Appendix D
Solutions to Problems

Chapter 1

1.1 Substituting the operators p = —ikd/0x and E = ihid/0t into the mass—energy
relation E? = p*c? + M?c* and allowing the operators to act on the function
o(x, t), leads immediately to the Klein—Gordon equation. To verify that the Yukawa
potential V(r) is a static solution of the equation, set V(r) = ¢(x), where r = |x],
and use

P20
or:  ror

together with the expression for the range, R = ii/Mc.

1.2 Using Equation (1.11), gives

PYII = \/gsin(w — 9)ei(”+¢) = —\/gsin(ﬁ)eid’ = —Yll7

and hence Y| is an eigenfunction of parity with eigenvalue —1.

1.3 Because the initial state is at rest, it has L =0 and thus its parity is
P; = PpPp(—l)L = —1, where we have used the fact that the fermion—antifermion
pair has overall negative intrinsic parity. In the final state, the neutral pions are
identical bosons and so their wavefunction must be totally symmetric under their
interchange. This implies even orbital angular momentum L' between them and
hence Py = Pﬁ(—l)u = 1 # P;. The reaction violates parity conservation and is thus
forbidden as a strong interaction.

1.4 Since C?>=1, we must have C2|b,¢) = C,Cl|b, 1) = |b, ), implying that
C"B, V) = Cylb, ¥p) with C,C, = 1 independent of C,,. The result follows because
an eigenstate of C must contain only particle—antiparticle pairs bb, leading to the
intrinsic parity factor C,Cj = 1, independent of Cj.
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The parity of the deuteron is Py = P,P,(—1)"". Since the deuteron is an
S-wave bound state, L,, =0 and so, using P, =P, =1, gives P;=1. The
parity of the initial state is therefore P; = P,rPd(—l)L”‘I = P,-, because the
pion is at rest and so L,;=0. The parity of the final state is
P; = P,P,(—1)"" = (=1)"" and therefore P,- = (—1)*". To find L,, impose the
condition that ,, = Yspace®Pspin must be antisymmetric. Examining the spin,
Equation (1.17) shows that there are two possibilities for ¥, either the symmetric
§ = 1 state or the S = 0 antisymmetric state. If S = 0, then 1);p,cc Would have to be
symmetric, implying L,, would be even, but the total angular momentum would not
then be conserved. Thus §=1 is implied and e is antisymmetric, i.e.
L,, =1,3,---. The only way to combine L,, and S to give J =1 is with L,,, = 1
and hence P,- = —1.
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1.8 If an exchanged particle approaches to within a distance d fm, this is equivalent to a
momentum transfer ¢ = 7i/d = (0.2/d) GeV/c. Thus, ¢ = 0.2 GeV/c for d = 1fm
and g =200 GeV/c for d =103 fm. The scattering amplitude is given by
flg?) = —g*n? [qz + mﬁcz} _1, where m, is the mass of the exchanged particle. Thus,

R(P) = fem(q®) _ gPc® +myct
_fwelk(qz) q262 “l‘m%c‘“ ’

since gem ~ gweak. Using m, = 0 and my = 80 GeV/c?, gives

R(0.2 GeV/c) ~ 1.6 x 10° fm but R(200GeV/c) ~ 1.2 fm.

1.9 Using spherical polar coordinates, we have q - x = grcos @ and d*x = 2 drd cos 0 dg,
where ¢ = |q|. Thus, from Equation (1.38),

& T ,e /R 1
flg?) = —==- j do J drr—— J dcos 0 exp(igrcos8/h)
r
0 2

[o¢] o0
—2h [ . )
=— Jdre”/R[exp(iqrcos Q/E)]J:}: _2g J dre /R {e"’"/h — e*"”/h]
q
0
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1.10 Let one of the beams (labelled by 1) refer to the ‘beam’ and let the other beam
(labelled by 2) refer to the ‘target’. Then in Equation (1.43), n, = nN;/27RA and
v; =2wR/T, where R is the radius of the circular path. Thus the flux is
J = nyv; = nN,f /A, where fis the frequency. Also N = N5, so finally the luminosity
is L =JN = nN|N,f/A.

1.11 From Equation (1.44c), o = WM, /I(pt)N,. Since the scattering is isotropic, the
total number of protons emitted from the target is W =20 x (47/2 x 1073)
=1.25 x 10°s™!. I can be calculated from the current, noting that the a-particles

carry two units of charge, and is 7 = 3.13 x 10'°s~!. The density of the target is
pt = 1mgem—2 = 10732 kg fm 2. Putting everything together gives o = 161 mb.

Chapter 2
2.1 From Equation (2.21),
2y _4mh (T "2 - : -3
F(q°) = e J prsinb(r)dr |:47TJ r dr] = 3[sinb(a) — b(a) cosb(a)]b™,
0

0

where b(r) = gr/h. To evaluate this we need to find a and g. For the latter, we have

S
~
~

P

from which ¢ = 2psin(9/2) = 57.5MeV /c. Also, we know that @ = 1.21A% fm and
so for A =56, a =4.63fm and ga/h = 1.35 radians. Finally, using this in the
integral, gives F = 0.829 and hence the reduction is F? = 0.69.

2.2 Setting g = |q| in Equation (2.26), we have

1 <1 /i "
F(q%) :ij(X)ZH<7lqr;OS > d’x.

n=0

Using d*x = r2d cos #d¢ and doing the ¢ integral, gives

. 2.2 2
F(qZ) _ZWJJf(r)r2 |:1 +1qu0$9_l] I cos 9+:| drdcosf

T Ze h R
47rOC 4mg? 1
= Jf(r)rzdr oz Jf(r)r4dr +...

0 0
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However, from Equation (2.17), Ze = 4 [ f(r) r*dr and from Equation (2.25),
T 0

Ze(r*) = 4m [ f(r)r*dr so F(q*) = 1 _611_;2<r2> 4.
0

From Equation (2.28), (r?) = 6/*[1 — F(¢?)]/q% where g = 2Esin(6/2). Thus,
g =43.6MeV/c. Also, F? = 0.65 and so /(r?) = 6.56 fm.

The charge distribution is spherical, so the angular integrations in the general result
of Equation (2.17) may be done, giving

00 -1

o0
F(q) = J p(r)lsin(gr/h)/ (qr/R)nrdr J p(r)dnrdr
0 0
Substituting for p(r), setting x = r/a and using [ xexp(—x)dx =1, gives, after
integrating by parts (twice), 0

F(q?) = (q%) Ie)’ sin(?)dx—wm.

In 1g of the isotope there are initially Ny = (1g/208 x 1.66 x 10724 g). Thus
No = 2.9 x 10%! atoms. At time ¢ there are N() = Noe "/ atoms, where T is the
mean life of the isotope. Thus, provided ¢ < 7, the average decay rate is

N()*N(l‘) NNO o 75 ho!
t T T 01x24

Thus, 7 = 2.4Ny/75h =~ 10! years.

The count rate is proportional to the number of '“C atoms present in the sample.
If we assume that the abundance of '“C has not changed with time, the artefact
was made from living material and is predominantly carbon, then at the time it
was made (#=0), 1g would have contained 5 x 10** carbon atoms of which
No = 6 x 10" would have been '*C. Thus the average count rate would have been
No/T = 13.8m~!. At time ¢, the number of '*C atoms would be N(t) = Ny exp(—t/7)
and N(1)/Ny = e /7 = 2.1/13.8, from which t = 7In6.57 = 1.56 x 10* years. The
artefact is approximately 16 000 years old.

If the transition rate for 2}2Rn decay is w; and that for 203Po is w, and if the numbers of
each of these atoms at time ¢ is N, (¢) and N,(t), respectively, then the decays are
governed by Equation (2.43), i.e. Ny (1) =w; N (0) [exp(—w; 1) —exp(—wat)][ws —wi] .
The latter is a maximum when dN, (#) /dt = 0,i.e. whenw, exp(—w,t) = w; exp(—w; 1),
with  fax = In(wy /wa) (W) — wz)fl. Using w; =4.12x10?min~'  and
w, = 6.58 x 107 min~!, gives fmax = 265 min.
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The total decay rate of both modes of '3¥La is
(14+05)x (7.8 x 10 kg 's ' = 1.17 x 10°kg ' s L.

Also, since this isotope is only 0.09 per cent of natural lanthanum, the number
of '3¥La atoms per kg is N = (9 x 107%) x (1000/138.91) x (6.022 x 10%), i.e.
N =3.90 x 10?2 kg~!. The rate of decays is —dN/dt = wN, where w is the
transition rate, and in terms of this the mean lifetime 7 = 1/w. Thus,

N 3.90x10*
- —dN/dt  1.17 x 103

T s =3.33 x 10"s = 1.06 x 10" years.

The energy released is the increase in binding energy. Now from the SEMEF,
Equations (2.46)—(2.52),

(35)° (87 — 70)*

_ 2/3
BE(35,87) = a,(87) — a4(87)"” — a, 3 g
(87)
2 2
B - s (5T (145 - 114)
BE(57,145) = a,(145) — a,(145) ac (145)1/3 a, 520 ,
2 2
B - 0y (927 (235 184)
BE(92,235) = a,(235) — a,(235)* — a. T La

The energy released is thus

E = BE(35,87) + BE(57, 145) — BE(92,235)
= —3a, —9.153a, + 476.7a. + 0.280 a,

which using the values given in Equation (2.54) gives E = 154 MeV.

The most stable nucleus for fixed A has a Z-value given by Z = (3/2~, where
from Equation (2.58), 8=a,+ (M, —M,—m,) and ~=a,/A+ a(,/(A)1/3.
Changing o would not change a,, but would effect the Coulomb coefficient
because a, is proportional to .. For A = 111, using the value of a, from Equation
(2.54) gives B =93.93MeV/c? and v = 0.839 +0.208 a. MeV /c*. For Z = 47,
a. = 0.770 MeV/c?. This is a change of about 10 per cent from the value given in
Equation (2.54) and so « would have to change by the same percentage.

In the rest frame of the %ggHs nucleus, mqv, = msgvse. The ratio of the kinetic energies
is Egg/Eq = mq/msg and the total kinetic energy is E, (1 + ma/msg) =90.370 MeV.
Thus, mpsc® = (msg + my)c> + 9.370MeV = 269.154 u.

If there are Ny atoms of 235Pu at launch, then after ¢ years the activity of the source
will be A(t) = Ny exp(—t/7)/7, where 7 is the lifetime. The instantaneous power is
then P(r) = A(f) x 0.05 x 5.49 x 1.602 x 103 W > 200 W. Substituting the value
given for 7, gives Ny = 1.88 x 10%° and hence the weight of %5Pu at launch would

1.88 x 102 /238
ke = 7.43 kg.
6.02 x 1023) <1000) g &

have to be at least (
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If there were Ny atoms of each isotope at the formation of the planet (z = 0),
then after time ¢ the numbers of atoms are Nyps(f) = Noexp(—t/mps) and
N204(l‘) =Ny exp(—t/sz), with

Noos (1) S {_I<L_L>} _ 05 5 1077

7205  T204 n204

Now Tag4 > Togs, 80 t = TagsIn(2 x 107) = 2.6 x 108 years.

We first calculate the mass difference between [p + 3¢Sc] and [n + 55Ti]. Using the
information given, we have

M(21,46) — [M(22,46) +m,] =2.37MeV/c* and M, —(M,+m,)=0.78MeV /c?

and hence [M,, + M(21,46)] — [M, + M(22,46)] = 1.59 MeV /c*. We also need the
mass differences [M,, + M (20,43)] — [M, + M(22,46)] = 0.07MeV /c2. We can
now draw the energy level diagram where the centre-of-mass energy of the
resonance is at (see Equation (2.10)) 2.76 x (45/47) = 2.64 MeV.

AT
o 1

10.7 MeV
0 =6.54 MeV

0.07 MeV

o V_i_i 1.59 MeV
a+2Ca~ 4
20 T

n+59T1

Thus the resonance could be excited in the 33Ca(a, n)35Ti reaction at an -
particle laboratory energy of 10.7 x (47/43) = 11.7MeV.

We have dN(¢)/dt = P — AN, from which

dN(r) d
P At At N At .
e =¢ ()\ -+ _t ) = _t (Ne )

Integrating and using the fact that N =0 at r =0 to determine the constant of
integration, gives the required result.
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2.16 The number of ¥Cl atoms in 1g of the natural chloride is
N =2 x 0.758 x Na/molecular weight = 7.04 x 10?'.
The activity .7 (f) = \N = P(l — e’*’) ~ P)t, since Mt < 1. So

_ o (t) _ (Dt
PN Im2xoxFxN’
Substituting .o () = 3 x 10° Bq and using the other constants given, yields = 1.55
days.

2.17 At very low energies we may assume the scattering has ¢ = 0 and so in Equation
(1.63) we have j = 1,5, =} and s, = 0. Thus,

_ah? (0,0, +1,I,) 47kl
Omax = q2 F2/4 = qﬁf )

n

Therefore, I',, = q,zlfamax/47r712 =0.35x10"3eV and Iy=I-T,=9.65x 103 eV.

Chapter 3

3.1 (a) Forbidden: violates L, conservation, because L,(v,) =1, but L,(u") = —1.

(b) Forbidden: violates electric charge conservation, because Q (left-hand side) = 1,
but Q (right-hand side) = 0.

(c) Forbidden: violates baryon number conservation because B (left-hand side) = 1,
but B (right-hand side) = 0.

(d) Allowed: conserves L, , B, Q etc. (violates S, but this is allowed because it is a
weak interaction).

3.2 (a) The quark compositions are: D~ =de¢; K°=ds; n =du and since the
dominant decay of a c-quark is ¢ — s, we have

b‘\si
4

-J C
o § ——s

K
} KO
d
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(b) The quark compositions are: A = sud; p = uud and since the dominant decay
of an s-quark is s — u, we have

<l

QAST

tp

(a) This would be a baryon because B = 1 and the quark composition would be ssb
which is allowed in the quark model.

(b) This would be a meson because B = 0, but would have to have both an 5- and a
b-quark. However, Q(5 + b) = 2/3, which is incompatible with the quark model
and anyway combinations of two antiquarks are not allowed. Thus this
combination is forbidden.

‘Low-lying’ implies that the internal orbital angular momentum between the
quarks is zero. Hence the parity is P = 4 and 9spacc is symmetric. Since the
Pauli principle requires the overall wavefunction to be antisymmetric under
the interchange of any pair of like quarks, it follows that 9, is antisymmetric.
Thus, any pair of like quarks must have antiparallel spins, i.e. be in a spin-0
state.

Consider all possible baryon states gqq, where g = u, d, s. There are six
combinations with a single like pair: uud, wuus, ddu, dds, ssu, ssd, with the spin
of (uu) etc. equal to zero. Adding the spin of the third quark leads to six states
with JP = g. In principle, there could be six combinations with all three quarks
the same — wuuu, ddd, sss — but in practice these do not occur because it is
impossible to arrange all three spins in an antisymmetric way. Finally, there is one
combination where all three quarks are different: uds. Here there are no restric-

tions from the Pauli principle, so for example, the ud pair could have spin-0 or

spin-1. Adding the spin of the s-quark leads to two states with J” = 1" and 1 with

2
P _ 3t
JE =5 . .
Collecting the results, gives an octet of J© = % states and a singlet J* = % state.
This is not what is observed in nature. In Chapter 5 we will see what additional

assumptions have to be made to reproduce the observed spectrum.
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(a)
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(b)
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Ld — - > d |

The ground state mesons all have L = 0 and S = 0. Therefore they all have P = —1.
Only in the case of the neutral pion is their constituent quark and antiquark also
particle and antiparticle. Thus C is only defined for the 7° and is C = 1. For the
excited states, L = O still and thus P = —1 as for the ground states. However, the
total spin of the constituent quarks is S = 1 and so for the p°, the only state for which
C is defined, C = —1.

For the excited states, by definition there is a lower mass configuration with the
same quark flavours. As the mass differences between the excited states and their
ground states is greater than the mass of a pion, they can all decay by the strong
interaction. In the case of the charged pions and kaons and the neutral kaon ground
states, there are no lower mass configurations with the same flavour structure and so
the only possibility is to decay via the weak interaction, with much longer lifetimes.

In the case of p° decay, the initial state has a total angular momentum of 1 and
since the pions have zero spin, the 77 final state must have L = 1. While this is
possible for 77, for the case of 7%7° it violates the Pauli Principle and so is
forbidden.

In the initial state, S = —1 and B = 1. To balance strangeness (conserved in strong
interactions), in the final state S(¥~) = —2 and to balance baryon number,
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B(Y~) = 1. As charm and beauty for the initial state are both zero, these quantum
numbers are zero for the Y. The quark content is therefore dss. In the decay, the
strangeness of the A is —1 and so strangeness is not conserved. This is therefore a
weak interaction and its lifetime will be in the range 10~7-107"3.

The quark composition is ¥ = uds, then (S, + S,)* =2 + 82+ 28, - Sy = 27* and
hence S, -S; = /*/4. Then, from the general formula given in Equation (3.84),
setting m, = my = m, we have

Su-Sa  Si-Si+S,-S
ME:Zm—I—mS—i-b[ d+ d * :|

m? mm

S.:Ss Si-S+S-S35+S,-S35-S,-S
:2m+ms+b[ 2d+ 192 +91-93 +52 93 d]
m mmig

which, using S; - S, +S;-S3+ S, - S3 = 73h2/4 from Equation (3.89), gives

b|1 4
Ms =2m+mg+ - |— — .
4 |\m?2  mmy

The initial reacton is strong because it conserves all individual quark numbers. The
Q™ decay is weak because strangeness changes by one unit and the same is true for
the decays of the Z°, K+ and K°. The decay of the 7% is also weak because it
involves neutrinos and finally the decay of the 7° is electromagnetic because only
photons are involved.

The Feynman diagram is:

The two vertices where the W-boson couples are weak interactions and have
strengths /aw. The remaining vertex is electromagnetic and has strength ./ogy.
So the overall strength of the diagram is aw /M.

From Equation (3.27a), we have P(7, — v, ) =sin? (2a/)sin*[A (m*c*)L/ (4hcE)), which
for maximal mixing (o = 7/4) gives P(¥, — v,) = sin® [1.27A(m?c*)L/E] where L
is measured in m, E in MeV and A(m2c*) in (eV)?. If P(, — 7,) = 0.90 + 0.10,
then at 95 per cent confidence level, 1.0 < P(, — v,) > 0.70 and hence
0.012 < A(m2c*) < 0.019(eV)>.



366

3.12

3.13

3.14

APPENDIX D: SOLUTIONS TO PROBLEMS

Reactions (a), (d) and (f) conserve all quark numbers individually and hence are
strong interactions. Reaction (e) violates strangeness and is a weak interaction.
Reaction (c) conserves strangeness and involves photons and hence is an electro-
magnetic interaction. Reaction (b) violates both baryon number and electron lepton
number and is therefore forbidden.

The doublet of S = +1 mesons (K*,K°) has isospin / =1, with I3(K") =1 and
I(K) = —1. The triplet of S=—1 baryons (X', X, E’) has /=1, with
I =1,0,—1 for ¥*, X0 and ¥, respectively. Thus (K*,KO) is analogous to the
(p,n) isospin doublet and (X+, X0, ¥7) is analogous to the (7+, 7%, 77) isospin
triplet. Hence, by analogy with Equations (3.54a) and (3.54b),

1 2
M(mp— XK= §M3 +§M1; M(n p — EOKO) = £M3 — \/T‘Ml

and
M(r'p — STKY) = M3,

3

where M;; are the amplitudes for scattering in a pure isospin state [ :%, 5

respectively. Thus,

o(ntp = STk to(np — XK") to(np — X°K°)

1 2
= |M3|2: §‘M3 + 2M1|21 §|Mg — M1|2.

Under charge symmetry, n(udd) = p(duu) and 7" (ud) = 7~ (du) and since the
strong interaction is approximately charge symmetry, we would expect
o(mtn) = o(n p) at the same energy, with small violations due to electromagnetic
effects and quark mass differences. However, K+ (u5) and K~ (sit) are not charge
symmetric and so there is no reason why o(K*n) and o(K~p) should be equal.

Chapter 4

4.1

In an obvious notation,
Egy = (Ee + Ep)* — (poc +py¢)’ = (E. — pic?) — (E; — pyc?) + 2E.E, — 2p, - p,c
—m c +mzc4+2EE 2pe~ppc2
At the energies of the beams, masses may be neglected and so with p = |p|,
E2y = 2E.E, — 2popyc? cos(m — 0) = 2E,E,[1 — cos(m — 0)],

where 6 is the crossing angle. Using the values given, gives Ecy = 154 GeV. In a
fixed-target experiment, and again neglecting masses, Egy = 2E.E, — 2p, - p,c’,
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where E,=Er, E,=myc* p,=0. Thus, Ecy = [2mpc2EL]1/2 and for
Ecv = 154 GeV, this gives Ep, = 1.26 X 10* GeV.

For constant acceleration, the ions must travel the length of the drift tube in half a
cycle of the rf field. Thus, L = v/2f, where v is the velocity of the ion. Since the
energy is far less than the rest mass of the ion, we can use non-relativistic kinematics

to find v, i.e. v = ¢1/200/(12 x 931.5) = 4.01x 10’ ms~! and finally L = 1 m.

A particle with mass m, charge ¢ and speed v moving in a plane perpendicular to a
constant magnetic field of magnitude B will traverse a circular path with radius of
curvature r = mv/qB and hence the cyclotron frequency is f = v/27r = gB/27m.
At each traversal the particle will receive energy from the rf field, so if fis kept fixed,
r will increase (i.e. the trajectory will be a spiral). Thus if the final energy is E, the
extraction radius will be R = v/2mE/gB. To evaluate these expressions we use
g =2e=32x10"°C, together with B =0.8T = 0.45 x 10*°(MeV /c?)s~! C"!
and thus f = 6.15MHz and R = 62.3 cm.

A particle with unit charge e and momentum p in the uniform magnetic field B of the
bending magnet will traverse a circular trajectory of radius R, given by p = BR. If B
is in T, R in m and p in GeV/c, then p = 0.3BR. Referring to the figure below, we
have 6§ =~ L/R =03 LB/p and A0 = s/d = 0.3BLAp/p*. Solving for d using the
data given, gives d = 9.3 m.

- L

e N
—a %‘/

1
I
Ri A8 fs

The Cerenkov condition is Bn > 1. So, for the pion to give a signal, but not the
kaon, we have f(;n > 1> fBgn. The momentum is given by p = myy where
v=(1- vz/cz)fl/z, so eliminating v gives S =v/c=(1+ mzcz/pz)—l/Z_ For
p=20GeV/c, m; =0.14GeV/c?> and mg = 0.49GeV/c?, B, =0.99997 and
Bk = 0.99970, so the condition on the refractive index is 3 x 107 > (n —1)/n

> 3 x 1072, Using the largest value of n = 1.0003, we have

Neoral1-o 1 V(L L
- Bn2 )\ X

as the number of photons radiated per metre, where A\; = 400 nm and A\, = 700 nm.
Numerically, N = 26.5 photons/m and hence to obtain 200 photons requires a
detector of length 7.5 m. (You could also use

1 A — A
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where ) is the mean of \; and \,, which would give 24.5 photons/m and a length of
8.2m.)

4.6 Luminosity may be calculated from the formula for colliders, L = nN; Nf/A,
where n is the number of bunches, N; and N, are the numbers of
particles in each bunch, A is the cross-sectional area of the beam and f is its
frequency. We have, n =12, Ny =N, =3 x 10", A = (0.02 x 1072)cm? and

f:
4.7 (a)
(b)
4.8 To

(3 x 10'%/87 x 10°)s7!, so finally L = 6.44 x 10*' cm2 s~

The b quarks are not seen directly but, instead, they fragment (hadronize) to B-
hadrons, i.e. hadrons containing b quarks. So one characteristic is the presence of
hadrons with non-zero beauty quantum numbers. As these hadrons are unstable
and the dominant decay of b-quarks is to c-quarks, a second characteristic is the
presence of hadrons with non-zero values of the charm quantum number.

We need to observe the point where the ee™ collision occurred and the point
of origin of the decay products of the B-hadrons. The difference between these
two is due to the lifetime of the B-hadrons. As the difference will be very small,
precise position measurements are required. The daughter particles may be
detected using a silicon micro-vertex detector and an MWPC. In addition, any
electrons from the decays could be detected by an MWPC or an electromagnetic
calorimeter. The same is true for muons in the decay products, except they are
not readily detected in the calorimeter as they are very penetrating. However, if
one places an MWPC behind a hadron calorimeter then one can be fairly
confident that any particle detected is a muon, as everything else (except
neutrinos) will have been stopped in the calorimeter.

In the electronic decay mode, the electron can be measured in both a MWPC
and an EM calorimeter. For high energies the better measurement is made in the
calorimeter. The neutrino does not interact unless there is a very large mass of
material (thousands of tons) and so its presence must be inferred by imposing
conservation of energy and momentum. In a colliding beam machine, the original
colliding particles have zero transverse momentum and a fixed energy. If one
adds up all the energy and momentum of all the final-state particles, then
any imbalance compared to the initial system can be attributed to the neutrino.

For the muonic mode, the muon can be measured in the MWPC but cannot be
measured well in the calorimeter because it only ionizes to a very small extent.
Since the muons only interact to a small extent they (along with neutrinos) are
generally the only particles that emerge from a hadronic calorimeter. So if one
registers a signal in a small MWPC placed behind a calorimeter then one can be
confident that the particle is a muon.

be detected, the event must have 150° < 6 < 30°, i.e. |cosf| < 0.866. Setting

x = cos 6, the fraction of events in this range is

+0.866 +1

0
do do +0.866 1.0
= J adx/Jadx:[x+x3/3}—04866/[x+x3/3]_1'0:0.812.

—0.866 —1.0
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The total cross-section is given by

d 2m +1 d 2h2 5 +1
J:Lj—ng:quﬁJdcoséd—g:ZwO;Ezc J [l—l—coszﬂdcos@.
cm
0 -1 -1

Using Ecy = 10 GeV, gives 0 = 4ra?h*c?/ 3EZ, = 0.866nb. The rate of production
of events is given by Lo and since L is a constant, the total number of events
produced will be Lot = 86 600.

The 7* decay too quickly to leave a visible track in the drift chamber. The e* and
the p~ will leave tracks in the drift chamber and the e will produce a shower in
the electromagnetic calorimeter. If it has enough energy, the p~ will pass through the
calorimeters and leave a signal in the muon chamber. There will be no signal in the
hadronic calorimeter.

Referring to the figure below, the distance between two positions of the particle Az
apart in time is v Az. The wave fronts from these two positions have a difference in
their distance travelled of ¢ At/n.

cAtin

These constructively interfere at an angle 6, where

cAt/n 1
osf = JAT —E.

The maximum value of 6 corresponds to the minimum of cos# and hence the
maximum of 3. This occurs as 3 — 1, when 0, = cos™'(1/n). This value occurs
in the ultra-relativistic or massless limit.

The quantity 3 may be expressed as 3 = pc/E = pclp®c® + m>c*]”

122 + m2c*

cos=—"————
n pc

1/2
/ . Hence,

which rearranging, gives x = (mc?)> = p2c?(n® cos? @ — 1). Differentiating this
formula gives dx/df = —2p*c?n®cosfsind and the error on x is then given by
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oy = |dx/d6)| oy. For very relativistic particles, the derivative can be approximated
by using Omay, for which cos max = 1/n, $inOpa = V02 — 1/n. Hence

1vn?—1
oy R 202 - ———— oy = 2p*PVn? — 1 oy
n o n

The average distance between collisions of a neutrino and an iron nucleus is the
mean free path A = 1/no,, where n = p/mpc2 is the number of nucleons per cm?.
Using the data given, n~4.7 x 10 cm™ and o, ~3 x 10730cm?, so that
A= 7.1 x 10°cm. Thus if 1 in 10° neutrinos is to interact, the thickness of iron
required is 71 cm.

Radiation energy losses are given by —dE/dx = E/Lg, where Ly is the radiation
length. This implies that E = Eyexp(—x/Lgr), where Ej is the initial energy. Using
Ey=2GeV, Lg =36.1cm, x = 10cm, gives E = 1.51 GeV. Radiation losses at
fixed E are proportional to m~2, where m is the mass of the projectile. Thus for
muons, they are negligible at this energy.

The total cross section is oy = Tl + Ocap + 0f = 4 X 10%b and the attenuation is
exp(—nxoy ) where nx = 107N, /A = 2.56 x 102 m~2. Thus exp(—nxo) = 0.9898,
ie 1.02 per cent of the incident particles interact and of these the fraction
that elastically scatter is given by the ratio of the cross-sections, i.e.
3x 1072/4 x 10> = 0.75 x 107, Thus the intensity of elastically-scattered neu-
trons is 0.75 x 10™* x 0.0102 x 10% = 0.765s~! and finally the flux at 5 m is
0.765/(4 x ™ x 52) = 2.44 x 103 m~2s7!,

The total centre-of-mass energy is given by Ecy ~ (2mc2EL)% = 0.23GeV and so
the cross-section is o = 1.64 x 10~3* m2. The interaction length is £ = 1/no, where
n is the number density of electrons in the target. This is given by n = pNAZ/A,
where N, is Avogadro’s number and for lead, p = 1.14 x 107 kgm > is the density,
Z=82and A=208. Thus n =2.7 x 10*m3 and £/ = 2.3 m.

The target contains n = 1.07 x 10* protons and so the total number of interactions
per second is N =n x flux x oy = (1.07 x 10%) x (2 x 107) x (40 x 1073!) =
8565~!. There are thus 856 photons/s produced from the target.

For small v, the Bethe—Bloch formula may be written

_dE 1. [2mn? ds 2 2m,v?

The latter has a maximum for v?> = el /2m,. Thus for a proton in iron we can use
I =10ZeV =260¢V, so that E, = im,v* = myle/4m, = 324 keV.

From Equation (4.24), E(r) = V/r In(r./r,) and at the surface of the anode this is
0.5/(20 x 1075) In(500) = 4023kV m~. Also, if Ereshora(r) = 750kVm~", then
from Equation (4.24) r = 0.107 mm and so the distance to the anode is 0.087 mm.
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This contains 22 mean free paths and so assuming each collision produces an ion
pair, the multiplication factor is 222 = 4.2 x 106 = 109,

Chapter 5

51 Wehave m = a+ 3+~ >n=a+ 3+4, where the inequality is because baryon
number B > 0. Using the values of the colour charges I3C and Y€ from Table 5.1, the
colour charges for the state are:

I=(-a)/2-B-0)/2 ad Y =(a-a)/3+(B-F)/3-2(v—7)/3
By colour confinement, both these colour charges must be zero for observable
hadrons, which implies « — @ = 3 — 3 =y — 4 = p and hence m — n = 3p, where

p is a non-negative integer. Thus the only combinations allowed by colour
confinement are of the form

(39)"(q@)" (p,n>0).

It follows that a state with the structure gq is not allowed, as no suitable values of p
and n can be found.

52 (a)
Y q Y
q
q X
q
8 8 q
(b)
> -
p > >
>

S
A
A
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(©)
e 4 - w-
V, v,
et wt et
W+
5.3 The Feynman diagram is:
-
P -
- t
_ —~ 7
p —~
—~

The four-momenta are:
P(p) = (E/C7 p) and P@) = (E/Ca _p)v

with

PP =m’c* =F*/c* —p* and m= my = my.
Now P(q) = (xE/c, xp) and P(g) = (xE/c, —xp) with x = £, so

E2y = X*[P(p) + P(p))= [Zmzc4 +2E* + 2p262] .

Neglecting the masses of the proton and the antiproton at these energies, gives

E=3Ecy and p=3x350 =1050 GeV/c.

5.4 Energy-momentum conservation gives,

W2t = (E—-E)+ EP]Q—[(p -p) —Q—P]zc2 = invariant mass of X.
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Using, 0> = (p — p')* — (E — E')*/c® and M*c* = E2 — P*¢?, where M is the mass
of the proton, gives

Wit = —Q*? + M*c* +2Ep(E—E') —2P - (p —p')*.

Also, 2Mv = W2¢* + Q* — M?¢* and so, in the rest frame of the proton
(P=0,Ep = Mc?),v=E-E

Since some energy must be transferred to the outgoing electron, it follows that
E > E' ie. v > 0. Also, since the lightest state X is the proton, W? > M?. Thus,

2My = Q* + (W? — M?)c* > Q2.

From the definition of x, it follows that x < 1. Finally, x > 0 because both 0? and
2Muv are positive.

In the quark model, A = uds,p = uud, K~ = sii,n = udd and 7" = ud. From the
flavour independence of the strong interaction, we can set o(qq) = o(ud) =
o(sd) etc. and o(qq) = o(ud) = o(su) etc.. Then o(Ap) = o(pp) = 90(qq) and
o(K™n) = o(n"p) = 30(qq) — 30(qq). The result follows directly.

By analogy with the QED formula, we have I'(3g) = 2(7> — 9)a®m.c? /97, where
me =~ 1.5GeV/c? is the constituent mass of the c-quark. Evaluating this gives
ay = 0.31. In the case of the radiative decay, I'(ggy) = 2(7> — 9)ata’myc? /9,
where my, = 4.5 GeV /c? is the constituent mass of the b-quark. Evaluating this gives
as = 0.32. (These values are a little too large because in practice « is replaced by
%ozx.)

From Equation (5.38a)

FP(x) = x B(d Ld)+ g(u )+ é(s + 5)}

and from Equations (5.38b) and (5.39)

Fi'(x) =x B(d +d)+-(u+u)+=(s+ 3)} ,

so that

1

[Fr e - Prco]

0

=5 [t + oy ax = ) + e
0 0

However, summing over all contributions we must recover the quantum numbers of
the proton, i.e.

J () — ai(x)] dx = 2; J d(x) — d(x)] dx = 1.
0
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Eliminating the integrals over u and d gives the Gottfried sum rule.

Substituting Equation (5.22) into Equation (5.23) and setting Nc = 3, gives

=31+ ay/7) Zef],

where ay is given by Equation (5.11) evaluated at Q% = E%M and the sum is over
those quarks that can be produced in pairs at the energy considered. At 2.8 GeV the
u, d and s quarks can contribute and at 15GeV the u, d, s, ¢ and b quarks can
contribute. Evaluating R then gives R ~ 2.17 at Ecy = 2.8GeV and R ~ 3.89 at
Ecm = 15GeV. When Ecy is above the threshold for 77 production, R rises to
R =5(1 4+ a5/7).

A proton has the valence quark content p = uud. Thus from isospin invariance the u
quarks in the proton carry twice as much momentum as the d quarks, which implies
a = 2b. In addition, we are told that
1 I
1
JxFu(x)dx + Jde(x)dx =5
0 0

Using the form of the quark distributions with a = 2b gives a =% and b = 2.

The peak value of the cross-section is where E = Myc?, i.e.

m(fic)’(2/Myc?)°T,; 4 w(hc)®

= 5b wt d) = 84nb.
Omax 3T 3(MWC2) I'( — U ) n

The required integral is

11
Opp (S) = Jjau Xu (xd) dxu dxd
00

where we have used C-invariance to relate the distribution functions for protons and
antiprotons. In the narrow width approximation and using the quark distributions
from Question 5.9,

11
1—x)* (1 —x)° u
(s c”( a (- 2
) Xq (Myc2)

where C = (87 yomax)/(9Mwc?) and we have used E? = x,xzs. Thus,

PR (TEE AR AN
a,n(5) c}! (1 )dx

xlt
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where k = (Myc?) /s and the lower limit is because k < x, < 1. The integral yields

787’[‘ FW

11
opp($) _?W

amax{—(1+9k+9k2+k3)ln(k) —?—9k+9k2+13—1k3}.

Evaluating this for /s = 1 TeV gives k = 0.0064 and 0,; = 9.3 nb, which is about a
factor of two larger than experiment.

Chapter 6

6.1 A charged current weak interaction is one mediated by the exchange of charged W+
boson. A possible example is n — p + e~ + .. A neutral current weak interaction is
one mediated by a neutral Z° boson. An example is v, +p — v, + p. Charged
current weak interactions do not conserve the strangeness quantum number, whereas
neutral current weak interactions do. For v, + e~ — v, + ™, the only Feynman
diagram that conserves both L, and L,, is:

Vll v

which is a weak neutral current. However, for v, +e¢~ — v, + ¢, there are two
diagrams:

Thus the reaction has both neutral and charged current components and is not
unambiguous evidence for weak neutral currents.
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6.2 The lowest-order electromagnetic Feynman diagram is

e m

The total cross-section is given by

2T 1
do  2malR2c? 1 !
o= jdqﬁ J dcos@d—?2 = %(Z:MC [c036+§cos3 0} y
o
4 2h2 2
=TS — 044 nb.
3E&m

The lowest-order weak interaction diagram is

With the addition of the weak interaction term,

¢ U
ZO
+
e’ n
do do do QPR
)~ \ae ), 1+ Cyi cos § + cos® 4]
(dQ> (d9>em+ (dQ> w AE%, [1+ Cux cos 0 + cos” 0]
Then, using
1
oF = CJ [1 + Cyx c0s 6 + cos? e}dCOSG
0
and

0
op=C J [1 + Cyx cos 0 + cos” 6] d cos 0.
|
where C = 27ra2h202/4E%:M, gives

4
UF:C|:§+%:| and O'B:C|:§—T
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and so

ka .
App = ——— .e. 8Arg = 3Cyk.
FB 2(4/ )7 1Le FB wk

The Feynman diagram is

d}n—

L;\\
<

u
urp

>

~
QAT v
Yy

The amplitude has two factors of the weak coupling gw and one W propagator
carrying a momentum g, i.e.

g% Sw

amplitude x ————— x =,
P G2 — Mt T M,

because gc ~ Myc> < Myc?. Now, I'(A — pr~) oc (amplitude)® o< g&, /M3, and so
doubling gw and reducing My by a factor of four will increase the rate by a factor
24]/1(1/4)*] = 4096.

The most probable energy is given by

d /d 2G% m? AR
“) =0, which gives ——— (2B, ——=¢) =0, ieE, =m/2.
dEe dEe (27T) (hC) mucz

When E, ~ m,lc2 /2, the electron has its maximum energy and the two neutrinos
must be recoiling in the opposite direction. Only left-handed particles (and right-
handed antiparticles) are produced in weak interactions. Since the masses of all
particles are neglected, states of definite handiness are also states of definite helicity,
so the orientations of the momenta and spins are therefore as shown:
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Integrating the spectrum gives

myc? /2
I — 2G%(m/102)2 J [Ez _ AE; ]dE Glzs(mﬂcz)s

(2n) (he)® ¢ 3mt T 192 (he)®

Numerically, I' & 3.0 x 10~'° GeV, which gives a lifetime 7 = /i/T' ~ 2.2 x 1075,

(a) In addition to the decay b — ¢ + e~ + 7, there are two other leptonic decays
(¢ = p~,7) and by lepton universality they will all have equal decay rates.
There are also hadronic decays of the form b — ¢ + X where Q(X) = —1.
Examining the allowed Wgqgq vertices using lepton—quark symmetry shows that
the only forms that X can have, if we ignore Cabibbo-suppressed modes, are
du and sc. Each of these hadronic decays has a probability three times that
of a leptonic decay because the quarks exist in three colour states. Thus,
there are effectively six hadronic channels and three leptonic ones. So finally,
BR(b — c+e +10) =4

(b) The argument is similar to that of (a) above. Thus, in addition to the decay
T~ — e + VU, + vy, there is also the leptonic decay 7= — p~ + v, + v, with
equal probability and the hadronic decays 7~ — v; + X. In principle, X = du
and sc, but the latter is not allowed because m; + m. > m,. So the only allowed
hadronic decay is 7~ — d + u + v, with a relative probability of three because
of colour. So finally, BR(t— — e~ + U, + ;) = % (The measured rate is 0.18,
but we have neglected kinematic corrections.)

For neutrinos, gr(v) = 0; gL(v) =4. So, T, =T, =T, =T/4, where

G M3 6
Tp=——"2"_ z¢ 5 = 668 MeV.
3mv/2(fic)

Thus the partial width for decay to neutrino pairs is I', = 501 MeV. For quarks,
gr(u, ¢, t) = —tand g (u, ¢, 1) =3 Thus, T, = [ = 390 Also, gr(d, s, b) = {5
and g (b, 5, d) = —3. Thus, Ty =T, =T, = Bl,. Finally, I'; = > T, where
i=u, c, d, s, b-no top quark because 2M, > M. So, !

3% 13 2x10 59
r, = (222 4 22 ) g = 221y = 547 MeV.
a <72 D) ) 0= 70 ¢

Hadron production is assumed to be equivalent to the production of gg pairs
followed by fragmentation with probability unity. Thus I'hagron = 31"y, Where the
factor of three is because each quark exists in one of three colour states. Thus
Fhadron = 1641 MeV.
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If there are N, generations of neutrinos with M, < Mz/2, so that 7% > vp s
allowed, then I = I'pag + L'ep + N, I',» where ' is the width to a specific vv
pair. Thus

 Tiot—Thaa — Tiep (2490 £ 7) — (1738 + 12) — (250 + 2)
B T - 167
—3.01 + 0.05,

Ny

which rules out values of N, greater than 3.

The quark compositions are: D° = cii; K~ = su; " = ud. Since preferentially
¢ — §, we have

Tt

* %

d

%

W+

o

AY

N}

N
_}K—
u

i.e. a lowest-order charge current weak interaction. However, for DT — KO+ 7t
we have D™ =cd; K°=ds; " =ud. Thus we could arrange ¢ — d via W
emission and the W™ could then decay to ud, i.e. 7*. However, this would leave the
d quark in the D™ to decay to an 5 quark in the K° which is not possible as they both
have the same charge.

The relevant Feynman diagrams are:

u-

Vu Y
In the case of the charged pion, there are two vertices of strength ,/aw, and there
will be a propagator

1 1
Q>+ M2 Mic?
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because the momentum transfer (squared) Q? carried by the W is very small. Thus
the decay rate will be proportional to

<mm>2_ oy

My ) My

In the case of the neutral pion, there are two vertices of strength ,/cery, but no
propagator. Thus the decay rate will be proportional to agm and since aem ~ aw, the
decay rate for the charged pion will be much smaller than that for the neutral decay,
i.e. the lifetime of the 7° will be much shorter.

6.9 The two Feynman diagrams are:

6.10

SN

Iy w

8
——
N

<l
<l

Using lepton—quark symmetry and the Cabibbo hypothesis, the two hadron vertices
are given by g,qw = gw cosfc and g,,w = gw sinfc. So, if we ignore kinematic
differences and spin effects, we would expect the ratio of decay rates is given by

Rate (K~ — = +1,) g
R =R (KD = 1 4T w2 g 0,05

CRate(m — pu +1,)  &aw

The measured ratio is actually about 1.3, which shows the importance of the
neglected effects. For example, the Q-value for the kaon decay is almost 20 times
that for pion decay.

To a first approximation the difference in the two decay rates is due to two effects.
First, ¥~ — n+ e~ + 7, has |AS| = 1 and hence is proportional to sin? 0c, where
fc is the Cabbibo angle, whereas ¥~ — A + e~ + 7, has |AS| = 0 and is propor-
tional to cos? fc. Secondly, the Q-values are different for the two reactions. Thus,
using Sargent’s Rule,

.2 5 5
R S0 Oc (QE") ~ 0.053 (257) —17.0.

= cos? O \Osa 81

(The experimental value is 17.8.) Whereas, ¥~ — n+ e~ + 7, is a first-order weak
interaction, no Feynman diagram with a single W-boson exchanged can be drawn for
YT — n+ et + v, (try it), i.e. it is higher-order and hence very heavily suppressed —
in practice not seen.
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The required number of events produced must be 20 000, taking account of the
detection efficiency. If the cross-section is 60fb = 6 x 1073% cm?, then the inte-
grated luminosity required is 2 x 10*/6 x 1073 = (1/3) x 10* cm~2 and hence
the instantaneous luminosity must be 3.3 x 10** ecm=2s7!.

The branching ratio for Z° — bb is found from the partial widths to be 15 per cent.
Thus, if b quarks are detected, the much greater branching ratio for H — bb will

help distinguish this decay from the background of Z° — bb.

By ‘adding’ an I = % particle to the initial state we can assume isospin invariance
holds. Consider =~ + 8° — A + 7. The final state is |/ = 1,15 = —1) and so is the
initial state because /5(S°) = —%. Thus the transition is pure / = 1 and the rate is
IM,|*. For 2° 4+ 89 — A + =°, the final state is again pure / = 1 but with I3 = 0.
However, the initial state is an equal mixture of / =0 and / =1, i.e.

=75%)

=0) 0,55 =0)

1 1
- I=11 + I =
\/El 3 \/§|
and so the rate is %\M 1 |2. Thus R = 2. (The measured value is about 1.8.)

Integrating the differential cross-sections over y (from 0 to 1) gives for a spin-% target
with a specific quark distribution

1 1

" (v) 2, 2 2 2 ’

JCC(V): J[8L+8R(1—y) ] dy jdy =g + 38
0 0

and
| -1

UNC(17)_ 201 — )? 214 1—v2d — o2 1302
() [sr (1 =y)"+gpldy| || (1 —y)°dy| =g + 38

For an isoscalar target, we must add the contributions for # and d quarks in equal
amounts, i.e.

JNC(V) . 2 1 2 5 1 2

() (isoscalar) = g (u) + ggR(u) + gi(d) + ggR(d)
and

oNC(p

O—CCEI;; (isoscalar) = gf (u) + 3gg () + gL.(d) + 3gx (d).

Substituting for the couplings finally gives for an isoscalar target

o) 1, 20 . 4 oNC(v) . 2 20 .,
o) =5 —sin Ow + 5 sin Ow, JT(D)ZE_SIH Hw—i-?sm O
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71

7.2

7.3

For the ;Li nucleus, Z = 3 and N = 4. Hence the configuration is
2 1 2 2
protons:  (1s12)"(1p32) 5 neutrons:  (1si2) (1p32)”

By the pairing hypothesis, the two neutrons in the 1p3/, sub-shell will have a total
orbital angular momentum and spin L. = S = 0 and hence J = 0. Therefore they will
not contribute to the overall nuclear spin, parity or magnetic moment. These will be
determined by the quantum numbers of the unpaired proton in the 1p3/; sub-shell.
This has J = % and ¢ = 1, hence for the spin-parity we have J© = %i. The magnetic
moment is given by

1= J &proton =Jj + 2.3 (since j = ¢ +%) =15+23

= 3.8 nuclear magnetons.

If only protons are excited, the two most likely excited states are:

protons: (lsl/z)z(lpl/z)l; neutrons: (131/2)2(1[)3/2)2,

which corresponds to exciting a proton from the p;, sub-shell to the p;/, sub-shell,
and

-1 2 2 2
protons:  (1s12) " (1psj2)”; neutrons: (1s1,2)"(1p3s2)°,
which corresponds to exciting a proton from the sy, sub-shell to the p3/, sub-shell.
A state with quantum number j(=/{=+ %) can contain a maximum number
N; =2(2j + 1) nucleons. Therefore, if N; =16 it follows that j =1 and ¢ =3 or

4. However, we know that the parity is odd and since P = (—1)[, it follows that
{=3.

The configuration of the ground state is

protons: (1s1/2)2(1p3/2)4(1171/2)2(1d5/2)§
neutrons: (1s1/2)2(1p3/2)4(1P1/2)2-

To get j© = %_, one could promote a p;/, proton to the ds, shell, giving

protons: (1s1/2)°(1p3/2)* (1p1/2) " (1ds )’

Then by the pairing hypothesis, the two ds, protons could combine to give jf =0,
so that the total spin-parity would be determined by the unpaired p;/, neutron, i.e.
jf = {. Alternatively, one of the p3/, protons could be promoted to the ds;, shell,

giving

protons: (1s1/2)°(1p3j2) " (1p12)* (1ds2)°
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and the two ds, protons could combine to give jF = 2%, so that when this combines
with the single unpaired j” =3~ proton the overall spin-parity is j* = 1. There are

2
many other possibilities.

For ?ij, Z =41 and N = 52. From the filling diagram Figure 7.4, the configuration
is predicted to be:

proton: . .. (2p3/2)4(1f5/2)6(2p1/2)2(1g9/2)1; neutron: .. . (2d5/2)2.

So (=4, j=2=j"=2" (which agrees with experiment). The magnetic dipole
moment follows from the expression for jprowon in Equations (7.31) withj = £ + 1, i.e.
w=(j+23)uxn = 6.8un. (The measured value is 6.17un.)

For ?gS, Z =16 and N = 17. From the filling diagram Figure 7.4, the configura-
tion is predicted to be:

proton - - - (1d5/2)6(2sl/2)2; neutron: - - - (1d5/2)7(251/2)2(1d3/2)1.
So =2, j=3=j’ =3" (which agrees with experiment). The magnetic dipole

moment follows from the expression for jheuron in Equations (7.31) with j = ¢ — %,
ie. p=(19/)/(j+ 1)un = 1.14un. (The measured value is 0.64ux.)

From Equation (7.32),
P

with p = Ze/(37b’a) and the integral is through the volume of the spheroid
(x* +y%)/b* + 72 /a® < 1. The integral can be transformed to one over the volume
of a sphere by the transformations x = bx’, y = by’ and z = az’. Then

3Z
Q = E‘[J‘[dx’dy’dzl (2a2Z/2 o b2xl2 o be/Z).

But
1
1

4
Jjjxlzdxldyldz (i.e. Z,) — —Jr'247rr'2dr' — E:

w

and similarly for the other integrals. Thus, by direct substitution, Q = %Z(a2 - b?).

From Question 7.5 we have Q =2Ze(a® —b?) and using Z =67 this gives
a® —b* =13.1fm% Also, from Equation (2.32) we have A = %ﬂabzp, where
p=0.17fm™> is the nuclear density. Thus, ab® = 231.7fm?>. The solution of
these two equations gives a ~ 6.85fm and b ~ 5.82 fm.

From Equation (7.53), t;, =1n2/\ = CR In2 exp(G), where C is a constant
formed from the frequency and the probability of forming a-particles in the nucleus.
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Thus #;/,(Th) = #,,(Cf) exp[G(Th) — G(Cf)]. The Gamow factors may be calcu-
lated from the data given. Some intermediate quantities are: rc = 45.96 fm (Th);
37.72 fm (Cf); R = 9.268 fm (Th); 9.439 fm (Cf) (using R = 1.21 (A'/? 4 41/3) and
recalling that (Z, A) refer to the daughter nucleus). These give G = 66.5 (Th); 54.9 (Cf)
and 1y, (Th) = e, ,(Cf) = 4.0 years. (The measured value is 1.9 years).

The J* values of the X2° and the A are both %+ (see Chapter 3), so the photon has
L =1 and as there is no change of parity the decay proceeds via an M1 transition.
The A° has J¥ = %+ and again there is no parity change. Therefore both M1 and E2
multipoles could be involved, with M1 dominant (see Section 7.8.2). If we assume
that the reduced transition probabilities are equal in the two cases, then from
Equations (7.80), in an obvious notation,

013
T(EO) = F;://Eéo))] T(Ao)a

ie. 7(X°) = (292/77)° x (0.6 x 10723)/0.0056 = 5.8 x 10725 (the measured
value is (7.4 £0.7) x 107 %5).

In the centre-of-mass system, the threshold for S +p — n+43*Cl is
6.45 x (34/35) = 6.27MeV. Correcting for the neutron—proton mass difference
gives the CI-S mass difference as 5.49 MeV and since in the positron decay
#Cl - #¥S+et +v,, 0=M(A,Z) —M(A,Z — 1) — 2m,, the maximum positron
energy is 4.47 MeV.

From Equation (7.71) the electron energy spectrum may be written /(E) = AE'/? x
(Eo — E )2, where E is the electron energy, Ej is the end-point, A is a constant and we
have neglected the Fermi screening correction and set the neutrino mass to be zero.
We need to calculate the fraction

Eo Eo -1
F= J I(E)dE JI(E) dE
Eo—A 0

where A is a small quantity. Using [x'/?(a — x)*dx = [1la®x® — Zax*+ ix“]l/z, gives,
using Eg = 18.6 x 10°eV and A = 10eV, F = 3.1 x 10717,

The mean energy E is defined by

-1

E= J Edw(E) l dw(E)

The integrals are:

2
[153/2(150 — E)*dE = mES/Z [63E5 — 90EGE + 35E]
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and

2
J EV2(Ey — E)*dE = ﬁgw [35E2 — 42EE + 15E7].

Substituting the limits gives E = %Eo, as required.

The possible transitions are as follows:

Initial L AP Multipoles

1,2,3,4 No M1, E2, M3, ...
1,2 No M1, E2
2,3 No E2, M3

o)
P g
B

NIU‘\ [SSY[OVIN T[4}
B|— = |

From Figure 7.13, the dominant multipole for a fixed transition energy will be M1
for the 3" — 3 and3 — 1~ transitions and E2 for the 3 — 1" transition. Thus
we need to calculate the rate for an M1 transition with E, = 178keV. This can be
done using Equations (7.80) and gives 71, = 3.9 x 10~'%s. The measured value is
3.5x 107105, which confirms that the Weisskopf approximation is not very

accurate.

Set L =3 in Equation (7.78a), substitute the result into Equation (7.77) and use
[, = iT to give I',(E3) = (2.3 x 107'*)E7A? eV, where E, is expressed in MeV.

Chapter 8

8.1

To balance the number of protons and neutrons, the fission reaction must be
n+ 25U — 2Rb + 9Cs + 4n,

i.e. four neutrons are produced. The energy released is the differences in binding
energies of the various nuclei, because the mass terms in the SEMF cancel out. We
have, in an obvious notation,

2

Z —N)? Z
=Ny =0.28; A{—} = 485.0.

_ 2. 2/3y _ .
AA) =3; A(AY?) = —9.26; A[ a ot

The contribution from the pairing term is negligible (about 1MeV). Using the
numerical values for the coefficients in the SEMF, the energy released per fission
Er = 157.9MeV.

The power of the nuclear reactor is P = nEr = 100 MW = 6.25 % 109 MeVs!,
where 7 is the number of fissions per second. Since one neutron escapes per fission and
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contributes to the flux, the flux F is equal to the number of fissions per unit area per
second, i.e.

n P 6.25 x 102 MeVs™!
F=—_— = =3.15x 107 s 'm™2.
47~ 4nEp (157.9MeV) x (12.57m?) s om

The interaction rate R is given by R=0 x F X (number of target particles). The
latter is given by ny = n X N, where Ny is Avogadro’s number and # is found from
the ideal gas law to be n = PV/RT, where R is the ideal gas constant. Using
T=298K, P=1x10° Pa and R = 8.31 Pam>mol ' K/, gives n = 52.5 mol
and hence np = 3.2 x 10%. Using the cross-section o = 1073 m2, the rate is
1.0 x 1012 s7".

The neutron speed in the CM system is v — mv/(M + m) = Mv/(M + m) and if the
scattering angle in the CM system is 6, then after the collision the neutron will have
a speed v(m+ Mcos8)/(M + m) in the original direction and Mvsin8/(M + m)
perpendicular to this direction. Thus the kinetic energy is

mv}(M? + 2mM cos 0 + m?)

E(cosf) = 200 )

and the average value is

1 1 -1
Efna = E = J E(cos @) dcosf J dcosd| = REial,

—1 —1

where the reduction factor is R = (M2 + m?) /(M + m)>. For neutron scattering from
graphite, R~ 0.86 and after N collisions the energy will be reduced to
Efinal = RVEiniia. The average initial energy of fission neutrons from 25U is
2MeV and to thermalize them their energy would have to be reduced to about
0.025eV. Thus N ~ ll’l(Eﬁna]/Einitia|)/ll’l(0.86) =116.

From Equation (1.44a), for the fission of 2*U, W; = JN(235)0; and the total power
output is P = W;E;, where Ef is the energy released per fission. For the capture by
238U, W, = JN(238)0.. Eliminating the flux J, gives

V= N (5)

U~ 135kg year™!.

Using the data supplied, gives W, = 1.08 x 10'° atoms s~
Consider fissions occurring sequentially separated by a small time interval ét. The
instantaneous power is the sum of the power released from all the fissions up to that
time. If E is the energy released in each fission, then over the lifetime of the reactor,
i.e. up to time 7, the power is given by Py = nE/T, where n is the total number of
fissions and 6t = E/P,,.
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The power after some time ¢ after the reactor has been shut down is
P(t)=3(T+1)""2+3(T+1t—60)" 2 +3(T +1—2850)"2 - 43672,
In this formula, the first term is the power released from the first fission and the last

term is the power released from the last fission before the reactor was shut down. To
sum this series, we convert it to an integral:

n=PyT/E TPo/Er
P()=3 Y (T+t-nE/P) ?~3 } (T 4t —nE/Py)~"* dn.
n=0

0

Setting u = (T 4+t — nE/Py), gives

t
% [ ™' du = 0.075P [f“ —(T+ t)*“]

T+t

P(t) = -3

Using T = 1 year and ¢t = 0.5 year, gives a power output of approximately 1.1 MW
after 6 months.

The PPI chain overall is: 4('H) — *He + 2™ + 2v, + 2y + 24.68 MeV. Two
corrections have to be made to this. Firstly, the positrons will annihilate with
electrons in the plasma releasing a further 2m, = 1.02MeV per positron.
Secondly, each neutrino carries off 0.26 MeV of energy into space that will not
be detected. So, making these corrections, the total output per hydrogen atom is
1(24.68 +2.04 —0.52) = 6.55 MeV. The total energy produced to date is
5.60 x 108 T = 3.50 x 10°°MeV. Thus, the total number of hydrogen atoms
consumed is 5.34 x 10 and so the fraction of the Sun’s hydrogen used is
5.34 x 10°3/9 x 10°® = 5.9 per cent and as this corresponds to 4.6 billion years,
the Sun has another 73 billion years to burn before its supply of hydrogen is
exhausted.

A solar constant of 8.4Jcm™2s~! is equivalent to 5.25 x 103 MeVem™2s~! of
energy deposited. If this is due to the PPI reaction 4('H) — “He + 2e*t 4 2v, + 27,
then this rate of energy deposition corresponds to a flux of (5.25 x 10'3/2 x

6.55) ~ 4 x 10'2 neutrinos cm=2s~!

For the Lawson criterion to be just satisfied, from Equation (8.46),

a(oa)tQ

n
L= =1.
6kT

We have kT = 10keV and from Figure 8.7 we can estimate (og.) ~ 1072 m?s!.

Also, from Equation (8.45), Q = 17.6MeV. So, finally, nq = 6.8 x 10"¥ m~3.
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The mass of a d-t pair is 5.03u = 4.69 x 10°eV/c?> = 8.36 x 1072* g. The number
of d—t pairs in a 1 mg pellet is therefore 1.2 x 10%°. From Equation (8.45), each d—t
pair releases 17.6 MeV of energy. Thus, allowing for the efficiency of conversion,
each pellet releases 5.3 x 10%° eV. The output power is 750 MW = 4.7 x 10?7 eV /s.
Thus the number of pellets required is 8.9 ~ 9s~!.

Assume a typical body mass of 70 kg, half of which is protons. This corresponds to
2.1 x 10®® protons and after 1 year the number that will have decayed is
2.1 x 10%8[1 — exp(—1/7)], where 7 is the lifetime of the proton in years. Each
proton will eventually deposit almost all of its rest energy, i.e. approximately 0.938
GeV, in the body. Thus in 1 year the total energy in Joules deposited per kg of body
mass would be 4.5 x 10'®[1 — exp(—1/7)] and this amount will be lethal if greater
than 5 Gy. Expanding the exponential gives the result that the existence of humans
implies 7> 0.9 x 10'° years.

The approximate rate of whole-body radiation absorbed is given by Equation (8.48a).
Substituting the data given, we have

4D son-ty — AMBA) X B, (MeV) _ (40 x 107%) x (1173 +1333)
i v = =
ar 6r2(m?) 6

=1.67 x 10 2uSvh™!

and so in 18 h, the total absorbed dose is 0.30 uSv.

If the initial intensity is Iy, then from Equation (4.18), the intensities after passing
through bone, Iy, and tissue, I, are

Iy =~ Iyexp[—(uob + 2t)] and I = Iyexp|—pu (b + 21)].

Thus R = exp[—b(up — )] = 0.7 and hence b = —In(0.7) /(g — ) = 2.5 cm.

From Figure 4.8, the rate of ionization energy losses is only slowly varying for
momenta above about 1 GeV/c and given that living matter is mainly water and
hydrocarbons a reasonable estimate is 3MeV g~! cm?. Thus the energy deposited in
1 year is 2.37 x 10° MeVkg™', which is 3.8 x 10~* Gy.

In general, the nuclear magnetic resonance frequency is f = |u|B/jh. The numerical
input we use is:

j=7/2, B=1T, p=346puN, pux=3.15x10""*Mev T!
and h=413x 102 MeVs,

giving f = 7.5 MHz.
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Appendix B
B.1 (a) From the definitions of s, r and u, we have
(s+1+u)c® = (px + 2paps + ) + (Ps — 20apc + pe) + (P4 — 2papp + Pp)
which, using p; = m3c? etc., becomes
(s 4+t 4+ u)c® = 3mic? + mic* + mie® + mhe? + 2pa(ps — pc — po)-
However, from four-momentum conservation, p4 + pg = pc + pp, so that
(s + 1+ u)c® = 3mic? + mic? + mic? + myc® — 2ph

and hence

(b) From the definition of z,
EA Ec
¢t = pj +pg — 2papc = myc + mec® — 2(7 —Pa- pc)-

For elastic scattering, A = C. Thus E4 = Ec and |ps| = |pc| =p, so that
Pa- Pc =p*cosf. Then %t =2mic? — 2(E/24/c2 — p*cos 9) and using
E% =p? & +mic*, gives t = —2p*(1 — cosf)/c?.

B.2 Energy conservation gives E; = E,, + E,, where

E; = 'Ymﬂ'(;z; E;L = C(micz +pi)l/27 E, =D

and hence
(’ym7rc2 - pl,c)zz c? (mic2 +pi) . (1)
However, three-momentum conservation gives
pucost =pr =ymyy, pysind=p,=E,/c. (2)
Eliminating p, and p, between (1) and (2) and simplifying, gives

(m2 — mi)

tanf = 257
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Conservation of four-momentum is p,, = pr — p,, from which p? = p2 + p?— 2p.p,.
Now p} = m}c? for j = m, i and v, and

T~y

PrPv = — Pz P,= mgE, = mﬂ'|pu‘ca

because p, = 0 and E,, = m,c? in the rest frame of the pion. However, |p, | = |p M | =
because the muon and neutrino emerge back-to- back. Thus, p = (m2 — m )¢/ ZmT,

but p = ym,,v, from which v = pc [p + m2 2} . Finally, substituting for p gives

2 2
WlTr—m,u
v=I\l5,7]¢
m7r+mﬂ
By momentum conservation, the momentum components of X0 are:

px = —0.743 (GeV/c), p, = —0.068 (GeV/c), p.=2.595 (GeV/c) and hence
p§< = 7.291. Also, pﬁ = 4.686 (GeV/c)? and ptz3 = 0.304 (GeV/c)>.

Under hypothe51s (a):

Ejy = (mic* + p2c®)/? =2.169GeV and Ep = (mic* + p2c?)'/? = 0.740GeV.
Thus Ex = 2.909 GeV and My = (E2 — p2c?)'/?c™2 = 1.082 GeV/c2.

Under hypothesis (b):

Ey = (m2c* +pic®)'? =2.350GeV and Ep = (m2c* + pic®)'* = 0.569GeV.
Thus Ey = 2.928 GeV and My = (E2 — p2c?)'/?c™2 = 1.132 GeV/c.

Since Mp = 1.86 GeV/c? and My = 1.12 GeV/c?, the decay is A — p + 7.

If the four-momenta of the initial and final electrons are p = (E/c,q) and
p' = (E'/c,(q'), respectively, the squared four-momentum transfer is defined by

Q> =—(p —p)* = —2m*? +2EE' /> —2q - {.

However, E=FE and |q|=|q|=g¢, so neglecting the electron mass,
Q% ~2¢* x (1 —cosf). The laboratory momentum may be found from Equation
(B.36):

2 _ ¢

A2
4mp

cz(s — mg)2

g 5= Omy = me)? | [s = (my )| = — 2

where the invariant mass squared s is defined by s = (p + P)2 /c? and P is the four-
momentum of the initial proton, i.e. P = (myc,0). Thus,

s=m’+ m[% +2myE/c* ~ mﬁ +2m,E/c*.
Substituting into the expression for Q? gives Q* ~ 2E*(1 — cos 0)/c?

The total four-momentum of the initial state is py; = [(E + mp ) /c, pL]. Hence the
invariant mass W is given by (Wc?)* = (Ep + m,c?)” — pi.c?, where p. = |py |. The
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invariant mass squared in the final state evaluated in the centre-of-mass frame has a
minimum value (4mpc)2 when all four particles are stationary. Thus, Ey;, is given by
202 22 242
(Emin + mpc™)” — pic” = (4my,c”)

which expanding and using Eﬁlm — pIZ‘c2 = m§c4, gives Enin = 7m1,,c2 = 6.6GeV.

For a bound proton, the initial four-momentum of the projectile is (E] /c,p’; ) and
that of the target is (E/c, —p), where p is the internal momentum of the nucleons,
which we have taken to be in the opposite direction to the beam because this gives
the maximum invariant mass for a given E{ . The invariant mass W’ is now given by

(W'e*)? = (B, + E)* — (p|. —p)°c® = 2myc* + 2EE] + 2pp; c.

Since the thresholds Epi, and E| ;. correspond to the same invariant mass 4m,, we
have 2mpc2Emin =2EE,, + 2pp;ninc2. Finally, since the internal momentum of the
nucleons is ~250 MeV/c (see Chapter 7), E ~ mpcz, while for the relativistic
incident protons puin & Emin/c, so using these gives
Elin = (1 = p/mpc) Enin = 4.8 GeV.
B.7 The initial total energy is E; = E4 = myc? and the final totallenergy isE =Ep + Ec,
where Ep = (mjc* + p3c®)?, and Ec = (mic* +pic?)?, with pp = |pg| and
pc = |p¢|- However, by momentum conservation, p; = —p = p and so

2
{mAc2 — (mjc* +p2c2)ﬂ = (mzcc4 —l—pzcz)7
which on expanding gives Eg = (mﬁ + m% - mzc)c2 /2my.
B.8 If the four-momenta of the photons are p; = (E;/c,p;)(i = 1,2), then the invariant
mass of M is given by M?c* = (E; + E;)* — (p; + pa)c® = 2E1E;(1 — cos 6), since
p; - P, = E1Ex(1 — cos ) /c? for zero-mass photons. Thus, cos § = 1 — M*c* /2| E,.
B.9 A particle with velocity v will take time 7= L/v to pass between the two

counters. Relativistically, p =mvy with ~= (1 —2/?)7% Solving, gives
v=c(l +m?c?/p*)"? and hence the difference in times-of-flight (assuming

my > my) is
1 L
(1+m9) (1475,
P P

Using mc? = mpc2 =0.983 GeV, myc? = mc?> =0.140 GeV and pc =2 GeV
gives At =[1.114 — 1.002](L/c) and Ly, = 0.54 m.

At =

L
c

B.10 In an obvious notation, the kinematics in the lab frame are:

YEy, p,) +e (mc,0) — y(E,, p,)+e (E,p).
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Energy conservation gives E. + me? = E’ +E and momentum conservatlon
gives p, = pW + p From the latter we have E2 — mc* = ¢ (pﬂ + pA -2p,- pw)
But pvc =K, pAc = E’ and the scattering angle is 6, so we have
E? —m’c* = E2 + E2 2E7E cos 6. Eliminating E between this equatlon and the
equation for energy conservatlon gives E, = E [1 + E,(1 — cos ) /mc? ]”'. Finally,
using E, = E /2 and 0 = 60°, gives E, = 2mc* = 1 02 MeV.

Appendix C

Cl1

C.2

C3

The assumptions are: ignore the recoil of the target nucleus because its mass is
much greater than the total energy of the projectile a-particle; use non-relativistic
kinematics because the kinetic energy of the a-particle is very much less that its rest
mass; assume the Rutherford formula (i.e. the Born approximation) is valid for
small-angle scattering. The relevant formula is then Equation (C.13) and it may
be evaluated using z =2, Z =83, Ex, =20MeV and 6 =20°. The result is
do/d2 = 98.3b/sr.

From Figure C.2, the distance of closest approach d is when x = 0. For x < 0, the
sum of the kinetic and potential energies is Eo; = %mv2 and the angular momentum
is mvb. At x =0, the total mechanical energy is mu® + Zze? /4meod and the
angular momentum is mud, where u is the instantaneous velocity. From angular
momentum conservation, u = vb/d and using this in the conservation of total
mechanical energy gives d?> — Kd —b*> =0 where, using Equation (C.9),
K = 2b/cot(0/2). The solution for d > 0 is d = b[1 + cosec(6/2)]/cot(6/2).

The result for small-angle scattering follows directly from Equation (C.9) in the
limit & — 0. Evaluating b, we have, using the data given,

7Ze? e’ he 1 ~13
— =277 — =1.55%10
2mwegmv20 ¢ (47r50hc) me? (v/c)*0 . "

The cross-section for scattering through an angle greater than 5° is thus
o=mb?> = 7.55 x 1072 m? and the probability that the proton scatters through
an angle greater than 5° is P = 1 — exp[—not], where n is the number density of
the target. Using n = (6.022 x 10%6/194) x 21450 = 6.658 x 10¥ m~3, gives
P =491x 1072, Since P is very small but the number of scattering centres is
very large, the scattering is governed by the Poisson distribution and the probability
for a single scatter is P;(m) = me™" = 4.91 x 1072, giving m ~ 0.052. Finally, the
probability for two scattering is P, = m*exp(—m)/2! ~ 1.3 x 1073,



