MATHEMATICS

DPP No. 47

Total Marks: 25

Max. Time: 27 min.

Topics: Solution of Triangle, Vector, Application of Derivatives

M.M., Min. Type of Questions Single choice Objective (no negative marking) Q.3,4,5,7,8 (3 marks, 3 min.) [15, 15] True or False (no negative marking) Q.1 (2 marks, 2 min.) [2, 2] Subjective Questions (no negative marking) Q.2,6 (4 marks, 5 min.) [8, 10]

- 1. True/False type questions:
 - (i) Length of median AD in \triangle ABC = $\sqrt{2b^2 + 2c^2 a^2}$
 - (ii) Length of angle bisector of angle A in \triangle ABC = $\frac{2bc}{b+c}$ cos A
 - (iii) Every hyperbola has 2 asymptotes.
 - (iv) Orthocentre of the triangle inscribed in a hyperbola lies on its directrix.
 - (v) In $\triangle ABC$ (with usual notation) $\sin \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{2bc}}$
 - (vi) Incentre of pedal triangle of $\triangle ABC$ is orthocentre of $\triangle ABC$
- Show that for interval $e^{-\pi/4} < x < e^{3\pi/4}$ in which $f(x) = \sin(\ell n x) \cos(\ell n x)$ is monotonically increasing 2.
- 3. Point P is on circumfrence of circle. Chord QR is drawn parallel to tangent at P. Then maximum possible area of $\triangle PQR$ is :

$$(A)\frac{\sqrt{3}}{4} r^2$$

(A)
$$\frac{\sqrt{3}}{4}$$
 r² (B) $\frac{3\sqrt{3}}{4}$ r² (C) $\sqrt{3}$ r² (D) $\frac{\sqrt{3}}{4}$

(C)
$$\sqrt{3}$$
 r²

(D)
$$\frac{\sqrt{3} r^2}{4}$$

- If $\vec{a} = 2\hat{i} 7\hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 3\hat{j} 5\hat{k}$ and $\vec{a} \cdot m\vec{b} = 120$ where m is scalar then value of m is equal to 4.

- 5. A normal is drawn at the point $P(a, a^n)$ on the curve $y = x^n$ in the first quadrant. The normal intersects the y-axis at the point (0, b). If $\lim_{a\to 0} b = \frac{1}{2}$, then 'n' equals
 - (A) 1/2

- (D) 4
- Let $\vec{p} = \sin x \hat{i} + \cos x \hat{j}$ and $\vec{Q} = -\hat{i} \cos x \hat{j}$, $x \in (0, 2n\pi)$, $n \in N$. 6.

If \vec{P} and \vec{Q} are equal vectors, then find the number of values of x.

- A, B, C, D, E, are five coplanar points then $\overrightarrow{DA} + \overrightarrow{DB} + \overrightarrow{DC} + \overrightarrow{AE} + \overrightarrow{BE} + \overrightarrow{CE}$ is equal to 7.
 - (A) DE
- (B) 3 DE
- (C) 2 DE
- (D) 4 DE
- If \vec{a} and \vec{b} are non collinear vector such that vectors $(x-2)\vec{a}+\vec{b}$ and $(2x+1)\vec{a}-\vec{b}$ are parallel, then 8.
 - (A) x = 1/3

(B) no real value of x

(C) infinite values of x

(D) x = -1/3

Answers Key

1. (i) False (ii) False (iii) True (iv) False

(v) False (vi) True

3. (B) **4.** (C) **5.** (C) **6.** n **7.** (B)

8. (A)