
Appendix D
Solutions to Problems

Chapter 1

1.1 Substituting the operators p ¼ �i�h@=@x and E ¼ i�h@=@t into the mass–energy

relation E2 ¼ p2c2 þ M2c4 and allowing the operators to act on the function

�ðx, tÞ, leads immediately to the Klein–Gordon equation. To verify that the Yukawa

potential VðrÞ is a static solution of the equation, set VðrÞ ¼ �ðxÞ, where r ¼ xj j,
and use

r2 ¼ @2

@r2
þ 2

r

@

@r

together with the expression for the range, R ¼ �h=Mc.

1.2 Using Equation (1.11), gives

P̂PY1
1 ¼

ffiffiffi
3

8

r
sinð�� �Þeið�þ�Þ ¼ �

ffiffiffi
3

8

r
sinð�Þei� ¼ �Y1

1 ;

and hence Y1
1 is an eigenfunction of parity with eigenvalue �1.

1.3 Because the initial state is at rest, it has L ¼ 0 and thus its parity is

Pi ¼ PpP�ppð�1ÞL ¼ �1, where we have used the fact that the fermion–antifermion

pair has overall negative intrinsic parity. In the final state, the neutral pions are

identical bosons and so their wavefunction must be totally symmetric under their

interchange. This implies even orbital angular momentum L0 between them and

hence Pf ¼ P2
�ð�1ÞL0

¼ 1 6¼ Pi. The reaction violates parity conservation and is thus

forbidden as a strong interaction.

1.4 Since ĈC2 ¼ 1, we must have ĈC2 b;  bj i ¼ CbĈC �bb;  �bb

�� �
¼ b;  bj i, implying that

ĈC �bb;  �bb

�� �
¼ C�bb b;  bj i with CbC�bb ¼ 1 independent of Cb. The result follows because

an eigenstate of ĈC must contain only particle–antiparticle pairs b�bb, leading to the

intrinsic parity factor CbC�bb ¼ 1, independent of Cb.
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1.5 The parity of the deuteron is Pd ¼ PpPnð�1ÞLpn . Since the deuteron is an

S-wave bound state, Lpn ¼ 0 and so, using Pp ¼ Pn ¼ 1, gives Pd ¼ 1. The

parity of the initial state is therefore Pi ¼ P��Pdð�1ÞL�d ¼ P�� , because the

pion is at rest and so L�d ¼ 0. The parity of the final state is

Pf ¼ PnPnð�1ÞLnn ¼ ð�1ÞLnn and therefore P�� ¼ ð�1ÞLnn . To find Lnn impose the

condition that  nn ¼  space spin must be antisymmetric. Examining the spin,

Equation (1.17) shows that there are two possibilities for  spin: either the symmetric

S ¼ 1 state or the S ¼ 0 antisymmetric state. If S ¼ 0, then  space would have to be

symmetric, implying Lnn would be even, but the total angular momentum would not

then be conserved. Thus S ¼ 1 is implied and  space is antisymmetric, i.e.

Lnn ¼ 1; 3; � � � . The only way to combine Lnn and S to give J ¼ 1 is with Lnn ¼ 1

and hence P�� ¼ �1.

1.6 (a) �e þ eþ ! �e þ eþ;

(b) p þ p ! p þ p þ �0 þ �0;

(c) �pp þ n ! �� þ �0 þ �0; �� þ �þ þ ��.

1.7 (a) �e þ �	 ! �e þ �	.

(b) n ! p þ e� þ ���e.
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(c) eþ þ e� ! eþ þ e�.

(d) 
 þ 
 ! eþ þ e�.

1.8 If an exchanged particle approaches to within a distance d fm, this is equivalent to a

momentum transfer q ¼ �h=d ¼ 0:2=dð Þ GeV/c. Thus, q ¼ 0:2 GeV/c for d ¼ 1 fm

and q ¼ 200 GeV/c for d ¼ 10�3 fm. The scattering amplitude is given by

f ðq2Þ ¼ �g2�h2 q2 þ m2
xc2

� ��1
, where mx is the mass of the exchanged particle. Thus,

Rðq2Þ 
 fEMðq2Þ
fWeakðq2Þ ¼

q2c2 þ m2
W c4

q2c2 þ m2

c4

;

since gEM � gWeak. Using m
 ¼ 0 and mW ¼ 80 GeV/c2, gives

Rð0:2 GeV=cÞ � 1:6 � 105 fm but Rð200 GeV=cÞ � 1:2 fm:

1.9 Using spherical polar coordinates, we have q � x ¼ qr cos � and d3x ¼ r2 dr d cos � d�,

where q ¼ qj j. Thus, from Equation (1.38),

f ðq2Þ ¼ �g2

4�

ð2�

0

d�

ð1

0

dr r2 e�r=R

r

ðþ1

�1

d cos � expðiqr cos �=�hÞ

¼ �g2�h

2iq

ð1

0

dre�r=R expðiqr cos �=�hÞ½ �þ1
�1¼

�g2�h

2iq

ð1

0

dre�r=R eiqr=�h � e�iqr=�h
h i

¼ �g2�h2

q2 þ m2c2
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1.10 Let one of the beams (labelled by 1) refer to the ‘beam’ and let the other beam

(labelled by 2) refer to the ‘target’. Then in Equation (1.43), nb ¼ nN1=2�RA and

vi ¼ 2�R=T , where R is the radius of the circular path. Thus the flux is

J ¼ nbvi ¼ nN1f=A, where f is the frequency. Also N ¼ N2, so finally the luminosity

is L ¼ JN ¼ nN1N2f=A.

1.11 From Equation (1.44c), � ¼ WMA=Ið
tÞNA. Since the scattering is isotropic, the

total number of protons emitted from the target is W ¼ 20 � ð4�=2 � 10�3Þ
¼ 1:25 � 105 s�1. I can be calculated from the current, noting that the �-particles

carry two units of charge, and is I ¼ 3:13 � 1010 s�1. The density of the target is


t ¼ 1 mg cm�2 ¼ 10�32 kg fm�2. Putting everything together gives � ¼ 161 mb.

Chapter 2

2.1 From Equation (2.21),

Fðq2Þ ¼ 4� �h

q

ðr

0


r sin bðrÞdr 4�

ðr

0

r2 dr


 ��1

¼ 3 sin bðaÞ � bðaÞ cos bðaÞ½ �b�3;

where bðrÞ ¼ qr=�h. To evaluate this we need to find a and q. For the latter, we have

from which q ¼ 2p sinð#=2Þ ¼ 57:5 MeV=c. Also, we know that a ¼ 1:21A
1
3 fm and

so for A ¼ 56, a ¼ 4:63 fm and qa=�h ¼ 1:35 radians. Finally, using this in the

integral, gives F ¼ 0:829 and hence the reduction is F2 ¼ 0:69.

2.2 Setting q ¼ qj j in Equation (2.26), we have

Fðq2Þ ¼ 1

Ze

ð
f ðxÞ

X1
n¼0

1

n!

iqr cos �

�h


 �n

d3x:

Using d3x ¼ r2d cos � d� and doing the � integral, gives

Fðq2Þ ¼ 2�

Ze

ð ð
f ðrÞr2 1 þ iqr cos �

�h
� q2r2 cos2 �

�h2
þ . . .


 �
dr d cos �

¼ 4�

Ze

ð1

0

f ðrÞr2dr � 4�q2

6Ze�h2

ð1

0

f ðrÞr4dr þ . . .
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However, from Equation (2.17), Z e ¼ 4�
Ð1
0

f ðrÞ r2dr and from Equation (2.25),

Ze r2
� �

¼ 4�
Ð1
0

f ðrÞ r4dr so Fðq2Þ ¼ 1 � q2

6�h2 r2
� �

þ � � �

2.3 From Equation (2.28), r2
� �

¼ 6�h2 1 � Fðq2Þ½ �=q2, where q ¼ 2E sinð�=2Þ: Thus,

q ¼ 43:6 MeV=c. Also, F2 ¼ 0:65 and so
ffiffiffiffiffiffiffiffi
r2h i

p
¼ 6:56 fm.

2.4 The charge distribution is spherical, so the angular integrations in the general result

of Equation (2.17) may be done, giving

Fðq2Þ ¼
ð1

0


ðrÞ½sinðqr=�hÞ=ðqr=�hÞ�4�r2dr

2
4

3
5 ð1

0


ðrÞ4�r2dr

2
4

3
5
�1

:

Substituting for 
ðrÞ, setting x ¼ r=a and using
Ð1
0

x expð�xÞ dx ¼ 1, gives, after

integrating by parts (twice),

Fðq2Þ ¼ �h

qa


 � ð1

0

e�x sin
qax

�h

� �
dx ¼ 1

1 þ q2a2=�h2
� � :

2.5 In 1 g of the isotope there are initially N0 ¼ 1 g=208 � 1:66 � 10�24 g
� �

. Thus

N0 ¼ 2:9� 1021 atoms. At time t there are NðtÞ ¼ N0e�t=� atoms, where � is the

mean life of the isotope. Thus, provided t � � , the average decay rate is

N0 � NðtÞ
t

� N0

�
¼ 75

0:1 � 24
h�1:

Thus, � ¼ 2:4N0=75 h � 1016 years:

2.6 The count rate is proportional to the number of 14C atoms present in the sample.

If we assume that the abundance of 14C has not changed with time, the artefact

was made from living material and is predominantly carbon, then at the time it

was made ðt ¼ 0Þ, 1 g would have contained 5 � 1022 carbon atoms of which

N0 ¼ 6 � 1010 would have been 14C. Thus the average count rate would have been

N0=� ¼ 13:8 m�1. At time t, the number of 14C atoms would be NðtÞ ¼ N0 expð�t=�Þ
and NðtÞ=N0 ¼ e�t=� ¼ 2:1=13:8, from which t ¼ � ln 6:57 ¼ 1:56 � 104 years. The

artefact is approximately 16 000 years old.

2.7 If the transition rate for 212
86Rn decay is !1 and that for 208

84Po is !2 and if the numbers of

each of these atoms at time t is N1ðtÞ and N2ðtÞ , respectively, then the decays are

governed by Equation (2.43), i.e. N2ðtÞ¼!1N1ð0Þ expð�!1tÞ�expð�!2tÞ½ � !2�!1½ ��1
.

The latter is a maximum when dN2ðtÞ=dt ¼ 0, i.e. when!2 expð�!2tÞ¼ !1 expð�!1tÞ,
with tmax ¼ ln !1=!2ð Þ !1 � !2ð Þ�1

. Using !1 ¼ 4:12 � 10�2 min�1 and

!2 ¼ 6:58 � 10�7 min�1, gives tmax ¼ 265 min.
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2.8 The total decay rate of both modes of 138
57La is

ð1 þ 0:5Þ � ð7:8 � 102Þ kg�1 s�1 ¼ 1:17 � 103 kg�1 s�1:

Also, since this isotope is only 0.09 per cent of natural lanthanum, the number

of 138
57La atoms per kg is N ¼ ð9 � 10�4Þ � 1000=138:91ð Þ � ð6:022 � 1023Þ, i.e.

N ¼ 3:90 � 1021 kg�1. The rate of decays is �dN=dt ¼ !N, where ! is the

transition rate, and in terms of this the mean lifetime � ¼ 1=!. Thus,

� ¼ N

�dN=dt
¼ 3:90 � 1021

1:17 � 103
s ¼ 3:33 � 1018s ¼ 1:06 � 1011 years:

2.9 The energy released is the increase in binding energy. Now from the SEMF,

Equations (2.46)–(2.52),

BEð35; 87Þ ¼ avð87Þ � asð87Þ2=3 � ac

ð35Þ2

ð87Þ1=3
� aa

ð87 � 70Þ2

348
;

BEð57; 145Þ ¼ avð145Þ � asð145Þ2=3 � ac

ð57Þ2

ð145Þ1=3
� aa

ð145 � 114Þ2

580
;

BEð92; 235Þ ¼ avð235Þ � asð235Þ2=3 � ac

ð92Þ2

ð235Þ1=3
� aa

ð235 � 184Þ2

940
:

The energy released is thus

E ¼ BEð35; 87Þ þ BEð57; 145Þ � BEð92; 235Þ
¼ �3 av � 9:153 as þ 476:7ac þ 0:280 aa

which using the values given in Equation (2.54) gives E ¼ 154 MeV.

2.10 The most stable nucleus for fixed A has a Z-value given by Z ¼ �=2
, where

from Equation (2.58), � ¼ aa þ ðMn � Mp � meÞ and 
 ¼ aa=A þ ac=ðAÞ1=3
.

Changing � would not change aa, but would effect the Coulomb coefficient

because ac is proportional to �. For A ¼ 111, using the value of aa from Equation

(2.54) gives � ¼ 93:93 MeV=c2 and 
 ¼ 0:839 þ 0:208 ac MeV=c2. For Z ¼ 47,

ac ¼ 0:770 MeV=c2. This is a change of about 10 per cent from the value given in

Equation (2.54) and so � would have to change by the same percentage.

2.11 In the rest frame of the 269
108Hs nucleus, m�v� ¼ mSgvSg. The ratio of the kinetic energies

is ESg=E� ¼ m�=mSg and the total kinetic energy is E� 1 þ m�=mSg

� �
¼ 9:370 MeV.

Thus, mHsc
2 ¼ ðmSg þ m�Þc2 þ 9:370 MeV ¼ 269:154 u.

2.12 If there are N0 atoms of 238
94Pu at launch, then after t years the activity of the source

will be AðtÞ ¼ N0 expð�t=�Þ=� , where � is the lifetime. The instantaneous power is

then PðtÞ ¼ AðtÞ � 0:05 � 5:49 � 1:602� 10�13 W > 200 W . Substituting the value

given for �, gives N0 ¼ 1:88 � 1025 and hence the weight of 238
94Pu at launch would

have to be at least
1:88 � 1025

6:02 � 1023


 �
238

1000


 �
kg ¼ 7:43 kg.
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2.13 If there were N0 atoms of each isotope at the formation of the planet ðt ¼ 0Þ,
then after time t the numbers of atoms are N205ðtÞ ¼ N0 expð�t=�205Þ and

N204ðtÞ ¼ N0 expð�t=�204Þ, with

N205ðtÞ
N204ðtÞ

¼ exp �t
1

�205

� 1

�204


 �
 �
¼ n205

n204

¼ 2 � 10�7:

Now �204 � �205, so t ¼ �205lnð2 � 107Þ ¼ 2:6 � 108 years.

2.14 We first calculate the mass difference between ½p þ 46
21Sc� and ½n þ 46

22Ti�. Using the

information given, we have

Mð21;46Þ�½Mð22;46Þþme�¼ 2:37MeV=c2 and Mn �ðMp þmeÞ¼ 0:78MeV=c2

and hence ½Mp þ Mð21; 46Þ� � ½Mn þ Mð22; 46Þ� ¼ 1:59 MeV=c2. We also need the

mass differences ½M� þ Mð20; 43Þ� � ½Mn þ Mð22; 46Þ� ¼ 0:07 MeV=c2. We can

now draw the energy level diagram where the centre-of-mass energy of the

resonance is at (see Equation (2.10)) 2:76 � 45=47ð Þ ¼ 2:64 MeV.

Thus the resonance could be excited in the 43
20Cað�; nÞ 46

22Ti reaction at an �-

particle laboratory energy of 10:7 � 47=43ð Þ ¼ 11:7 MeV.

2.15 We have dNðtÞ=dt ¼ P � �N, from which

Pe�t ¼ e�t �N þ dNðtÞ
dt


 �
¼ d

dt
Ne�t
� �

:

Integrating and using the fact that N ¼ 0 at t ¼ 0 to determine the constant of

integration, gives the required result.
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2.16 The number of 35Cl atoms in 1 g of the natural chloride is

N ¼ 2 � 0:758 � NA=molecular weight ¼ 7:04 � 1021:

The activity AðtÞ ¼ �N ¼ P 1 � e��t
� �

� P�t, since �t � 1. So

t ¼ AðtÞ
P�

¼
AðtÞt1=2

ln2 � �� F � N
:

Substituting AðtÞ ¼ 3 � 105 Bq and using the other constants given, yields t ¼ 1:55

days.

2.17 At very low energies we may assume the scattering has ‘ ¼ 0 and so in Equation

(1.63) we have j ¼ 1
2
; sn ¼ 1

2
and su ¼ 0. Thus,

�max ¼ ��h2

q2
n

ð�n�n þ �n�
Þ
�2=4

¼ 4��h2�n

q2
n�

;

Therefore, �n ¼ q2
n��max=4��h2 ¼ 0:35�10�3 eV and �
¼���n ¼ 9:65 � 10�3 eV.

Chapter 3

3.1 (a) Forbidden: violates L	 conservation, because L	ð�	Þ ¼ 1, but L	ð	þÞ ¼ �1.

(b) Forbidden: violates electric charge conservation, because Q (left-hand side) ¼ 1,

but Q (right-hand side) ¼ 0.

(c) Forbidden: violates baryon number conservation because B (left-hand side) ¼ 1,

but B (right-hand side) ¼ 0.

(d) Allowed: conserves L	 ; B ; Q etc. (violates S, but this is allowed because it is a

weak interaction).

3.2 (a) The quark compositions are: D� ¼ d�cc ; K0 ¼ d�ss ; �� ¼ d�uu and since the

dominant decay of a c-quark is c ! s, we have
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(b) The quark compositions are: � ¼ sud; p ¼ uud and since the dominant decay

of an s-quark is s ! u, we have

3.3 (a) This would be a baryon because B ¼ 1 and the quark composition would be ssb

which is allowed in the quark model.

(b) This would be a meson because B ¼ 0, but would have to have both an �ss- and a
�bb-quark. However, Qð�ss þ �bbÞ ¼ 2=3, which is incompatible with the quark model

and anyway combinations of two antiquarks are not allowed. Thus this

combination is forbidden.

3.4 ‘Low-lying’ implies that the internal orbital angular momentum between the

quarks is zero. Hence the parity is P ¼ þ and  space is symmetric. Since the

Pauli principle requires the overall wavefunction to be antisymmetric under

the interchange of any pair of like quarks, it follows that  spin is antisymmetric.

Thus, any pair of like quarks must have antiparallel spins, i.e. be in a spin-0

state.

Consider all possible baryon states qqq, where q ¼ u; d; s. There are six

combinations with a single like pair: uud; uus; ddu; dds; ssu; ssd, with the spin

of (uu) etc. equal to zero. Adding the spin of the third quark leads to six states

with JP ¼ 1
2

þ
. In principle, there could be six combinations with all three quarks

the same – uuu; ddd; sss – but in practice these do not occur because it is

impossible to arrange all three spins in an antisymmetric way. Finally, there is one

combination where all three quarks are different: uds. Here there are no restric-

tions from the Pauli principle, so for example, the ud pair could have spin-0 or

spin-1. Adding the spin of the s-quark leads to two states with JP ¼ 1
2

þ
and 1 with

JP ¼ 3
2

þ
.

Collecting the results, gives an octet of JP ¼ 1
2

þ
states and a singlet JP ¼ 3

2

þ
state.

This is not what is observed in nature. In Chapter 5 we will see what additional

assumptions have to be made to reproduce the observed spectrum.
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3.5 (a)

(b)

3.6 The ground state mesons all have L ¼ 0 and S ¼ 0. Therefore they all have P ¼ �1.

Only in the case of the neutral pion is their constituent quark and antiquark also

particle and antiparticle. Thus C is only defined for the �0 and is C ¼ 1. For the

excited states, L ¼ 0 still and thus P ¼ �1 as for the ground states. However, the

total spin of the constituent quarks is S ¼ 1 and so for the 
0, the only state for which

C is defined, C ¼ �1.

For the excited states, by definition there is a lower mass configuration with the

same quark flavours. As the mass differences between the excited states and their

ground states is greater than the mass of a pion, they can all decay by the strong

interaction. In the case of the charged pions and kaons and the neutral kaon ground

states, there are no lower mass configurations with the same flavour structure and so

the only possibility is to decay via the weak interaction, with much longer lifetimes.

In the case of 
0 decay, the initial state has a total angular momentum of 1 and

since the pions have zero spin, the �� final state must have L ¼ 1. While this is

possible for �þ��, for the case of �0�0 it violates the Pauli Principle and so is

forbidden.

3.7 In the initial state, S ¼ �1 and B ¼ 1. To balance strangeness (conserved in strong

interactions), in the final state SðY�Þ ¼ �2 and to balance baryon number,
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BðY�Þ ¼ 1. As charm and beauty for the initial state are both zero, these quantum

numbers are zero for the Y. The quark content is therefore dss. In the decay, the

strangeness of the � is �1 and so strangeness is not conserved. This is therefore a

weak interaction and its lifetime will be in the range 10�7–10�13 s:

3.8 The quark composition is � ¼ uds, then ðSu þ SdÞ2 ¼S2
u þ S2

dþ 2Su � Sd ¼ 2�h2 and

hence Su � Sd ¼ �h2=4. Then, from the general formula given in Equation (3.84),

setting mu ¼ md ¼ m, we have

M� ¼ 2m þ ms þ b
Su � Sd

m2
þ Sd � Ss þ Su � Ss

mms


 �

¼ 2m þ ms þ b
Su � Sd

m2
þ S1 � S2 þ S1 � S3 þ S2 � S3 � Su � Sd

mms


 �

which, using S1 � S2 þ S1 � S3 þ S2 � S3 ¼ �3�h2=4 from Equation (3.89), gives

M� ¼ 2m þ ms þ
b

4

1

m2
� 4

mms


 �
:

3.9 The initial reacton is strong because it conserves all individual quark numbers. The

	� decay is weak because strangeness changes by one unit and the same is true for

the decays of the 
0, Kþ and K0. The decay of the �þ is also weak because it

involves neutrinos and finally the decay of the �0 is electromagnetic because only

photons are involved.

3.10 The Feynman diagram is:

The two vertices where the W-boson couples are weak interactions and have

strengths
ffiffiffiffiffiffiffi
�W

p
. The remaining vertex is electromagnetic and has strength

ffiffiffiffiffiffiffiffiffi
�EM

p
.

So the overall strength of the diagram is �W
ffiffiffiffiffiffiffiffiffi
�EM

p
.

3.11 From Equation (3.27a), we have Pð���e!�xÞ¼sin2ð2�Þsin2½�ðm2c4ÞL=ð4�hcEÞ�, which

for maximal mixing (� ¼ �=4) gives Pð���e ! �xÞ ¼ sin2 ½1:27�ðm2c4ÞL=E� where L

is measured in m, E in MeV and �ðm2c4Þ in ðeVÞ2
. If Pð���e ! ���eÞ ¼ 0:90 � 0:10,

then at 95 per cent confidence level, 1:0 � Pð���e ! �xÞ � 0:70 and hence

0:012 � �ðm2c4Þ � 0:019ðeVÞ2
.
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3.12 Reactions (a), (d) and (f) conserve all quark numbers individually and hence are

strong interactions. Reaction (e) violates strangeness and is a weak interaction.

Reaction (c) conserves strangeness and involves photons and hence is an electro-

magnetic interaction. Reaction (b) violates both baryon number and electron lepton

number and is therefore forbidden.

3.13 The doublet of S ¼ þ1 mesons ðKþ;K0Þ has isospin I ¼ 1
2
, with I3ðKþÞ ¼ 1

2
and

I3ðK0Þ ¼ �1
2
. The triplet of S ¼ �1 baryons ð�þ; �0; ��Þ has I ¼ 1, with

I3 ¼ 1; 0;�1 for �þ; �0 and ��, respectively. Thus ðKþ;K0Þ is analogous to the

ðp; nÞ isospin doublet and ð�þ; �0; ��Þ is analogous to the ð�þ; �0; ��Þ isospin

triplet. Hence, by analogy with Equations (3.54a) and (3.54b),

Mð��p ! ��KþÞ ¼ 1

3
M3 þ

2

3
M1; Mð��p ! �0K0Þ ¼

ffiffiffi
2

p

3
M3 �

ffiffiffi
2

p

3
M1

and

Mð�þp ! �þKþÞ ¼ M3;

where M1;3 are the amplitudes for scattering in a pure isospin state I ¼ 1
2
; 3

2
,

respectively. Thus,

�ð�þp ! �þKþÞ : �ð��p ! ��KþÞ : �ð��p ! �0KoÞ

¼ M3j j2: 1

9
M3 þ 2M1j j2: 2

9
M3 � M1j j2:

3.14 Under charge symmetry, nðuddÞ Ð pðduuÞ and �þðu�ddÞ Ð ��ðd�uuÞ and since the

strong interaction is approximately charge symmetry, we would expect

�ð�þnÞ � �ð��pÞ at the same energy, with small violations due to electromagnetic

effects and quark mass differences. However, Kþðu�ssÞ and K�ðs�uuÞ are not charge

symmetric and so there is no reason why �ðKþnÞ and �ðK�pÞ should be equal.

Chapter 4

4.1 In an obvious notation,

E2
CM ¼ ðEe þEpÞ2 � ðpecþ ppcÞ2 ¼ ðE2

e � p2
ec2Þ � ðE2

p � p2
pc2Þ þ 2EeEp � 2pe � ppc2

¼ m2
ec4 þm2

pc4 þ 2EeEp � 2pe � ppc2

At the energies of the beams, masses may be neglected and so with p ¼ pj j,

E2
CM ¼ 2EeEp � 2peppc2 cosð�� �Þ ¼ 2EeEp 1 � cosð�� �Þ½ �;

where � is the crossing angle. Using the values given, gives ECM ¼ 154 GeV. In a

fixed-target experiment, and again neglecting masses, E2
CM ¼ 2EeEp � 2pe � ppc2,
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where Ee ¼ EL; Ep ¼ mpc2; pp ¼ 0. Thus, ECM ¼ 2mpc2EL

� �1=2
and for

ECM ¼ 154 GeV, this gives EL ¼ 1:26� 104 GeV.

4.2 For constant acceleration, the ions must travel the length of the drift tube in half a

cycle of the rf field. Thus, L ¼ v=2 f , where v is the velocity of the ion. Since the

energy is far less than the rest mass of the ion, we can use non-relativistic kinematics

to find v, i.e. v ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
200=ð12 � 931:5Þ

p
¼ 4:01� 107 m s�1 and finally L ¼ 1 m.

4.3 A particle with mass m, charge q and speed v moving in a plane perpendicular to a

constant magnetic field of magnitude B will traverse a circular path with radius of

curvature r ¼ mv=qB and hence the cyclotron frequency is f ¼ v=2�r ¼ qB=2�m.

At each traversal the particle will receive energy from the rf field, so if f is kept fixed,

r will increase (i.e. the trajectory will be a spiral). Thus if the final energy is E, the

extraction radius will be R ¼
ffiffiffiffiffiffiffiffiffi
2mE

p
=qB. To evaluate these expressions we use

q ¼ 2e ¼ 3:2 � 10�19C, together with B ¼ 0:8 T ¼ 0:45 � 1030ðMeV=c2Þs�1 C�1

and thus f ¼ 6:15 MHz and R ¼ 62:3 cm.

4.4 A particle with unit charge e and momentum p in the uniform magnetic field B of the

bending magnet will traverse a circular trajectory of radius R, given by p ¼ BR. If B

is in T, R in m and p in GeV/c, then p ¼ 0:3BR. Referring to the figure below, we

have � � L=R ¼ 0:3 LB=p and �� ¼ s=d ¼ 0:3BL�p=p2. Solving for d using the

data given, gives d ¼ 9:3 m.

4.5 The 
CCerenkov condition is �n � 1. So, for the pion to give a signal, but not the

kaon, we have ��n � 1 � �Kn. The momentum is given by p ¼ mv
 where


 ¼ 1 � v2=c2ð Þ�1=2
, so eliminating 
 gives � ¼ v=c ¼ ð1 þ m2c2=p2Þ�1=2

. For

p ¼ 20 GeV=c, m� ¼ 0:14 GeV=c2 and mK ¼ 0:49 GeV=c2, �� ¼ 0:99997 and

�K ¼ 0:99970, so the condition on the refractive index is 3 � 10�4 � ðn � 1Þ=n

� 3 � 10�5. Using the largest value of n ¼ 1:0003, we have

N ¼ 2�� 1 � 1

�2
�n2


 �
1

�1

� 1

�2


 �

as the number of photons radiated per metre, where �1 ¼ 400 nm and �2 ¼ 700 nm.

Numerically, N ¼ 26:5 photons/m and hence to obtain 200 photons requires a

detector of length 7.5 m. (You could also use

N ¼ 2�� 1 � 1

�2
�n2


 �
�2 � �1

�2


 �
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where � is the mean of �1 and �2, which would give 24.5 photons/m and a length of

8.2 m.)

4.6 Luminosity may be calculated from the formula for colliders, L ¼ n N1 N2 f=A,

where n is the number of bunches, N1 and N2 are the numbers of

particles in each bunch, A is the cross-sectional area of the beam and f is its

frequency. We have, n ¼ 12; N1 ¼ N2 ¼ 3 � 1011; A ¼ ð0:02 � 10�2Þ cm2 and

f ¼ ð3 � 1010=8� � 105Þ s�1, so finally L ¼ 6:44 � 1031 cm�2 s�1.

4.7 (a) The b quarks are not seen directly but, instead, they fragment (hadronize) to B-

hadrons, i.e. hadrons containing b quarks. So one characteristic is the presence of

hadrons with non-zero beauty quantum numbers. As these hadrons are unstable

and the dominant decay of b-quarks is to c-quarks, a second characteristic is the

presence of hadrons with non-zero values of the charm quantum number.

We need to observe the point where the eþe� collision occurred and the point

of origin of the decay products of the B-hadrons. The difference between these

two is due to the lifetime of the B-hadrons. As the difference will be very small,

precise position measurements are required. The daughter particles may be

detected using a silicon micro-vertex detector and an MWPC. In addition, any

electrons from the decays could be detected by an MWPC or an electromagnetic

calorimeter. The same is true for muons in the decay products, except they are

not readily detected in the calorimeter as they are very penetrating. However, if

one places an MWPC behind a hadron calorimeter then one can be fairly

confident that any particle detected is a muon, as everything else (except

neutrinos) will have been stopped in the calorimeter.

(b) In the electronic decay mode, the electron can be measured in both a MWPC

and an EM calorimeter. For high energies the better measurement is made in the

calorimeter. The neutrino does not interact unless there is a very large mass of

material (thousands of tons) and so its presence must be inferred by imposing

conservation of energy and momentum. In a colliding beam machine, the original

colliding particles have zero transverse momentum and a fixed energy. If one

adds up all the energy and momentum of all the final-state particles, then

any imbalance compared to the initial system can be attributed to the neutrino.

For the muonic mode, the muon can be measured in the MWPC but cannot be

measured well in the calorimeter because it only ionizes to a very small extent.

Since the muons only interact to a small extent they (along with neutrinos) are

generally the only particles that emerge from a hadronic calorimeter. So if one

registers a signal in a small MWPC placed behind a calorimeter then one can be

confident that the particle is a muon.

4.8 To be detected, the event must have 150� < � < 30�, i.e. cos �j j < 0:866. Setting

x ¼ cos �, the fraction of events in this range is

f ¼
ðþ0:866

�0:866

d�

dx
dx

� ðþ1:0

�1:0

d�

dx
dx ¼ x þ x3=3

� �þ0:866

�0:866

�
x þ x3=3
� �þ1:0

�1:0
¼ 0:812:
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The total cross-section is given by

� ¼
ð

d�

d	
d	 ¼

ð2�

0

d�

ðþ1

�1

d cos �
d�

d	
¼ 2�

�2�h2c2

4E2
cm

ðþ1

�1

1 þ cos2 �
� �

d cos �:

Using Ecm ¼ 10 GeV, gives � ¼ 4��2�h2c2=3E2
cm ¼ 0:866 nb. The rate of production

of events is given by L� and since L is a constant, the total number of events

produced will be L� t ¼ 86 600:
The �� decay too quickly to leave a visible track in the drift chamber. The eþ and

the 	� will leave tracks in the drift chamber and the eþ will produce a shower in

the electromagnetic calorimeter. If it has enough energy, the 	� will pass through the

calorimeters and leave a signal in the muon chamber. There will be no signal in the

hadronic calorimeter.

4.9 Referring to the figure below, the distance between two positions of the particle �t

apart in time is v�t. The wave fronts from these two positions have a difference in

their distance travelled of c�t=n.

These constructively interfere at an angle �, where

cos � ¼ c�t=n

v�t
¼ 1

� n
:

The maximum value of � corresponds to the minimum of cos � and hence the

maximum of �. This occurs as � ! 1, when �max ¼ cos�1 1=nð Þ. This value occurs

in the ultra-relativistic or massless limit.

The quantity � may be expressed as � ¼ pc=E ¼ pc p2c2 þ m2c4½ ��1=2
. Hence,

cos � ¼ 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 þ m2c4

p
pc

;

which rearranging, gives x 
 ðmc2Þ2 ¼ p2c2ðn2 cos2 �� 1Þ. Differentiating this

formula gives dx=d� ¼ �2p2c2n2 cos � sin � and the error on x is then given by
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�x ¼ dx=d�j j��. For very relativistic particles, the derivative can be approximated

by using �max, for which cos �max ¼ 1=n, sin �max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1

p
=n. Hence

�x � 2p2c2n2 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1

p

n
�� ¼ 2p2c2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1

p
��:

4.10 The average distance between collisions of a neutrino and an iron nucleus is the

mean free path � ¼ 1=n�� , where n � 
=mpc2 is the number of nucleons per cm3.

Using the data given, n � 4:7 � 1024 cm�3 and �� � 3 � 10�36 cm2, so that

� � 7:1 � 1010 cm. Thus if 1 in 109 neutrinos is to interact, the thickness of iron

required is 71 cm.

4.11 Radiation energy losses are given by �dE=dx ¼ E=LR, where LR is the radiation

length. This implies that E ¼ E0 expð�x=LRÞ, where E0 is the initial energy. Using

E0 ¼ 2 GeV, LR ¼ 36:1 cm, x ¼ 10 cm, gives E ¼ 1:51 GeV. Radiation losses at

fixed E are proportional to m�2, where m is the mass of the projectile. Thus for

muons, they are negligible at this energy.

4.12 The total cross section is �tot ¼ �el þ �cap þ �f ¼ 4 � 102 b and the attenuation is

expð�nx�totÞ where nx ¼ 10�1NA=A ¼ 2:56 � 1023 m�2. Thus expð�nx�totÞ ¼ 0:9898,

i.e 1.02 per cent of the incident particles interact and of these the fraction

that elastically scatter is given by the ratio of the cross-sections, i.e.

3 � 10�2=4 � 102 ¼ 0:75 � 10�4. Thus the intensity of elastically-scattered neu-

trons is 0:75 � 10�4 � 0:0102 � 106 ¼ 0:765 s�1 and finally the flux at 5 m is

0:765=ð4 � �� 52Þ ¼ 2:44 � 10�3 m�2 s�1.

4.13 The total centre-of-mass energy is given by ECM � ð2mc2ELÞ
1
2 ¼ 0:23 GeV and so

the cross-section is � ¼ 1:64 � 10�34 m2. The interaction length is ‘ ¼ 1=n�, where

n is the number density of electrons in the target. This is given by n ¼ 
NAZ=A,

where NA is Avogadro’s number and for lead, 
 ¼ 1:14 � 107 kg m�3 is the density,

Z ¼ 82 and A ¼ 208. Thus n ¼ 2:7 � 1033 m�3 and ‘ ¼ 2:3 m.

4.14 The target contains n ¼ 1:07 � 1025 protons and so the total number of interactions

per second is N ¼ n � flux � �tot ¼ ð1:07 � 1025Þ � ð2 � 107Þ � ð40 � 10�31Þ ¼
856 s�1. There are thus 856 photons/s produced from the target.

4.15 For small v, the Bethe–Bloch formula may be written

S 
 � dE

dx
/ 1

v2
ln

2mev2

I


 �
with

dS

dv
/ 2

v3
1 � ln

2mev2

I


 �
 �
:

The latter has a maximum for v2 ¼ eI=2me. Thus for a proton in iron we can use

I ¼ 10Z eV ¼ 260 eV, so that Ep ¼ 1
2
mpv2 ¼ mpIe=4me ¼ 324 keV.

4.16 From Equation (4.24), EðrÞ ¼ V=r lnðrc=raÞ and at the surface of the anode this is

0:5=ð20 � 10�6Þ lnð500Þ ¼ 4023 kV m�1. Also, if EthresholdðrÞ ¼ 750 kV m�1, then

from Equation (4.24) r ¼ 0:107 mm and so the distance to the anode is 0:087 mm.
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This contains 22 mean free paths and so assuming each collision produces an ion

pair, the multiplication factor is 222 ¼ 4:2 � 106 ¼ 106:6.

Chapter 5

5.1 We have m ¼ �þ � þ 
 > n ¼ ���þ ��� þ �

, where the inequality is because baryon

number B > 0. Using the values of the colour charges IC
3 and YC from Table 5.1, the

colour charges for the state are:

IC
3 ¼ ð�� ���Þ=2 � ð� � ���Þ=2 and YC ¼ ð�� ���Þ=3 þ ð� � ���Þ=3 � 2ð
 � �

Þ=3:

By colour confinement, both these colour charges must be zero for observable

hadrons, which implies �� ��� ¼ � � ��� ¼ 
 � �

 
 p and hence m � n ¼ 3p, where

p is a non-negative integer. Thus the only combinations allowed by colour

confinement are of the form

ð3qÞpðq�qqÞn ðp; n � 0Þ:

It follows that a state with the structure qq is not allowed, as no suitable values of p

and n can be found.

5.2 (a)

(b)
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(c)

5.3 The Feynman diagram is:

The four-momenta are:

PðpÞ ¼ ðE=c; pÞ and Pð�ppÞ ¼ ðE=c; �pÞ;

with

P2 ¼ m2c2 ¼ E2=c2 � p2 and m ¼ mp ¼ m�pp:

Now PðqÞ ¼ ðxE=c; xpÞ and Pð�qqÞ ¼ ðxE=c; �xpÞ with x ¼ 1
6
, so

E2
CM ¼ x2c2 PðpÞ þ Pð�ppÞ½ �2¼ x2 2m2c4 þ 2E2 þ 2p2c2

� �
:

Neglecting the masses of the proton and the antiproton at these energies, gives

E ¼ 3ECM and p ¼ 3 � 350 ¼ 1050 GeV=c:

5.4 Energy–momentum conservation gives,

W2c4 ¼ ðE � E0Þ þ EP½ �2� ðp � p0Þ þ P½ �2c2 ¼ invariant mass of X:
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Using, Q2 ¼ ðp � p0Þ2 � ðE � E0Þ2=c2 and M2c4 ¼ E2
P � P2c2, where M is the mass

of the proton, gives

W2c4 ¼ �Q2c2 þ M2c4 þ 2EPðE � E0Þ � 2P � ðp � p0Þc2:

Also, 2M� 
 W2c2 þ Q2 � M2c2 and so, in the rest frame of the proton

ðP ¼ 0;EP ¼ Mc2Þ, � ¼ E � E0.
Since some energy must be transferred to the outgoing electron, it follows that

E � E0, i.e. � � 0. Also, since the lightest state X is the proton, W2 � M2. Thus,

2M� ¼ Q2 þ ðW2 � M2Þc2 � Q2:

From the definition of x, it follows that x � 1. Finally, x > 0 because both Q2 and

2M� are positive.

5.5 In the quark model, � ¼ uds; p ¼ uud;K� ¼ s�uu; n ¼ udd and �þ ¼ u�dd. From the

flavour independence of the strong interaction, we can set �ðqqÞ ¼ �ðudÞ ¼
�ðsdÞ etc. and �ðq�qqÞ ¼ �ðu�ddÞ ¼ �ðs�uuÞ etc.. Then �ð�pÞ ¼ �ðppÞ ¼ 9�ðqqÞ and

�ðK�nÞ ¼ �ð�þpÞ ¼ 3�ðqqÞ � 3�ðq�qqÞ. The result follows directly.

5.6 By analogy with the QED formula, we have �ð3gÞ ¼ 2ð�2 � 9Þ�6
s mcc2=9�, where

mc � 1:5 GeV=c2 is the constituent mass of the c-quark. Evaluating this gives

�s ¼ 0:31. In the case of the radiative decay, �ðgg
Þ ¼ 2ð�2 � 9Þ�4
s�

2mbc2=9�,

where mb � 4:5 GeV=c2 is the constituent mass of the b-quark. Evaluating this gives

�s ¼ 0:32. (These values are a little too large because in practice � is replaced by
4
3
�s.)

5.7 From Equation (5.38a)

F
‘p
2 ðxÞ ¼ x

1

9
d þ �ddð Þ þ 4

9
u þ �uuð Þ þ 1

9
s þ �ssð Þ


 �

and from Equations (5.38b) and (5.39)

F‘n
2 ðxÞ ¼ x

4

9
d þ �ddð Þ þ 1

9
u þ �uuð Þ þ 1

9
s þ �ssð Þ


 �
;

so that

ð1

0

F
ep
2 ðxÞ � Fen

2 ðxÞ
� � dx

x
¼ 1

3

ð1

0

uðxÞ þ �uuðxÞ½ � dx � 1

3

ð1

0

dðxÞ þ �ddðxÞ½ �dx:

However, summing over all contributions we must recover the quantum numbers of

the proton, i.e.

ð1

0

½uðxÞ � �uuðxÞ� dx ¼ 2;

ð1

0

½dðxÞ � �ddðxÞ� dx ¼ 1:
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Eliminating the integrals over u and d gives the Gottfried sum rule.

5.8 Substituting Equation (5.22) into Equation (5.23) and setting NC ¼ 3, gives

R ¼ 3ð1 þ �s=�Þ
X

e2
q;

where �s is given by Equation (5.11) evaluated at Q2 ¼ E2
CM and the sum is over

those quarks that can be produced in pairs at the energy considered. At 2.8 GeV the

u, d and s quarks can contribute and at 15 GeV the u, d, s, c and b quarks can

contribute. Evaluating R then gives R � 2:17 at ECM ¼ 2:8 GeV and R � 3:89 at

ECM ¼ 15 GeV. When ECM is above the threshold for t�tt production, R rises to

R ¼ 5ð1 þ �s=�Þ.

5.9 A proton has the valence quark content p ¼ uud. Thus from isospin invariance the u

quarks in the proton carry twice as much momentum as the d quarks, which implies

a ¼ 2b. In addition, we are told that

ð1

0

xFuðxÞdx þ
ð1

0

xFdðxÞdx ¼ 1

2
:

Using the form of the quark distributions with a ¼ 2b gives a ¼ 4
3

and b ¼ 2
3
.

5.10 The peak value of the cross-section is where E ¼ MW c2, i.e.

�max ¼ �ð�hcÞ2ð2=MWc2Þ2�u�dd

3�
¼ 4

3

�ð�hcÞ2

ðMW c2Þ2
brðWþ ! u�ddÞ ¼ 84 nb:

The required integral is

�p�ppðsÞ ¼
ð1

0

ð1

0

�u�ddðEÞ uðxuÞ dðxdÞ dxu dxd

where we have used C-invariance to relate the distribution functions for protons and

antiprotons. In the narrow width approximation and using the quark distributions

from Question 5.9,

�p�ppðsÞ ¼ C

ð1

0

ð1

0

ð1 � xuÞ3

xu

ð1 � xdÞ3

xd

� 1 � xus

ðMW c2Þ2
xd

 !
dxu dxd

where C 
 ð8��W�maxÞ=ð9MWc2Þ and we have used E2 ¼ xuxds. Thus,

�p�ppðsÞ ¼ C

ð1

k

ð1 � xuÞ3

xu

1 � k

xu


 �3

dxu;
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where k 
 ðMW c2Þ=s and the lower limit is because k < xu < 1. The integral yields

�p�ppðsÞ ¼
8�

9

�W

MW c2
�max �ð1þ9kþ9k2 þ k3ÞlnðkÞ�11

3
�9kþ9k2 þ11

3
k3

� �
:

Evaluating this for
ffiffi
s

p ¼ 1 TeV gives k ¼ 0:0064 and �p�pp ¼ 9:3 nb, which is about a

factor of two larger than experiment.

Chapter 6

6.1 A charged current weak interaction is one mediated by the exchange of charged W�

boson. A possible example is n ! p þ e� þ ���e. A neutral current weak interaction is

one mediated by a neutral Z0 boson. An example is �	 þ p ! �	 þ p. Charged

current weak interactions do not conserve the strangeness quantum number, whereas

neutral current weak interactions do. For �	 þ e� ! �	 þ e�, the only Feynman

diagram that conserves both Le and L	 is:

which is a weak neutral current. However, for �e þ e� ! �e þ e�, there are two

diagrams:

Thus the reaction has both neutral and charged current components and is not

unambiguous evidence for weak neutral currents.
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6.2 The lowest-order electromagnetic Feynman diagram is

The total cross-section is given by

� ¼
ð2�

0

d�

ð1

�1

d cos �
d�

d	
¼ 2��2�h2c2

4E2
CM

cos �þ 1

3
cos3 �


 �1

�1

¼ 4��2�h2c2

3E2
CM

¼ 0:44 nb:

The lowest-order weak interaction diagram is

With the addition of the weak interaction term,

d�

d	


 �
¼ d�

d	


 �
em

þ d�

d	


 �
wk

¼ �2�h2c2

4E2
CM

1 þ Cwk cos �þ cos2 �
� �

:

Then, using

�F ¼ C

ð1

0

1 þ Cwk cos �þ cos2 �
� �

d cos �

and

�B ¼ C

ð0

�1

1 þ Cwk cos �þ cos2 �
� �

d cos �:

where C 
 2��2�h2c2=4E2
CM , gives

�F ¼ C
4

3
þ Cwk

2


 �
and �B ¼ C

4

3
� Cwk

2


 �
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and so

AFB ¼ Cwk

2ð4=3Þ ; i:e: 8AFB ¼ 3Cwk:

6.3 The Feynman diagram is

The amplitude has two factors of the weak coupling gW and one W propagator

carrying a momentum q, i.e.

amplitude / g2
W

q2c2 � M2
W c4

/ g2
W

M2
W

;

because qc � M�c2 � MWc2. Now, �ð� ! p��Þ / ðamplitudeÞ2 / g4
W=M4

W and so

doubling gW and reducing MW by a factor of four will increase the rate by a factor

24½ �=½ð1=4Þ4� ¼ 4096:

6.4 The most probable energy is given by

d

dEe

d!

dEe


 �
¼ 0; which gives

2G2
F m2

	

ð2�Þ3ð�hcÞ6
2Ee �

4E2
e

m	c2


 �
¼ 0; i:e Ee ¼ m	c2=2:

When Ee � m	c2=2, the electron has its maximum energy and the two neutrinos

must be recoiling in the opposite direction. Only left-handed particles (and right-

handed antiparticles) are produced in weak interactions. Since the masses of all

particles are neglected, states of definite handiness are also states of definite helicity,

so the orientations of the momenta and spins are therefore as shown:
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Integrating the spectrum gives

� ¼ 2G2
Fðm	c2Þ2

ð2�Þ3ð�hcÞ6

ðm	c2=2

0

E2
e �

4E3
e

3m	c2


 �
dEe ¼

G2
Fðm	c2Þ5

192�3ð�hcÞ6
:

Numerically, � � 3:0 � 10�19 GeV, which gives a lifetime � ¼ �h=� � 2:2 � 10�6 s.

6.5 (a) In addition to the decay b ! c þ e� þ ���e, there are two other leptonic decays

ð‘ ¼ 	�; ��Þ and by lepton universality they will all have equal decay rates.

There are also hadronic decays of the form b ! c þ X where QðXÞ ¼ �1.

Examining the allowed Wq�qq vertices using lepton–quark symmetry shows that

the only forms that X can have, if we ignore Cabibbo-suppressed modes, are

d�uu and s�cc. Each of these hadronic decays has a probability three times that

of a leptonic decay because the quarks exist in three colour states. Thus,

there are effectively six hadronic channels and three leptonic ones. So finally,

BRðb ! c þ e� þ ���eÞ ¼ 1
9
.

(b) The argument is similar to that of (a) above. Thus, in addition to the decay

�� ! e� þ ���e þ �� , there is also the leptonic decay �� ! 	� þ ���	 þ �� with

equal probability and the hadronic decays �� ! �� þ X. In principle, X ¼ d�uu
and s�cc, but the latter is not allowed because ms þ mc > m� . So the only allowed

hadronic decay is �� ! d þ �uu þ �� with a relative probability of three because

of colour. So finally, BRð�� ! e� þ ���e þ ��Þ ¼ 1
5
. (The measured rate is 0.18,

but we have neglected kinematic corrections.)

6.6 For neutrinos, gRð�Þ ¼ 0; gLð�Þ ¼ 1
2
. So, ��e

¼ ��	 ¼ ��� ¼ �0=4, where

�0 ¼ GFM3
Zc6

3�
ffiffiffi
2

p
ð�hcÞ3

¼ 668 MeV:

Thus the partial width for decay to neutrino pairs is �� ¼ 501 MeV. For quarks,

gRðu; c; tÞ ¼ �1
6

and gLðu; c; tÞ ¼ 1
3
. Thus, �u ¼ �c ¼ 10

72
�0. Also, gRðd; s; bÞ ¼ 1

12

and gLðb; s; dÞ ¼ � 5
12

. Thus, �d ¼ �s ¼ �b ¼ 13
72
�0. Finally, �q ¼

P
i

�i, where

i ¼ u; c; d; s; b – no top quark because 2Mt > MZ . So,

�q ¼ 3 � 13

72
þ 2 � 10

72


 �
�0 ¼ 59

72
�0 ¼ 547 MeV:

Hadron production is assumed to be equivalent to the production of q�qq pairs

followed by fragmentation with probability unity. Thus �hadron ¼ 3�q, where the

factor of three is because each quark exists in one of three colour states. Thus

�hadron ¼ 1641 MeV.
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If there are N� generations of neutrinos with M� < MZ=2, so that Z0 ! ���� is

allowed, then �tot ¼ �had þ �lep þ N������ where ����� is the width to a specific ����
pair. Thus

N� ¼
�tot � �had � �lep

�����
¼ ð2490 � 7Þ � ð1738 � 12Þ � ð250 � 2Þ

167

¼ 3:01 � 0:05;

which rules out values of N� greater than 3.

6.7 The quark compositions are: D0 ¼ c�uu; K� ¼ s�uu; �þ ¼ u�dd. Since preferentially

c ! s, we have

i.e. a lowest-order charge current weak interaction. However, for Dþ ! K0 þ �þ,

we have Dþ ¼ c�dd; K0 ¼ d�ss ; �þ ¼ u�dd. Thus we could arrange c ! d via W

emission and the Wþ could then decay to u�dd, i.e. �þ. However, this would leave the
�dd quark in the Dþ to decay to an �ss quark in the K0 which is not possible as they both

have the same charge.

6.8 The relevant Feynman diagrams are:

In the case of the charged pion, there are two vertices of strength
ffiffiffiffiffiffiffi
�W

p
, and there

will be a propagator

1

Q2 þ M2
W c2

� 1

M2
W c2

;
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because the momentum transfer (squared) Q2 carried by the W is very small. Thus

the decay rate will be proportional to

ffiffiffiffiffiffiffi
�W

p ffiffiffiffiffiffiffi
�W

p

M2
W


 �2

¼ �2
W

M4
W

:

In the case of the neutral pion, there are two vertices of strength
ffiffiffiffiffiffiffiffi
�em

p
, but no

propagator. Thus the decay rate will be proportional to �2
em and since �em � �W, the

decay rate for the charged pion will be much smaller than that for the neutral decay,

i.e. the lifetime of the �0 will be much shorter.

6.9 The two Feynman diagrams are:

Using lepton–quark symmetry and the Cabibbo hypothesis, the two hadron vertices

are given by gudW ¼ gW cos �C and gusW ¼ gW sin �C. So, if we ignore kinematic

differences and spin effects, we would expect the ratio of decay rates is given by

R ¼ Rate ðK� ! 	� þ ���	Þ
Rate ð�� ! 	� þ ���	Þ

/ g2
usW

g2
udW

¼ tan2 �C � 0:05

The measured ratio is actually about 1.3, which shows the importance of the

neglected effects. For example, the Q-value for the kaon decay is almost 20 times

that for pion decay.

6.10 To a first approximation the difference in the two decay rates is due to two effects.

First, �� ! n þ e� þ ���e has �Sj j ¼ 1 and hence is proportional to sin2 �C, where

�C is the Cabbibo angle, whereas �� ! �þ e� þ ���e has �Sj j ¼ 0 and is propor-

tional to cos2 �C. Secondly, the Q-values are different for the two reactions. Thus,

using Sargent’s Rule,

R � sin2 �C

cos2 �C

Q�n

Q��


 �5

� 0:053
257

81


 �5

¼ 17:0:

(The experimental value is 17.8.) Whereas, �� ! n þ e� þ ���e is a first-order weak

interaction, no Feynman diagram with a single W-boson exchanged can be drawn for

�þ ! n þ eþ þ �e (try it), i.e. it is higher-order and hence very heavily suppressed –

in practice not seen.
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6.11 The required number of events produced must be 20 000, taking account of the

detection efficiency. If the cross-section is 60 fb ¼ 6 � 10�38 cm2, then the inte-

grated luminosity required is 2 � 104=6 � 10�38 ¼ ð1=3Þ � 10
42

cm�2 and hence

the instantaneous luminosity must be 3:3 � 1034 cm�2 s�1.

The branching ratio for Z0 ! b�bb is found from the partial widths to be 15 per cent.

Thus, if b quarks are detected, the much greater branching ratio for H ! b�bb will

help distinguish this decay from the background of Z0 ! b�bb.

6.12 By ‘adding’ an I ¼ 1
2

particle to the initial state we can assume isospin invariance

holds. Consider 
� þ S0 ! �þ ��. The final state is I ¼ 1; I3 ¼ �1j i and so is the

initial state because I3ðS0Þ ¼ �1
2
. Thus the transition is pure I ¼ 1 and the rate is

M1j j2. For 
0 þ S0 ! �þ �0, the final state is again pure I ¼ 1 but with I3 ¼ 0.

However, the initial state is an equal mixture of I ¼ 0 and I ¼ 1, i.e.


�S0
�� �

¼ 1ffiffiffi
2

p I ¼ 1; I3 ¼ 0j i � 1ffiffiffi
2

p I ¼ 0; I3 ¼ 0j i

and so the rate is 1
2

M1j j2. Thus R ¼ 2: (The measured value is about 1.8.)

6.13 Integrating the differential cross-sections over y (from 0 to 1) gives for a spin-1
2

target

with a specific quark distribution

�NCð�Þ
�CCð�Þ ¼

ð1

0

½g2
L þ g2

Rð1 � yÞ2� dy

2
4

3
5 ð1

0

dy

2
4

3
5
�1

¼ g2
L þ 1

3
g2

R

and

�NCð���Þ
�CCð���Þ ¼

ð1

0

½g2
Lð1 � yÞ2 þ g2

R� dy

2
4

3
5 ð1

0

ð1 � yÞ2
dy

2
4

3
5
�1

¼ g2
L þ 3g2

R:

For an isoscalar target, we must add the contributions for u and d quarks in equal

amounts, i.e.

�NCð�Þ
�CCð�Þ ðisoscalarÞ ¼ g2

LðuÞ þ
1

3
g2

RðuÞ þ g2
LðdÞ þ

1

3
g2

RðdÞ

and

�NCð���Þ
�CCð���Þ ðisoscalarÞ ¼ g2

LðuÞ þ 3g2
RðuÞ þ g2

LðdÞ þ 3g2
RðdÞ:

Substituting for the couplings finally gives for an isoscalar target

�NCð�Þ
�CCð�Þ ¼

1

2
� sin2 �W þ 20

27
sin4 �W;

�NCð���Þ
�CCð���Þ ¼

1

2
� sin2 �W þ 20

9
sin4 �W:
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Chapter 7

7.1 For the 7
3Li nucleus, Z ¼ 3 and N ¼ 4. Hence the configuration is

protons: 1s1=2

� �2
1p3=2

� �1
; neutrons: 1s1=2

� �2
1p3=2

� �2
:

By the pairing hypothesis, the two neutrons in the 1p3=2 sub-shell will have a total

orbital angular momentum and spin L ¼ S ¼ 0 and hence J ¼ 0. Therefore they will

not contribute to the overall nuclear spin, parity or magnetic moment. These will be

determined by the quantum numbers of the unpaired proton in the 1p3=2 sub-shell.

This has J ¼ 3
2

and ‘ ¼ 1, hence for the spin-parity we have JP ¼ 3
2

�
. The magnetic

moment is given by

	 ¼ j gproton ¼ j þ 2:3 ðsince j ¼ ‘þ 1

2
Þ ¼ 1:5 þ 2:3

¼ 3:8 nuclear magnetons:

If only protons are excited, the two most likely excited states are:

protons: 1s1=2

� �2
1p1=2

� �1
; neutrons: 1s1=2

� �2
1p3=2

� �2
;

which corresponds to exciting a proton from the p3=2 sub-shell to the p1=2 sub-shell,

and

protons: 1s1=2

� ��1
1p3=2

� �2
; neutrons: 1s1=2

� �2
1p3=2

� �2
;

which corresponds to exciting a proton from the s1=2 sub-shell to the p3=2 sub-shell.

7.2 A state with quantum number jð¼ ‘� 1
2
Þ can contain a maximum number

Nj ¼ 2ð2j þ 1Þ nucleons. Therefore, if Nj ¼ 16 it follows that j ¼ 7
2

and ‘ ¼ 3 or

4. However, we know that the parity is odd and since P ¼ ð�1Þ‘, it follows that

‘ ¼ 3.

7.3 The configuration of the ground state is

protons: ð1s1=2Þ2ð1p3=2Þ4ð1p1=2Þ2ð1d5=2Þ;
neutrons: ð1s1=2Þ2ð1p3=2Þ4ð1p1=2Þ2:

To get jP ¼ 1
2

�
, one could promote a p1=2 proton to the d5=2 shell, giving

protons: ð1s1=2Þ2ð1p3=2Þ4ð1p1=2Þ�1ð1d5=2Þ2:

Then by the pairing hypothesis, the two d5=2 protons could combine to give jP ¼ 0þ,

so that the total spin-parity would be determined by the unpaired p1=2 neutron, i.e.

jP ¼ 1
2

�
. Alternatively, one of the p3=2 protons could be promoted to the d5=2 shell,

giving

protons: ð1s1=2Þ2ð1p3=2Þ�1ð1p1=2Þ2ð1d5=2Þ2
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and the two d5=2 protons could combine to give jP ¼ 2þ, so that when this combines

with the single unpaired jP ¼ 3
2

�
proton the overall spin-parity is jP ¼ 1

2

�
. There are

many other possibilities.

7.4 For 93
41Nb, Z ¼ 41 and N ¼ 52. From the filling diagram Figure 7.4, the configuration

is predicted to be:

proton: . . . ð2p3=2Þ4ð1f5=2Þ6ð2p1=2Þ2ð1g9=2Þ1; neutron : . . . ð2d5=2Þ2:

So ‘ ¼ 4, j ¼ 9
2
) jP ¼ 9

2

þ
(which agrees with experiment). The magnetic dipole

moment follows from the expression for jproton in Equations (7.31) with j ¼ ‘þ 1
2
, i.e.

	 ¼ ð j þ 2:3Þ	N ¼ 6:8	N. (The measured value is 6:17	N.)

For 33
16S, Z ¼ 16 and N ¼ 17. From the filling diagram Figure 7.4, the configura-

tion is predicted to be:

proton � � � ð1d5=2Þ6ð2s1=2Þ2; neutron: � � � ð1d5=2Þ7ð2s1=2Þ2ð1d3=2Þ1:

So ‘ ¼ 2; j ¼ 3
2
) jP ¼ 3

2

þ
(which agrees with experiment). The magnetic dipole

moment follows from the expression for jneutron in Equations (7.31) with j ¼ ‘� 1
2
,

i.e. 	 ¼ ð1:9jÞ=ð j þ 1Þ	N ¼ 1:14	N. (The measured value is 0:64	N.)

7.5 From Equation (7.32),

eQ ¼
ð

ð2z2 � x2 � y2Þd�

with 
 ¼ Ze=ð4
3
�b2aÞ and the integral is through the volume of the spheroid

ðx2 þ y2Þ=b2 þ z2=a2 � 1. The integral can be transformed to one over the volume

of a sphere by the transformations x ¼ bx0; y ¼ by0 and z ¼ az0. Then

Q ¼ 3Z

4�

ð ð ð
dx0dy0dz0 ð2a2z02 � b2x02 � b2y02Þ:

But

ð ð ð
x02dx0 dy0dz ði:e: z0Þ ¼ 1

3

ð1

0

r024�r02dr0 ¼ 4�

15
;

and similarly for the other integrals. Thus, by direct substitution, Q ¼ 2
5
Zða2 � b2Þ.

7.6 From Question 7.5 we have Q ¼ 2
5
Zeða2 � b2Þ and using Z ¼ 67 this gives

a2 � b2 ¼ 13:1 fm2. Also, from Equation (2.32) we have A ¼ 4
3
�ab2
, where


 ¼ 0:17 fm�3 is the nuclear density. Thus, ab2 ¼ 231:7 fm3. The solution of

these two equations gives a � 6:85 fm and b � 5:82 fm.

7.7 From Equation (7.53), t1=2 ¼ ln2=� ¼ CR ln2 expðGÞ, where C is a constant

formed from the frequency and the probability of forming �-particles in the nucleus.
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Thus t1=2ðThÞ ¼ t1=2ðCfÞ exp½GðThÞ � GðCfÞ�. The Gamow factors may be calcu-

lated from the data given. Some intermediate quantities are: rC ¼ 45:96 fm (Th);

37.72 fm (Cf); R ¼ 9:268 fm (Th); 9.439 fm (Cf) (using R ¼ 1:21 ðA1=3 þ 41=3Þ and

recalling that ðZ;AÞ refer to the daughter nucleus). These give G ¼ 66:5 (Th); 54.9 (Cf)

and t1=2 ðThÞ ¼ e11:6 t1=2ðCfÞ ¼ 4:0 years. (The measured value is 1.9 years).

7.8 The JP values of the �0 and the � are both 1
2

þ
(see Chapter 3), so the photon has

L ¼ 1 and as there is no change of parity the decay proceeds via an M1 transition.

The �0 has JP ¼ 3
2

þ
and again there is no parity change. Therefore both M1 and E2

multipoles could be involved, with M1 dominant (see Section 7.8.2). If we assume

that the reduced transition probabilities are equal in the two cases, then from

Equations (7.80), in an obvious notation,

�ð�0Þ ¼ E
ð�0Þ
E
ð�0Þ


 �3

�ð�0Þ;

i.e. �ð�0Þ ¼ ð292=77Þ3 � ð0:6 � 10�23Þ=0:0056 ¼ 5:8 � 10�20 s (the measured

value is ð7:4 � 0:7Þ � 10�20 s).

7.9 In the centre-of-mass system, the threshold for 34S þ p ! n þ 34Cl is

6:45 � 34=35ð Þ ¼ 6:27 MeV. Correcting for the neutron–proton mass difference

gives the Cl–S mass difference as 5.49 MeV and since in the positron decay
34Cl ! 34S þ eþ þ�e, Q ¼ MðA; ZÞ � MðA; Z � 1Þ � 2me, the maximum positron

energy is 4.47 MeV.

7.10 From Equation (7.71) the electron energy spectrum may be written IðEÞ ¼ AE1=2 �
ðE0 � EÞ2

, where E is the electron energy, E0 is the end-point, A is a constant and we

have neglected the Fermi screening correction and set the neutrino mass to be zero.

We need to calculate the fraction

F 

ðE0

E0��

IðEÞ dE

2
64

3
75
ðE0

0

IðEÞ dE

2
4

3
5
�1

where � is a small quantity. Using
Ð

x1=2ða � xÞ2
dx ¼ 1

2
a2x2 � 2

3
ax3þ

�
1
4
x4�1=2

, gives,

using E0 ¼ 18:6 � 103 eV and � ¼ 10 eV, F ¼ 3:1 � 10�10.

7.11 The mean energy �EE is defined by

�EE 

ðE0

0

E d!ðEÞ

2
4

3
5 ðE0

0

d!ðEÞ

2
4

3
5
�1

:

The integrals are:

ð
E3=2ðE0 � EÞ2

dE ¼ 2

315
E5=2 63E2

0 � 90E0E þ 35E2
� �
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and

ð
E1=2ðE0 � EÞ2

dE ¼ 2

105
E3=2 35E2

0 � 42E0E þ 15E2
� �

:

Substituting the limits gives �EE ¼ 1
3
E0, as required.

7.12 The possible transitions are as follows:

From Figure 7.13, the dominant multipole for a fixed transition energy will be M1

for the 3
2

� ! 5
2

�
and 3

2

� ! 1
2

�
transitions and E2 for the 5

2

� ! 1
2

�
transition. Thus

we need to calculate the rate for an M1 transition with E
 ¼ 178 keV. This can be

done using Equations (7.80) and gives �1=2 � 3:9 � 10�12 s. The measured value is

3:5 � 10�10 s, which confirms that the Weisskopf approximation is not very

accurate.

7.13 Set L ¼ 3 in Equation (7.78a), substitute the result into Equation (7.77) and use

�
 ¼ �hT to give �
ðE3Þ ¼ ð2:3 � 10�14ÞE7

A2 eV, where E
 is expressed in MeV.

Chapter 8

8.1 To balance the number of protons and neutrons, the fission reaction must be

n þ 235
92U ! 92

37Rb þ 140
55Cs þ 4n;

i.e. four neutrons are produced. The energy released is the differences in binding

energies of the various nuclei, because the mass terms in the SEMF cancel out. We

have, in an obvious notation,

�ðAÞ ¼ 3; �ðA2=3Þ ¼ �9:26; �
ðZ � NÞ2

4A

" #
¼ 0:28; �

Z2

A1=3


 �
¼ 485:0:

The contribution from the pairing term is negligible (about 1 MeV). Using the

numerical values for the coefficients in the SEMF, the energy released per fission

EF ¼ 157:9 MeV.

The power of the nuclear reactor is P ¼ nEF ¼ 100 MW ¼ 6:25� 1020 MeV s�1,

where n is the number of fissions per second. Since one neutron escapes per fission and

Initial Final L �P Multipoles

3
2

� 5
2

�
1, 2, 3, 4 No M1, E2, M3, . . .

3
2

� 1
2

�
1, 2 No M1, E2

5
2

� 1
2

�
2, 3 No E2, M3
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contributes to the flux, the flux F is equal to the number of fissions per unit area per

second, i.e.

F ¼ n

4�r2
¼ P

4�r2EF

¼ 6:25 � 1020 MeVs�1

ð157:9 MeVÞ � ð12:57 m2Þ ¼ 3:15 � 1017 s�1 m�2:

The interaction rate R is given by R¼�� F � ðnumber of target particlesÞ. The

latter is given by nT ¼ n � NA, where NA is Avogadro’s number and n is found from

the ideal gas law to be n ¼ PV=RT , where R is the ideal gas constant. Using

T ¼ 298 K, P ¼ 1 � 105 Pa and R ¼ 8:31 Pa m3 mol�1 K�1, gives n ¼ 52:5 mol

and hence nT ¼ 3:2 � 1025. Using the cross-section � ¼ 10�31 m2, the rate is

1:0 � 1012 s�1.

8.2 The neutron speed in the CM system is v � mv=ðM þ mÞ ¼ Mv=ðM þ mÞ and if the

scattering angle in the CM system is �, then after the collision the neutron will have

a speed vðm þ M cos �Þ=ðM þ mÞ in the original direction and Mv sin �=ðM þ mÞ
perpendicular to this direction. Thus the kinetic energy is

Eðcos �Þ ¼ mv2ðM2 þ 2mM cos �þ m2Þ
2ðM þ mÞ2

and the average value is

Efinal ¼ �EE 

ð1

�1

Eðcos �Þ d cos �

2
4

3
5 ð1

�1

d cos �

2
4

3
5
�1

¼ REinitial;

where the reduction factor is R ¼ ðM2 þ m2Þ=ðM þ mÞ2
. For neutron scattering from

graphite, R � 0:86 and after N collisions the energy will be reduced to

Efinal ¼ RNEinitial. The average initial energy of fission neutrons from 235U is

2 MeV and to thermalize them their energy would have to be reduced to about

0.025 eV. Thus N � lnðEfinal=EinitialÞ=lnð0:86Þ ¼ 116.

8.3 From Equation (1.44a), for the fission of 235U, Wf ¼ JNð235Þ�f and the total power

output is P ¼ WfEf , where Ef is the energy released per fission. For the capture by
238U, Wc ¼ JNð238Þ�c. Eliminating the flux J, gives

Wc ¼
Nð238Þ�C

Nð235Þ�f

P

Ef


 �
:

Using the data supplied, gives Wc ¼ 1:08 � 1019 atoms s�1 � 135 kg year�1.

8.4 Consider fissions occurring sequentially separated by a small time interval �t. The

instantaneous power is the sum of the power released from all the fissions up to that

time. If E is the energy released in each fission, then over the lifetime of the reactor,

i.e. up to time T, the power is given by P0 ¼ nE=T, where n is the total number of

fissions and �t ¼ E=P0.
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The power after some time t after the reactor has been shut down is

PðtÞ ¼ 3ðT þ tÞ�1:2 þ 3ðT þ t � �tÞ�1:2 þ 3ðT þ t � 2�tÞ�1:2 � � � þ 3t�1:2:

In this formula, the first term is the power released from the first fission and the last

term is the power released from the last fission before the reactor was shut down. To

sum this series, we convert it to an integral:

PðtÞ ¼ 3
Xn¼P0T=E

n¼0

T þ t � nE=P0ð Þ�1:2 � 3

ðTP0=EF

0

ðT þ t � nE=P0Þ�1:2
dn:

Setting u ¼ T þ t � nE=P0ð Þ, gives

PðtÞ ¼ �3
P0

E

ðt

Tþt

u�1:2 du ¼ 0:075P0 t�0:2 � ðT þ tÞ�0:2
h i

:

Using T ¼ 1 year and t ¼ 0:5 year, gives a power output of approximately 1.1 MW

after 6 months.

8.5 The PPI chain overall is: 4ð1HÞ ! 4He þ 2eþ þ 2�e þ 2
 þ 24:68 MeV. Two

corrections have to be made to this. Firstly, the positrons will annihilate with

electrons in the plasma releasing a further 2me ¼ 1:02 MeV per positron.

Secondly, each neutrino carries off 0.26 MeV of energy into space that will not

be detected. So, making these corrections, the total output per hydrogen atom is
1
4
ð24:68 þ 2:04 � 0:52Þ ¼ 6:55 MeV. The total energy produced to date is

5:60 � 1043 J ¼ 3:50 � 1056 MeV. Thus, the total number of hydrogen atoms

consumed is 5:34 � 1055 and so the fraction of the Sun’s hydrogen used is

5:34 � 1055=9 � 1056 ¼ 5:9 per cent and as this corresponds to 4.6 billion years,

the Sun has another 73 billion years to burn before its supply of hydrogen is

exhausted.

8.6 A solar constant of 8:4 J cm�2 s�1 is equivalent to 5:25 � 1013 MeV cm�2 s�1 of

energy deposited. If this is due to the PPI reaction 4ð1HÞ ! 4He þ 2eþ þ 2�e þ 2
,

then this rate of energy deposition corresponds to a flux of 5:25 � 1013=2�ð
6:55Þ � 4 � 1012 neutrinos cm�2 s�1.

8.7 For the Lawson criterion to be just satisfied, from Equation (8.46),

L ¼ nd �dt�h itcQ

6kT
¼ 1:

We have kT ¼ 10 keV and from Figure 8.7 we can estimate �dt�h i � 10�22 m3 s�1.

Also, from Equation (8.45), Q ¼ 17:6 MeV. So, finally, nd ¼ 6:8 � 1018 m�3.
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8.8 The mass of a d–t pair is 5:03 u ¼ 4:69 � 109 eV=c2 ¼ 8:36 � 10�24 g. The number

of d–t pairs in a 1 mg pellet is therefore 1:2 � 1020. From Equation (8.45), each d–t

pair releases 17.6 MeV of energy. Thus, allowing for the efficiency of conversion,

each pellet releases 5:3 � 1026 eV. The output power is 750 MW ¼ 4:7 � 1027 eV=s.

Thus the number of pellets required is 8:9 � 9 s�1.

8.9 Assume a typical body mass of 70 kg, half of which is protons. This corresponds to

2:1 � 1028 protons and after 1 year the number that will have decayed is

2:1 � 1028½1 � expð�1=�Þ�, where � is the lifetime of the proton in years. Each

proton will eventually deposit almost all of its rest energy, i.e. approximately 0.938

GeV, in the body. Thus in 1 year the total energy in Joules deposited per kg of body

mass would be 4:5 � 1016½1 � expð�1=�Þ� and this amount will be lethal if greater

than 5 Gy. Expanding the exponential gives the result that the existence of humans

implies � > 0:9 � 1016 years.

8.10 The approximate rate of whole-body radiation absorbed is given by Equation (8.48a).

Substituting the data given, we have

dD

dt
ð	Sv h�1Þ ¼ AðMBqÞ � E
ðMeVÞ

6r2ðm2Þ ¼ ð40 � 10�3Þ � ð1:173 þ 1:333Þ
6

¼ 1:67 � 10�2	Sv h�1

and so in 18 h, the total absorbed dose is 0:30	Sv.

8.11 If the initial intensity is I0, then from Equation (4.18), the intensities after passing

through bone, Ib, and tissue, It, are

Ib � I0 exp½�ð	bb þ 2	ttÞ� and It � I0 exp½�	tðb þ 2tÞ�:

Thus R ¼ exp½�bð	b � 	tÞ� ¼ 0:7 and hence b ¼ �lnð0:7Þ=ð	b � 	tÞ ¼ 2:5 cm.

8.12 From Figure 4.8, the rate of ionization energy losses is only slowly varying for

momenta above about 1 GeV/c and given that living matter is mainly water and

hydrocarbons a reasonable estimate is 3 MeV g�1 cm2. Thus the energy deposited in

1 year is 2:37 � 109 MeV kg�1, which is 3:8� 10�4 Gy.

8.13 In general, the nuclear magnetic resonance frequency is f ¼ lj jB=jh. The numerical

input we use is:

j ¼ 7=2; B ¼ 1 T; 	 ¼ 3:46 	N; 	N ¼ 3:15 � 10�14 MeV T�1

and h ¼ 4:13 � 10�21 MeV s;

giving f ¼ 7:5 MHz.
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Appendix B

B.1 (a) From the definitions of s, t and u, we have

ðs þ t þ uÞc2 ¼ ðp2
A þ 2pApB þ p2

BÞ þ ðp2
A � 2pApC þ p2

CÞ þ ðp2
A � 2pApD þ p2

DÞ

which, using p2
A ¼ m2

Ac2 etc., becomes

ðs þ t þ uÞc2 ¼ 3m2
Ac2 þ m2

Bc2 þ m2
Cc2 þ m2

Dc2 þ 2pAðpB � pC � pDÞ:

However, from four-momentum conservation, pA þ pB ¼ pC þ pD, so that

ðs þ t þ uÞc2 ¼ 3m2
Ac2 þ m2

Bc2 þ m2
Cc2 þ m2

Dc2 � 2p2
A

and hence

ðs þ t þ uÞ ¼
X

j¼A;B;C;D

mj
2:

(b) From the definition of t,

c2t ¼ p2
A þ p2

C � 2pApC ¼ m2
Ac2 þ m2

Cc2 � 2
EAEC

c2
� pA: pC


 �
:

For elastic scattering, A 
 C. Thus EA ¼ EC and pAj j ¼ pCj j ¼ p, so that

pA � pC ¼ p2 cos �. Then c2t ¼ 2m2
Ac2 � 2 E2

A=c2 � p2 cos �
� �

and using

E2
A ¼ p2 c2 þ m2

Ac4, gives t ¼ �2p2ð1 � cos �Þ=c2.

B.2 Energy conservation gives E� ¼ E	 þ E� , where

E� ¼ 
m�c2; E	 ¼ cðm2
	c2 þ p2

	Þ
1=2; E� ¼ p�c

and hence


m�c2 � p�c
� �2¼ c2 m2

	c2 þ p2
	

� �
: ð1Þ

However, three-momentum conservation gives

p	 cos � ¼ p� ¼ 
m�v; p	 sin � ¼ pv ¼ E�=c: ð2Þ

Eliminating p	 and p� between (1) and (2) and simplifying, gives

tan � ¼
ðm2

� � m2
	Þ

2�
2m2
�

:

APPENDIX B 389



B.3 Conservation of four-momentum is p	 ¼ p� � p� , from which p2
	 ¼ p2

� þ p2
�� 2p�p� .

Now p2
j ¼ m2

j c2 for j ¼ �; 	 and �, and

p�pv ¼
E�E�

c2
� p� � p� ¼ m�E� ¼ m� p�j jc;

because p� ¼ 0 and E� ¼ m�c2 in the rest frame of the pion. However, p�j j ¼ p	
�� �� 
 p

because the muon and neutrino emerge back-to-back. Thus, p ¼ ðm2
� � m2

	Þ c=2m�;

but p ¼ 
m	v, from which v ¼ pc p2 þ m2
	c2

h i�1
2

. Finally, substituting for p gives

v ¼
m2
� � m2

	

m2
� þ m2

	

 !
c:

B.4 By momentum conservation, the momentum components of X0 are:

px ¼ �0:743 (GeV/c), py ¼ �0:068 (GeV/c), pz ¼ 2:595 (GeV/c) and hence

p2
X ¼ 7:291. Also, p2

A ¼ 4:686 (GeV/c)2 and p2
B ¼ 0:304 (GeV/c)2.

Under hypothesis (a):

EA ¼ ðm2
�c4 þ p2

Ac2Þ1=2 ¼ 2:169 GeV and EB ¼ ðm2
Kc4 þ p2

Bc2Þ1=2 ¼ 0:740 GeV.

Thus EX ¼ 2:909 GeV and MX ¼ ðE2
X � p2

Xc2Þ1=2
c�2 ¼ 1:082 GeV/c2.

Under hypothesis (b):

EA ¼ ðm2
pc4 þ p2

Ac2Þ1=2 ¼ 2:359 GeV and EB ¼ ðm2
�c4 þ p2

Bc2Þ1=2 ¼ 0:569 GeV.

Thus EX ¼ 2:928 GeV and MX ¼ ðE2
X � p2

Xc2Þ1=2
c�2 ¼ 1:132 GeV/c2.

Since MD ¼ 1:86 GeV/c2 and M� ¼ 1:12 GeV/c2, the decay is � ! p þ ��.

B.5 If the four-momenta of the initial and final electrons are p ¼ ðE=c; qÞ and

p0 ¼ ðE0=c; q0Þ, respectively, the squared four-momentum transfer is defined by

Q2 
 �ðp0 � pÞ2 ¼ �2m2c2 þ 2EE0=c2 � 2q � q0:

However, E ¼ E0 and qj j ¼ q0j j 
 q, so neglecting the electron mass,

Q2 � 2q2 � ð1 � cos �Þ. The laboratory momentum may be found from Equation

(B.36):

q2 ¼ c2

4m2
p

s � ðmp � meÞ2
h i

s � ðmp þ meÞ2
h i

�
c2ðs � m2

pÞ
2

4m2
p

;

where the invariant mass squared s is defined by s 
 ðp þ PÞ2=c2 and P is the four-

momentum of the initial proton, i.e. P ¼ ðmpc; 0Þ. Thus,

s ¼ m2
e þ m2

p þ 2mpE=c2 � m2
p þ 2mpE=c2:

Substituting into the expression for Q2 gives Q2 � 2E2ð1 � cos �Þ=c2.

B.6 The total four-momentum of the initial state is ptot ¼ E þ mpc2
� �

=c; pL

� �
. Hence the

invariant mass W is given by ðWc2Þ2 ¼ ðEL þ mpc2Þ2 � p2
Lc2, where pL 
 pLj j. The
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invariant mass squared in the final state evaluated in the centre-of-mass frame has a

minimum value ð4mpcÞ2
when all four particles are stationary. Thus, Emin is given by

ðEmin þ mpc2Þ2 � p2
Lc2 ¼ ð4mpc2Þ2

which expanding and using E2
min � p2

Lc2 ¼ m2
pc4, gives Emin ¼ 7mpc2 ¼ 6:6 GeV.

For a bound proton, the initial four-momentum of the projectile is ðE0
L=c; p0

LÞ and

that of the target is ðE=c;�pÞ, where p is the internal momentum of the nucleons,

which we have taken to be in the opposite direction to the beam because this gives

the maximum invariant mass for a given E0
L. The invariant mass W 0 is now given by

ðW 0c2Þ2 ¼ ðE0
L þ EÞ2 � ðp0

L � pÞ2
c2 ¼ 2m2

pc4 þ 2EE0
L þ 2pp0

Lc2:

Since the thresholds Emin and E0
min correspond to the same invariant mass 4mp, we

have 2mpc2Emin ¼ 2EE0
min þ 2pp0

minc2. Finally, since the internal momentum of the

nucleons is �250 MeV=c (see Chapter 7), E � mpc2, while for the relativistic

incident protons pmin � Emin=c, so using these gives

E0
min � 1 � p=mpc

� �
Emin ¼ 4:8 GeV:

B.7 The initial total energy is Ei ¼ EA ¼ mAc2 and the final total energy is Ef ¼ EB þ EC,

where EB ¼ ðm2
Bc4 þ p2

Bc2Þ
1
2, and EC ¼ ðm2

Cc4 þ p2
Cc2Þ

1
2, with pB ¼ pBj j and

pC ¼ pCj j. However, by momentum conservation, pB ¼ �pC 
 p and so

mAc2 � ðm2
Bc4 þ p2c2Þ

1
2

h i2

¼ m2
Cc4 þ p2c2

� �
;

which on expanding gives EB ¼ m2
A þ m2

B � m2
C

� �
c2=2mA.

B.8 If the four-momenta of the photons are pi ¼ ðEi=c; piÞði ¼ 1; 2Þ, then the invariant

mass of M is given by M2c4 ¼ ðE1 þ E2Þ2 � ðp1 þ p2Þc2 ¼ 2E1E2ð1 � cos �Þ, since

p1 � p2 ¼ E1E2ð1 � cos �Þ=c2 for zero-mass photons. Thus, cos � ¼1 � M2c4=2E1E2.

B.9 A particle with velocity v will take time t ¼ L=v to pass between the two

counters. Relativistically, p ¼ mv
 with 
 ¼ ð1 � v2=c2Þ�
1
2. Solving, gives

v ¼ cð1 þ m2c2=p2Þ�
1
2 and hence the difference in times-of-flight (assuming

m1 > m2) is

�t ¼ L

c
1 þ m2

1c2

p2


 �1
2

� 1 þ m2
2c2

p2


 �1
2

" #
:

Using m1c2 ¼ mpc2 ¼ 0:983 GeV, m2c2 ¼ m�c2 ¼ 0:140 GeV and pc ¼ 2 GeV

gives �t ¼ 1:114 � 1:002½ �ðL=cÞ and Lmin ¼ 0:54 m.

B.10 In an obvious notation, the kinematics in the lab frame are:


ðE
; p
Þ þ e�ðmc2; 0Þ ! 
ðE0

; p0


Þ þ e�ðE; pÞ:
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Energy conservation gives E
 þ mc2 ¼ E0

 þ E and momentum conservation

gives p
 ¼ p0

 þ p. From the latter we have E2 � m2c4 ¼ c2ðp2


 þ p0



2 � 2p
 � p0

Þ.

But p
c ¼ E
; p0

c ¼ E0


 and the scattering angle is �, so we have

E2 � m2c4 ¼ E2

 þ E2


 � 2E
E0

 cos �. Eliminating E between this equation and the

equation for energy conservation gives E0

 ¼ E
½1 þ E
ð1 � cos �Þ=mc2��1

. Finally,

using E
 ¼ E0

=2 and � ¼ 600, gives E
 ¼ 2mc2 ¼ 1:02 MeV.

Appendix C

C.1 The assumptions are: ignore the recoil of the target nucleus because its mass is

much greater than the total energy of the projectile �-particle; use non-relativistic

kinematics because the kinetic energy of the �-particle is very much less that its rest

mass; assume the Rutherford formula (i.e. the Born approximation) is valid for

small-angle scattering. The relevant formula is then Equation (C.13) and it may

be evaluated using z ¼ 2; Z ¼ 83, Ekin ¼ 20 MeV and � ¼ 20�. The result is

d�=d	 ¼ 98:3 b=sr.

C.2 From Figure C.2, the distance of closest approach d is when x ¼ 0. For x < 0, the

sum of the kinetic and potential energies is Etot ¼ 1
2
mv2 and the angular momentum

is mvb. At x ¼ 0, the total mechanical energy is 1
2
mu2 þ Zze2=4�"0d and the

angular momentum is mud, where u is the instantaneous velocity. From angular

momentum conservation, u ¼ vb=d and using this in the conservation of total

mechanical energy gives d2 � Kd � b2 ¼ 0 where, using Equation (C.9),

K 
 2b=cotð�=2Þ. The solution for d � 0 is d ¼ b 1 þ cosecð�=2Þ½ �=cotð�=2Þ.

C.3 The result for small-angle scattering follows directly from Equation (C.9) in the

limit �! 0. Evaluating b, we have, using the data given,

b ¼ zZe2

2�"0mv2�
¼ 2zZ

e2

4�"0�hc


 �
�hc

mc2

1

ðv=cÞ2�
¼ 1:55 � 10�13 m:

The cross-section for scattering through an angle greater than 5� is thus

� ¼ �b2 ¼ 7:55 � 10�26 m2 and the probability that the proton scatters through

an angle greater than 5� is P ¼ 1 � exp½�n�t�, where n is the number density of

the target. Using n ¼ 6:022 � 1026=194
� �

� 21450 ¼ 6:658 � 1028 m�3, gives

P ¼ 4:91� 10�2. Since P is very small but the number of scattering centres is

very large, the scattering is governed by the Poisson distribution and the probability

for a single scatter is P1ðmÞ ¼ me�m ¼ 4:91 � 10�2, giving m � 0:052. Finally, the

probability for two scattering is P2 ¼ m2 expð�mÞ=2! � 1:3 � 10�3.
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