x - 6.r2.

Let S denote the sum of the series ; then

S= l-lx- x2 -4Sxs -

-xS= - x + 7x2 + x*+

-Qx2S= -6x2 + 42.r3 +

.-. (l-x-6x2)S= l-8x,

s-
J" 8* -

which is the generating function.
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1 - 8.r 2 1
If we separate ^-„ into partial fractions, we obtain -—-

;1-x-U.r- ±
1 + 2a; 1-305'

whence the (r+ l) tU or general term is

{(-lyw^-v ].<>.

Putting r = 0, 1, 2,...n -1,

the sum to ?i terms

= { 2 - 22x + 2%2 -... + (- I)"" 1 2" a;' 1
"

1
}
- (1 + 3a + 3%* + . . . + 3"-1 xn~ l

)

_ 2 + ( - I)'
1" 1 2n+1 xn _ 1_- 3* xn~

l+lte 1 - 3x~
'

329. To find the general term and sum of n terms of the

recurring series a + a
i
+ a_,+ , we have only to find the

general term and sum of the series a + a
l
x + a

2
x2 + , and put

x — 1 in the results.

Example. Find the general term and sum of n terms of the series

1 + 6 + 24 + 84+

The scale of relation of the series 1 + 6.r + 24x2 + 84x3 + . . . is 1 - ox + Ooj
2

,

1 + x
and the generating function is —-

—

*—— .

1 — OX + OX"

This expression is equivalent to the partial fractions

4 3

1 - Sx 1 - 2a;

'

If these expressions be expanded in ascending powers of x the general

term is (4 . 3r - 3 . 2r) xr.

Hence the general term of the given series is 4 . 3r -3. 2r ; and the sum
of n terms is 2 (3'1 - 1) - 3 (2'1 - 1).

330. We may remind the student that in the preceding

article the generating function cannot be taken as the sum of

the series

1 +6x + 24:x
2 +8±x3 +

except when x has such a value as to make the series convergent.

Hence when x = 1 (in which case the series is obviously divergent)

the generating function is not a true equivalent of the series.

But the general term of

1 + 6 + 24 + 84 +

is independent qfx, and whatever value x may have it will always
be the coefficient of x" in

1 + Gx + 24*2 + 84a3 +

We therefore treat this as a convergent series and find its

general term in the usual way, and then put x = 1.
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EXAMPLES. XXIV.

Find the generating function and the general term of the following

series

:

1. l + 5.r+ 9.r2 +13.r3+ 2. 2-.v+ 5.r2 -7.r3+

3. 2 + 3x+ 5x2+ 9x3+ 4. 7 -6x + 9x2+ 27x4+

5. 3 + 6a?+ Ux2+ 36.r*+ 98.^+ 276.1-5+

Find the nth term and the sum to n terms of the following series :

6. 2 + 5 + 13 + 35+ 7. -l+6.v2+ 30.v3 +

8. 2 + 7^ + 25^+ 91^+

9. 1 + 2.v+ 6x2+ 20#3 + 66x*+ 212^+

10. -^ + 2 + + 8+

11. Shew that the series

1 2 + 22+ 32+ 42 + + n2
,

1 3 + 23+ 33 + 43+ +n3
,

are recurring series, and find their scales of relation.

12. Shew how to deduce the sum of the first n terms of the re-

curring series

a + a
x
x+ a2x

2+ a^v3+
from the sum to infinity.

13. Find the sum of 2n + 1 terms of the series

3-1 + 13-9 + 41-53+

14. The scales of the recurring series

a +

a

vv+ a^x2 + a3.r
3+ ,

b + b1
x+b^c2 -{-b

3
.v
3+ ,

are 1 +px+qx2
, l + rx+ sx2, respectively; shew that the series whose

general term is (<xn+6n)^" is a recurring series whose scale is

l + (p + r)x + (q+ s +pr) x2 + (qr +ps) x3+ qsx*.

15. If a series be formed having for its nih term the sum of n terms

of a given recurring series, shew that it will also form a recurring

series whose scale of relation will consist of one more term than that

of the given series.


