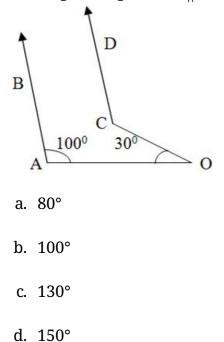
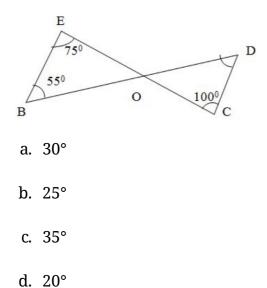
CBSE Test Paper 02 CH-6 Lines and Angles

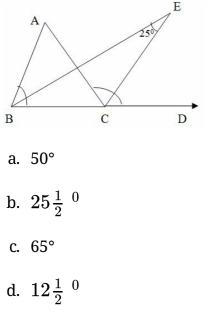
- 1. The number of angles formed by a transversal with a pair of parallel lines are
 - a. 8
 - b. 4
 - c. 6
 - d. 3
- 2. In the given figure, AB || CD. If $\angle AOC = 30^{\circ}$ and $\angle OAB = 100^{\circ}$. then $\angle OCD = ?$



- 3. If two angles are supplementary and the larger is 20^0 less then three times the smaller, then the angles are :
 - a. $72\frac{1}{2}$ ⁰, $17\frac{1}{2}$ ⁰ b. 140^{0} , 40^{0} c. 130^{0} , 50^{0} d. $62\frac{1}{2}$ ⁰, $27\frac{1}{2}$ ⁰
- 4. In the given figure, $\angle OEB = 75^\circ$, $\angle OBE = 55^\circ$ and $\angle OCD = 100^\circ$. Then $\angle ODC = ?$



- 5. In the adjoining figure, BE and CE are bisectors of \angle ABC and \angle ACD respectively. If \angle BEC = 25°, then \angle BAC is equal to :-



6. Fill in the blanks:

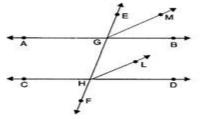
A line segment has _____ end points.

7. Fill in the blanks:

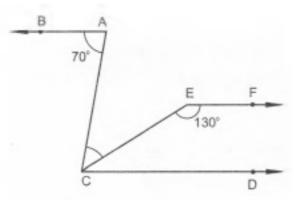
A line has _____ end point.

- 8. An angle is equal to five times its complement. Determine its measure.
- 9. Two supplementary angles are in the ratio 2 : 3. Find the angles.

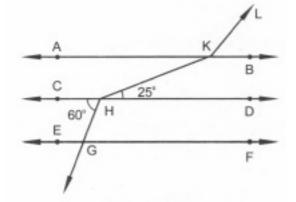
10. If two lines are intersected by a transversal in such a way that the bisectors of a pair of corresponding angles are parallel, then prove that lines are parallel.



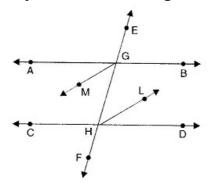
11. In Figure, if AB II CD and CD II EF, find \angle ACE.



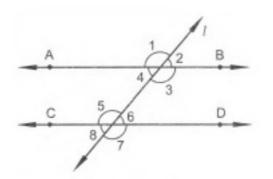
12. In figure, AB || CD || EF and GH || KL. Find \angle HKL.



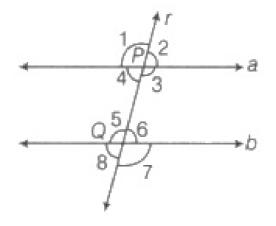
13. If two parallel lines are intersected by a transversal, then prove that the bisectors of any two alternate angles are parallel.



14. In Fig., AB || CD and $\angle 1$ and $\angle 2$ are in the ratio 3 : 2. Determine all angles from 1 to 8.



15. In the given figure, if $\angle 2$ = 120° and $\angle 5$ = 60°, then show that a \parallel b.

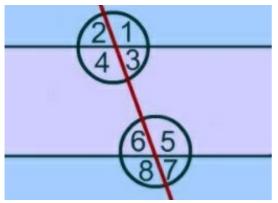


CBSE Test Paper 02 CH-6 Lines and Angles

Solution

1. (a) 8

Explanation:



As we can see there are 4 angles formed at every point of intersection thus giving a total of 8 angles.

2. (c) 130°

Explanation:

Extend line CD which intersect AO at M.

 \angle CMO = \angle BAO = 100° (Corresponding angle)

 $In \, \triangle \, \text{MOC}$

 \angle MOC + \angle CMO = \angle DCO (exterior angle is equal to the sum of two opposite interior angles)

∠DCO = 100° + 30° = 130°

3. (c) 130^0 , 50^0 Explanation:

Let the two supplimentary angles be x^0 and 180^0 - x^0

Let 180^0 - x be the larger angle

 $180^0 - x = 3x - 20^0$

 $4x = 200^{0}$

 $x = 50^0$

So the angles are 50^0 and 130^0

4. (a) 30°

Explanation:

In $\triangle OEB$ $\angle OEB + \angle EBO + \angle BOE = 180^{\circ}$ (Angle sum property) $75^{\circ} + 55^{\circ} + \angle BOE = 180^{\circ}$ $\angle BOE = 50^{\circ}$ $\angle BOE = \angle COD = 50^{\circ}$ (Vertically opposite angle) In $\triangle ODC$ $\angle ODC + \angle DOC + \angle DCO = 180^{\circ}$ $\angle ODC = 180^{\circ} - 100^{\circ} - 50^{\circ}$ $\angle ODC = 30^{\circ}$

5. (a) 50°

Explanation:

In \triangle BEC \angle BEC + \angle EBC = \angle ECD (Exterior angle property) \angle BEC = \angle ECD - \angle EBC In \triangle ABC \angle ABC + \angle BAC = \angle ACD \angle ABC + 2 \angle EBC = 2 \angle ECD \angle ABC = 2(\angle ECD - \angle EBC) \angle ABC = 2(\angle BEC) \angle ABC = 50°

- 6. two
- 7. no
- Let the measure of the given angle be x degrees. Then, the measure of its complement is (90 - x)°.

It is given that: Angle = $5 \times$ Its complement $\Rightarrow x = 5(90 - x)$ $\Rightarrow x = 450 - 5x \Rightarrow 6x = 450 \Rightarrow x = 75$ Thus, the measure of the given angle is 75°

9. Let the two angles be 2x and 3x in degrees. Then,

 $\therefore 2x + 3x = 180$ $\Rightarrow 5x = 180 \Rightarrow x = 36$

Thus, the measures of two angles are $2x = 2 \times 36^\circ = 72^\circ$ and $3x = 3 \times 36^\circ = 108^\circ$.

10. GM || HL[Given]

∴ ∠EGM = ∠GHL . . . [Corresponding angles]

 $\therefore 2\angle EGM = 2\angle GHL$

 $\therefore \angle EGB = \angle GHD \dots$ [GM bisects the $\angle EGB$ and HL bisects the $\angle GHD$]

These angles form a pair of equal corresponding angles for lines AB and CD and transversal EF.

: AB || CD

11. Since EF || CD

 $\therefore \angle$ FEC + \angle ECD = 180^o [co-interior angles are supplementary]

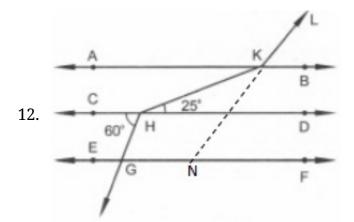
 $\Rightarrow \angle \text{ECD} = 180^{\circ} - 130^{\circ} = 50^{\circ}$

Also BA || CD

 $\Rightarrow \angle BAC = \angle ACD = 70^{\circ}$ [alternate interior angles]

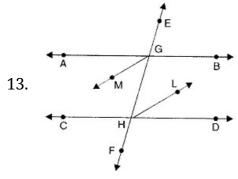
But $\angle ACE + \angle ECD = \angle ACD = 70^{\circ}$

 $\Rightarrow \angle ACE = 70^{\circ} - 50^{\circ} = 20^{\circ}$



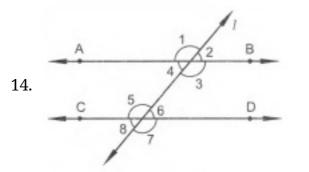
Produce LK to meet GF at N. Now,

 $\angle CHG = \angle HGN = 60^{\circ} \text{ [alternate angles]}$ $\angle HGN = \angle KNF = 60^{\circ} \text{ [corresponding angles]}$ $\therefore \angle KNG = 180^{\circ} - 60^{\circ} = 120^{\circ} \text{ [linear pair]}$ $\angle GNK = \angle AKL = 120^{\circ} \text{ [corresponding angles]}$ $\angle AKH = \angle KHD = 25^{\circ} \text{ [alternate angles]}$ $\therefore \angle HKL = \angle AKH + \angle AKL = 25^{\circ} + 120^{\circ} = 145^{\circ}$



AB || CD and a transversal EF intersects them

 $\therefore \angle AGH = \angle GHD$ $\frac{1}{2} \angle AGH = \frac{1}{2} \angle GHD$ $\angle MGH = \angle GHL \dots [As GM bisects the \angle AGH and HL bisects the \angle GHD]$



Given In Fig., AB || CD and $\angle 1$ and $\angle 2$ are in the ratio 3 : 2. To find: All angles from 1 to 8. Solution: Let $\angle 1 = 3x$, $\angle 2 = 2x$ [Given] Now, $\angle 1 + \angle 2 = 180^{\circ}$ [linear pair] \Rightarrow 3x + 2x = 180^o \Rightarrow 5x = 180° \Rightarrow x = 36^o $\therefore \angle 1 = 3x = 108^{\circ} \text{ and } \angle 2 = 2x = 72^{\circ}$ $\angle 1 = \angle 3 = 108^{\circ}$ [vertically opposite angles] $\angle 2 = \angle 4 = 72^{\circ}$ [vertically opposite angles] $\angle 1 = \angle 5 = 108^{\circ}$ [corresponding angles] $\angle 2 = \angle 6 = 72^{\circ}$ [corresponding angles] $\angle 5 = \angle 7 = 108^{\circ}$ [vertically opposite angles] $\angle 6 = \angle 8 = 72^{\circ}$ [vertically opposite angles] Hence, $\angle 1 = \angle 3 = \angle 5 = \angle 7 = 108^{\circ}$ and $\angle 2 = \angle 4 = \angle 6 = \angle 8 = 72^{\circ}$

15. Given, $\angle 2 = 120^{\circ}$ and $\angle 5 = 60^{\circ}$ Also, transversal r intersects two lines a and b at P and Q, respectively. Here, $\angle 2 = \angle 4$ [vertically opposite angles] $\therefore \angle 4 = \angle 2 = 120^{\circ}$ Now, $\angle 4 + \angle 5 = 120^{\circ} + 60^{\circ} \Rightarrow \angle 4 + \angle 5 = 180^{\circ}$ So, $\angle 4$ and $\angle 5$ are supplementary angles. Since, a is a straight line. $\therefore \angle 4 + \angle 3 = 180^{\circ}$ [by linear pair axiom]

$$\Rightarrow$$
 120^o + \angle 3 = 180^o

 \Rightarrow $\angle 3$ = 180° - 120° = 60°

Now, $\angle 7 = \angle 5 = 60^{\circ}$ [vertically opposite angles]

Here, $\angle 7 + \angle 8 = 180^{\circ}$ [by linear pair axiom]

 $:.60^{\circ} + \angle 8 = 180^{\circ}$

 \Rightarrow $\angle 8$ = 180° - 60° = 120°

 $\therefore \angle 6 = \angle 8 = 120^{\circ}$ [vertically opposite angles]

 $\therefore \angle 3 + \angle 6 = 60^{\circ} + 120^{\circ} = 180^{\circ}$

So, $\angle 3$ and $\angle 6$ are supplementary angles.

Thus, transversal r intersects lines a and b such that pair of interior angles on the same side of the transversal is supplementary. Hence, lines a and b are parallel. **Hence proved.**