3

Fourier Transform

Multiple Choice Questions

Q.1 Match List-I (Fourier transform) with List-II (Functions of time) and select the correct answer using the codes given below the lists:

List-I

- A. $\frac{\sin k\omega}{\omega}$
- B. e-jud
- C. $\frac{1}{(j\omega+2)^2}$
- D. *k*δ(ω) List-lÌ
- 1. A constant
- 2. Exponential function
- 3. t-multiplied exponential function
- 4. Rectangular pulse
- 5. Impulse function

Codes:

A B C D
(a) 4 5 3 1
(b) 4 5 3 2
(d) 3 4 2 1
(d) 3 4 2 5

[ESE-1999]

Q.2 Match List-I (Type of signal) with List-II (Property of Fourier transform) and select the correct answer using the codes given below the lists:

List-l

- A. Real and even symmetric
- B. Real and odd symmetric
- C. Imaginary and even symmetric
- D. Imaginary and odd symmetric List-II
- 1. Imaginary and even symmetric
- 2. Real and even symmetric
- 3. Real odd even symmetric
- 4. Imaginary and odd symmetric

Codes:

- A B C D
 (a) 1 4 2 3
- (b) 2 4 1 3
- (c) 1 3 2 4
- (d) 2 3 1 4

[ESE-2002]

Q.3 Match List-I (Time domain property) with List-II (Frequency domain property pertaining to Fourier representation periodicity properties) and select the correct answer using the codes given below the lists:

List-I

List-II

- A. Continuous
- 1. Periodic
- B. Discrete
- 2. Continuous
- C. Periodic
- 3. Non-periodic
- D. Non-periodic
- 4. Discrete

Codes:

- A B C D
- (a) 3 4 1 2
- (b) 2 4 1 · 3
- (c) 2 1 4 3 5 c
- (d) 3 1 4 2

[ESE-2004]

Q.4 Match List-I (Time Function) with List-II (Fourier Spectrum/Fourier Transform) and select the correct answer using the codes given below the lists:

List-I

- A. Periodic Function
- B. Aperiodic Function
- C. Unit Impulse d(t)
- D. $\sin \omega_0 t$ List-II
- 1. Continuous spectrum at all frequencies
- 2. $\pi j (\delta(\omega + \omega_0) \delta(\omega \omega_0))$
- 3. Line discrete spectrum
- 4. 1

Codes:

- A B C D
 (a) 4 2 3 1
- (b) 3 1 4 2
- (c) 4 1 3 2
- (d) 3 2 4 1

[ESE-2005]

Q.5 Match List-I (CT Function) with List-II (CT Fourier Transform) and select the correct answer using the code given below the lists:

List-I

List-II

- A. $e^{-t}u(t)$
- 2πe^{-|ω|}
- B. $x(t) = \begin{cases} 1, & |t| \le 1 \\ 0, & |t| > 1 \end{cases}$
- 2. *j*ω*X*(*j*ω)
- $\mathbf{C.} \ \frac{dx(t)}{dt}$
- 3. $\frac{1}{1+i\omega}$
- D. $\frac{2}{1+t^2}$
- 4. $\frac{2\sin\omega}{\omega}$

Codes:

- A B C D
- (a) 1 4 2 3
- (b) 3 2 4 1
- (c) 1 2 4 3
- (d) 3 4 2 1

[ESE-2006]

Q.6 If the Fourier transform of x(t) is $\frac{2}{\omega} \sin(\pi \omega)$, then what is the Fourier transform of $e^{5t}x(t)$?

- (a) $\frac{2}{\omega 5} \sin(\pi \omega)$
- (b) $\frac{2}{\omega}\sin\{\pi(\omega-5)\}$
- (c) $\frac{2}{\omega+5}\sin\{\pi(\omega+5)\}$
- (d) $\frac{2}{\omega 5} \sin{\{\pi(\omega 5)\}}$

[ESE-2006]

- Q.7 A real signal x(t) has Fourier transform X(t). Which one of the following is correct?
 - (a) Magnitude of X(f) has even symmetry while phase of X(f) has odd symmetry.
 - (b) Magnitude of X(f) has odd symmetry while phase of X(f) has even symmetry.
 - (c) Both magnitude and phase of X(f) have even symmetry.
 - (d) Both magnitude and phase of *X*(*f*) have odd symmetry.

[ESE-2007]

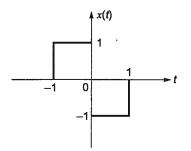
Q.8 Let $x(t) \leftrightarrow X(j\omega)$ be Fourier Transform pair. The Fourier Transform of the signal x(5t-3) in terms of $X(j\omega)$ is given as

(a)
$$\frac{1}{5}e^{-\frac{j3\omega}{5}}X\left(\frac{j\omega}{5}\right)$$
, (b) $\frac{1}{5}e^{\frac{j3\omega}{5}}X\left(\frac{j\omega}{5}\right)$

(c)
$$\frac{1}{5}e^{-j3\omega}X\left(\frac{j\omega}{5}\right)$$
 (d) $\frac{1}{5}e^{j3\omega}X\left(\frac{j\omega}{5}\right)$

[GATE-2006]

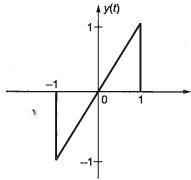
Q.9 The signal x(t) is described by


$$x(t) = \begin{cases} 1 \text{ for } -1 \le t \le +1 \\ 0 & \text{otherwise} \end{cases}$$

Two of the angular frequencies at which its Fourier transform becomes zero are

- (a) π , 2π
- (b) 0.5π , 1.5π
- (c) $0, \pi$
- (d) 2π , 2.5π

[GATE-2008]


Q.10 The fourier transform of given signal x(t)

- (a) $\frac{2\sin\omega-2}{\omega}$
- (b) $\frac{2\cos\omega-2}{j\omega}$
- (c) 2 *j*ω cosω
- (d) 2 *j*ω sinω
- Q.11 A Fourier transform pair is as follows:

$$x(t) \stackrel{F \cdot T}{\longleftrightarrow} X(j\omega) = \frac{2\sin\omega}{\omega}$$

where, $x(t) = \begin{cases} 1, & |t| < |\\ 0, & \text{otherwise} \end{cases}$

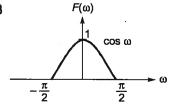
The fourier transform of given signal y(t) is

(a)
$$4\pi i \left(\frac{\cos\omega}{\omega} - \frac{\sin\omega}{\omega}\right)$$

(b)
$$2j\left(\frac{\cos\omega}{\omega} - \frac{\sin\omega}{\omega^2}\right)$$

(c)
$$4\pi i \left(\frac{\cos\omega}{\omega^2} - \frac{\sin\omega}{\omega}\right)$$

(d)
$$2j\left(\frac{\cos\omega}{\omega^2} - \frac{\sin\omega}{\omega}\right)$$


Q.12 Suppose $y(t) = x(t) \cos t$ and

$$y(j\omega) = \begin{cases} 2, & |\omega| \le 2 \\ 0, & \text{otherwise} \end{cases}$$

then x(t) will be

- (a) $\frac{4\sin t}{\pi t}$
- (b) $\frac{2\sin t}{t}$
- (c) $\frac{4\sin t}{t}$
- d) $\frac{2\pi \sin t}{t}$

Q.13

Find f(t)

(a)
$$\left\{ \frac{1}{4\pi} \left[\frac{2\sin((t-1)\pi/2)}{(t-1)} + \frac{2\sin((t+1)\pi/2)}{(t+1)} \right] \right\}$$

(b)
$$\frac{(\omega_0^2 t^2 - 2)\cos \omega_0 t + 2\omega_0 t.\sin \omega_0 t}{\pi t^3}$$

(c)
$$\left\{ \frac{1}{4\pi} \left[\frac{2\sin((t-1)\pi/2)}{(t+1)} + \frac{2\sin((t+1)\pi/2)}{(t-1)} \right] \right\}$$

(d)
$$\frac{(\omega^2 t^2 - 2)\cos\omega_0 t + 2\omega_0 \cdot \sin\omega_0 t}{\pi t^3}$$

Q.14 A signal $x(t) = \operatorname{sinc}(\alpha t)$ where α is a real constant

$$\left(\sin c\left(x\right) = \frac{\sin(\pi x)}{\pi x}\right)$$
 is the input to a Linear time invariant system whose impulse response $h(t) = \operatorname{sinc}(\beta t)$, where β is a real constant. If $\min\left(\alpha,\beta\right)$ denotes the minimum of α and β and similarly $\max\left(\alpha,\beta\right)$ denotes the maximum of α and β , and K is a constant, which one of the following statements is true about the output of the system?

- (a) It will be of the form $K \operatorname{sinc}(\gamma t)$ where $\gamma = \min(\alpha, \beta)$.
- (b) It will be of the $k \operatorname{sinc}(\gamma t)$ where $\gamma = \max(\alpha, \beta)$.
- (c) It will be of the form $k \operatorname{sinc}(\alpha t)$.
- (d) It cannot be a sinc type of signal.

[GATE-2008]

Q.15 Let $x(t) = \text{rect } \left(t - \frac{1}{2}\right)$ (where rect (t) = 1 for

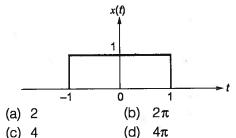
$$-\frac{1}{2} \le x \le \frac{1}{2}$$
 and zero otherwise).

Then $\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$, the Fourier Transformer of x(t) + x(-t) will be given by

(a)
$$\operatorname{sinc}\left(\frac{\omega}{2\pi}\right)$$

(b)
$$2 \operatorname{sinc}\left(\frac{\omega}{2\pi}\right)$$

(c)
$$2 \operatorname{sinc}\left(\frac{\omega}{2\pi}\right) \cos\left(\frac{\omega}{2}\right)$$


(d)
$$\operatorname{sinc}\left(\frac{\omega}{2\pi}\right) \sin\left(\frac{\omega}{2}\right)$$

[GATE-2008]

Q.16 x(t) is a positive rectangular pulse from t = -1 to t = +1 with unit height as shown in the

figure. The value of
$$\int_{-\infty}^{\infty} |X(\omega)|^2 d\omega$$
 {where $X(\omega)$

is the Fourier transform of x(t) is

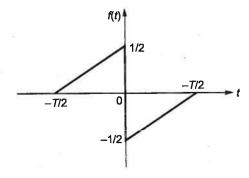
(c) 4

[GATE-2010]

Q.17 Let f(t) be a continuous time signal and let $F(\omega)$ be its Fourier Transform defined by

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt$$

Define g(t) by


$$g(t) = \int_{-\infty}^{\infty} F(u)e^{-jut} du$$

What is the relationship between (t) and g(t)?

- (a) g(t) would always be proportional to f(t).
- (b) g(t) would be proportional to f(t) if f(t) is an even function.
- (c) g(t) would be proportional to f(t) only if f(t)is a sinusoidal function.
- (d) g(t) would never be proportional to f(t).

[GATE-2014]

Q.18 A function f(t) is shown in the figure.

The Fourier transform $F(\omega)$ of f(t) is

- (a) real and even function of ω
- (b) real and odd function of ω
- (c) imaginary and odd function of ω
- (d) imaginary and even function of ω

[GATE-2014]

Q.19 A signal is represented by

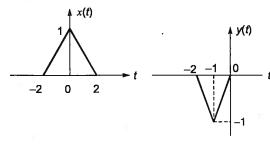
$$x(t) = \begin{cases} 1 & |t| < 1 \\ 0 & |t| > 1 \end{cases}$$

The Fourier transform of the convolved signal

$$y(t) = x(2t) * x\left(\frac{t}{2}\right) \text{ is}$$

(a)
$$\frac{4}{\omega^2} \sin\left(\frac{\omega}{2}\right) \sin(2\omega)$$

(b)
$$\frac{4}{\omega^2} \sin\left(\frac{\omega}{2}\right)$$


(c)
$$\frac{4}{\omega^2}\sin(2\omega)$$

(d)
$$\frac{4}{\omega^2} \sin^2 \omega$$

[GATE-2014]

Q.20 Let x(t) and y(t) (with Fourier transforms X(t)and Y(f) respectively) be related as shown in the figure.

(a)
$$-\frac{1}{2}X(f/2)e^{-j2\pi f}$$
 (b) $-\frac{1}{2}X(f/2)e^{j2\pi f}$

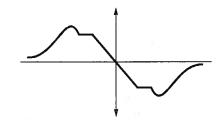
(c)
$$-X(f/2)e^{j2\pi f}$$
 (d) $-X(f/2)e^{-j2\pi f}$

(d)
$$-X(f/2)e^{-j2\pi f}$$

[GATE-2004]

Q.21 The Fourier transform of
$$x(t) \rightarrow \frac{\sin \omega}{a^2 + \cos^2 \omega}$$
 and

of
$$y(t) \to \frac{(a^2 + \cos^2 \omega) 5}{\sin \omega}$$
. The time domain signal obtain by the convolution of $x(t)$ and


y(t) is (a) 5 sint

(b) 5 cost

(c) $5\delta(t)$

(d) 5 u(t)

Q.22 Following is the fourier transform plot of a signal. What is the time domain signal for this plot?

(b)
$$\frac{x(t) - x(-t)}{2}$$

(c) $\frac{x(t) + x(-t)}{2i}$

Statement for Linked Answer Questions (23 and 24):

The impulse response h(t) of a linear time-invariant continuous time system is given by $h(t) = \exp(-2t)$ u(t), where u(t) denotes the unit step function.

Q.23 The frequency response $H(\omega)$ of this system in terms of angular frequency ω , is given by, $H(\omega) =$

[GATE-2008]

Q.24 The output of this system, to the sinusoidal input $x(t) = 2\cos(2t)$ for all time t, is

(b) $2^{-0.25}\cos(2t-0.125\pi)$

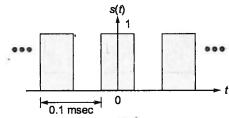
(c) $2^{-0.5}\cos(2t-0.125\pi)$

(d) $2^{-0.5}\cos(2t-0.25\pi)$

[GATE-2008]

Q.25 Let a signal $a_1 \sin(\omega_1 t + \phi_1)$ be applied to a stable linear time invariant system. Let the corresponding steady state output be represented as $a_2F(\omega_2t+\phi_2)$. Then which of the following statements is true?

> (a) F is not necessarily a "sine" or "cosine" function but must be periodic with $\omega_1 = \omega_2$


(b) Fmust be a "sine" or "cosine" function with $a_1 = a_2$

(c) Fmust be a "sine" function with $\omega_1 = \omega_2$ and

(d) Fmust be a "sine" or "cosine" function with $\omega_1 = \omega_2$

[GATE-2007]

Q.26 A rectangular pulse train s(t) as shown in the figure is convolved with the signal $\cos^2(4\pi \times 10^3 t)$. The convolved signal will be a

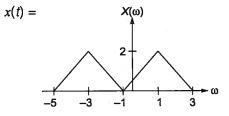
(a) DC

(b) 12 kHz sinusoid

(c) 8 kHz sinusoid

(d) 14 kHz sinusoid

[GATE-2004]



Numerical Data Type Questions

Q.27 The Fourier transform of a signal h(t) is $H(j\omega) = (2 \cos \omega) (\sin 2\omega)/\omega$. The value of *h*(0) is _____.

[GATE-2012]

(i)
$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \underline{\hspace{1cm}}$$

(ii)
$$\int_{-\infty}^{\infty} x(t)e^{j3t} dt$$
 is = _____

(iii)
$$\angle x(t) = \underline{\hspace{1cm}}$$

Q.29 A continuous, linear time-invariant filter has an impulse response h(t) described by

$$h(t) = \begin{cases} 3 & \text{for } 0 \le t \le 3 \\ 0 & \text{otherwise} \end{cases}$$

When a constant input of value 5 is applied to this filter, the steady state output is ____.

[GATE-2014]

Q.30 For a function g(t), it is given that,

$$\int_{-\infty}^{+\infty} g(t)e^{-j\omega t}dt = \omega e^{-2\omega^2}$$
 for any real value ω . If

$$y(t) = \int_{-\infty}^{t} g(\tau) d\tau$$
, then $\int_{-\infty}^{+\infty} y(t) dt$ is _____.

[GATE-2014]

Try Yourself

T1. Consider a continuous time signal x(t) whose Fourier transform is

$$X(j\omega)$$
 and $X(j\omega) = u(\omega) - u(\omega - 2)$
[Where $u(\omega)$ is unit step signal]

The signal x(t) is

- (a) real signal
- (b) complex signal
- (c) purely imaginary signal
- (d) none of these

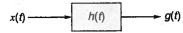
[Ans: (b)]

- T2. Let x(t) be a signal with its Fourier transform $X(j\omega)$. Suppose we are given the following facts.
 - 1. x(t) is real
 - 2. x(t) = 0 for $t \le 0$

3.
$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \text{Re}\left\{X(j\omega)\right\} e^{j\omega} d\omega = |t| e^{-|t|}$$

then a closed form expression for x(t) is

- (a) $2e^{-t}u(t)$
- (b) $e^{-|t|}$
- (c) $te^{-2t} u(t)$
- (d) $2te^{-t}u(t)$


[Ans: (d)]

- The Fourier transform of a signal $x(t) = e^{2t} u(-t)$ is given by
 - (a) $\frac{1}{2-i\omega}$
- (b) $\frac{2}{1-i\omega}$
 - (c) $\frac{1}{i\omega 2}$ (d) $\frac{2}{2 + i\omega}$

[Ans: (a)]

T4. Let
$$g(t) = x(t) \cos^2 t * \frac{\sin t}{\pi t}$$

Assume x(t) be real and $X(j\omega) = 0$, for $|\omega| \ge 1$. The system function h(t) that will satisfy the condition given below is

- (a) $\frac{1}{2}\delta(t)$ (b) $\frac{1}{2}\delta(t-1) + \frac{1}{2}\delta(t+1)$
- (c) $[\cos^{-1}(t)]^2$ (d) $\frac{\sin ct}{t} * \cos^{-1}(t)$

[Ans: (a)]

T5. The Fourier transform $F\{e^{-t}u(t)\}$ is equal to

$$\frac{1}{1+j2\pi f}$$
. Therefore, $F\left\{\frac{1}{1+j2\pi t}\right\}$ is

- (a) $e^{f}u(f)$
- (b) $e^{-t}u(t)$
- (c) $e^{t}u(-t)$
- (d) $e^{-t}u(-t)$

[Ans: (c)]

T6. The fourier transform of a function g(t) is given by

$$G(\omega) = \frac{\omega^2 + 21}{\omega^2 + 9}$$
, the function $g(t)$ is

- (a) $\delta(t) + 2\exp(-3|t|)$
- (b) $\cos 3\omega t + 21 \exp(-3t)$
- (c) $\sin 3\omega t + 7 \cos \omega t$
- (d) $\sin 3\omega t + 21 \exp(3t)$

[Ans: (a)]

- T7. The Fourier transform of a conjugate symmetric function is always
 - (a) imaginary
 - (b) conjugate anti-symmetric
 - (c) conjugate symmetric
 - (d) real

[Ans: (d)]

- **T8.** Fourier transform of $x(t) = \frac{2a}{a^2 + t^2}$ is
 - (a) $2\pi e^{-a|\omega|}$
- (b) $\pi e^{-2a|\omega|}$ (d) $\pi e^{-2a\omega}$
- (c) $2\pi e^{-a\omega}$

[Ans: (a)]

T9. A signal is given as x(t) = 5 Sa (2t). The area of its Fourier transform plot in frequency domain

[Ans: (31.4)]

T10. Which of the following transfer functions gives a distortionless system

- (a) $3 \omega e^{-j 5\omega}$
- (b) $3 e^{-j5\omega^2}$
- (c) $3e^{-j8\omega}$
- (d) $9 \omega^2 e^{-5\omega j}$

[Ans:(c)]

- T11. The time domain response of a LTI system is given as $h(t) = \cos t u(t)$. It is
 - (a) Static
- (b) Casual
- (c) Stable
- (d) Both b and c

[Ans:(b)]

T12. The final value of $x(t) = [2 + e^{-3t}]u(t)$ is

- (a) 2
- (b) 3
- (c) e^{-2t}
- (d) 0

[Ans: (a)]

T13. The transfer of differentiator has_____ magnitude

· . .

- (a) constant
- (b) linear w.r.t. time
- (c) non linear
- (d) linear w.r.t. frequency

[Ans:(d)]