Fourier Series #### Introduction It is an approximated process by which an non-standard signal is converted into a standard signal. The approximation of a given function by Fourier series gives a smooth function even when the function being approximated has discontinuities. #### Advantage - We can find spectral width very easily. - We can find steady state response very easily due to Periodic input. ## **Convergence of Fourier Series (Dirichlet Condition)** Periodic signal x(t) has a Fourier series representation if it satisfies the following Dirichlet condition. x(t) is absolutely integrable over any period i.e. $$\int_{T_0} |x(t)| dt < \infty$$ - x(t) has a finite number of maxima and minima within any finite interval of t. - x(t) has a finite number of discontinuities within any finite interval of t, and each of these discontinuities is finite. ## **Fourier Series Representation of Continuous Time** By using Fourier series, a non-sinusoidal periodic function can be expressed as an infinite sum of sinusoidal function. ## 1. Trigonometric Fourier series Any practical periodic function of frequency ω_0 can be expressed as an infinite sum of sine (or) cosine functions that are integral multiples of ω_0 $$f(t) = a_0 + \sum_{n=1}^{\infty} (a_n \cos \omega_0 t + b_n \sin \omega_0 t)$$ where, ω_0 = Fundamental frequency a_0 , a_n , b_n = Trigonometric Fourier series coefficient $n\omega_n = n^{th}$ harmonic of ω_n $$a_0 = \frac{1}{T} \int_0^T f(t)dt$$ $$a_n = \frac{2}{T} \int_0^T f(t) \cos n\omega_0 t dt$$ $$b_n = \frac{2}{T} \int_0^T f(t) \sin n\omega_0 t dt$$ Note: - Here a₀ is the value of constant component of the signal f(t) - The Fourier coefficient a_n and b_n are maximum amplitude of nth harmonic component. #### 2. Polar form of trigonometric Fourier series $$f(t) = C_0 + \sum_{n=1}^{\infty} C_n \cos(n\omega_0 t - \dot{\phi}_n)$$ where. $$C_0 = a_0$$ $$|C_n| = \sqrt{a_n^2 + b_n^2}$$... Magnitude spectrum $$\phi_n = \tan^{-1} \left(\frac{b_n}{a_n} \right)$$... Phase spectrum #### 3. Exponential Fourier series $$f(t) = \sum_{n=0}^{\infty} C_n e^{in\omega_0 t}$$ where, $$C_0 = a_0 = \frac{1}{T} \int_{C}^{T} f(t) dt$$ $$C_n = \frac{1}{T} \int_0^T f(t) e^{-jn\omega_0 t} dt$$ Note: Exponential Fourier series is compact form of Fourier series Positive and negative frequency indicate different phase of rotation, they maintain same magnitude but different phase. #### Relation between exponential and trigonometric Fourier series $$a_n = (C_n + C_{-n})$$ $b_n = j(C_n - C_{-n})$ ### **Effect of Symmetry of Fourier Coefficients** #### 1. Odd symmetry For signals with odd symmetry, the Fourier coefficient a_0 and a_n are zero. $$x(t) = -x(-t)$$ #### 2. Even symmetry For signals with even symmetry, the Fourier coefficient b_n are zero. #### **4 Half-wave symmetry** For signals with half-wave symmetry, the Fourier series will consist of odd harmonic terms of sine and cosine signals. #### Summary | Function | C _n | Fourier
Coefficient | Trigonometric Fourier
Series | |-----------------------------------|---|---|---| | Real
(Neither even
nor odd) | Generally Complex $C_n = C_n^*$ | $a_0 \neq 0$
$a_0 = b_n \neq 0$ | DC term, sine terms and cosine terms are present. | | Even | Real
(Even in nature) | $a_0 \neq 0$ $a_n \neq 0$ $b_n = 0$ | DC term and cosine terms are present. | | Odd | Imaginary
(odd in nature) | $a_0 = 0$ $a_n = 0$ $b_n \neq 0$ | Only sine terms are present. | | Half wave
symmetry | C _n = 0 ;
For n = even | $\begin{cases} a_n = 0 \\ b_n = 0 \end{cases}$; n = even | Odd sine and odd cosine terms are present. | | Even and Half wave symmetry | $C_n = \text{Real \& even}$
$C_n = 0$; $n = \text{even}$ | $ \begin{vmatrix} a_n = 0 \\ b_n = 0 \end{vmatrix} ; n = even $ | Only odd cosine terms are present. | | Odd and Half
wave symmetry | C _n = Imaginary & odd
C _n = 0 ; n = even | $\begin{cases} a_n = 0 \\ b_n = 0 \end{cases}$; $n = \text{even}$ | Only odd sine terms are present. | #### Parseval's Power Theorem The average power P_n if x(t) has Fourier series coefficient C_n then Parseval's power theorem is given by $$\frac{1}{T}\int_{0}^{T}|x(t)|^{2} dt = \sum_{n=-\infty}^{\infty}|c_{n}|^{2}$$ # Properties of Exponential Form of Fourier Series Coefficients | Property | Continuous Time Periodic Signal | Fourier Series Coefficients | |--------------------------------------|--|---| | Linearity | A x(t) + B y(t) | AC _n + Bd _n | | Time shifting | $\times (t \pm t_0)$ | $C_n e^{\pm jm\omega_0 t_0}$ | | Frequency shifting | e ^{±jmω} 0 ^t x(t) | C _{n µm} | | Conjugation | ×*(t) | C:-n | | Time reversal | x(-t) | C_n | | Time scaling | $x(\alpha t)$; $\alpha > 0$ { $x(t)$ is period with period T/α } | C _n (No change in
Fourier coefficient | | Multiplication | ×(t) y(t) | $\sum_{m=-\infty}^{+\infty} C_m d_{n-m}$ | | Differentiation | d/dt x(t) | jnω ₀ t ₀ | | Integration | $\int_{-\infty}^{t} x(t) dt$ (Finite valued and periodic only if $a_0 = 0$) | $\frac{1}{jn\omega_0}C_n$ | | Periodic Convolution | $\int_{\mathbb{T}} X(\tau) y(t - \tau) d\tau$ | TC _n d _n | | Symmetry of eal signals x(t) is real | | $C_n = C_{-n}^*$ $ C_n = C_{-n} ; \angle C_n = -\angle C_{-n}$ $ C_n = C_n ; \angle C_n = -\angle C_{-n}$ $ C_n = C_n ; C_n $ $ C_n = C_n ; C_n $ | | Real and even | x(t) real and even | C _n are real and even | | Real and odd | x(t) real and odd | C _n are imaginary and odd |